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The onset of thermoconvective instability in a horizontal porous layer with a basic
Hadley flow is studied, under the assumption of weak vertical heterogeneity. Hadley
flow is a single-cell convective circulation induced by horizontal linear changes of
the layer boundary temperatures. When combined with heating from below, these
thermal boundary conditions yield a temperature gradient inclined to the vertical,
in the basic state. The linear stability of the basic state is studied by considering
small-amplitude disturbances of the velocity field and the temperature field. The
linearized governing equations for the disturbances are then solved both by Galerkin’s
method of weighted residuals and by a combined use of the Runge–Kutta method and
the shooting method. The effect of weak heterogeneity of the permeability and the
effective thermal conductivity of the porous medium is studied with respect to neutral
stability conditions. It is shown that, among the normal mode disturbances, the most
unstable are longitudinal rolls, that is, plane waves with a wave vector perpendicular
to the imposed horizontal temperature gradient. The effect of heterogeneity becomes
important only for high values of the horizontal Rayleigh number, associated with
the horizontal temperature gradient, approximately greater than 60. In this regime, the
effect of heterogeneity is destabilizing. It is shown that heterogeneity with respect to
thermal conductivity is of major importance in the onset of instability.

Key words: Bénard convection, buoyancy-driven instability, convection in porous media

1. Introduction
The analysis of instability in a horizontal fluid-saturated porous layer, where the

basic state displays an inclined temperature gradient and a buoyant parallel flow with
a vanishing mass flow rate, has been the subject of several investigations. This type of
basic state is called Hadley flow, by analogy with the Hadley circulation named after
George Hadley, an eighteenth-century meteorologist, who proposed an explanation for
the distribution of winds in the atmosphere. The pioneering stability analysis of Hadley
flow in a horizontal porous layer, modelled through Darcy’s law, was carried out by
Weber (1974). Weber’s work was extended analytically by Nield (1990, 1991, 1998)
and Nield, Manole & Lage (1993), and numerically by Manole & Lage (1995), and by
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FIGURE 1. Drawing of the porous layer and the thermal boundary conditions.

Manole, Lage & Nield (1994) and Manole, Lage & Antohe (1995). Further extensions
to the analysis have been made by a large number of people whose work has been
surveyed in §§ 7.9 and 9.5 of Nield & Bejan (2006). More recent work has been
reported by Narayana, Murthy & Gorla (2008), Brevdo & Ruderman (2009a,b) and
Barletta & Nield (2010). To the best of the authors’ knowledge, all the stability
analyses of the Hadley flow in porous media to date were relative to homogeneous
porous media.

In recent years increased attention has been directed to the effects of heterogeneity
of the porous medium, and a considerable number of papers on this topic were
surveyed by Nield (2008). In the case where heterogeneity is weak, a Rayleigh number
based on averaged quantities serves as a useful criterion for stability, and an analytical
solution can be obtained. A study of the effect of heterogeneity on the instability of a
porous layer with a non-uniform wall temperature distribution was recently carried out
by Barletta, Celli & Kuznetsov (2012).

The aim of this contribution is to investigate the effects of weak vertical
heterogeneity of the porous medium on the stability of the Darcy–Hadley flow. We
will assume that the permeability and thermal conductivity of the porous medium
undergo a weak linear change in the vertical direction. The stability analysis will
be carried out by considering linear perturbations of the basic state in the form of
arbitrarily oriented oblique rolls. The linear stability theory that we apply is standard,
but the problem is of interest because the permeability heterogeneity modifies the basic
shear flow.

2. Governing equations
We consider a horizontal porous layer with thickness H and infinite horizontal width.

We assume that the layer is bounded by a pair of impermeable plane walls with
non-uniform temperatures changing linearly in the horizontal direction defined by the
unit vector

ŝ= cosφ êx + sinφ êy. (2.1)

Here, êx and êy are unit vectors along the x-axis and the y-axis, respectively, and the
angle φ ∈ [0,π/2] is arbitrary. A sketch of the porous layer is given in figure 1.

The forthcoming analysis is carried out under the following assumptions:

(i) Darcy’s law is valid;

(ii) the Oberbeck–Boussinesq approximation with local thermal equilibrium between
the solid phase and the fluid phase holds;
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306 A. Barletta and D. A. Nield

(iii) the porous medium is isotropic and displays weak vertical heterogeneity with
variable dimensionless thermal conductivity, k(z), and variable dimensionless
permeability, K(z);

(iv) viscous dissipation is negligible.

On account of these assumptions, the governing equations (see, for instance, Nield &
Kuznetsov 2007, 2011) can be written in a dimensionless form as

∇ ·u= 0, (2.2a)

∇ ×
[

u
K(z)

]
= R ∇ × (T êz

)
, (2.2b)

∂T

∂t
+ (u ·∇)T = k(z)∇2T. (2.2c)

In the Appendix it is shown that the local energy balance equation (2.2c) is
appropriate when the heterogeneity is due to a non-uniform porosity of the medium,
with very different thermal conductivities of the solid and the fluid, and slightly
different volumetric heat capacities of the two phases.

We mention that (2.2b) is obtained by evaluating the curl of the local momentum
balance equation, that is, of Darcy’s law. Equations (2.2) are completed by the
boundary conditions

z= 0 : w= 0, T = 1− λ (x cosφ + y sinφ) , (2.3a)
z= 1 : w= 0, T =−λ (x cosφ + y sinφ) . (2.3b)

The dimensionless quantities are defined through the scaling

1
H
(x∗, y∗, z∗)= (x, y, z) ,

α

σH2
t∗ = t,

H

α
u∗ = H

α
(u∗, v∗,w∗)= (u, v,w)= u, (2.4a)

T∗ − T0

1T
= T,

K∗(z∗)
〈K∗〉 = K(z),

k∗(z∗)
〈k∗〉 = k(z), (2.4b)

where the asterisks denote the dimensional temperature and velocity fields (T∗,u∗),
the dimensional coordinates and time (x∗, y∗, z∗, t∗), the dimensional permeability and
thermal conductivity distributions (K∗, k∗). The average thermal conductivity over the
vertical direction, z∗ ∈ [0,H], is denoted by 〈k∗〉. The average permeability over the
vertical direction, z∗ ∈ [0,H], is denoted by 〈K∗〉. Thus, the average thermal diffusivity,
α, is obtained dividing 〈k∗〉 by the volumetric heat capacity of the fluid. The ratio
between the volumetric heat capacity of the fluid-saturated porous medium and that of
the fluid is denoted by σ . The thermal expansion coefficient of the fluid is denoted by
β, while g is the modulus of the gravitational acceleration g, and ν is the kinematic
viscosity of the fluid. The constant temperature difference between the walls at any
fixed horizontal position, (x∗, y∗), is denoted by 1T , while T0 is a constant reference
temperature.

In (2.2b), the Darcy–Rayleigh number R is defined by

R= gβ1T〈K∗〉H
να

, (2.5)

while, in (2.3), the dimensionless parameter λ is the ratio between the magnitude of
the prescribed horizontal temperature gradient and the constant 1T/H.
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On Hadley flow in a porous layer with vertical heterogeneity 307

We note that, on account of (2.4), one obtains∫ 1

0
K(z) dz= 1,

∫ 1

0
k(z) dz= 1. (2.6)

3. Basic solution
A stationary solution of (2.2) and (2.3) describing a parallel horizontal throughflow

with a vanishing mass flow rate can be found, given by

ub = λR (z− c1)K(z)ŝ, (3.1a)

Tb = 1− λ (x cosφ + y sinφ)− c2z− λ2R
∫ z

0

{∫ ξ

0

[
K(η)

k(η)
(η − c1)

]
dη
}

dξ, (3.1b)

where c1 and c2 are integration constants such that

c1 =
∫ 1

0
ηK(η) dη, c2 = 1− λ2R

∫ 1

0

{∫ ξ

0

[
K(η)

k(η)
(η − c1)

]
dη
}

dξ. (3.2)

According to a hypothesis of weak heterogeneity (see, for instance, Nield & Kuznetsov
2007, 2011), we assume that both the permeability and the thermal conductivity are
linear functions of z, such that

K(z)= 1+ γ1 (2z− 1) , k(z)= 1+ γ2 (2z− 1) , (3.3)

where γ1 and γ2 are assumed to be small, so that the integrals in (3.1) and (3.2) can be
evaluated to first order in γ1 and γ2. Thus, the integration constants are given by

c1 = 1
2
+ γ1

6
, c2 = 1+ Rλ2

12
(1+ γ2) . (3.4)

Equation (3.1) yields in this case

ub = λR

(
z− 1

2
− γ1

6

)
[1+ γ1 (2z− 1)] ŝ, (3.5a)

Tb = 1− z− λ (x cosφ + y sinφ)− Rλ2

12
[(1+ γ2)z− (3− 2γ1 + 3γ2)z

2

+ 2(1− 2γ1 + 2γ2)z
3 + 2(γ1 − γ2)z

4]. (3.5b)

Equation (3.5), in the limits γ1→ 0 and γ2→ 0, coincides with the basic solution for
the Hadley flow in a homogeneous porous medium reported in § 7.9 of Nield & Bejan
(2006).

4. Linear stability
The linear perturbations to the basic solution are defined by

u= ub + εU, T = Tb + εθ, (4.1)

where U = (U,V,W) and ε is a very small perturbation parameter.
If we substitute (4.1) into (2.2) and neglect the terms O(ε2), we obtain

∇ ·U = 0, (4.2a)
∇ × U = RK(z) ∇ × (θ êz

)
, (4.2b)

∂θ

∂t
+ (ub ·∇) θ + (U ·∇)Tb = k(z)∇2θ. (4.2c)
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308 A. Barletta and D. A. Nield

We note that, according to the assumption of weak heterogeneity, we approximated the
term ∇ × [U/K(z)] with (∇ × U) /K(z) (see Nield & Kuznetsov 2007). From (2.3),
(3.1) and (4.1), we obtain the boundary conditions

z= 0, 1 : W = 0, θ = 0. (4.3)

Having considered a basic Hadley flow in a horizontal direction inclined to the x-axis,
defined by the unit vector ŝ, we are allowed to model an arbitrary normal mode of
perturbation as a wave directed along the x-axis and such that V = 0, with both U and
θ independent of y. In this case, we can define a streamfunction ψ such that

U(x, z, t)= ∂ψ(x, z, t)

∂z
, W(x, z, t)=−∂ψ(x, z, t)

∂x
. (4.4)

Thus, (4.2) and (4.3) yield

∂2ψ

∂x2
+ ∂

2ψ

∂z2
+ RK(z)

∂θ

∂x
= 0, (4.5a)

∂θ

∂t
+ λ

[
RF(z)

∂θ

∂x
− ∂ψ
∂z

]
cosφ +

[
1+ Rλ2

12
G(z)

]
∂ψ

∂x

= k(z)

(
∂2θ

∂x2
+ ∂

2θ

∂z2

)
, (4.5b)

with

z= 0, 1 : ψ = 0, θ = 0. (4.6)

On account of (3.5), functions F(z) and G(z) are defined by

F(z)= ub · ŝ
λR
=
(

z− 1
2
− γ1

6

)
[1+ γ1 (2z− 1)] , (4.7a)

G(z)=− 12
Rλ2

(
∂Tb

∂z
+ 1
)

= 1+ γ2 − 2 (3− 2γ1 + 3γ2) z+ 6 (1− 2γ1 + 2γ2) z2 + 8 (γ1 − γ2) z3. (4.7b)

We now consider the normal mode solutions expressed as

ψ(x, z, t)= Re
{

if (z)ei(ax−ωt)
}
, θ(x, z, t)= Re

{
h(z)ei(ax−ωt)

}
, (4.8)

where Re stands for the real part of a complex expression, while a is the
dimensionless wavenumber and ω is the dimensionless frequency. The complex
parameter ω is considered real on studying the neutral stability. At neutral stability,
ω = 0 for the stationary modes and ω 6= 0 for the oscillatory, or travelling, modes.

Substitution of (4.8) into (4.5) and (4.6) yields

f ′′ − a2f + aRK(z)h= 0, (4.9a)

k(z)
(
h′′ − a2h

)+ iωh− iλ
[
aRF(z) h− f ′

]
cosφ + a

[
1+ Rλ2

12
G(z)

]
f = 0, (4.9b)

z= 0, 1 : f = 0, h= 0. (4.9c)

5. Longitudinal rolls
We now study the special case of longitudinal rolls, that is, normal modes with

φ = π/2. We will focus our attention on stationary longitudinal rolls, such that ω = 0.
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On Hadley flow in a porous layer with vertical heterogeneity 309

Thus, equations (4.9) simplify to

f ′′ − a2f + aRK(z)h= 0, (5.1a)

k(z)
(
h′′ − a2h

)+ a

[
1+ Rλ2

12
G(z)

]
f = 0, (5.1b)

z= 0, 1 : f = 0, h= 0. (5.1c)

We seek an approximate solution of (5.1) by using Galerkin’s method of weighted
residuals (Finlayson & Scriven 1966; Finlayson 1972). To order N, we express f and h
as finite sums,

f (z)=
N∑

n=1

fnχn(z), h(z)=
N∑

n=1

hnχn(z), (5.2)

where χn(z) are test functions such that χn(0)= χn(1)= 0, chosen as the polynomials

χn(z)= (n+ 1) (n+ 2)
(
zn − zn+1

)
, n= 1, 2, 3, . . . ,N. (5.3)

We substitute (5.2) into the left-hand sides of (5.1a), (5.1b), so that we evaluate the
residuals associated with these differential equations. The weighted average of these
residuals over the interval 0 6 z 6 1, with weight functions coincident with the test
functions χn(z), yields an algebraic linear system,

M ·X = 0. (5.4)

Here, X is the 2N-dimensional vector of the coefficients

X = (f1, f2, . . . , fN, h1, h2, . . . , hN) , (5.5)

M is the 2N × 2N block matrix

M =
(

A B

C D

)
, (5.6)

where, on account of (5.1), A,B,C,D are the N × N matrices

Amn =
∫ 1

0
χm(z)

[
χ ′′n (z)− a2χn(z)

]
dz, (5.7a)

Bmn = aR
∫ 1

0
K(z)χm(z)χn(z) dz, (5.7b)

Cmn = a
∫ 1

0

[
1+ Rλ2

12
G(z)

]
χm(z)χn(z) dz, (5.7c)

Dmn =
∫ 1

0
k(z)χm(z)

[
χ ′′n (z)− a2χn(z)

]
dz, m, n= 1, . . . ,N. (5.7d)

Non-trivial solutions of (5.4) can exist only if

det (M)= 0. (5.8)

For any choice of the input parameters (a, γ1, γ2, λ), the solution of (5.8) allows one to
obtain R. Following the literature (see, for instance, Nield & Bejan 2006), we prefer to
introduce the horizontal Rayleigh number, RH , defined by

RH = Rλ, (5.9)
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FIGURE 2. Longitudinal rolls: neutral stability curves R(a) for different values of RH .
The solid lines are for the homogeneous case γ1 = γ2 = 0; the dashed lines are for the
heterogeneous case |γ1| = 0.1 and γ2 = 0.
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FIGURE 3. Longitudinal rolls: neutral stability curves R(a) for different values of RH .
The solid lines are for the homogeneous case γ1 = γ2 = 0; the dashed lines are for the
heterogeneous case γ1 = 0 and |γ2| = 0.1.

so that we may use (5.8) to obtain R for any set of input parameters (a, γ1, γ2,RH).
This leads to the determination of the neutral stability curves R(a) associated with
each assigned set of parameters (γ1, γ2,RH). The absolute minima of these curves
yield the critical values (ac,Rc) for the onset of instability to longitudinal rolls.

Figures 2–5, obtained by the method of weighted residuals to order N = 7, display
the neutral stability curves R(a) for different values of RH . Different possible cases
of heterogeneity are considered in these figures. We gather a first important piece of
information on the effects of the heterogeneity: the conductivity heterogeneity (γ2 6= 0)
is more effective in changing the neutral stability conditions than the permeability
heterogeneity (γ1 6= 0).
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FIGURE 4. Longitudinal rolls: neutral stability curves R(a) for different values of RH .
The solid lines are for the homogeneous case γ1 = γ2 = 0; the dashed lines are for the
heterogeneous case |γ1| = |γ2| = 0.1 with γ1γ2 > 0.
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FIGURE 5. Longitudinal rolls: neutral stability curves R(a) for different values of RH .
The solid lines are for the homogeneous case γ1 = γ2 = 0; the dashed lines are for the
heterogeneous case |γ1| = |γ2| = 0.1 with γ1γ2 < 0.

We point out that the assumption of weak heterogeneity implies that the functions
K(z) and k(z), given by (3.3), are invariant under the transformation

γ1→−γ1, γ2→−γ2, z→ 1− z. (5.10)

One can verify that functions F and G defined by (4.7), under the above
transformation, behave as follows: F → −F and G→ G. Thus, the symmetry of
the boundary conditions, (4.9c), implies that the neutral stability curve R(a), obtained
for general oblique rolls by solving (4.9), is left invariant by the transformation
(5.10), provided that λ→−λ. The latter change is physically insignificant as it can
be balanced by an inversion of the horizontal axes x and y. This property of (4.9)
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FIGURE 6. Longitudinal rolls: plots of Rc versus RH for different heterogeneity models. The
dashed line is for the homogeneous case (γ1 = γ2 = 0).

obviously holds also in the special case of longitudinal rolls, (5.1), where the sign of λ
is immaterial as λ appears in (5.1) only with the power λ2.

The discussion on the symmetry, (5.10), of the neutral stability condition justifies
the assignment of two different weak heterogeneity models for each dashed curve in
figures 2–5.

Tables 1 and 2 list the critical values of a and R for different assignments of
RH and of the heterogeneity parameters (γ1, γ2). We note that the values of ac and
Rc evaluated here for the homogeneous case (γ1 = γ2 = 0) are in perfect agreement,
within six significant figures, with those reported by Kaloni & Qiao (1997) and by
Barletta & Nield (2010). We point out a discrepancy with the results given in Barletta
& Nield (2010) for RH = 90, where the authors erroneously detected the minimum of
the neutral stability curve for a higher mode. The results listed in table 1 are also in
good agreement with those reported by Brevdo (2009) and by Diaz & Brevdo (2011)
for RH 6 60. The effect of the heterogeneity is a change in ac and Rc that yields
either stabilization or destabilization of the flow. Whether Rc increases or decreases,
relative to the homogeneous case, depends on the heterogeneity model, i.e. on the
values assigned to γ1 and γ2, as well as on the value of RH . The general behaviour for
values of RH larger than 60 is that heterogeneity implies destabilization of the basic
Hadley flow. This conclusion is illustrated in figure 6, where Rc is plotted versus RH

for different heterogeneity models. The plot for the homogeneous case (γ1 = γ2 = 0) is
reported, for comparison, as a dashed curve. We note that the strongest destabilization
is caused by the heterogeneity model with (γ1 =±0.1, γ2 =±0.1).

6. Discussion of the mode selection
A rescaling of (4.9) using the transformation

f = Rf̃ , h= h̃/a (6.1)

produces the system

f̃ ′′ − a2 f̃ + K(z)h̃= 0, (6.2a)

k(z)
(

h̃′′ − a2h̃
)
+ iωh̃− iaRH cosφ

[
F(z) h̃− f̃ ′

]
+ a2

[
R+ R2

H

12
G(z)

]
f̃ = 0, (6.2b)

z= 0, 1 : f̃ = 0, h̃= 0. (6.2c)
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On Hadley flow in a porous layer with vertical heterogeneity 313

γ1 γ2 RH ac Rc

0 0 0 3.14159 39.4784
0 0 20 3.14575 49.5486
0 0 40 3.21522 78.9664
0 0 60 3.67219 124.473
0 0 70 4.67123 149.186
0 0 80 6.53124 164.371
0 0 90 7.73120 160.999
0 0 100 8.46277 143.586

±0.1 0 0 3.14215 39.4687
±0.1 0 20 3.14564 49.5630
±0.1 0 40 3.21389 79.0335
±0.1 0 60 3.67917 124.498
±0.1 0 70 4.73922 148.768
±0.1 0 80 6.56722 160.808
±0.1 0 90 7.49793 154.433
±0.1 0 100 8.24095 135.921
0 ±0.1 0 3.14215 39.4169
0 ±0.1 20 3.14725 49.4468
0 ±0.1 40 3.22555 78.6818
0 ±0.1 60 3.81735 123.269
0 ±0.1 70 5.90324 142.740
0 ±0.1 80 7.35681 141.527
0 ±0.1 90 8.27177 125.759
0 ±0.1 100 9.10612 97.0563

TABLE 1. Longitudinal rolls: critical values of a and R for different horizontal Rayleigh
numbers and different heterogeneity data.

γ1 γ2 RH ac Rc

±0.1 ±0.1 0 3.14109 39.4561
±0.1 ±0.1 20 3.14523 49.4926
±0.1 ±0.1 40 3.22508 78.6689
±0.1 ±0.1 60 3.90483 122.491
±0.1 ±0.1 70 5.86129 139.235
±0.1 ±0.1 80 7.10281 136.569
±0.1 ±0.1 90 7.96269 119.750
±0.1 ±0.1 100 8.74954 89.9895

±0.1 ∓0.1 0 3.14432 39.3584
±0.1 ∓0.1 20 3.14904 49.4301
±0.1 ∓0.1 40 3.22324 78.8299
±0.1 ∓0.1 60 3.74213 124.087
±0.1 ∓0.1 70 5.73015 146.479
±0.1 ∓0.1 80 7.61748 147.153
±0.1 ∓0.1 90 8.58748 132.548
±0.1 ∓0.1 100 9.46843 105.019

TABLE 2. Longitudinal rolls: critical values of a and R for different horizontal Rayleigh
numbers and different heterogeneity data.
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It is now clear that the relevant parameters in the eigenvalue system are the vertical
Rayleigh number R, the horizontal Rayleigh number RH , the wavenumber a, and an
‘orientation parameter’ aRH cosφ (which has the value zero for longitudinal modes), as
well as the heterogeneity parameters γ1 and γ2.

It is our belief that, for thermal instability of shear flows in a channel such as
the present one, the favoured modes (the most unstable ones) are the stationary
longitudinal ones. We do not have a formal proof for this. We cannot even prove
that the ‘principle of exchange of stabilities’ (Chandrasekhar 1961, § 12) holds, since
in fact (as we will see below) some oscillatory modes (transverse ones) grow with
time. Nevertheless, we provide the following argument in support of our assertion. The
basic ideas were introduced by Nield (1991).

In the case where the shear flow is not symmetric about the mid-plane of the
channel, it is necessary to consider both even modes (symmetric about the mid-plane)
and odd modes (anti-symmetric). (As is well known, any function of one variable
can be expressed as the sum of an even function and an odd function.) The modes
can be approximated by terms proportional to sin(nπz), where n is an integer. (Weak
heterogeneity is not expected to change the eigenfunctions much.) The even modes
correspond to odd integers. The most unstable even mode is given by n = 1, and the
most unstable odd mode by n= 2.

The competition for favoured mode is between the following:

(i) stationary longitudinal modes;
(ii) stationary transverse modes;

(iii) oscillatory longitudinal modes;
(iv) oscillatory transverse modes.

The basic structure of the eigenvalue equation is given applying the Galerkin
approximation at order two to the homogeneous case to (6.2a) and (6.2b). We now
take as trial functions satisfying the boundary conditions (6.2c),

χn(z)= sin(nπz). (6.3)

After some elementary row and column manipulations of the determinant, the
eigenvalue equation takes the form

det



π
2 + a2 0 1 0

0 4π2 + a2 0 1

a2

(
R− R2

H

4π2

)
−8iaRH cosφ

3
π

2 + a2 − iω
−16iaRH cosφ

9π2

8iaRH cosφ
3

a2

(
R− R2

H

16π2

) −16iaRH cosφ
9π2

4π2 + a2 − iω

= 0. (6.4)

Expanding the determinant and taking the real and imaginary parts gives the following
pair of simultaneous equations:(

R̃− R̃2
H −

p2

4ã2

)(
R̃− R̃2

H

4
− q2

4ã2

)
+ Mcos2φR̃2

H

ã2

(
pq+ 9

4

)
− pqω̃2

16ã4
= 0, (6.5a)

ω̃

(
R̃− R̃2

H(p+ 4q)

4(p+ q)
− pq

4ã2

)
= 0. (6.5b)
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Here we have introduced the shorthand

R̃= R

4π2
, R̃H = RH

4π2
= λR

4π2
, ã= a

π
, ω̃ = ω

π2
, (6.6a)

p= 1+ ã2, q= 4+ ã2, M = 256
81π2

. (6.6b)

Stationary longitudinal modes (ω̃ = 0, φ = π/2)
Equation (6.5b) is satisfied identically, and (6.5a) yields either

R̃= R̃2
H +

(1+ ã2)
2

4ã2
(6.7)

or

R̃= R̃2
H

4
+ (4+ ã2)

2

4ã2
. (6.8)

For the first mode, given by (6.7), the minimum value of R̃ is obtained when ã = 1,
and is given by

R̃LS1 = 1+ R̃2
H, (6.9)

where ‘LS’ stands for ‘longitudinal stationary’. Similarly, for the second mode the
minimum value of R̃ is obtained when ã= 2, and is given by

R̃LS2 = 4+ R̃2
H/4. (6.10)

We see that

R̃LS2 > R̃LS1 for R̃H < 2, (6.11)

but

R̃LS2 < R̃LS1 for R̃H > 2. (6.12)

Stationary transverse modes (ω̃ = 0, φ = 0)

For this case (6.5a) gives(
R̃− R̃2

H −
p2

4ã2

)(
R̃− R̃2

H

4
− q2

4ã2

)
+ MR̃2

H

ã2

(
pq+ 9

4

)
= 0. (6.13)

Hence, for any stationary transverse mode the minimum, as ã varies, of the smaller
root of this quadratic equation is applicable. It is found using some simple algebra that
this minimum is greater than R̃LS1 for R̃H < 2, and greater than R̃LS2 for R̃H > 2.

Here, we have used R̃H = 2 as the threshold value, due to its special role in marking
the transition from the first stationary longitudinal mode to the second stationary
longitudinal mode, pointed out above. Thus for any stationary transverse mode there is
a more unstable longitudinal mode.

Oscillatory longitudinal modes (ω̃ 6= 0, φ = π/2)
Now (6.5b) requires that

R̃= R̃2
H(p+ 4q)

4(p+ q)
+ pq

4ã2
, (6.14)
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and this, together with (6.5a), requires that

ω̃2 =−9

(
1− R̃2

H ã2

5+ 2ã2

)2

. (6.15)

This gives no real value for ω̃ and so there are no unstable oscillatory longitudinal
modes.

Oscillatory transverse modes (ω̃ 6= 0, φ = 0)

Again (6.14) applies, but in place of (6.15) we now have

ω̃2 =−9

(
1− R̃2

H ã2

5+ 2ã2

)2

+ 1024R̃2
H ã2

9π2

[
1

(1+ ã2)(4+ ã2)
+ 4

9

]
. (6.16)

It is only for values of R̃H exceeding a certain cut-off value that real values of ω̃
are possible. For such values, it is necessary to return to (6.14) and minimize R̃ with
respect to ã to obtain the critical value R̃TO, the critical vertical Rayleigh number
for transverse oscillatory disturbances which oscillate in time between a state with
eigenfunction corresponding to the even mode (n = 1) and a state with eigenfunction
corresponding to the odd mode (n= 2). Some further simple algebra indicates that R̃TO

is always greater than R̃LS1 given by (6.9) when R̃H < 2, and greater than R̃LS2 given by
(6.10) when R̃H > 2. Thus for any oscillatory transverse mode there is a more unstable
longitudinal mode. The numerical results of Nield (1991) confirm this conclusion.

7. A numerical study of oblique rolls
An effective numerical strategy for solving the eigenvalue problem (4.9) is based

on the combined use of the Runge–Kutta method and the shooting method. This
procedure is discussed in § 9.1.1 of Straughan (2010) and can be efficiently
implemented in the Mathematica 8.0 environment, as pointed out, for instance, in
Barletta & Rees (2012).

We note that Galerkin’s method of weighted residuals, employed in § 5 to solve the
eigenvalue problem of linear stability for longitudinal rolls, can be extended to the
case of oblique rolls. The procedure is qualitatively identical to that described in § 5,
except for the matrix elements of M that, in the case of oblique rolls, are complex.
The details are omitted here for the sake of brevity. We just mention that since for
oblique rolls the matrix M is complex, (5.8) becomes a complex algebraic equation.
On setting the real part of det(M) and the imaginary part of det(M) equal to zero,
one obtains a system of two real algebraic equations which implicitly yield the neutral
stability curve R(a) and the dispersion relation ω(a). However, the solution method
requires significantly long computational time to attain good accuracy. Therefore, we
preferred to employ a Runge–Kutta solver combined with the shooting method, using
the results obtained with Galerkin’s method of weighted residuals as a first guess
to initialize the shooting method. This solution strategy ensures that all branches
of neutral stability are properly detected, and that very good numerical accuracy is
achieved.

By adopting the combined Runge–Kutta method and shooting method, one can
obtain the neutral stability function R(a), as well as the dispersion relation ω(a),
corresponding to the assigned input data (φ,RH, γ1, γ2). On seeking the minimum
of R(a), one obtains the critical values (ac,Rc) and the critical angular frequency
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FIGURE 7. Oblique rolls: critical values of R and a for the homogeneous case γ1 = γ2 = 0,
with different values of RH .

ωc = ω(ac). A test case of the methodology is the longitudinal rolls analysed in § 5.
The numerical data reported in tables 1 and 2 agree, within all the reported figures,
with those found by the procedure based on the combined Runge–Kutta method and
shooting method. The latter numerical procedure allows one to analyse oblique rolls by
tracking the change in the critical values (ac,Rc, ωc), while the inclination angle varies
smoothly from φ = π/2 (longitudinal rolls) to φ = 0 (transverse rolls).

Figures 7–11 illustrate the change in the critical parameters (Rc, ac, ωc) with the
inclination angle φ. For Rc and ac, we displayed the values normalized to those
for longitudinal rolls (φ = π/2), denoted by RLc and aLc. The main differences arise
on comparing the homogeneous case (γ1 = γ2 = 0), illustrated in figure 7, with the
different models of heterogeneous porous media, illustrated in figures 8–11. In fact,
for the homogeneous case, oblique rolls are non-oscillatory (ωc = 0), while for the
heterogeneous cases oblique rolls are oscillatory (ωc 6= 0). The change in both Rc

and ac with φ is weakly affected by the heterogeneity model, while the trend of the
critical angular frequency ωc is markedly model-dependent. The horizontal Rayleigh
number, RH , plays an important role as it amplifies the effects of the inclination angle,
i.e. the change in Rc, ac and ωc with φ. As illustrated in figures 7–11, the special
case RH → 0, which implies boundary conditions of the Darcy–Bénard type, means
that Rc, ac and ωc are independent of φ. This is expected, since in this limiting case
the physics of the problem does not select any preferred horizontal direction, and
hence there is no difference between the oblique and longitudinal rolls. An important
feature, shown in figures 7–11, is that longitudinal rolls are the most unstable modes
in all cases examined. This conclusion agrees with the analysis of the mode selection
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FIGURE 8. Oblique rolls: critical values of R and a for the heterogeneous case |γ1| = 0.1 and
γ2 = 0, with different values of RH . If γ1 > 0 then ωc 6 0; if γ1 < 0 then ωc > 0.

reported in § 6. Therefore, the critical conditions for the onset of longitudinal rolls,
described in § 5, are to be considered as the critical conditions for the basic solution to
become linearly unstable.

8. Conclusions
The onset of thermal instability in a horizontal porous layer is studied, by

considering a basic Hadley flow induced by linearly varying temperature distributions
at the boundary walls, and by assuming a weak vertical heterogeneity of the porous
medium. The governing dimensionless parameters of the heterogeneous Hadley flow
are the permeability slope γ1, the thermal conductivity slope γ2, the horizontal
Rayleigh number RH , and the vertical Rayleigh number R. The stability of the basic
flow has been tested by considering small-amplitude disturbances of the velocity field
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FIGURE 9. Oblique rolls: critical values of R and a for the heterogeneous case γ1 = 0 and
|γ2| = 0.1, with different values of RH . If γ2 > 0 then ωc 6 0; if γ2 < 0 then ωc > 0.

and the temperature field. The standard normal mode analysis has been developed with
respect to plane waves propagating along an arbitrary horizontal direction, with an
inclination φ to the basic Hadley flow velocity. The neutral stability condition has been
studied for longitudinal rolls, φ = π/2, oblique rolls, 0< φ < π/2, and transverse rolls,
φ = 0. The solution of the governing equations for the disturbances has been obtained
both by a Galerkin method of weighted residuals, and by a numerical procedure based
on the combined use of the Runge–Kutta method and the shooting method. The main
results of the linear stability analysis are as follows.

(i) The analysis of the neutral stability condition for longitudinal rolls revealed that
the heterogeneity of the porous medium is of minor importance for smaller values
of RH , approximately lower than 60. On the other hand, with larger values of RH ,
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FIGURE 10. Oblique rolls: critical values of R and a for the heterogeneous case |γ1| = 0.1
and |γ2| = 0.1, γ1γ2 > 0, with different values of RH . If γ1 > 0 then ωc 6 0; if γ1 < 0 then
ωc > 0.

the heterogeneity of the porous medium becomes more important and displays a
destabilizing effect.

(ii) It has been proved that the non-homogeneous thermal conductivity (γ2 6= 0) yields
a stronger change in the onset conditions for longitudinal rolls, if compared
with the non-homogeneous permeability (γ1 6= 0). Among the tested cases, the
heterogeneity model that yields the strongest discrepancy with respect to the
homogeneous case is one with γ1γ2 > 0.

(iii) By adopting a second-order weighted residual solution relative to a homogeneous
medium, it has been shown that no oscillatory longitudinal modes are allowed.
Moreover, it has been pointed out that oscillatory or stationary transverse rolls
may exist, but they are always more stable than stationary longitudinal rolls.
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FIGURE 11. Oblique rolls: critical values of R and a for the heterogeneous case |γ1| = 0.1
and |γ2| = 0.1, γ1γ2 < 0, with different values of RH . If γ2 > 0 then ωc 6 0; if γ2 < 0 then
ωc > 0.

(iv) The analysis of the mode selection has been extended to oblique rolls and to the
general case of weak heterogeneity. This analysis has allowed us to prove that,
on continuously varying the inclination angle φ from π/2 (longitudinal rolls) to
0 (transverse rolls), the critical value of R monotonically increases. This confirms
the expected selection of stationary longitudinal rolls at the onset of instability.

Appendix
We consider a heterogeneous porous medium, such that the porosity ϕ, and hence

the permeability K∗, vary along the vertical z∗ direction. Thus we define two functions
of the vertical coordinate, ϕ(z∗) and K∗(z∗). In this Appendix, the subscripts ‘s’
and ‘f ’ are used to denote the solid phase and the fluid phase, respectively. The
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thermal properties of the solid phase and the fluid phase are considered to be uniform.
In particular, the thermal conductivities, ks and kf , as well as the volumetric heat
capacities, (ρc)s and (ρc)f (here, ρ is the density and c is the specific heat), are
assumed to be uniform within the porous medium. This means that the heterogeneity
has a morphological origin (variable porosity). Hence, the dimensional local energy
balance equations for the fluid and for the solid can be written respectively as

[1− ϕ(z∗)] (ρc)s
∂T∗

∂t∗
= [1− ϕ(z∗)]ks∇∗2T∗, (A 1)

ϕ(z∗) (ρc)f
∂T∗

∂t∗
+ (ρc)f u

∗
·∇
∗T∗ = ϕ(z∗)kf∇∗2T∗. (A 2)

We mention that the length scale over which the heterogeneity described by ϕ(z∗) is
displayed is much larger than the local scale where the volume-averaging procedure
(Nield & Bejan 2006) takes place.

When (A 1) and (A 2) are added together and divided by (ρc)f , we obtain

[1− ϕ(z∗)] (ρc)s+ϕ(z∗) (ρc)f
(ρc)f

∂T∗

∂t∗
+ u∗ ·∇∗T∗

= [1− ϕ(z
∗)]ks + ϕ(z∗)kf

(ρc)f
∇∗2T∗. (A 3)

A special case is one where the thermal conductivities ks and kf greatly differ, so that
we can define a variable effective conductivity

k∗(z∗)= [1− ϕ(z
∗)]ks + ϕ(z∗)kf

(ρc)f
, (A 4)

while the volumetric heat capacities (ρc)s and (ρc)f slightly differ, so that we have an
approximately constant heat capacity ratio

σ = [1− ϕ(z
∗)] (ρc)s+ϕ(z∗) (ρc)f

(ρc)f
,

dσ
dz∗
≈ 0. (A 5)

Equation (2.2c) is the dimensionless form of (A 3), under the assumptions expressed
by (A 4) and (A 5).
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