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A simple model for the reflection by a vertical
barrier of a dambreak flow over a dry or
pre-wetted bottom
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We revisit the theoretical solutions of the problem of the reflected flow from a
vertical obstacle encountered by a current generated by dambreak of a Cartesian long
reservoir over a dry bottom and with tailwaters. Previous investigations derived accurate
solutions by quite complex manipulation of the balances along the characteristics,
supported by numerical solutions, of the shallow-water equations (a significant
extension is the recent paper Hogg & Skevington, Q. J. Mech. Appl. Maths, vol. 74,
no. 4, 2021, pp. 441–465). Here we developed a simplified model, based on the major
assumption that the fluid between the obstacle (wall) and the reflected jump is stagnant.
This allows the solution of the problem by a straightforward numerical integration of one
initial-value ordinary differential equation. The model provides the position, height and
speed of the jump as functions of time. For long times a simple analytical approximation
is also available. The model points out clear-cut effects of the presence of the tailwaters.
The model has been validated by comparisons with exact solutions of the shallow-water
equations of the recent study of Hogg & Skevington (Q. J. Mech. Appl. Maths, vol. 74,
no. 4, 2021, pp. 441–465) (obtained by significantly more complex hodograph-plane
methods). In all the tested cases the agreement is good, for long periods of time. This
model provides reliable insights and fast quantitative predictions recommended for use
in research and engineering problems where a fair approximation is sufficient for the
application.

Key words: gravity currents

1. Introduction

The flow of inertial–buoyancy gravity current is well described by a horizontal thin-layer
smooth propagation. However, when this flow encounters a vertical barrier (wall) a drastic
change of pattern occurs. The arrested fluid becomes significantly thicker and a backward
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Figure 1. Sketch of the dambreak at x = 0, t = 0, reflected from the wall at x = 2, t = 1, as a jump of
velocity c. Here +, − denote upstream/downstream conditions at xs. In our model the fluid downstream of
the jump is (almost) stagnant with a horizontal top interface.

propagation, typified by a steep front, develops. This ‘reflection’ is of both practical and
academic interest. The gravity current is governed by the thin-layer approximation termed
shallow-water equations. The variables are the thickness (height) h(x, t) and the velocity
u(x, t) of the flow, where x and t are the horizontal coordinate and the time. The equations
express volume and momentum balance, and form a system of two partial differential
equations of hyperbolic type. The solution of such systems admits discontinuities, and
hence the reflected front is conveniently treated as a reflected jump, bore or shock.

The classical prototype problem is concerned with the gravity current of a dense fluid in
a non-restricting low-density ambient (such as water in air) generated by the dambreak (at
position x = 0 and time t = 0) of a long horizontal reservoir of depth H, and the reflection
from a vertical smooth wall at x = 2L. It is convenient to scale the height variable h with
H, the velocity u with (gH)1/2, the horizontal length with L and the time with L/(gH)1/2,
where g is the gravity acceleration. The scaled position of the obstacle (wall) is x = 2. See
figure 1. We assume that H/L � 1, the influence of the sidewalls is negligible, and the
backwall of the reservoir is far away from the dam (consistent with the major analysis of
Hogg & Skevington 2021) and hence the only obstruction and reflection is from the wall
at x = 2. We emphasize the choice of the horizontal scale L: half the distance between the
dam and the obstacle (wall). Viscous and surface tension effects are neglected.

The mathematical advantage of this set-up is that the governing shallow-water equations
are amenable to solution by the reliable method of characteristics. Such theoretical
investigations were carried out by Greenspan & Young (1978) and recently revisited and
extended by Hogg & Skevington (2021), referred below as HS. However, in presence
of reflected jumps, the solution by characteristics is an applied-mathematical challenge.
Progress requires significant sophistication, such as series expansions (that restrict the
time of relevance) and implementation of the hodograph transformation. The latter results
are accurate for long times, but difficult for interpretation and extensions by researchers
and engineers not familiar with the mathematical tools used for the solution.

This paper reports a simplified approach to the problem. The underlying idea is that the
fluid left behind (downstream) the jump is (almost) stagnant, or, to be more precise, the
speed u in (xs, 2] is much smaller than that of the jump, c; see figure 1. The justifications
are as follows. (1) The fluid particles impinging on the wall are expected to convert the
kinetic energy into height and pressure, forming a stagnant domain. However, the left
vertical boundary, i.e. the jump, of this stagnant fluid must move with a significant speed
to accommodate the increasing volume of the arrested fluid. (2) The solutions reported by
HS strongly support this expectation. For the classical dry-bottom case, figure 5(b) of HS
displays a very small u in the domain between the jump and the wall. For the tailwaters
case, HS report a ‘first stage’ with u = 0 in the relevant domain (as discussed later in

942 R6-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

33
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.338


A simple model for the reflection by a vertical barrier

§ 3). (3) This stagnant-downstream assumption in the analysis of reflected bores from the
wall of a reservoir in two-layer gravity currents has been corroborated by experiments
and simulation (see Baker, Ungarish & Flynn 2020; Ungarish 2020); since there are
physical similarities between the systems, we expect the same good performances in the
present problem. We show that the use of this simplification in the problems analysed
by HS renders a concise and insightful mathematical model. By some straightforward
calculations, this model provides the speed, height and trajectory of the reflected jump as
functions of time, and other useful estimates. Detailed comparisons with the more accurate
predictions of HS show good agreement over long periods of propagation. We think that
this is a useful model for both research and applications. Practically, the model changes
the status of the problem from a matching-of-characteristics challenge to a straightforward
calculation.

The structure of the paper: the simple model is derived in § 2; results for a dry bottom
are shown and compared with HS. The extension to tailwaters systems is presented in § 3.
Some concluding remarks are given in § 4. Appendix A summarizes the calculation of the
horizontal flow prior to reflection for tailwaters and gravity currents.

2. Simple model formulation

Consider the motion of the reflected jump, see figure 1. The classical unbounded dambreak
solution is

h(x, t) = (4/9)[1 − x/(2t)]2, u(x, t) = (2/3)(1 + x/t), (x > −t). (2.1a,b)

We assume that the reservoir behind the dam is sufficiently long, so that the point
x = −t, h = 1 of (2.1a,b) is not invalidated by the backwall for the time t under
consideration. The tip h = 0 of the dambreak flow (2.1a,b) propagates with velocity V = 2
and hits the wall at time tR = 1, at which reflection (represented by the jump xs(t)) starts.
We note that the parabolic profile (2.1a,b) is valid also for the period 0 < t < tR in the
domain x < 2t.

We use a co-moving enclosing control volume about xs(t). The flow variables in the
upstream and downstream side are denoted by + and −, respectively. The velocity of the
jump is c. The volume and momentum (inertia supported by hydrostatic pressure forces)
control-volume balances, or Rankine–Hugoniot conditions, are (see HS and Ungarish
(2020) § 4.4)

[(u − c)h]+ = [(u − c)h]−, (2.2a)

[(u − c)2 h]+−= − (1/2)[h2]+−. (2.2b)

We also recall the kinematic equation

dxs

dt
= c, (2.3)

with the initial condition xs = 2 at t = tR = 1.
Evidently, (2.1a,b) gives explicitly h+ = h(xs, t) and u+ = u(xs, t). We denote by hs the

height h−. For a given pair, t, xs, we have the two equations (2.2) for the three unknowns
c, hs and u−. To gain the additional information, HS performed a careful integration of the
information carried on the reflected characteristics.

We argue that a significant simplification of the problem can be achieved by the
following approximation (justified in § 1): the fluid in the downstream domain is arrested
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by the wall, and hence we set u− = 0. Let

a = a(xs, t) = h(xs, t)
hs(t)

, (2.4)

which is the height ratio of the fluid just before (upstream) and behind (downstream) the
jump, expected to be smaller than 1 (otherwise, the dissipation is negative). Continuity
(2.2a) gives

c = −[a/(1 − a)]u(xs, t). (2.5)

We substitute this c into the momentum balance (2.2b), and after some algebra obtain

a
(1 − a)(1 + a)1/2 =

√
h(xs, t)√
2u(xs, t)

= 1√
2

1 − xs/(2t)
1 + xs/t

, (2.6)

where the last term comes from (2.1a,b). For given xs and t we can calculate a and c by
(2.6) and (2.5). We have simple equations for the speed and height of the jump. We can
integrate (2.3) to predict the position xs(t).

2.1. The jump at x = 0
Before performing the integration of dxs/dt we note that the position xs = 0 (the locus of
the dam) provides some insights. We recall that at x = 0 the speed and height (until the
arrival of the jump) are the constant u(x = 0) = 2/3 and h(x = 0) = 4/9 (see (2.1a,b)).

First, we note that for xs = 0 the right-hand side of (2.6) is equal to 1/
√

2 and the
solution provides a = 0.461. We then obtain from (2.4) and (2.5) for the jump at xs = 0

hs = 0.964, c = −0.570. (2.7a,b)

Next, we estimate the time tD at which the reflected jump arrives at the dam position. We
use volume balances. The volume transported to the right (figure 1) during tD at x = 0− is
equal to the volume between the jump (at xs = 0+) and the wall at x = 2. Since the fluid
behind the jump is stagnant, the height of the interface must be quasi-constant, i.e. ≈ hs.
This is expressed as

u(x = 0) × h(x = 0) × tD = (8/27)tD = 2hs = 1.928, (2.8)

providing tD = 6.48. This turns out to be a good estimate; the accurate integration,
considered below, predicts tD = 5.99. The reason for the discrepancy is the present
assumption that h = hs in the arrested domain [0, 2]. Actually, the average height is
expected to be slightly smaller than at the jump, and hence the volume in this domain
is slightly smaller than 2hs used in (2.8), and a reduction of tD is expected. The useful
insight is that the time of return from the wall to the dam is approximately five times
longer than the time of flow from the dam to the wall. The reflected flow at the dam attains
(almost) the initial height h = 1 of the reservoir, see (2.7a).

2.2. Reflected jump results
The assumption u− = 0 renders the model

dxs

dt
= −2

3
a

1 − a
(1 + xs/t), (2.9)

where a is given by the non-linear equation (2.6). The initial conditions are xs = 2− at
t = 1+. The numerical calculation of xs(t) is straightforward, using a standard method
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Figure 2. Graph of xs vs t. The solid lines show results of the present model: blue line for direct integration;
red line for ‘long-time’ formula (2.14) starting at t1 = 8. The dash-dot line shows the predictions of HS.
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Figure 3. Model predictions (a) hs and −c as functions of t. (b) Height at wall, compared with HS figure 4(b)
results h(2, t).

for (2.9) (e.g. Runge–Kutta) while a is obtained by an iterative solver (e.g. the secant
method) for (2.6) at the necessary gridpoints. Practically, we start the integration at t =
1 + ε, xs = 2 − ε where ε is small, 10−4 say; this gives a tiny initial push to the jump. As
a by-product of this solution we also obtain the speed of the jump c = dxs/dt and the height
hs = (4/9)[1 − xs/(2t)]2/a at the time steps. The computational time is insignificant.

Model results of the propagation of the jump are shown in figure 2, and compared with
the more accurate solution of HS. The agreement is very good. The values of hs(t) and
−c(t) predicted by the model are given in figure 3(a).

The depth of the fluid layer at the wall, hw, for t > 1 is also of interest. In our
simplified model we assume that the interface behind (downstream) the jump is horizontal,
h = hw(t). The first approximation is that this interface is at height hs(t). However, hs is
determined by the local conditions at xs, and hence a correction that takes into account the
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entire volume in the arrested domain is suggested. In a realistic system a small adjustment
flow in the ‘arrested’ domain is expected, and we argue that this will redistribute the
volume accumulated between the jump and the wall to an almost flat domain of height
hw(t) not necessarily equal to the instantaneous hs(t). The volume in this domain is
(2 − xs)hw. This volume has been contributed to x > xs by the unperturbed dambreak
flow, V(t). For xs > 0 the accumulation of fluid begins from V(ti) = 0 at ti = xs/2 upon
the arrival of the tip, then dambreak uh influx according to (2.1a,b). For xs < 0 there is
initial fluid in the lock V(ti) = −xs, then dambreak uh influx. We calculate V(t) using

8
27

∫ t

ti

[
1 + x

t′
] [

1 − x
2t′

]2
dt′ (2.10)

for the contribution of the flux see (2.1). After some algebra, the balance gives

V(t) = (2t − xs)
3

27t2
= (2 − xs)hw, (2.11)

and hence

hw = (2t − xs)
3

27t2(2 − xs)
, (t > 1). (2.12)

The results are displayed in figure 3(b) and compared with the predictions of HS. The
agreement is good.

2.3. Long-time further simplification
Another useful simplification is for long time, when the reflected jump is already in the
reservoir, i.e. xs < 0. We note that in this stage of motion, the value of hs is close to 1.
We have demonstrated that when the jump reaches x = 0 at t ≈ 6 then hs = 0.96;
figure 3(a) shows that the difference 1 − hs decreases with t. Consequently, it is justified
to approximate a(xs, t) = h(xs, t)/hs by h(xs, t) for sufficiently large t > t1 when xs < 0.
(We take t1 = 8, see below.) This approximation slightly underestimates a and c.

The approximation a = h(xs, t) and use of (2.1a,b) reduce the relationship (2.5) to

c = dxs

dt
= −u(xs, t)h(xs, t)

1 − h(xs, t)
= −2

3
(2 − ξ)2(1 + ξ)

9 − (2 − ξ)2 , (2.13)

where ξ = xs(t)/t. The integration of (2.13) provides the implicit result

t
t1

= (8 − ξ1)(1 + ξ1)
2

(8 − ξ)(1 + ξ)2 , (2.14)

where the initial condition ξ1 = xs(t1)/t1 is taken from the numerical integration of (2.9).
The more explicit solution xs and c as functions of t (> t1) follows: we apply (2.14) for
values of ξ < ξ1 and obtain the corresponding t (> t1); this provides xs(t) = ξ × t (the
limit is ξ = −1 for which t → ∞). For each xs(t), the corresponding c is given by (2.13).

We started the application of (2.14) with t1 = 8, ξ1 = −0.150 and obtained the red line
of figure 2. The numerical solution gives hs = 0.98 at the starting t1 = 8, and as time
progresses the simplification hs = 1 becomes more and more accurate. We thus estimate
that the error of (2.14) is approximately 2 %; we recall that the error is manifested as a
reduction of |c|. The figure confirms that the approximation error is small. Surprisingly,
the approximated curve in figure 2 is in better agreement with the HS results than the
numerical integration of the model, but this must be considered a coincidence.
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Figure 4. Dambreak at x = 0 with reflected jump from wall at x = 2 with tailwaters. This is the first stage,
tR < t < tSM . For t > tSM the horizontal domain disappears, like in figure 1.

3. Reflection with tailwaters

In this system a layer of dense fluid of height h0 is present on the bottom before dambreak,
see figure 7. Essentially, the process is as before: after dambreak at t = 0 the fluid starts
propagation from x = 0 toward the wall at x = 2. At time tR this propagation hits the wall
and is reflected back. The reflection, see figure 4, is manifested by the jump xs(t) of height
hs and velocity c. In the classical problem (h0 = 0), the fluid approaching the wall has a
sharp tip h = 0 that moves with V = u = 2. In the new problem, the fluid approaching
the wall is a layer of height hf > h0 and velocity uf that forms behind a jump of velocity
V > uf . Note that hf , uf and V depend on h0 and can be easily calculated from available
shallow-water theory results (see Appendix A).

The time tR when the reflection starts for a given h0 is given by 2/V . Then, the flow
upstream of the jump is composed of the domains: (1) a horizontal layer of constant
thickness hf and constant velocity uf for x > xM(t); (2) the standard dambreak flow
(2.1a,b) for x ≤ xM . At x = xM(t) there is smooth transition (continuity) between the
two domains. The values of xM(t), hf , uf can be easily calculated for a given h0 (see
Appendix A).

As for the h0 = 0 case, the main objective is the calculation of the behaviour of the
jump (xs, c, hs as functions of t). This problem was solved by HS by characteristics in
the hodograph plane. The more complex upstream domain when h0 > 0 complicates the
solution. Again, a simplified model is expected to be beneficial.

Our model based on (2.3)–(2.6) can be applied to this problem with some
straightforward modification. With the assumption that the fluid in the reflected domain
x > xs(t) is (almost) stagnant, the previous formulation remains valid for h0 > 0. We only
must (a) change the initial time to the correct tR, (b) use the appropriate equations for the
upstream h, u encountered by the jump, i.e. reconsider the

√
h/u term in (2.6); here we

distinguish between two stages:

(1) In the first stage, tR ≤ t ≤ tSM , the jump encounters constant upstream conditions
hf , uf . The jump has constant c and hs given by

c = − auf

1 − a
, hs = hf

a
, (3.1a,b)

with a provided by

a
(1 − a)(1 + a)1/2 =

√
hf√
2uf

. (3.2)
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Figure 5. Results for system with tailwaters h0 = 0.1381: (a) xs(t) red line for model, black dash-dot for HS,
(b) hs and −c vs t.

At time tSM the jump meets the point M (which propagates from the dambreak time
with velocity uf − √

hf ). The meeting position is xSM , given by

xSM = 2 + c(tSM − tR) = (uf − √
hf )tSM. (3.3)

From these equations we obtain tSM and xSM . Note that for h0 > 0.1383 point M
moves into the reservoir (negative velocity).

It is interesting that for this stage the accurate solution of HS and the present
model coincide. Indeed, (4.1) of HS express the same prediction as our (3.1a,b)–(3.2)
for c, hs in the first stage, using different notation. In other words, HS confirm the
assumption of u− = 0 for this stage. This gives additional support to the present
model.

(2) In the second stage, t > tSM , the jump encounters the classical parabolic-height
dambreak domain (figure 1). We therefore apply the same formulation as in the
h0 = 0 case, i.e. we use (2.3)–(2.6). The difference with the h0 = 0 case is that now
the initial conditions for the integration of (2.3) are xs = xSM at t = tSM . We use
exactly the same numerical solution as for the h0 = 0 case. Moreover, we note that
the long-time simplification result (2.14) is also relevant, with appropriate t1 and ξ1
conditions.

3.1. Reflected jump results for h0 > 0
We calculated the solution for the example h0 = 0.1318 of HS, using the same formulas
for the basic field before reflection, i.e. the same hf , uf , tR, tSM, xSM (in the HS paper, our
points M and SM are called P1 and P2, respectively).

The shallow-water calculations (Appendix A) give hf = 0.4444, uf = 0.6667, tR = 2.07.
In the first stage by (3.1a,b) and (3.2), the jump has c = 0, 570, hs = 0.964. We obtain
tSM = 5.58, xSM = 0. These are the boundary conditions for the calculations of the second
stage (numerical integration). The model predictions for h0 = 0.1318 are displayed in
figure 5. The figure also shows the xs(t) results of HS. The agreement between the model
and the accurate solution of HS is excellent. Actually, the agreement here is better than for
h0 = 0 in figure 2; this is not coincidence, as explained later in § 4.

To gain further insights, figure 6 shows model predictions for xs, hs and c as functions of
t for various h0. We conclude that the presence of the tailwaters layer h0 > 0 contributes
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Figure 6. Model predictions xs, hs and −c vs t for system with tailwaters h0 = 0.05, 0.15, 0.30. The dash-dot
line is the xs(t) approximation (2.14) for h0 = 0.3.

three major effects (compared with the h0 = 0 case): the start of the reflection is delayed,
the initial stage of reflection is with constant hs and c, and the speed of propagation of the
jump is larger. These effects are clearly pointed out by the present simplified model, in
full agreement with the more accurate solution of HS. The interpretation of these effects
is as follows. The front V from the dam to the wall is delayed by the task of setting in
motion the stagnant layer of thickness h0, hence the increase of time tR when it reaches
the wall. Typically, tR ≈ 2 (in contrast to 1 for h0 = 0). The reflection jump encounters
for a while a layer of constant hf , uf , therefore the jump conditions produce constant hs, c.
The layer impinging on the wall has from the beginning of the reflection a significant
hf > h0. Consequently, the reflected jump has from the beginning a significant a = hf /hs,
accompanied by a significant c (compare figures 5b and 3a).

We note that for h0 ≥ 0.15 the value of hs is close to 1 within 3 % from the beginning.
Within this error, the propagation in the second stage is provided by the approximation
(2.14). In other words, the reflection behaviour can be obtained from only algebraic
formulas: using the known hf , uf , tR we calculate hs and c for the first stage, then obtain
tSM and xSM from (3.3). This point is identified with t1 and ξ1 = xSM/tSM in (2.14). The
values of xs and c for t > tSM follow. Tests have confirmed the good accuracy of this
approximation. For example, in figure 6 for h0 = 0.3 the xs lines obtained by numerical
integration and approximation (2.14) almost coincide.

3.2. Gravity current in deep ambient
The previous systems were of water-in-air type. Consider a reservoir of fluid of density ρc
embedded in a large ambient fluid of a smaller density ρa. The one-layer approximation
formulation neglects the motion in the ambient. In this framework, the shallow-water
equations for the gravity current and the internal-jump correlations reduce to these used in
the previous analysis upon change of g to the reduced gravity g′ = (1 − ρa/ρc)g (Ungarish
2020).

The dambreak behaviour of the one-layer general gravity current is quite similar to that
of the tailwaters system considered in § 3: the reflected jump encounters first a horizontal
layer, figure 7(b), then the parabolic-height profile. The calculations of hf , uf and tR are
different from those of the h0 > 0 case, see Appendix A, because in the free-propagation
stage the nose of the gravity current is governed by a Benjamin-type condition.
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The subsequent calculation of the reflected jump is the same. Again, g is replaced by
g′ in the scaling.

4. Concluding remarks

We revisited the problem of the reflected flow produced by dambreak of a Cartesian
long reservoir over a dry bottom (h0 = 0) and with tailwaters (h0 > 0). We developed a
simplified model for xs, hs and c (position, height and velocity) of the jump as functions of
time based on the major assumption that the fluid between the vertical obstacle (wall) and
the reflected jump is stagnant (more precisely, |u−/c| � 1). This allows the solution of the
problem by a straightforward numerical integration of an initial-value ordinary differential
equation, in contrast with the previously published analytical results that were obtained by
the method of characteristics which requires complicated mathematical manipulations for
the solution of the reflected domain. For long times, a simple analytical approximation is
also available. The model points out clear-cut effects of the presence of the the tailwaters.
Surprisingly, for the more complex system h0 > 0, the model is more accurate than for
h0 = 0, because the first stage result is identical with the solution of HS by characteristics,
and in the second stage there is a large |c| from the beginning that reduces the error of the
neglected |u−/c|.

The model does not provide the details of the flow in the reflected domain (speed u(x, t)
and height h(x, t)), only the approximation u = 0 and the average h = hw(t).

We admit that the model lacks formal justification, such as by a systematic expansion
of u− in the reflected domain that proves that the leading term is zero. We argue that
this deficiency is relaxed by the fact that comparisons with accurate solutions could be
performed. Indeed, the model has been validated by comparisons with the more accurate
results of the recent paper of HS (obtained by significantly more complex methods). In
all the tested cases we found very good qualitative compatibility and good quantitative
agreement, for long periods of time. These agreements provide reliable justification to the
simplifications used in our model. We therefore think that this model can be recommended
with confidence for use in various research and engineering problems where a fair
approximation is sufficient for the application. In our opinion, this is a significant change
of status of the reflection problem, from a difficult analytical challenge to a quite standard
off-the-shelf solution.
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Appendix A. Calculation of hf , uf and tR

A.1. Tailwaters
The dambreak generates a forward-propagating jump of height hf and velocity V that
propagates fluid from the reservoir and also activates the fluid in the h0-thick layer below,
see figure 7. The jump conditions (2.2) apply with V instead of c. This also yields

uf = (1 − h0/hf )V. (A1)
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A simple model for the reflection by a vertical barrier
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Figure 7. Sketch of dambreak at x = 0 prior to reflection (t < tR) in presence of tailwaters (a) and for a
gravity current of moderate ρa/ρc (b). Reflection starts when the front of speed V reaches the wall.

The domain activated by the jump is supported by characteristics from the dambreak initial
situation. The matching yields

uf = 2(1 − √
hf ), 2h0u2

f hf = (h0 + hf )(hf − h0)
2. (A2a,b)

We solve for hf , then calculate uf and V . Reflection starts when V (formed at t = 0, x = 0)
reaches the wall x = 2, i.e. at time tR = 2/V .

The constant-height domain is matched to the curved-interface domain at xM given by
the leading characteristic in the dambreak fan about x = 0, t = 0. This gives

xM(t) = (uf − √
hf )t. (A3)

A.2. Gravity current

The new parameters are the density ratio (ρa/ρc) and the height ratio of ambient-to-lock H̃.
See figure 7(b). The nose of the gravity current propagates according to a jump condition
(see Ungarish 2020) typically provided by Benjamin’s formula:

V = uf =
[

ρc

ρa

(2 − α)(1 − α)

1 + α
hf

]1/2

, α = hf /H̃. (A4)

Matching with the initial-conditions, characteristics yield again uf = 2(1 − √
hf ). We

solve for hf , then obtain uf and V . Reflection starts when V (formed at t = 0, x = 0)
reaches the wall x = 2, i.e. at time tR = 2/V . Equation (A3) is valid.

Consider the limit ρc/ρa → ∞. Evidently, g′ = g. We also obtain (see Ungarish 2020)
uf = V = 2, hf = 0, tR = 1. The classical problem is recovered.
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