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In this article we investigate the importance of mass transfer effects in the effective
acoustic properties of diluted bubbly liquids. The classical theory for wave propagation
in bubbly liquids for pure gas bubbles is extended to capture the influence of mass
transfer on the effective phase speed and attenuation of the system. The vaporization
flux is shown to be important for systems close to saturation conditions and at low
frequencies. We derive a general expression for the transfer function that relates
bubble radius and pressure changes, solving the linear version of the conservation
equations inside, outside and at the bubble interface. Simplified expressions for various
limiting situations are derived in order to get further insight about the validity of
the common assumptions typically applied in bubble dynamic models. The relevance
of the vapour content, the mass transfer flux across the interface and the effect of
variations of the bubble interface temperature is discussed in terms of characteristic
non-dimensional numbers. Finally we derive the various conditions that must be
satisfied in order to reach the low-frequency limit solutions where the phase speed
no longer depends on the forcing frequency.
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1. Introduction
The effect of bubbles on the process of wave propagation in liquids is an

open scientific problem with many application fields such as ultrasonic fluid flow
monitoring and geophysics (Kuster & Toksöz 1974; Lynnworth 2013). One family
of models typically used for wave propagation in bubbly flows applies for dilute
systems. Most of these models (Van Wijngaarden 1968; Chapman & Plesset 1971;
Prosperetti 1977; Sangani 1991; Zhang & Prosperetti 1997; Ando, Colonius &
Brennen 2009) succeed in reproducing experimental results for frequencies below
resonance in situations where the amount of vapour is negligible (Silberman 1957;
Cheyne, Stebbings & Roy 1995; Wilson, Roy & Carey 2005; Leroy et al. 2008).
These theories have recently been improved at frequencies above the bubble
natural frequency. For instance, high-frequency corrections have been proposed
by Ando et al. (2009), while Fuster, Conoir & Colonius (2014) propose correction
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Mass transfer effects on linear wave propagation in diluted bubbly liquids 599

terms in order to capture direct bubble–bubble interactions based on the results
obtained from a full nonlinear model (Fuster & Colonius 2011).

Theoretical models for linear wave propagation in bubbly liquids require one
to model the response of a single bubble to an external pressure excitation. This
response is obtained through the linearization of the Rayleigh–Plesset equation and
the solution of the mass, momentum and energy conservation equations inside the
bubble. Expressing the amplitude of the bubble radius oscillation as a function of
the external pressure amplitude allows us to define a bubble resonance frequency
and damping factor; see Ainslie & Leighton (2011) for a review. These parameters
depend on the so-called transfer function, which relates bubble pressure and volume
changes in the linear regime. Prosperetti, Crum & Commander (1988) propose
an expression capturing the heat transfer exchange between the bubble and its
environment, assuming that the bubble interface temperature is constant and neglecting
mass transfer effects across the interface. This function can be used to define an
effective state equation for the bubble interior of the type pbVγeff

b =C, where pb is the
bubble pressure, Vb is the bubble volume and γeff is a frequency-dependent effective
coefficient that tends to recover the isothermal limit for low frequencies (γeff = 1)
and the adiabatic response for very large frequencies (γeff = γ ), where γ is the gas
polytropic coefficient.

Wave propagation in systems where mass transfer effects become relevant have
been mainly investigated for large void fractions far from the diluted limit (Mecredy
& Hamilton 1972; Kieffer 1977; Ardron & Duffey 1978; Landau & Lifshitz 1987).
For low enough frequencies, Kieffer (1977) and Landau & Lifshitz (1987) derive
limiting expressions assuming that the far-field pressure and temperature are related
through the saturation conditions. Models accounting for transient heat, mass and
momentum transport have been proposed by Mecredy & Hamilton (1972), Ardron &
Duffey (1978) and more recently Saurel, Petitpas & Abgrall (2008).

In diluted systems, mass transfer is expected to influence the local bubble response
without significantly influencing the far-field temperature, as the liquid plays the role
of an infinite energy reservoir for the bubble oscillation. In this case, one needs to
derive corrected expressions to relate bubble radius and external pressure changes.
Hao & Prosperetti (1999) consider the problem of mass transfer in pure vapour
bubbles by assuming saturation inside the bubble at every instant. Preston, Colonius
& Brennen (2007) solve the linearized problem of the dynamics of air/vapour bubbles
for situations where transient vaporization effects and heat transport in the liquid
boundary layer are not controlling mechanisms. Prosperetti & Hao (2002) also
discuss interesting phenomena induced by mass transfer on the dynamics of bubbles,
and Prosperetti (2015) presents a simplified model for the influence of mass transfer
on the sound speed of a gas/vapour bubbly liquid that reveals that mass transfer
effects play an important role in the propagation of waves at low frequencies.

The process of wave propagation near saturation conditions for diluted systems has
been less investigated experimentally. Coste, Laroche & Fauve (1990) report evidence
of a strong decrease of the sound velocity at low void fractions when approaching
the saturation curve in diethyl ether. Unfortunately, their study mainly reports data for
large void fractions, where the diluted limit conditions are not met.

In this work we extend the classical linear theory for disperse bubbly liquids to
include mass transfer effects across the interface and the diffusion of heat in the
liquid. The goals of this study are twofold. First, we want to evaluate the influence
of the mass transfer process in the bubble dynamic response and to discuss typical
assumptions used in the literature. Second, we want to quantify the importance of
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600 D. Fuster and F. Montel

mass transfer effects on the effective acoustic properties of the medium. To that end,
the full model that accounts for transient mass transfer effects is presented in § 2. In
§ 3 we present the linearization procedure followed to derive the expressions for the
bubble resonance frequency, damping factor, mass transfer flux, interface temperature
variations and effective sound phase speed and attenuation of the gas/vapour–liquid
mixture (in the following we will simply name them phase speed and attenuation).
In § 4 we present a summary of the model. Section 5 presents some numerical
results to gain further insight about mass transfer effects in the process of wave
propagation, discussing the relevance of various mechanisms on the bubble response
as a function of the vapour content and frequency. Section 6 derives low-frequency
limiting solutions, and the conclusions are presented in § 7.

2. Full model

The linearized equations for wave propagation in bubbly media can be derived
from basic principles using the conservation equations applied to the averaged mixture.
Typically, the ‘separation of scales’ assumption is used to write the averaged equations
for the large-scale wave propagation problem. Thus, neglecting the influence of liquid
viscosity at large scales, we write the mass and momentum conservation equations
as

1
ρc2

Dp
Dt
+∇ · v = ∂β

∂t
, (2.1)

ρ
Dv

Dt
=−∇p, (2.2)

where t is the time coordinate, v is the fluid velocity, p is the pressure and ρ is the
average density defined in terms of the void fraction β, the liquid’s density ρl and
the bubble’s density ρb as ρ = (1− β)ρl + βρb. The void fraction β is defined using
a probabilistic function for the bubble equilibrium radius, f (a), and the number of
bubbles per unit volume, n,

β = 4
3
πn
∫ ∞

0
a3f (a) da. (2.3)

The system of equations above requires to derive an equation to relate external
pressure changes with the local bubble radius variation. This equation is found by
solving the conservation equations inside and outside the bubble at the local scale. If
we impose spherical symmetry for the bubble oscillation, the basic equations for a
system of N species can be written as

Dρ
Dt
+ ρ

r2

∂(vrr2)

∂r
= 0, (2.4)

ρ
DYi

Dt
=− 1

r2

∂

∂r
(r2jdiff

i ), (2.5)

ρ
Dvr

Dt
=−∂p

∂r
+ 1

r2

∂r2τrr

∂r
− τθθ + τφφ

r
, (2.6)

ρ
De
Dt
=− p

r2

∂(vrr2)

∂r
− 1

r2

∂(r2qr)

∂r
+ φv, (2.7)
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Mass transfer effects on linear wave propagation in diluted bubbly liquids 601

where r is the radial coordinate, Yi is the mass fraction of the ith component, jdiff
i

is the diffusive mass flux, p is the pressure, T is temperature, τ is the viscous stress
tensor, e is the specific internal energy, qr is the radial heat flux and φv is the viscous
dissipation function. These equations apply for both the gas/vapour mixture inside the
bubble and the liquid surrounding it.

The ideal gas equation is a good approximation of the real equation of state for both
gas and vapour components inside the bubble in standard conditions. In the liquid, the
definition of the sound speed in a pure liquid is typically used to relate pressure and
density variations. Using the Fourier and Fick laws to express the diffusive heat and
mass flux, and neglecting the enthalpy difference between the different components
of the mixture at a given temperature, we obtain the following set of equations that
apply both inside and outside the bubble:

Dρm

Dt
+ ρm

r2

∂(vmr2)

∂r
= 0, (2.8)

ρm
DYi,m

Dt
= 1

r2

∂

∂r

(
r2DM

i/m
∂Yi,m

∂r

)
, (2.9)

ρm
Dvm

Dt
=−∂pm

∂r
, (2.10)

ρmcp,m
DTm

Dt
= αVTm

Dpm

Dt
+ 1

r2

∂

∂r

(
r2κm

∂Tm

∂r

)
+ 4

3
µm

(
∂vm

∂r
− vm

r

)2

. (2.11)

Here cp,m is the average specific heat, αV is the thermal dilatation coefficient, which
is αV = 1/Tm for an ideal gas and approximately zero for liquids, κm is the average
conductivity and DM

i/m is the diffusion coefficient of the ith component in the mixture.
The subindex m is used to denote the average mixture properties. When the equations
are applied inside the bubble, the subindex m will be replaced by b; when applied to
the liquid, we will use the subindex l.

The boundary conditions used to solve the system above can be found, for example,
in Hauke, Fuster & Dopazo (2007). At the bubble centre, spherical symmetry imposes
the radial gradients to be zero (i.e. ∂Yi,b/∂r = ∂ρb/∂r = ∂Tb/∂r = 0). The bubble
velocity is also set to zero, vb(r= 0, t)= 0.

Far from the bubble, pressure, temperature and all the species concentrations in the
liquid are assumed to be known (pl,∞, T0, Yi,l,0).

The local balances at the infinitely thin interface relate the liquid and gas properties
at both sides of the interface. The mass balance across the bubble is

J = ρg(Ṙ− vI
b)= ρl(Ṙ− vI

l ) at r= R, (2.12)

where J is the total evaporation mass flux across the interface, R is the bubble radius,
Ṙ is the interface velocity, and vI

b and vI
l denote respectively the fluid interface velocity

in the bubble and in the liquid. The momentum balance accounting for mass transfer
effects reads

J(vI
b − vI

l )= pI
l − pI

b + τrr,l − τrr,b + 2σ
R

at r= R, (2.13)

where σ is the surface tension coefficient.
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602 D. Fuster and F. Montel

The total flux of the ith component across the interface is calculated as the sum of
the advective flux and the diffusive flux. As both fluxes must be equal at r = R, we
obtain an equation for the conservation of the ith component across the interface as

−JYi,l − ρlDM
i/l
∂Yi,l

∂r
=−JYi,b − ρgDM

i/b
∂Yi,b

∂r
at r= R. (2.14)

The energy balance at the interface establishes the relation among the energy fluxes
at the liquid–gas boundaries. This equation can be approximated by using the total
latent heat of vaporization, 1Hvap, as

κl
∂Tl

∂r
= κg

∂Tg

∂r
+

N∑
i=1

Ji1Hvap,i at r= R, (2.15)

where Ji is the flux across the interface of the ith component and 1Hvap,i is the
enthalpy of vaporization related to the phase change. Finally, we assume a continuous
temperature profile across the interface so that the interface temperature is equal for
both phases (Tg(r= R)= Tl(r= R)= Tint).

To evaluate the flux of every component across the interface Ji that finally
determines the total flux J =∑N

i=1 Ji, we can either impose equilibrium conditions at
the interface at every instant, or assume that the flux is proportional to the difference
between the equilibrium state and the current state. In fact, using the kinetic theory
of gases, it is possible to obtain the total flux of vapour across the interface using
the Hertz–Knudsen–Langmuir expression (Knudsen 1915; Hertz 1982),

Jvap = αevap
(pI

eq − pI
b,vap)√

2πrvapTint
, (2.16)

where αevap is the accommodation coefficient, which is a measure of the ratio of the
molecules hitting the interface that change the phase, pI

b,vap is the partial pressure
of vapour at the interface, rvap is the vapour’s perfect gas constant and pI

eq is the
equilibrium pressure at the interface conditions. For the vapour, the equilibrium
pressure can be obtained from the Clausius–Clapeyron relation,

dpeq

dT
=1Hvap

peq

rvapT2
. (2.17)

It is interesting to remark that the system of equations above simplifies in cases where
the interface is assumed to be at equilibrium at every instant. As we will prove along
the theoretical development, for low enough frequencies, transient mass transfer
effects (2.16) are not relevant. In this situation the total flux is given by diffusion,
assuming equilibrium conditions at the interface at every instant. Analogously, the
model could be easily extended for soluble gases by using the equilibrium pressure
(or concentration) given by Henry’s law. It must be noted that in this work we will
not consider the presence of soluble gases in the liquid given that the mass and heat
flux related to phase change of soluble components is usually negligible compared
with that of vapour.
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Mass transfer effects on linear wave propagation in diluted bubbly liquids 603

3. Linearized solutions
The set of equations described above can be simplified assuming that all variables

oscillate around an equilibrium state with a given frequency ω. Thus, for a given
variable y, we look for solutions of the form y = y0(1 + 1yeiωt), where 1y is a
complex quantity to be determined. For the linear solution to be valid, 1y� 1.

At the local scale, the momentum and continuity equations in the liquid can
be rewritten as the Rayleigh–Plesset equation, which relates pressure (or potential)
variations induced by the far field with the local response of the bubble. Neglecting
compressibility effects, the modified Rayleigh–Plesset equation accounting for mass
transfer effects reads (Prosperetti 1982)

RR̈− RJ̇
ρl
+ 3

2

(
Ṙ− J

ρl

)2

− 2
J
ρl

(
Ṙ− J

ρl

)
= pI

l − pl,∞
ρl

, (3.1)

where pI
l can be expressed in terms of the properties inside the bubble using (2.13). In

the following, we will consider the system of a bubble containing an immiscible gas
and a vapour with an equilibrium concentration Y0 in a one-component liquid. This
is representative of most of the gas–liquid systems, as the most important flux across
the interface is expected to be given by liquid vaporization. In the linear limit the flux
across the interface is J= J01Reiωt, where J0 is a complex quantity to be determined.
Neglecting nonlinear terms we simplify the modified Rayleigh–Plesset equation as

−R2
0ω

21R− R0J0iω
ρl

1R= 1R
ρl

(
−pb,0Φ + 2σ

R0
− 4µliω

)
− pl,01p∞

ρl
, (3.2)

where Φ is a complex function to be obtained that is typically named the transfer
function and it serves to relate bubble radius oscillations and internal bubble pressure
variations, such that 1pb =−Φ1R.

The equation above can be rearranged to express the bubble radius variations in
terms of the far-field pressure variations as

1R=− 1
ω2

0 −ω2 + 2iδω
1p∞

pl,0

ρlR2
0
, (3.3)

where

δ = 2µl

ρlR2
0
+ pg,0

2ωρlR2
0

Im(Φ)+ Re(J0)

2ρlR0
, (3.4)

ω2
0 =

pg0

ρlR2
0

(
Re(Φ)− 2σ

pg,0R0

)
+ ω Im(J0)

ρlR0
. (3.5)

Equations (3.4) and (3.5) require the evaluation of the transfer function Φ and the
flux across the interface J0. Both variables can be obtained from the solution of the
conservation equations inside the bubble. Following a development similar to that of
Commander & Prosperetti (1989), we consider a perfect gas and uniform pressure
inside the bubble. The continuity equation inside the bubble can be rewritten using
the energy equation as

ṗb

γ pb
+∇ ·

(
vb − γ − 1

γ pb
κb∇Tb

)
= 0. (3.6)
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604 D. Fuster and F. Montel

Integrating the equation from the bubble centre to a given distance r, the radial
velocity inside the bubble is given by

vb(r)= 1
γ p

(
(γ − 1)κb

∂T
∂r
− 1

3
ṗbr
)
. (3.7)

This equation is evaluated at the interface to find an expression for the bubble’s
internal pressure,

ṗb = 3
R
(γ − 1)κb

∂Tb

∂r

∣∣∣∣
r=R

− 3
R
γ pbv

I
b. (3.8)

Using (2.12) to express the gas/vapour velocity at the interface (vI
b) as a function of

the total evaporation flux and the interface velocity and linearizing, we obtain

1pb =−3(γ − 1)iPe−1
b

γ

γ − 1
∂1Tb

∂ζ

∣∣∣∣
ζ=1

− 3γ1R− 3γ iJ∗01R, (3.9)

where ζ = r/R is the non-dimensional radial distance, Peb = ωR2
0/D

T
b is the

bubble’s Péclet number defined using the bubble’s thermal diffusivity DT
b , and the

non-dimensional mass transfer flux is

J∗0 =
J0

ρb,0R0ω
. (3.10)

Assuming that only one component (denoted with the subindex w) is vaporized and
that the vapour pressure depends solely on temperature, we can evaluate the mass
transfer flux from the linearization of (2.16) to obtain

J∗01R= J∗max

[
∂peq

∂T
T0

peq
1Tb(ζ = 1)−1pb +1Y(ζ = 1)

]
, (3.11)

where J∗max is a non-dimensional flux defined as

J∗max ≡ αevap
peq,0

ρb,0R0ω
√

2πrwT0
. (3.12)

Equation (3.11) requires knowledge of the vapour mass fraction variations and
the temperature variations at the interface. To obtain 1Y(ζ = 1) we solve the linear
transport equation for the vapour inside the bubble. The transport equation (2.9) is
written in a non-dimensional form using the Sherwood number, ShD = ωR2

0/Dw/b,
where Dw/b is the diffusion coefficient of the vapour inside the bubble mixture,

ShD1Y + i
1
ζ 2

∂

∂ζ

(
ζ 2 ∂1Y

∂ζ

)
= 0. (3.13)

Its general solution,

1Y(ζ )=CD
sinh(
√

ShDiζ )
ζ

, (3.14)

is particularized using the boundary condition for component w at the interface (2.14),

−J∗01R=−J∗0 Y01R− Sh−1
D Y0

∂1Y
∂ζ

∣∣∣∣
ζ=1

, (3.15)
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where we have imposed Yw,l = 1. Thus, we can determine the constant CD to write
the evolution of the mass fraction at the interface as

1Y(ζ = 1)= J∗0
ShD√

iShD coth(
√

iShD)− 1
1− Y0

Y0
1R. (3.16)

The temperature variations at the interface are obtained using the energy equation
inside the bubble ((2.11)). The non-dimensional linear version of this equation,

1Tb −1pb
γ − 1
γ
+ iPe−1

b
1
ζ 2

∂

∂ζ

(
ζ 2 ∂1Tb

∂ζ

)
= 0, (3.17)

has the following general solution:

1Tb(ζ )=1pb
γ − 1
γ
+C1

exp (−√Pebiζ )
ζ

+C2
exp (
√

Pebiζ )
ζ

. (3.18)

Because the temperature is finite at ζ = 0, we find that C1=−C2=−C0/2. Thus, the
interface’s temperature variation is given by

1Tb(ζ = 1)=1pb
γ − 1
γ
+C0 sinh (

√
Pebi). (3.19)

Plugging (3.16) and (3.19) into (3.11) we obtain the following explicit relation for the
mass flux across the interface:

J∗01R= J∗c

(
(1H∗vap − 1)1pb +1H∗vap

γ

γ − 1
C0 sinh (

√
Pebi)

)
, (3.20)

where we have defined a non-dimensional enthalpy of vaporization as 1H∗vap =
(1Hvap/cp,bT0) and a characteristic non-dimensional flux,

J∗c =
J∗max

1+ J∗max
ShD√

iShD coth(
√

iShD)− 1
1− Y0

Y0

. (3.21)

Note that this quantity provides a quantification of the influence of transient mass
transfer effects. In fact, we can write (3.21) using the characteristic non-dimensional
mass flux J∗c,eq that is obtained by assuming that equilibrium conditions prevail at the
interface at every instant (see appendix A for details of the derivation of J∗c,eq),

J∗c =
J∗max

1+ J∗max(J∗c,eq)
−1
. (3.22)

When the characteristic mass flux related to transient effects is much faster than that
at equilibrium conditions (J∗max � J∗c,eq), the mass transfer is controlled by vapour
diffusion inside the bubble: J∗c ≈ J∗c,eq. In the opposite limit (J∗max � J∗c,eq), transient
mass transfer effects control the mass flux across the interface: J∗c ≈ J∗max.

To obtain the value of the integration constant C0 in (3.20), one needs to solve the
energy equation (2.11) in the liquid. In its linearized form this equation reads

1Tl =−iPe−1
l

1
ζ 2

∂

∂ζ

(
ζ 2 ∂1Tl

∂ζ

)
, (3.23)
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606 D. Fuster and F. Montel

and its general solution is

1Tl(ζ )=C3
exp (−√Peliζ )

ζ
+C4

exp (
√

Peliζ )
ζ

, (3.24)

where Pel = ωR2
0/D

T
l is the liquid’s Péclet number. Note that, consistent with the

derivation of the far-field equations, the effect of viscous dissipation as well as thermal
dilatation on the temperature variations have been neglected. The particular solution of
this equation requires one to evaluate the liquid’s temperature at some distance ζ∞. In
the dilute limit, one can consider that the temperature far from the bubble is constant
and equal to T0. In this case we find C4 = 0.

The values of the free constants C3 and C0 in (3.19) and (3.24) are obtained by
applying the boundary conditions at the interface. First, we assume that the interface’s
temperature has to be continuous. Thus we write

C3 exp(−
√

Peli)=1pb
γ − 1
γ
+C0 sinh (

√
Pebi). (3.25)

In addition, the energy balance across the interface (2.15) establishes that

∂1Tl

∂ζ

∣∣∣∣
ζ=1

= κb

κl

∂1Tb

∂ζ

∣∣∣∣
ζ=1

+ J∗0 Peb1H∗vap1R. (3.26)

Replacing the corresponding expressions for the temperature derivatives and using
(3.25) to express C3 as a function of C0, we obtain

C0 =−
γ − 1
γ

(1−1T I
c)

sinh (
√

Pebi)
1pb, (3.27)

where the complex quantity 1T I
c is defined as

1T I
c =

κb

κl

√
Pebi coth (

√
Pebi)− 1+ J∗c Peb1H∗vap

(
γ

γ − 1

)
1+√Peli+ κb

κl

[√
Pebi coth (

√
Pebi)− 1+ J∗c Peb(1H∗vap)

2 γ

γ − 1

] . (3.28)

Upon substitution of the integration constant into (3.25), we can represent the
temperature variations at the interface as

1Tb(ζ = 1)= γ − 1
γ

1T I
c1pb. (3.29)

The temperature gradient inside the bubble evaluated at the interface is obtained
from (3.19),

∂1Tb

∂ζ

∣∣∣∣
ζ=1

=−γ − 1
γ

(1−1T I
c)[
√

Pebi coth (
√

Pebi)− 1]1pb, (3.30)

and the mass flux across the interface (3.20) is expressed as a function of the bubble
pressure variations as

J∗01R= J∗c (1H∗vap1T I
c − 1)1pb. (3.31)
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FIGURE 1. (Colour online) Influence of the vapour content on the real (a) and imaginary
(b) parts of the transfer function (3.32) for various Péclet numbers. The values of the
non-dimensional quantities J∗c , 1H∗vap and 1T I

c are obtained for a 100 µm air/water vapour
bubble at 1 atm and varying temperature (from 25 to 100 ◦C). The vapour content for the
various curves are Y0 = 0, 0.03, 0.27, 0.50, 0.74 and 0.99.

Replacing the expressions for the temperature gradient and mass flux ((3.30) and
(3.31)) into (3.9), we finally obtain the transfer function Φ as

Φ = 3γ
1− 3(γ − 1)iPe−1

b [
√

Pebi coth(
√

Pebi)− 1](1−1T I
c)+ 3γ iJ∗c (1H∗vap1T I

c − 1)
.

(3.32)
This transfer function is a generalization of the classical expression for pure gas
bubbles (Prosperetti et al. 1988) accounting for interface temperature variations and
mass transfer effects across the interface. For instance, it is easy to check that we
recover the classical solution for pure gas bubbles by imposing no net mass flux
across the interface (J∗c = 0) and by assuming that the interface temperature variations
are zero (1T I

c = 0).
Figure 1 depicts the real and imaginary parts of the transfer function obtained

for an air/vapour bubble for various water vapour contents at constant atmospheric
pressure. At high frequencies, the bubbles tend to recover the adiabatic response
irrespective of the vapour content. At low frequencies, the transfer function recovers
the isothermal limit for pure gas bubbles. As the amount of vapour increases, the real
part takes values below 1 at low frequencies. This value corresponds to the limiting
case in which equilibrium conditions prevail inside the bubble at every instant. It can
be proven that this result can also be found by assuming that vapour and gas are
both ideal gases at constant temperature (see appendix B). The imaginary part is also
influenced by the vapour content. In general the imaginary part increases with the
vapour content irrespective of the Péclet number, although the influence of the vapour
content on the imaginary part is especially notorious at low frequencies. Consistent
with experimental observations, the influence of vaporization is completely negligible
in gas/vapour bubbles under standard laboratory conditions (25 ◦C and 1 atm), where
the vapour void fraction is negligible compared with that of a gas.

Once we have obtained expressions for the transfer function (3.32) and the mass
flux across the interface (3.31), we follow the classical procedure to linearize the
averaged continuity and momentum equations ((2.1) and (2.2)) written as a wave
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equation of the form

1
c2

eff

∂2pl,∞
∂t2
−1pl,∞ = 4πρ

∫ ∞
0

a2R̈f (a) da, (3.33)

where R̈=−ω2R01R is the interface acceleration. Rewriting (3.33) as a wave equation
for pl,∞, the complex sound speed, cm, is given by

1
c2

m

= 1
c2
+ 4πn

∫ ∞
0

af (a) da
ω2

0 −ω2 + 2iδω
, (3.34)

from which we obtain the phase velocity, cph, and attenuation, Q−1, as

cph =
(

Re
(

1
cm

))−1

, (3.35)

Q−1 =−20 log10(e) Im
(
ω

cm

)
. (3.36)

Using the expressions for the bubble resonant frequency and damping constant (3.4)
and (3.5), we obtain the phase speed (3.35) and attenuation (3.36).

4. Summary of equations
As a summary of the full model equations for a bubbly liquid with vapour and an

inmiscible gas, we solve for the averaged complex sound speed,

1
c2

m

= 1
c2
+ 4πn

∫ ∞
0

af (a) da
ω2

0 −ω2 + 2iδω
, (4.1)

in order to obtain the phase speed and attenuation as

cph =
(

Re
(

1
cm

))−1

, (4.2)

Q−1 =−20 log10(e) Im
(
ω

cm

)
. (4.3)

The second term in (4.1) represents the influence of the bubble oscillation on the
large-scale wave propagation problem, and it can be obtained in the linear regime by
solving the conservation equations at the local scale (single bubble and its surrounding
liquid). From the linearization of the Rayleigh–Plesset equation (e.g. continuity and
momentum equation in the surrounding liquid), we find the following expressions for
the bubble resonant frequency and the damping coefficient:

δ = 2µl

ρlR2
0
+ pg,0

2ωρlR2
0

Im(Φ)+ 1
2

Re(J∗0)
ρb

ρl
ω, (4.4)

ω2
0 =

pg0

ρlR2
0

(
Re(Φ)− 2σ

pg,0R0

)
+ Im(J∗0)

ρb

ρl
ω2. (4.5)

These properties require the evaluation of the non-dimensional mass transfer flux J∗0
and the transfer function Φ that relate the bubble’s pressure and volume changes.
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From the solution of the conservation equations inside the bubble and the energy
equation in the surrounding liquid, we find the following expressions for these two
quantities:

J∗0 = J∗c (1−1H∗vap1T I
c)Φ, (4.6)

Φ = 3γ
1− 3(γ − 1)iPe−1

b [
√

Pebi coth(
√

Pebi)− 1](1−1T I
c)+ 3γ iJ∗c (1H∗vap1T I

c − 1)
.

(4.7)

Here Peb=ωR2
0/D

T
b , 1H∗vap=1Hvap/cp,bT0, and J∗c and 1T I

c are the characteristic non-
dimensional flux and the non-dimensional interface temperature variation. The general
expression for the non-dimensional flux J∗c ,

J∗c =
J∗max

1+ J∗max(J∗c,eq)
−1
, (4.8)

reveals that the total flux across the interface can be controlled either by vapour
diffusion inside the bubble, J∗c,eq, or by transient vaporization effects across the
interface, J∗max. The diffusion flux,

J∗c,eq =
√

iShD coth(
√

iShD)− 1
ShD

Y0

1− Y0
, (4.9)

depends on the Sherwood number ShD=ωR2
0/Dw/b and the amount of vapour Y0. The

characteristic transient mass flux is

J∗max = αevap
peq,0

ρb,0R0ω
√

2πrwT0
. (4.10)

Finally, the non-dimensional interface temperature variation is a complex function
depending on the heat and mass transfer processes taking place at the local scale and
its general solution is

1T I
c =

κb

κl

√
Pebi coth(

√
Pebi)− 1+ J∗c Peb1H∗vap

(
γ

γ − 1

)
1+√Peli+ κb

κl

[√
Pebi coth(

√
Pebi)− 1+ J∗c Peb(1H∗vap)

2 γ

γ − 1

] , (4.11)

where Pel =ωR2
0/D

T
l .

In the following sections, we discuss the importance of mass transfer in the bubble
dynamic response and the wave propagation properties of the effective medium as well
as simplified solutions for limiting situations.

5. The influence of mass transfer effects on the acoustic properties of the
effective medium
In this section we evaluate the importance of mass transfer effects in a system

by comparing the results obtained using the full model with those provided by the
classical linear theory, which neglects mass transfer effects. We consider a mixture
of monodisperse bubbles with average radius 100 µm and bubble concentration of
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FIGURE 2. (Colour online) Influence of the vapour content on the phase velocity (a) and
attenuation (b) curves obtained from the set of equations summarized in § 4 for gas/vapour
bubbles at 1 atm and various ambient temperatures. The vapour content for each condition
is Y0= 0.99, 0.96, 0.89, 0.55 and 0.03. For reference, the red line represents the solution
for pure air bubbles (Y0 = 0) at 1 atm and 25 ◦C. Mass transfer effects significantly
modify both phase speed and attenuation curves for frequencies below resonance. In the
low-frequency limit, mass transfer decreases the phase velocity and increases attenuation.

β0 = 10−4 (vol/vol) measured at standard temperature (25 ◦C) and pressure (1 atm).
We take the physical properties of an air–water system. Because the exact value of the
accommodation coefficient is not clear yet (Gumerov, Hsiao & Goumilevski 2001), in
this work we have taken αevap = 0.35 (Yasui 1997; Hauke et al. 2007; Fuster, Hauke
& Dopazo 2010), where we have neglected any influence of the temperature on this
parameter.

Figure 2 contains the effective phase velocity and attenuation as functions of the
vapour content and frequency obtained with the full model. The vapour content is
controlled by varying the ambient temperature from 25 ◦C to the normal boiling point
of water (100 ◦C) at constant ambient pressure. Under these conditions, the classical
theory which neglects mass transfer effects does not predict any significant influence
of the vapour content (or ambient temperature) on the results obtained. However, the
results obtained with the full model reveal that mass transfer effects become relevant
at low frequencies for bubbles with a large vapour content. At low frequencies
the phase velocity is significantly reduced with respect to the value predicted when
neglecting mass transfer effects, whereas attenuation values increase by various orders
of magnitude. The analysis of low-frequency asymptotic solutions reached for low
frequencies is postponed to the next section.

The differences in the formulation of the full model including mass transfer effects
with respect to the classical formulation for pure gas bubbles can be condensed into
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FIGURE 3. (Colour online) (a) Non-dimensional evaporation flux (4.6) as a function of
the vapour content (varied by changing the ambient temperature at a constant pressure
equal to 1 atm) and the Sherwood number. (b) Phase lag between the bubble radius and
flux oscillation as a function of the vapour content and the Sherwood number.

two non-dimensional quantities: J∗0 as defined in (3.10), which is interpreted as the
ratio between the interface velocity induced by mass transfer (J0/ρb)1R and the actual
interface velocity R0ω1R; and 1T I

c as defined in (3.28), which is a measure of the
non-dimensional temperature variations at the interface (3.29). When J∗0 is close to
unity, mass transfer controls the evolution of the bubble radius, whereas when it is
smaller than unity, the gas/vapour expansion controls the bubble radius evolution.

Figure 3 shows the modulus and the phase lag with respect to the bubble radius
oscillations of the non-dimensional mass transfer flux as a function of the Sherwood
number and the vapour content (varied by changing the ambient temperature from
25 to 100 ◦C at 1 atm). For a given vapour content, the evaporation flux reaches an
asymptotic limit for low Sherwood numbers (low frequencies), which corresponds to
the limit obtained assuming thermodynamic equilibrium inside the bubble at every
instant (appendix B). This low-frequency limit is also the maximum mass transfer
flux across the interface for a given vapour content. Only for systems approaching
saturation conditions does the non-dimensional mass transfer flux become of order
unity, meaning that evaporation and condensation processes take control of the
dynamic response of the interface. On the contrary, for ShD � 1, the bubble has
almost no time to respond to pressure waves and the evaporation flux becomes
negligible. In this high-frequency regime, neither phase speed nor attenuation are
significantly influenced by mass transfer effects, and we can conclude that the bubble
dynamic response is governed by the gas/vapour expansion or compression.

The relevance of the interface temperature variations is captured by the non-
dimensional quantity 1T I

c . Figure 4 shows 1T I
c as a function of the bubble’s Péclet

number, the non-dimensional enthalpy of vaporization and the amount of vapour,
which ultimately controls the mass flux across the interface. As expected, the interface
temperature variations are negligible when the vapour content is low, irrespective of
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FIGURE 4. (Colour online) Dimensionless interface temperature variations (4.11) as a
function of the non-dimensional enthalpy of vaporization, 1H∗vap, and the bubble Péclet
number, Peb, for a 100 µm bubble with large vapour content Y0=0.99 (a) and low vapour
content Y0 = 0.05 (b).

the forcing frequency and enthalpy of vaporization. In this case, the energy exchange
due to evaporation or condensation is not significant. As we approach saturation
conditions, the mass flux across the interface and the associated energy exchange
make the interface temperature variations important. The sensitivity is maximal for
a given enthalpy of vaporization that depends slightly on the forcing frequency. For
reference, in the particular case of water, the non-dimensional enthalpy of vaporization,
1H∗vap, takes values of order unity, meaning that the interface temperature variations
become important near saturation conditions. Regarding the frequency, the interface
temperature variations are not important at low frequencies for both gas and vapour
bubbles, as the bubble has enough time to equilibrate its temperature with the
surrounding liquid at every instant. As we increase the frequency (and therefore the
Péclet number), the interface temperature variations are more important for bubbles
with a low vapour content, although in all cases the non-dimensional values are
close to zero. Thus, we can safely assume that the interface temperature is constant
for gas bubbles in water irrespective of the forcing frequency. For bubbles with a
large vapour content, the situation is different, because the interface temperature is
influenced by the mass transfer flux. As this flux decreases when increasing the
forcing frequency, there exists a range of intermediate frequencies for which the
interface temperature variations become important in order to correctly predict the
bubble radial oscillations.

In order to gain further insight into the applicability of the assumption of constant
interface temperature, figure 5 compares the solution obtained with the full model
with the solution obtained by imposing that the interface temperature remains constant
(1T I

c = 0), still considering the mass transfer flux across the interface. The results
are shown for a gas/vapour bubble at 25 ◦C (approximately 0.03 % of vapour content)
and 99.9 ◦C (Y0 = 0.99). While at low ambient temperatures (low vapour content) the
results obtained with 1T I

c = 0 accurately represent the solution obtained with the full
model, we observe significant differences when approaching saturation conditions. In
this case the vaporization flux is significant and it is important to include interface
temperature variations for an accurate estimation of the phase speed and attenuation
at frequencies below the resonance frequency. Only if we decrease frequencies
further can the bubble response be assumed to be isothermal and the phase velocities
obtained assuming constant temperature accurately represent the solution of the
full model. Note that this is not the case for the attenuation, where the interface
temperature variations seem to have a significant influence on the predictions and
must then always be considered in the predictions.
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FIGURE 5. (Colour online) Phase speed (a) and attenuation curves (b) for an air–water
system with 100 µm bubbles with concentration β0= 10−4 at 25 ◦C (red lines, Y0= 0.03)
and 99.9 ◦C (blue lines, Y0= 0.99). The continuous lines represent the solution of the full
model. The dashed lines represent the solution assuming a constant interface temperature.
The two solutions overlap for systems containing gas bubbles, whereas we observe
significant differences between them for low-frequency waves propagating in systems with
bubbles with a large vapour content.

6. Low-frequency limits

We have seen in the previous section that mass transfer effects are especially
important for low-frequency excitations. In this case both the bubble response and
the process of wave propagation are significantly influenced by the mass and energy
exchange across the interface. In order to gain further insight into the influence
of mass transfer at low frequencies, we derive limiting expressions for particular
regimes. For frequencies well below the natural frequency and assuming monodisperse
mixtures, it is readily shown that (Commander & Prosperetti 1989)

1
c2

m

= 1
c2
+ 4π

nR0

ω2
0

(
1− 2iδω
ω2

0

)
. (6.1)

The limiting expressions for ω0 and δ depend on the evaporation flux and the transfer
function. The non-dimensional flux across the interface, given by (3.31), is J∗0 =−J∗cΦ.
In the general case, J∗c has to be obtained from (3.22), which in the low-frequency
limit tends to

J∗c ≈
J∗max

1− 3J∗maxi
1− Y0

Y0

when ShD < 1. (6.2)
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FIGURE 6. (Colour online) Real and imaginary parts of 3Pe−1M, where
M(Pe)=√Pe i coth(

√
Pe i)− 1, as a function of Pe.

This expression can be further simplified when J∗max > Y0/(1− Y0)/3, which can be
written as a condition for the bubble’s Péclet number,

Peb < PeI
c =

3αevap√
2π

(1− Y0)
R0
√

rwT
DT

b
. (6.3)

The right-hand side (PeI
c) is identified with a critical Péclet number below which

transient mass transfer effects are negligible. In this case (6.2) reduces to

J∗c ≈
1
3

i
Y0

1− Y0
when ShD < 1 and Peb < PeI

c, (6.4)

which is equivalent to the low-frequency solution obtained when assuming equilibrium
conditions at the interface (see appendix A). Thus, we write the mass transfer flux
across the interface and the transfer function as

J∗0 ≈−
1
3

i
Y0

1− Y0
Φ, (6.5)

Φ ≈ 3(1− Y0)

1− (1− Y0)1T I
c
γ − 1
γ
− Y01H∗vap1T I

c

, (6.6)

which are valid when ShD < 1 and Peb < min(1, PeI
c). Note that, to derive the

expression for the transfer function, we have approximated the function M(Pe) =√
Pe i coth(

√
Pe i) − 1 by M(Pe) ≈ (Pe/3)i, which is a reasonable assumption for

Peb < 1 (figure 6).
The mass transfer flux and the transfer function are both functions of the interface

temperature variations given by (3.28). For low frequencies, Peb < 1, (3.28) simplifies
to

1T I
c ≈

κb

κl

1
3

i
[

1+ Y0

1− Y0
1H∗vap

γ

γ − 1

]
Peb

1+√Peli+ κb

κl

1
3

i
[

1+ Y0

1− Y0
(1H∗vap)

2 γ

γ − 1

]
Peb

when ShD < 1 and Peb <min(1, PeI
c). (6.7)
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When the interface temperature is isothermal, 1T I
c = 0, which is true for Peb→ 0, the

non-dimensional mass flux across the interface and the transfer function for bubbles
containing gas and vapour are

J∗0 = Y0i, (6.8)
Φ ≈ 3(1− Y0). (6.9)

Using these limiting expressions, the final expressions for the phase speed and
attenuation in the low-frequency limit are given by

c2
ph =

c2

1+ c2β0ρl

(1− Y0)p0

, (6.10)

Q−1 = 20 log10(e)
cβ0δω

2ρ2
l R2

0

3p2
0(1− Y0)2

√
1+ c2β0ρl

(1− Y0)p0

. (6.11)

For low void fractions (β0 < p0(1− Y0)/ρlc2), the phase speed tends to recover the
liquid’s sound speed. On the contrary, for large void fractions, the phase speed is
shown to be proportional to the gas content inside the bubble.

These limiting expressions are expected to represent reasonably well only the
solution for dilute systems when ShD < 1 and Peb < min(1, PeI

c) and also when the
interface temperature remains constant. This last condition introduces an additional
constraint for Peb in order to reach the low-frequency limits obtained above. From
(6.7), we conclude that we can only assume constant interface temperature when

Peb� PeII
b,c = 3

1− Y0

Y0

κl

κb

γ − 1
γ

1
(1H∗vap)

2
. (6.12)

Thus, the frequency required to reach the low-frequency limit is expected to be lower
in systems with a low liquid thermal conductivity, a large content of vapour in the
bubbles and a large enthalpy of vaporization. This effect can be clearly seen in
figure 7, where we compare the solution of systems with different non-dimensional
values of the enthalpy of vaporization with the solution of a model where the interface
temperature is assumed to be isothermal. As expected, all systems tend to the same
low-frequency limit for the phase speed, although we need to lower the forcing
frequency as the enthalpy of vaporization increases. In particular, in the case of the
highest enthalpy of vaporization tested here (twice the enthalpy of vaporization of
water), the curves tend to follow the low-frequency limit for gas bubbles at frequencies
between 103 and 104 Hz. At these frequencies, the vaporization flux is limited by
heat diffusion from the bulk towards the interface and the bubble dynamic response
is controlled mainly by the expansion or compression rather than by mass transfer
effects. For lower frequencies, heat has enough time to diffuse and vaporization
controls the effective compressibility of the medium. This remark is important if one
wants to guarantee the validity of the low-frequency limiting solutions in systems
near saturation conditions, where it is not sufficient to satisfy the condition that the
excitation frequency is below the bubble’s resonance frequency.

It is also interesting to compare the low-frequency limit solutions obtained here with
the classical solution for gas bubbles proposed by Wood (1930). Figure 8 compares
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106101100

FIGURE 7. (Colour online) Phase speed predictions for systems with 100 µm bubbles
with concentration β0=10−4 at 1 atm. The ambient temperature is fitted to obtain a vapour
molar fraction of 0.95. The dashed black line represents the predictions of the model
accounting for mass transfer effects that impose constant temperature at the interface. The
solutions obtained from the full model are shown for different values of the enthalpy of
vaporization, which are given with respect to the enthalpy of vaporization of water, 1H0

vap,
such that 1Hr = 1Hvap/1H0

vap. For reference, the continuous black line represents the
predictions of the model for a pure gas bubble, which neglects mass transfer effects across
the interface.

Wood

102

103

101

100

10–110–210–310–4

FIGURE 8. (Colour online) Phase speed in the low-frequency limit (f = 1 Hz) as a
function of the void fraction and various vapour contents for a monodisperse bubble cloud
of 100 µm bubbles. For reference the solution of pure gas bubbles and the solution of
Wood (1930) is included.

the results obtained with the full model at 1 Hz as a function of the void fraction
and the vapour content with the results obtained from Wood’s theory. As can be seen,
the phase speed is significantly lower for bubbles with a large vapour content than for
pure gas bubbles. The effect of the vapour content can also be seen in figure 9, where
we see how both phase speed and attenuation converge to the solution for pure gas
bubbles with vapour content tending to zero. For the phase velocity, Wood’s formula
provides a good approximation of the exact solution only when the void fraction is
sufficiently low. In the case of attenuation (figure 9), δ depends strongly on the vapour
content, increasing by several orders of magnitude compared to the case of pure gas
bubbles.
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FIGURE 9. (Colour online) Phase speed (a) and attenuation (b) in the low-frequency
limit (f = 1 Hz) as a function of the vapour content for a monodisperse bubble cloud
of 100 µm bubbles with concentration equal to β0 = 10−4. For reference we include the
solution of pure gas bubbles and the approximate solution provided by (6.10) and (6.11).

It is also worth mentioning that the limiting solutions of (6.10) and (6.11) differ
from the solutions for pure liquid–vapour bubbly liquids obtained by Landau &
Lifshitz (1987), who derive an asymptotic solution considering that pressure and
temperature at the large scale are coupled through the Clausius–Clapeyron equation.
In this study we restrict ourselves to situations where the temperature far from
the bubble remains constant, which is a reasonable assumption for dilute systems
containing a small amount of gas but it is not applicable for pure vapour bubbles
and low frequencies where heating or cooling of the bulk liquid may be relevant.
Although the current model for pure vapour bubbles may be extended to account for
large-scale thermal effects, for the sake of simplicity we postpone the study of this
situation to future investigation. In any case, it is important to note that the limiting
solutions reported by Landau & Lifshitz (1987) may be very difficult to obtain
experimentally in linear regimes (Coste et al. 1990). On the one hand, very small
amounts of gas make vapour diffusion inside the bubble the controlling mechanism
determining the vaporization flux. As we have seen above, the frequency threshold
below which equilibrium conditions prevail inside the bubble at every instant tend to
zero for vapour bubbles, which would make it difficult to reach the low-frequency
limit in these situations. On the other hand, for the particular case of pure vapour
bubbles, the amplitude required to keep the linear regime valid tends to zero for low
frequencies. This effect can be clearly seen in figure 10, where we represent the
effect of the vapour content on the sensitivity factor S defined from (6.13) as

S= 1R
1p∞

=− 1
ω2

0 −ω2 + 2iδω
pl,0

ρlR2
0
. (6.13)

This factor represents the non-dimensional amplification factor of the bubble radius
oscillation with respect to the external pressure excitation. Given that a pure vapour
bubble is unable to reach equilibrium conditions when we perturb the pressure, the
bubble tends to grow (or shrink) infinitely as we decrease the frequency. Small
amounts of gas serve to kill this singular behaviour, although the sensitivity of the
bubble radius oscillation against the pressure pulse is still significantly influenced by
the amount of vapour.
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Pure gas
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FIGURE 10. (Colour online) Sensitivity factor (as defined in (6.13)) as a function of the
vapour content and frequency for a 100 µm gas/vapour bubble. The vapour content is
changed by modifying the ambient temperature. As the amount of vapour increases, the
bubble radial oscillation is more important for a constant non-dimensional pressure wave
amplitude.

7. Conclusions

This paper presents a generalization of the classical linear theory for dilute bubbly
liquids that solves for the transient mass transfer effects across the interface as
well as the heat transport in the liquid boundary layer. The proposed linear model
converges to the solution of the classical linear theory for pure gas bubbles when
the vapour content inside the vapour is negligible. Mass transfer effects are shown to
play an important role in the phase speed and attenuation curves at frequencies below
the bubble resonant frequency. At low frequencies, the phase speed is significantly
reduced, while attenuation can increase by various orders of magnitude with respect
to the solution obtained when neglecting mass transfer effects.

Simplified solutions are derived for low-frequency excitations. The conditions to be
satisfied for these solutions to be valid are also obtained. We show that, to reach
the low-frequency limit for the phase speed, it is not sufficient to guarantee that the
forcing frequency is lower than the bubble natural frequency. For a general case, the
Sherwood number, ShD = ωR2

0/Dw/b, must also be smaller than unity and the Péclet
number, Peb=ωR2

0/D
T
b , must be smaller than the minimum of two characteristic Péclet

numbers, PeI
c and PeII

c , in order to guarantee that thermodynamic equilibrium prevails
at every instant. In systems with low liquid conductivity, large enthalpy of vaporization
and large vapour content, the frequencies required to reach the isothermal limit can be
extremely low. In this low-frequency regime, the bubble response is isothermal and it
is possible to derive expressions that capture relatively well the influence of the vapour
content on the acoustic properties of the effective medium. Thus, in systems close to
saturation conditions and for frequencies below resonance, it is important to solve for
the mass transfer flux across the bubble interface and the heat transport equation in the
liquid, and to account for the interface temperature variations, in order to accurately
obtain the phase speed and attenuation.
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Appendix A. Mass transfer flux assuming equilibrium conditions at the interface
It is commonly assumed that equilibrium conditions prevail at the interface at every

instant. Under these conditions, the partial water vapour pressure at the interface
is given at every instant by the saturation pressure at the interface’s temperature,
peq(T I)= pbY0(Mb/Mw), whose linearized version is

1pI
eq =1pb +1Y I. (A 1)

Replacing 1pI
eq by the expression given by the linear Clausius–Clapeyron relation

(2.17),

1peq = 1Hvap

rwT
1T I, (A 2)

and using (3.16) to express the vapour fraction variations as a function of the mass
flux across the interface, we can rewrite (A 1) as

J∗0,eq1R= J∗c,eq(1H∗vap1T I
c − 1)1pb, (A 3)

where

J∗c,eq =
[

ShD√
iShD coth(

√
iShD)− 1

1− Y0

Y0

]−1

. (A 4)

For low frequencies (ShD < 1), this equation simplifies to

J∗c,eq ≈
1
3

i
Y0

1− Y0
when ShD < 1. (A 5)

Appendix B. Low-frequency limit of the mass transfer flux assuming thermo-
dynamic equilibrium inside the bubble

The limiting solution of the mass transfer flux for low frequencies can also be
obtained by assuming that: (i) the temperature of the bubble remains constant at every
instant and equal to the reference temperature, and (ii) the vapour pressure inside the
bubble is maintained at every instant. Thus, the water vapour mass can be obtained
as

mw = pwV
rwT

. (B 1)

Because only the bubble volume changes, the flux is obtained as

J = ṁw

4πR2
b
= pw

rwT
Ṙb. (B 2)

Linearizing the expression above we find

J01R= mw

V
ωiR01R, (B 3)

which in non-dimensional form reads

J∗0 =
J0

Rbρb,0ω
= Y0i. (B 4)
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