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Abstract

Our objective in this paper is to examine whether one can use option-implied informa-
tion to improve the selection of mean-variance portfolios with a large number of stocks,
and to document which aspects of option-implied information are most useful to improve
their out-of-sample performance. Portfolio performance is measured in terms of volatil-
ity, Sharpe ratio, and turnover. Our empirical evidence shows that using option-implied
volatility helps to reduce portfolio volatility. Using option-implied correlation does not
improve any of the metrics. Using option-implied volatility, risk premium, and skewness
to adjust expected returns leads to a substantial improvement in the Sharpe ratio, even after
prohibiting short sales and accounting for transaction costs.

I. Introduction

To determine the optimal mean-variance portfolio of an investor, one needs to
estimate the moments of asset returns, such as means, volatilities, and correlations.
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Traditionally, historical data on returns are used to estimate these moments, but
researchers have found that portfolios based on sample estimates perform poorly
out of sample.1 Several approaches have been proposed for improving the perfor-
mance of portfolios based on historical data.2

In this paper, instead of trying to improve the quality of the moments es-
timated from historical data, we use forward-looking moments of stock-return
distributions that are implied by option prices. The main contribution of our work
is to evaluate empirically which aspects of option-implied information are par-
ticularly useful for improving the out-of-sample performance of portfolios with
a large number of stocks. Specifically, we consider option-implied volatility, cor-
relation, skewness, and the risk premium for stochastic volatility, and we obtain
these not just from the Black-Scholes (1973) model, but also using the model-free
approach, which has the benefit that the measurement error resulting from model
misspecification is reduced.

In selecting portfolios, we use a variety of moments implied by prices of op-
tions. First, we consider the use of option-implied volatilities and correlations to
improve out-of-sample performance of mean-variance portfolios invested in only
risky stocks. When evaluating the benefits of using option-implied volatilities and
correlations, we set expected returns to be the same across all assets so that the
results are not confounded by the large errors in estimating expected returns.3

Consequently, the mean-variance portfolio reduces to the minimum-variance port-
folio. In addition to considering the minimum-variance portfolio based on the
sample covariance matrix, we consider also the short-sale-constrained minimum-
variance portfolio, the minimum-variance portfolio with shrinkage of the covari-
ance matrix (as in Ledoit and Wolf (2004a), (2004b)), and the minimum-variance
portfolio obtained by assuming all correlations are equal to 0 or with correlations
set equal to the mean correlation across all asset pairs (as suggested by Elton,
Gruber, and Spitzer (2006)). We find that using risk-premium-corrected option-
implied volatilities in minimum-variance portfolios improves the out-of-sample
volatility by more than 10% compared to the traditional portfolios based on only
historical stock-return data, while the changes in the Sharpe ratio are insignifi-
cant. Thus, using option-implied volatility allows one to reduce the out-of-sample
portfolio volatility significantly.

Next, we examine the use of risk-premium-corrected option-implied cor-
relations to improve the performance of minimum-variance portfolios. We find
that in most cases option-implied correlations do not lead to any improvement

1For evidence of this poor performance, see DeMiguel, Garlappi, and Uppal (2009), Jacobs,
Muller, and Weber (2010), and the references therein.

2These approaches include: imposing a factor structure on returns (Chan, Karceski, and
Lakonishok (1999)), using data for daily rather than monthly returns (Jagannathan and Ma (2003)),
using Bayesian methods (Jobson, Korkie, and Ratti (1979), Jorion (1986), Pástor (2000), and Ledoit
and Wolf (2004b)), constraining short sales (Jagannathan and Ma), constraining the norm of the vector
of portfolio weights (DeMiguel, Garlappi, Nogales, and Uppal (2009)), and using stock-return char-
acteristics such as size, book-to-market ratio, and momentum to choose parametric portfolios (Brandt,
Santa-Clara, and Valkanov (2009)).

3Jagannathan and Ma ((2003), pp. 1652–1653) write, “The estimation error in the sample mean is
so large nothing much is lost in ignoring the mean altogether when no further information about the
population mean is available.”

https://doi.org/10.1017/S0022109013000616  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109013000616


DeMiguel, Plyakha, Uppal, and Vilkov 1815

in performance. Our empirical results indicate that the gains from using implied
correlations are not substantial enough to offset the higher turnover resulting from
the increased instability over time of the covariance matrix when it is estimated
using option-implied correlations.

Finally, to improve the out-of-sample performance of mean-variance portfo-
lios, we consider the use of option-implied volatility, risk premium for stochastic
volatility, and option-implied skewness. These characteristics have been shown
in the literature to help explain the cross section of expected returns.4 Therefore,
it makes sense to explore their effect in the framework of mean-variance portfo-
lios. Using these characteristics to rank stocks and adjusting by a scaling factor the
expected returns of the stocks, or using these characteristics with the parametric-
portfolio methodology of Brandt et al. (2009), leads to a substantial improvement
in the Sharpe ratio, even after prohibiting short sales and accounting for transac-
tion costs.

We conclude this Introduction by discussing the relation of our work to the
existing literature. The idea that option prices contain information about future
moments of asset returns has been understood ever since the work of Black and
Scholes (1973) and Merton (1973); Poon and Granger (2005) provide a compre-
hensive survey of this literature. The focus of our work is to investigate how the
information implied by option prices can be used to improve portfolio selection.
Two other papers study this question. The first, by Aı̈t-Sahalia and Brandt (2008),
uses option-implied state prices to solve for the intertemporal consumption and
portfolio choice problem using the Cox and Huang (1989) martingale representa-
tion formulation rather than the Merton (1971) dynamic-programming formula-
tion; however, the focus of the paper is not on finding the optimal portfolio with
superior out-of-sample performance. The second, by Kostakis, Panigirtzoglou,
and Skiadopoulos (2011), studies the asset-allocation problem of allocating wealth
between the Standard & Poor’s (S&P) 500 index and a riskless asset. That paper
finds that the out-of-sample performance of the portfolio based on the return dis-
tribution inferred from option prices is better than that of a portfolio based on
the historical distribution. However, there is an important difference between that
work and ours: Rather than considering the problem of how to allocate wealth
between the S&P 500 index and the risk-free asset, we consider the portfolio-
selection problem of allocating wealth across a large number of individual stocks.
It is not clear how one would extend the methodology of Kostakis et al. to accom-
modate a large number of risky assets. They also need to make other restrictive
assumptions, such as the existence of a representative investor and the complete-
ness of financial markets, which are not required in our analysis.

The rest of the paper is organized as follows: In Section II, we describe the
data on stocks and options that we use. In Section III, we explain how we use data
on options to predict volatilities, correlations, and expected returns. In Section IV,

4For instance, Bollerslev, Tauchen, and Zhou (2009) document a positive relation between the
variance risk premium and future returns. Bali and Hovakimian (2009) and Goyal and Saretto (2009)
show that stocks with a large spread between Black-Scholes (1973) implied volatility and realized
volatility tend to outperform those with low spreads. Bali and Hovakimian (2009), Xing, Zhang, and
Zhao (2010), and Cremers and Weinbaum (2010) find a positive relation between various measures of
option-implied skewness and future stock returns.
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we describe the construction of the various portfolios we evaluate along with the
benchmark portfolios, and the metrics used to compare the performance of these
portfolios. Our main findings about the performance of various portfolios that use
option-implied information are given in Section V. We conclude in Section VI.

II. Data

In this section, we describe the data on stocks and stock options that we use
in our study. Our data on stocks are from the Center for Research in Security
Prices (CRSP). To implement the parametric-portfolio methodology, we also use
data from Compustat. Our data for options are from IvyDB (OptionMetrics). Our
sample period is from Jan. 1996 to Oct. 2010.5

A. Data on Stock Returns and Stock Characteristics

We study stocks that are in the S&P 500 index at any time during our sample
period. The daily stock returns of the S&P 500 constituents are from the daily file
of CRSP, and we have in our sample a total of 3,986 trading days.6 Counting by
CRSP identifiers (PERMNO), we have data for a maximum of 961 stocks. Out of
these 961 stocks, there are 143 stocks for which implied volatilities are available
for the entire time series. For robustness, we consider two samples in our analysis.
The first, which we label “Sample 1,” consists of the 143 stocks for which there
are no missing data. The second, “Sample 2,” consists of all the stocks that are
part of the S&P 500 index on a particular day and that have no missing data on
that day (such as prices of options on the same underlying and the same matu-
rity but across different strikes, which are needed to compute model-free implied
volatility (MFIV) and model-free implied skewness (MFIS)). Thus, the second
sample has a variable number of stocks; on average, there are about 400 stocks at
each date in this sample.7

We measure size (market value of equity) as the price of the stock per share
multiplied by shares outstanding; both variables are obtained from the CRSP
database. For measuring value or book-to-market (BTM) characteristic, we use
the Compustat Quarterly Fundamentals file. The 12-month momentum (MOM)
characteristic is measured for each day t using daily returns data from CRSP as
the cumulative return from day t − 251− 21 to day t − 21.8

5We carry out all the tests included in the manuscript also for the pre-crisis period from Jan. 1996
to Dec. 2007, and the crisis period from Jan. 2008 to June 2009 (identified as a recession by the Na-
tional Bureau of Economic Research (NBER)). The main insights of our analysis do not change with
the choice of sample period. These results are available in the working paper version of the manuscript.

6We also use high-frequency intraday stock-price data consisting of transaction prices for the S&P
500 constituents from the NYSE’s Trade and Quote database; the results for these data are very similar
to those using daily data.

7The main difference between Sample 1 and Sample 2 is that for estimating the parameters of the
covariance matrix for Sample 2, which has more stocks, one needs a longer estimation window. Thus,
while the estimation window for Sample 1 is 250 trading days, for Sample 2 it is 750 days. As a result
of the longer estimation window, the weights are relatively more stable over time for Sample 2. On the
other hand, because the covariance matrix for Sample 2 is of a larger dimension, its condition number
is different from that of the covariance matrix for Sample 1.

8To get better distributional properties of the size and BTM characteristics we construct, we take
the logarithm of size and value characteristics. In order to prepare these characteristics so that they
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B. Data on Stock Options

For stock options, we use IvyDB, which contains data on all U.S.-listed index
and equity options, most of which are American. We use the volatility surface
file, which contains a smoothed implied-volatility surface for a range of standard
maturities and a set of option delta points. From the surface file we select the out-
of-the-money implied volatilities for calls and puts (we take implied volatilities for
calls with deltas smaller than or equal to 0.5, and implied volatilities for puts with
deltas bigger than−0.5) for a maturity of 30 days.9 For each date, underlying stock,
and time to maturity, we have 13 implied volatilities from the surface data, which
are used to calculate the moments of the risk-neutral distribution. Some of the
option-based characteristics also use the parametric Black-Scholes (1973) implied
volatilities for at-the-money options. We compute the at-the-money volatility as
the average volatility for a put and a call with absolute delta level equal to 0.5.

III. Option-Implied Information

In this section, we explain how we compute the option-implied moments that
we use for portfolio selection; we compare the ability of option-implied moments
and the historical moments to forecast the actual realized moments. We consider
the following measures: i) model-free option-implied volatility; ii) the volatility
risk premium, measured as the spread between realized and Black-Scholes (1973)
option-implied volatility; iii) option-implied correlation; iv) model-free option-
implied skewness; and v) a proxy for skewness, measured as the spread between
the Black-Scholes implied volatility obtained from calls and that from puts.

A. Predicting Volatilities Using Options

When option prices are available, an intuitive first step is to use this infor-
mation to back out implied volatilities and use them to predict volatility.10 In con-
trast to the model-specific Black and Scholes (1973) implied volatility, we use for
this purpose MFIV, which represents a nonparametric estimate of the risk-neutral
expected stock-return volatility until the option’s expiration. It subsumes infor-
mation in the whole Black-Scholes implied volatility smile (Vanden (2008)) and
is expected to predict the realized volatility (RV) better than the Black-Scholes
volatility. We compute MFIV as the square root of the variance contract of
Bakshi et al. (2003), as explained later.

can be used to compute the parametric-portfolio weights, we also winsorize the characteristics by
assigning the value of the 3rd percentile to all values below the 3rd percentile and do the same for
values higher than the 97th percentile. Finally, we normalize all characteristics to have zero mean and
unit standard deviation.

9The use of out-of-the-money options is standard in this literature; see, for instance, Bakshi,
Kapadia, and Madan (2003) and Carr and Wu (2009). The reason for selecting options that are out
of the money is that it reduces the effect of the premium for early exercise of American options.

10Note that our objective is only to show that the option-implied moments provide better forecasts
than the estimators based on historical sample data, rather than to demonstrate that option-implied
moments provide the best forecasts of future volatility and correlations. There is a very large literature
on forecasting stock-return volatility and correlations; see, for instance, the survey article by Andersen,
Bollerslev, and Diebold (2009).
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Let S(t) be the stock price at time t, R(t, τ) ≡ ln S(t + τ) − ln S(t) the
τ -period log return, and r the risk-free interest rate. Let V(t, τ) ≡ E

∗
t {e−rτ

R(t, τ)2}, W(t, τ) ≡ E
∗
t {e−rτR(t, τ)3}, and X(t, τ) ≡ E

∗
t {e−rτR(t, τ)4} repre-

sent the fair value of the variance, cubic, and quartic contracts, respectively, as
defined in Bakshi et al. (2003). Then, the τ -period MFIV can be calculated as

MFIV(t, τ) =
(
V(t, τ)

)1/2
,(1)

and the τ -period MFIS as

MFIS(t, τ) =
erτW(t, τ)− 3μ(t, τ)erτV(t, τ) + 2(μ(t, τ))3

(erτV(t, τ)− (μ(t, τ))2)3/2
,(2)

where μ(t, τ) denotes the risk-neutral expectation of the τ -period log return:

μ(t, τ) ≡ E
∗
t

[
ln

S(t + τ)
S(t)

]
= erτ − 1− erτ

2
V(t, τ)− erτ

6
W(t, τ)− erτ

24
X(t, τ).

To compute the integrals that give the values of the variance, cubic, and
quartic contracts precisely, we need a continuum of option prices. We discretize
the respective integrals and approximate them using the available options. As
mentioned earlier, we normally have 13 out-of-the-money call and put implied
volatilities for each maturity. Using cubic splines, we interpolate them inside the
available moneyness range and extrapolate using the last known (boundary for
each side) value to fill in a total of 1,001 grid points in the moneyness range from
1/3 to 3. Then we calculate the option prices from the interpolated volatilities using
the known interest rate for a given maturity and use these prices to compute the
MFIV and MFIS as in equations (1) and (2), respectively.

However, what we need for portfolio selection is not the risk-neutral implied
volatility of stock returns but the expected volatility under the objective distri-
bution. We now explain how to use information in the MFIV in order to get the
volatility under the objective measure.

The implied volatility differs from the expected volatility under the true mea-
sure by the volatility risk premium. Bollerslev, Gibson, and Zhou (2004) and Carr
and Wu (2009) show that one can use RV, instead of the expected volatility, to es-
timate the volatility risk premium. Assuming that the magnitude of the volatility
risk premium is proportional to the level of volatility under the true probability
measure, we estimate the monthly historical volatility risk premium adjustment
(HVRP) for a particular stock as the ratio of average monthly implied and real-
ized volatilities for that stock for the past T +Δt trading days:11

HVRPt =

t−Δt∑
i=t−T−Δt+1

MFIVi,i+Δt

t−Δt∑
i=t−T−Δt+1

RVi,i+Δt

.(3)

11Note that because HVRPt is calculated as the ratio of the average MFIVi,i+Δt and RVi,i+Δt , both
of which are calculated overΔt days, we have only T observations when computing the sum.
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In our analysis, we estimate the HVRP on each day over the past year (−272
days to −21 days) using the MFIV and RV from daily returns, each measured
over 21 trading days and each annualized appropriately. Then, assuming that in
the next period, from t to t + Δt, the prevailing volatility risk premium will be
well approximated by the historical volatility risk premium in equation (3), one
can obtain the prediction of the future realized volatility, R̂Vt, which we call the
risk-premium-corrected implied volatility:12

R̂Vt,t+Δt =
MFIVt,t+Δt

HVRPt
.

We now wish to confirm the intuition that risk-premium-corrected implied
volatility is better than historical volatility at predicting RV. To do this, we con-
sider, as a predictor first historical volatility and then risk-premium-corrected im-
plied volatility, for the monthly RV from daily returns for each stock. We compare
the performance of each predictor in terms of root mean squared error (RMSE)
and mean prediction error (ME). We find that the average RMSE in Sample 1
for the risk-premium-corrected implied volatility is 0.1274, which is smaller than
the RMSE of 0.1671 for historical daily volatility. The ME for both predictors is
negative, indicating that on average both measures are biased upward with respect
to the RV; however, the ME of −0.0047 for the risk-premium-corrected implied
volatility is one order of magnitude smaller than the ME of−0.0185 for historical
volatility.

B. Predicting Correlations Using Options

The second piece of option-implied information that we consider is implied
correlation; because we need the correlation under the objective measure for the
portfolio optimization, we discuss directly how to obtain option-implied correla-
tion corrected for the risk premium.

If a portfolio is composed of N individual stocks with weights wi,
i = {1, . . . ,N}, we can write the variance of the portfolio p under the objective
(physical) probability measure P as

(
σP

p,t

)2
=

N∑
i=1

w2
i

(
σP

i,t

)2
+

N∑
i=1

N∑
j�=i

wiwjσ
P
i,tσ

P
j,tρ

P
ij,t.(4)

Assume that we have estimated the expectation of the future volatilities of the
portfolio σ̂P

p,t and of its components σ̂P
i,t, and we want to estimate the set of ex-

pected correlations ρ̂ P
ij,t that turn equation (4) into identity. Once we substitute the

expected volatilities into equation (4) , we have one equation with N×(N − 1) /2
unknown correlations, ρ̂ P

ij,t. Thus, to compute all pairwise correlations we need to
make some identifying assumptions.

12Another method for obtaining the predictor of future realized volatility is to use a modified ver-
sion of the heterogeneous autoregressive model of RV proposed by Corsi (2009). We find that the root
mean squared error (RMSE) and mean prediction error (ME) with this measure are larger than those
using the approach we adopt.
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We use the approach proposed in Buss and Vilkov (2012), who compute
a heterogeneous implied-correlation matrix, where all pairwise correlations are
allowed to be different.13 Under their approach, the expected correlation is
assumed to differ from the historical correlation by a fixed proportion ψ of the
distance between the historical correlation and the maximum correlation of 1:

ρP
ij,t − ρ̂ P

ij,t = ψt(1− ρP
ij,t),(4a)

which implies that

ρ̂ P
ij,t = ρP

ij,t − ψt(1− ρP
ij,t).(4b)

When we substitute this into equation (4) above, we get(
σ̂P

p,t

)2
=
∑

i

∑
j

wiwjσ̂
P
i,tσ̂

P
j,t

(
ρP

ij,t − ψt(1− ρP
ij,t)
)
,(5)

from which one can derive an explicit expression for the parameter ψt,

ψt = − (σ̂
P
p,t)

2 −∑i

∑
j wiwjσ̂

P
i,tσ̂

P
j,tρ

P
ij,t∑

i

∑
j wiwjσ̂

P
i,tσ̂

P
j,t(1− ρP

ij,t)
,(5a)

and then the expected correlations ρ̂ P
ij,t from equation (4b). Thus, we construct

the “heterogeneous” implied-correlation matrix corrected for the risk premium,
inferred from expected index and individual volatilities, which contains the up-
to-date market perception of future correlation under the true measure.

To determine whether option-implied correlation is superior to historical cor-
relation at predicting realized correlation, we compute the RMSE and ME for
these two predictors of the 21-day realized correlation. In both Samples 1 and 2,
we find that the RMSE for historical correlation is about 0.25, slightly smaller
than the RMSE of 0.26 for the option-implied correlation; note, however, that
the RMSE for both predictors is only slightly smaller than the average realized
correlation of 0.29 for our sample, implying that there is very little predictability.
For Sample 1, the ME of 0.0039 for historical correlation is of the same order of
magnitude as the ME of −0.0068 for implied correlation, while for Sample 2 the
ME of 0.0342 for historical correlation is one order of magnitude greater than the
ME of 0.0071 for implied correlation.

C. Explaining Returns Using Options

We use four option-based quantities to explain returns in the cross section;
the first one is option-implied volatility, the next is based on the risk premium
for stochastic volatility, and the last two are based on option-implied skewness.
We first describe each of these quantities and then test empirically if these char-
acteristics have significant power to explain the cross section of returns in our
samples.

13An alternative approach is to compute homogeneous implied correlations, where all pairwise
correlations are assumed to be the same: ρ̂ P

ij,t = ρ̂
P
t , ∀i =/ j. This is the approach used in Driessen,

Maenhout, and Vilkov (2009). We also consider this approach, but the portfolios constructed using
this approach perform worse than those when correlations are allowed to vary across assets.
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The first option-based characteristic we use is option-implied volatility. Ang,
Bali, and Cakici (2010) show that stocks with high current levels of option-
implied volatility earn, in the next periods, higher returns than stocks with low
levels of implied volatility. To maximize the information content of the option-
implied volatility proxy, we use the MFIV described in Section III.A.

The second option-based characteristic we use is the variance risk premium,
which is defined as the difference between risk-neutral (implied) and objective
(expected or realized) variances. Previous research (see the papers cited in foot-
note 4) documents a positive relation between the variance risk premium and
future stock returns. We use the implied-realized volatility spread (IRVS) as a
measure of the volatility risk premium. We compute IRVS using the approach in
Bali and Hovakimian (2009) as the spread between the Black-Scholes (1973) im-
plied volatility averaged across call and put options and the realized stock-return
volatility for the past month (21 trading days).

The third characteristic we consider is option-implied skewness, for which
we use two measures. The first, MFIS, as defined in equation (2), represents a
nonparametric estimate of the risk-neutral stock-return skewness.14 Rehman and
Vilkov (2009) find that stocks with high option-implied skewness outperform
stocks with low option-implied skewness.15 The second measure of skewness
we consider is the spread between the Black-Scholes (1973) implied volatility
for pairs of calls and puts, which is studied in Bali and Hovakimian (2009) and
Cremers and Weinbaum (2010). We follow the methodology of Bali and Hov-
akimian to compute the call-put volatility spread (CPVS) as the difference be-
tween the current Black-Scholes implied volatilities of the 1-month at-the-money
call and put options.

In order to evaluate if each of these four option-implied measures is useful
for explaining the cross section of returns for our samples, we examine the returns
of long-short decile portfolios for each characteristic separately. The long-short
strategies are rebalanced daily based on the characteristic value at the end of a
day, and each portfolio is held for the particular holding period we are considering
(1 day, 1 week, or 1 fortnight). In Table 1 we show the annualized returns for each
portfolio, along with the p-values, based on the Newey and West (1987) standard
errors with a lag equal to the number of overlapping portfolio returns for each
holding period. For completeness, we also include standard characteristics such
as size (SIZE), book-to-market (BTM), and 12-month momentum (MOM).

14For the relation between expected stock returns and skewness measured directly, as opposed to
option-implied skewness, see Rubinstein (1973), Kraus and Litzenberger (1976), Harvey and Siddique
(2000), and Boyer, Mitton, and Vorkink (2010). For a study of asset allocation that takes into account
time variations in risk premia, volatility, correlations, skewness, kurtosis, co-skewness, and co-kurtosis
measured directly from stock returns, see Guidolin and Timmermann (2008).

15Some researchers (e.g., Xing et al. (2010)) use as a simple measure of skewness the difference
between the implied volatilities for out-of-the-money put and at-the-money call options. However,
that measure does not take into account the whole distribution, but rather just the left tail. Moreover,
it is based on only two options and, hence, may be less informative than implied skewness, measured
using the entire range of out-of-the money options. Rehman and Vilkov (2009) find that risk-neutral
skewness contains information about future stock returns above and beyond that contained in the
simple measure of skewness.
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Table 1 confirms that the Fama-French characteristics (SIZE and BTM) ex-
plain returns in the expected direction, while momentum (MOM) is not signif-
icant. More interestingly, most option-based characteristics lead to significant
returns on the long-short decile portfolios. The strongest results, in terms of the
magnitude of returns, persistence across holding periods, and significance of
returns, are for the portfolios based on the two measures of implied skewness,
model-free implied skewness (MFIS) and the call-put implied volatility spread
(CPVS), and for model-free implied volatility (MFIV); as expected, high-decile
stocks outperform the low-decile ones for these measures. The IRVS is also posi-
tively and significantly related to returns, but at the 10% level.

TABLE 1

Return Predictability

In Table 1, we report the results of various stock characteristics: size (SIZE), book-to-market (BTM), momentum (MOM),
model-free implied volatility (MFIV), implied-realized-volatility spread (IRVS), model-free implied skewness (MFIS), and
call-put volatility spread (CPVS) to explain the cross section of returns. For each sample, on a daily basis, we sort the
stocks by a particular characteristic, form the long-short decile portfolio, and hold this portfolio for a particular holding
period (1 day, 1 week, or 1 fortnight). Below, we show the annualized mean holding return for each decile-based portfolio
and in the parentheses the p-value for the hypothesis that the mean return is not different from 0. The p-values are based
on the Newey and West (1987) autocorrelation-adjusted standard errors with the lag equal to the number of overlapping
periods in portfolio holding.

Sample 1 Sample 2

Characteristic 1 Day 1 Week 1 Fortnight 1 Day 1 Week 1 Fortnight

SIZE –0.1705 –0.1729 –0.1623 –0.1543 –0.1543 –0.1511
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BTM 0.2050 0.1983 0.1853 0.1463 0.1365 0.1337
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

MOM 0.0026 –0.0148 –0.0325 –0.0034 –0.0060 –0.0160
(0.49) (0.42) (0.34) (0.48) (0.46) (0.41)

MFIV 0.3055 0.2674 0.2243 0.1694 0.1497 0.1174
(0.00) (0.00) (0.00) (0.07) (0.06) (0.09)

IRVS 0.1477 0.0959 0.0610 0.1535 0.0911 0.0479
(0.01) (0.01) (0.06) (0.01) (0.01) (0.09)

MFIS 0.3721 0.1651 0.1465 0.4640 0.2337 0.1798
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

CPVS 0.7581 0.1899 0.1061 0.8699 0.2477 0.1421
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Looking across the three rebalancing periods, we see that the magnitude of
the returns for the option-implied characteristic portfolios decreases as the hold-
ing period increases. However, the rate of change of return with the holding pe-
riod is not the same across characteristics: For example, in Sample 2, for daily
rebalancing, it is the CPVS portfolio that earns the highest return of 86.99% per
annum (p.a.), while for the fortnightly holding period, it is the MFIS portfolio
that delivers the highest return of 17.98% p.a. Thus, the various characteristics
will lead to different out-of-sample portfolio performance for the daily, weekly,
and fortnightly rebalancing periods that we consider.

IV. Portfolio Construction and Performance Metrics

In this section, we explain the construction of the various portfolios we con-
sider and also the metrics used to compare the performance of the benchmark
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portfolios with that of portfolios based on option-implied information. For robust-
ness, we consider several benchmark portfolios that do not rely on option-implied
information.

A. Equal-Weighted Portfolio

For the equal-weighted (1/N) portfolio, in each period one allocates an equal
amount of wealth across all N available stocks. The reason for considering this
portfolio is that DeMiguel, Garlappi, and Uppal (2009) and Jacobs et al. (2010)
show that it performs quite well even though it does not rely on any optimization;
for example, the Sharpe ratio of the 1/N portfolio is more than double that of the
S&P 500 over our sample period.

B. Minimum-Variance Portfolios

In this section, we study minimum-variance portfolios. We start by describ-
ing the mean-variance problem and then explain that this reduces to the minimum-
variance problem if mean returns on all the assets are assumed to be equal. Then,
in Section IV.C we consider the case where the mean returns on all assets are not
assumed to be the same.

The mean-variance optimization problem can be written as

minw w�Σ̂w− w�μ̂,(6)

s.t. w�e = 1,(7)

where w ∈ IRN is the vector of portfolio weights invested in stocks, Σ̂ ∈ IRN×N

is the estimated covariance matrix, μ̂ ∈ IRN is the estimated vector of expected
returns, and e ∈ IRN is the vector of ones. The objective in equation (6) is to
minimize the difference between the variance of the portfolio return, w�Σ̂w, and
its mean, w�μ̂. The constraint w�e = 1 in equation (7) ensures that the portfolio
weights for the risky assets sum to 1; we consider the case without the risk-free
asset because our objective is to explore how to use option-implied information
to select the portfolio of only risky stocks.

In light of our discussion in the Introduction about the difficulty in forecast-
ing expected returns, when we are studying the benefits of using option-implied
second moments we assume that the expected return for each asset is equal to the
grand mean return across all assets. In this case, the mean-variance portfolio prob-
lem in equation (6) reduces to finding the portfolio that minimizes the variance of
the portfolio return, subject to the constraints that the portfolio weights sum to 1.
The solution to the resulting minimum-variance portfolio problem is

wmin =
Σ̂−1e

e�Σ̂−1e
.(8)

The covariance matrix Σ̂ in equation (8) can be decomposed into volatility and
correlation matrices,

Σ̂ = diag(σ̂) Ω̂ diag(σ̂),(9)

where diag (σ̂) is the diagonal matrix with volatilities of the stocks on the diago-
nal, and Ω̂ is the correlation matrix. Thus, to obtain the optimal portfolio weights
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in equation (8) based on the sample covariance matrix, two quantities need to be
estimated: volatilities (σ̂) and correlations (Ω̂).

In the existing literature, several methods have been proposed to improve the
out-of-sample performance of the minimum-variance portfolio based on sample
(co)variances. We consider four approaches. The first is to impose constraints on
the portfolio weights, which Jagannathan and Ma (2003) show can lead to sub-
stantial gains in performance. Thus, our next benchmark is the constrained port-
folio, where we compute the short-sale-constrained minimum-variance portfolio
weights.

The second approach we consider is the shrinkage portfolio, where we com-
pute the minimum-variance portfolio weights after shrinking the covariance ma-
trix. First, the sample covariance matrix for daily data is computed using the same
approach that is described above. Then, to shrink the covariance matrix for daily
returns, we use the approach in Ledoit and Wolf (2004a), (2004b), which uses
as the covariance matrix a weighted average of the sample covariance matrix and
a low-variance estimator of the covariance matrix (we use the identity matrix),
with the weights assigned to these two covariance matrices determined optimally.

We also consider two other methods proposed in the literature for improving
the behavior of the covariance matrix (see Elton et al. (2006) and the references
therein). The first relies on setting all correlations equal to 0 so that the covari-
ance matrix contains only estimates of variances. The second relies on setting
the correlations equal to the mean of the estimated correlations; we do not report
the performance of portfolios based on the second method, because they perform
worse in terms of all three performance metrics when compared to portfolios ob-
tained from the first method.

C. Mean-Variance Portfolios

In the previous section, we assumed that all assets had the same expected
return. However, the recent literature on empirical asset pricing (see, e.g., the
papers cited in footnote 4) finds that quantities that can be inferred from op-
tion prices such as the volatility risk premium and option-implied skewness are
useful for predicting returns on stocks. But, it is well known in the literature
(see, e.g., DeMiguel, Garlappi, and Uppal (2009), Jacobs et al. (2010)) that the
weights of the traditional mean-variance portfolio are very sensitive to errors in
estimates of expected returns, and that these portfolios perform poorly out of
sample. Therefore, when evaluating the benefits of using option-based charac-
teristics to form mean-variance portfolios, we use two alternative approaches. In
the first approach, we use option-based characteristics to rank stocks and then ad-
just the mean returns of the top and bottom decile portfolios by a constant factor.
In the second approach, we use the parametric-portfolio methodology of Brandt
et al. (2009), which can be interpreted as a method where the adjustment of stock
returns is done in an optimal fashion. We now describe these two approaches.

1. Mean-Variance Portfolios with Characteristic-Adjusted Returns

In the first approach, we assume that the conditional expected return
Et[ri,t+1] = μi,t of stock i at time t can be written as a function of the stock
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characteristics k = {1, . . . ,K}. More precisely, we specify that

μi,t = μBENCH,t

(
1 +

K∑
k=1

δk,t xik,t

)
,

where μBENCH,t is the expected benchmark return at t (we choose the benchmark
return to be the grand mean return across all stocks), the value of xik,t depends on
the sorting index of stock i with respect to characteristic k at t, and the parameter
δk,t denotes the intensity at t of the effect of the characteristic k on the conditional
mean. In our analysis, we adjust the mean returns for only the stocks in the top and
bottom deciles. That is, in our empirical exercise, with the characteristic defined
so that it is positively related to returns, we set xik,t equal to −1 if the stock is
in the bottom decile in the cross section of all companies at date t, to +1 if it is
located in the top decile, and 0 otherwise. Moreover, to isolate the effect of each
option-implied characteristic, we consider each characteristic individually; that
is, we set the mean return for each asset to be

μi,t = μBENCH,t
(
1 + δk,t xik,t

)
.

In our empirical analysis, we report the results for the intensity δk,t = δk = 0.10.

2. Mean-Variance Parametric Portfolios

In the second approach, we apply the parametric-portfolio methodology of
Brandt et al. (2009) by using the MFIV, MFIS, CPVS, and IRVS, in addition
to the traditional stock characteristics (size, value, and momentum), to construct
parametric portfolios based on mean-variance utility.

The parametric-portfolio methodology has been developed to deal with the
problem of poor out-of-sample performance of portfolios because of estimation
error. In the parametric portfolios, the weight of an asset is a linear function of its
weight in the benchmark portfolio and the value of characteristics:

ωi,t = ω
1/N
i,t +

K∑
k=1

θk,t xik,t ,

where ω1/N
i,t is the weight of the asset i in the equal-weighted benchmark portfolio

at t, θk,t is the loading on characteristic k at t, and xik,t is the value of characteristic
k for stock i at t.16 Following Brandt et al. (2009), we normalize the characteristics
to have zero mean and unit variance. Note that θk,t is not asset-specific, but it is
the same for all assets in the portfolio. We choose the vector θt = (θ1,t, θ2,t, . . .)
optimally by maximizing the average daily mean-variance utility using a rolling
window procedure with an estimation window of 250 days. Because it is difficult
to short stocks, we constrain short sales; that is, we choose the loadings θt such
that ωi,t ≥ 0.

To determine the parametric portfolios, we start with the same characteristics
as the ones in Brandt et al. (2009), but using the 1/N portfolio as the benchmark:

16In addition to using the 1/N portfolio as the benchmark, we also consider the value-weighted
portfolio, and the findings are similar with this benchmark portfolio.
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That is, 1/N + FFM, where FFM denotes the size and value characteristics iden-
tified in Fama and French (1992) and the momentum characteristic identified in
Jegadeesh and Titman (1993). Then, to study the effect of option-implied infor-
mation, we first consider the effect of replacing the FFM characteristics with
the following option-implied characteristics: MFIV, IRVS, MFIS, and CPVS.
Second, in order to study the incremental value of option-implied information
over and above the FFM characteristics, we also consider the effect of including
these option-implied characteristics in addition to the FFM factors.

Using a variety of metrics that are described next, the out-of-sample perfor-
mance of the benchmark portfolios described in Sections IV.A–IV.C (reported in
Tables 2 and 3) and discussed in Section V.A.

D. Portfolio-Performance Metrics

We evaluate performance of the various portfolios using three criteria. These
are the i) out-of-sample portfolio volatility (standard deviation); ii) out-of-sample
portfolio Sharpe ratio;17 and, iii) portfolio turnover (trading volume).

We consider three rebalancing intervals: daily, weekly, and fortnightly. Typ-
ically, for weekly and fortnightly holding periods, one would form the optimal
portfolio on a particular day and then compute the return from holding that port-
folio for a week or a fortnight by multiplying the optimal weights on that par-
ticular day by the cumulative returns of each asset over the following week or
fortnight. One concern when doing this is that the performance of the portfolios
for the weekly and fortnightly holding periods would depend on the particular
date chosen for forming the portfolio. In order to address this concern for the
portfolios with weekly and fortnightly rebalancing, we find a new set of weights
daily and then hold that portfolio for a week or fortnight. Thus, we have a series
of overlapping portfolio returns. To compute the annualized performance met-
rics, we multiply the overlapping portfolio returns by the number of rebalancing
periods in a year; that is, we multiply by the ratio of 251 to Δt, where for weekly
rebalancingΔt = 5, and for fortnightly rebalancing Δt = 10.

We use the “rolling-horizon” procedure for computing the portfolio weights
and evaluating their performance, with the estimation-window length for daily
data being τ = 250 days for Sample 1 and τ = 750 days for Sample 2. Holding
the portfolio wSTRATEGY

t for the period Δt gives the out-of-sample return at time
t +Δt: That is, rSTRATEGY

t+Δt = (wSTRATEGY
t )�rt+Δt, where rt+Δt denotes the returns

from t to t + Δt, and Δt is 1 day, 1 week, or 1 fortnight. After collecting the
time series of T − τ −Δt returns, rSTRATEGY

t , the annualized out-of-sample mean,
volatility (σ̂), and Sharpe ratio of returns (SR) are, respectively,

μ̂STRATEGY =

(
1

T − τ −Δt − 1

)(
251
Δt

) T−Δt∑
t=τ

rSTRATEGY
t+Δt ,

17We also compute the certainty equivalent return of an investor with power utility in order to
evaluate the effect of higher moments; we find that the insights using this measure are the same as
those from using the Sharpe ratio.
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σ̂STRATEGY =

[(
1

T − τ −Δt − 1

)(
251
Δt

)

×
T−Δt∑
t=τ

(
rSTRATEGY

t+Δt − μ̂STRATEGY
)2]1/2

,

ŜR
STRATEGY

=
μ̂STRATEGY

σ̂STRATEGY
.

To measure the statistical significance of the difference in the volatility and
Sharpe ratio of a particular portfolio from that of another portfolio that serves as
a benchmark, we also report the p-values for these differences. For calculating
the p-values for the case of daily rebalancing, we use the bootstrapping method-
ology described in Efron and Tibshirani (1993), and for weekly or fortnightly
rebalancing we make an additional adjustment, as in Politis and Romano (1994),
to account for the autocorrelation arising from overlapping returns.18

Finally, we wish to obtain a measure of portfolio turnover per holding period.
Let wSTRATEGY

j,t denote the portfolio weight in stock j chosen at time t for a par-
ticular strategy, wSTRATEGY

j,t+ the portfolio weight before rebalancing but at t +Δt,
and wSTRATEGY

j,t+Δt the desired portfolio weight at time t + Δt (after rebalancing).
Then, turnover, which is the average percentage of wealth traded per rebalancing
interval (daily, weekly, or fortnightly), is defined as the sum of the absolute value
of the rebalancing trades across the N available stocks and over the T − τ − Δt
trading dates, normalized by the total number of trading dates, and, because our
portfolios for weekly and fortnightly rebalancing periods are created each day and
hence are overlapping, normalized further by the number of overlapping periods:

TURNOVER =

(
1

T − τ −Δt

)(
1
Δt

) T−Δt∑
t=τ

N∑
j=1

(∣∣wSTRATEGY
j,t+Δt − wSTRATEGY

j,t+

∣∣) .
The strategies that rely on forecasts of expected returns based on option-

implied characteristics have much higher turnover compared to the benchmark
strategies. In order to understand whether or not the option-based strategies would
outperform the benchmarks even after adjusting for transaction costs, we also

18Specifically, consider two portfolios i and n, with μi, μn, σi, σn as their true means and volatili-
ties. We wish to test the hypothesis that the Sharpe ratio (or certainty-equivalent return) of portfolio i is
worse (smaller) than that of the benchmark portfolio n, that is, H0 :μi/σi−μn/σn ≤ 0. To do this, we
obtain B pairs of size T− τ of the portfolio returns i and n by simple resampling with replacement for
daily returns, and by blockwise resampling with replacement for overlapping weekly and fortnightly
returns. We choose B= 10,000 for both cases and the block size equal to the number of overlaps in a
series, that is, 4 for weekly and 9 for fortnightly data. If F̂ denotes the empirical distribution function
of the B bootstrap pairs corresponding to μ̂i/σ̂i − μ̂n/σ̂n, then a one-sided p-value for the previous
null hypothesis is given by p̂ = F̂(0), and we will reject it for a small p̂. In a similar way, to test
the hypothesis that the variance of portfolio i is greater (worse) than the variance of the benchmark
portfolio n, H0 : σ2

i /σ
2
n ≥ 1, if F̂ denotes the empirical distribution function of the B bootstrap pairs

corresponding to σ̂2
i /σ̂

2
n , then a one-sided p-value for this null hypothesis is given by p̂ = 1 − F̂(1),

and we reject the null for a small p̂. For a nice discussion of the application of other bootstrapping
methods to tests of differences in portfolio performance, see Ledoit and Wolf (2008).
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compute the equivalent transaction cost: that is, the transaction cost level in basis
points that equates the particular performance metric (mean return or Sharpe ratio)
of a given strategy with that for the benchmark strategy. To find this equivalent
transaction cost, we adopt the following approach, which is similar to that in
Grundy and Martin (2001). First, for each level of transaction cost, we compute
the time series of net returns r̃STRATEGY

t+Δt for a given strategy and the benchmark:

r̃STRATEGY
t+Δt = rSTRATEGY

t+Δt −
N∑

j=1

∣∣wSTRATEGY
j,t+Δt − wSTRATEGY

j,t+

∣∣×TCSTRATEGY,BENCHMARK.

Then, we compute the performance metrics using these returns. Finally, we search
for the level of transaction costs that makes the performance metric the same for
the strategy being evaluated and the appropriate benchmark strategy.

V. Out-of-Sample Performance

In this section, we discuss the major empirical findings of our paper about
the ability of forward-looking information implied in option prices to improve
the out-of-sample performance of stock portfolios. We start, in Section V.A,
by discussing the performance of the benchmark portfolios that do not use infor-
mation from option prices. In Section V.B, we report the performance of portfolios
obtained using option-implied volatilities. In Section V.C, we report the perfor-
mance of portfolios that use option-implied correlations. Finally, in Section V.D,
we report the improvement in out-of-sample portfolio performance from using
option-implied quantities that explain the cross section of returns, such as the
variance risk premium and option-implied skewness. In each of these sections,
we use option-implied information about only one moment at a time (volatility,
correlation, or expected return) in order to isolate the magnitude of the gains from
using option-implied information to estimate that particular moment.

A. Performance of Benchmark Portfolios

In Tables 2 and 3 we report the performance of several benchmark strate-
gies, all of which do not use data on option prices. Table 2 gives the performance
of minimum-variance portfolios, and Table 3 gives the performance of mean-
variance portfolios; both tables also report the performance of the 1/N portfolio.
In Panel A of each table, we report the results for daily rebalancing, in Panel B
for weekly rebalancing, and in Panel C for the case in which the portfolio is held
for 1 fortnight. We report three performance metrics in the table: the volatility
(STD) of portfolio returns, the Sharpe ratio (SR), and the turnover (TRN) of the
portfolio. The p-value for the comparison with the 1/N benchmark is reported in
parentheses under each performance metric. The p-value is for the one-sided null
hypothesis that the portfolio being evaluated is no better than the 1/N benchmark
for a given performance metric (so a small p-value suggests rejecting the null
hypothesis that the portfolio being evaluated is no better than the benchmark).

Table 2 reports the performance of four variants of the minimum-variance
benchmark portfolio: “Sample cov,” “Constrained,” “Shrinkage,” and “Zero cor-
relation.” We see from this table that, compared to the 1/N portfolio, all of the
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TABLE 2

Minimum-Variance Portfolios without Option-Implied Information

In Table 2, we report the performance of the 1/N portfolio and various minimum-variance benchmark portfolios that are
based on historical returns and do not rely on prices of options. The “Sample cov” portfolio is the minimum-variance portfolio
based on the sample covariance matrix; “Constrained” is the minimum-variance portfolio based on the sample covariance
matrix but with short sales constrained; “Shrinkage” is the minimum-variance portfolio where shrinkage has been applied
to the sample covariance matrix using the Ledoit and Wolf (2004a), (2004b) methodology; and “Zero correlation” is the
minimum-variance portfolio where all correlations are set equal to 0. We report p-values in parentheses with respect to the
1/N portfolio, with the null hypothesis being that the portfolio being evaluated is no better than the benchmark (so a small
p-value suggests rejecting the null hypothesis that the portfolio being evaluated is no better than the benchmark).

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel A. Daily Rebalancing

1/N 0.2083 0.5903 0.0134 0.2254 0.4963 0.0145

Sample cov 0.1636 0.2632 0.6131 0.1429 0.2094 0.5130
(0.00) (0.84) (0.00) (0.82)

Constrained 0.1367 0.4489 0.0552 0.1383 0.6558 0.0303
(0.00) (0.80) (0.00) (0.15)

Shrinkage 0.1332 0.4943 0.2723 0.1263 0.2939 0.3046
(0.00) (0.63) (0.00) (0.74)

Zero correlation 0.1771 0.5512 0.0133 0.1899 0.5161 0.0125
(0.00) (0.77) (0.00) (0.35)

Panel B. Weekly Rebalancing

1/N 0.1973 0.6045 0.0302 0.2127 0.5030 0.0325

Sample cov 0.1613 0.2893 0.6556 0.1475 0.2535 0.5961
(0.00) (0.90) (0.00) (0.84)

Constrained 0.1305 0.4591 0.0630 0.1322 0.6768 0.0408
(0.00) (0.83) (0.00) (0.08)

Shrinkage 0.1343 0.5257 0.3047 0.1326 0.3196 0.3724
(0.00) (0.64) (0.00) (0.77)

Zero correlation 0.1663 0.5697 0.0268 0.1782 0.5331 0.0276
(0.00) (0.76) (0.00) (0.23)

Panel C. Fortnightly Rebalancing

1/N 0.1905 0.6081 0.0427 0.2055 0.5036 0.0462

Sample cov 0.1587 0.2439 0.6961 0.1506 0.2690 0.6678
(0.00) (0.93) (0.00) (0.83)

Constrained 0.1262 0.4542 0.0696 0.1297 0.6726 0.0492
(0.00) (0.85) (0.00) (0.11)

Shrinkage 0.1333 0.4910 0.3340 0.1372 0.3262 0.4303
(0.00) (0.70) (0.00) (0.77)

Zero correlation 0.1599 0.5778 0.0372 0.1719 0.5388 0.0390
(0.00) (0.71) (0.00) (0.21)

strategies based on the minimum-variance portfolio achieve significantly lower
volatility (σ̂) out of sample. For example, in Panel A with results for “Daily
rebalancing,” we see that for Sample 2 with daily rebalancing, the volatility of the
1/N portfolio is 0.2254, for the minimum-variance portfolio based on the sample-
covariance matrix it is 0.1429, for the minimum-variance portfolio with short-
sale constraints it is 0.1383, for the minimum-variance portfolio with shrinkage
it is 0.1263, and for the portfolio obtained from setting all correlations equal to
0 it is 0.1899. The p-values indicate that the volatilities of the minimum-variance
portfolios are significantly lower than that of 1/N. The results are similar for
Sample 1 and in Panels B and C for “Weekly Rebalancing” and “Fortnightly
Rebalancing.”

However, the Sharpe ratio (SR) and turnover (TRN) are typically better for
the 1/N portfolio compared to the four minimum-variance portfolios, with the
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TABLE 3

Mean-Variance Portfolios without Option-Implied Information

In Table 3, we report the performance of the 1/N portfolio and various mean-variance portfolios that are based on historical
returns and do not rely on prices of options. The “Sample cov” portfolio is the mean-variance portfolio based on the sample
covariance matrix; “Constrained” is the mean-variance portfolio based on the sample covariance matrix but with short
sales constrained; “Shrinkage” is the mean-variance portfolio where shrinkage has been applied to the sample covariance
matrix using the Ledoit and Wolf (2004a), (2004b) methodology; “Zero correlation” is the mean-variance portfolio where
all correlations are set equal to 0; and “1/N + FFM” denotes the parametric benchmark portfolio, where we start with the
“1/N” initial portfolio and adjust it optimally using the Fama-French and momentum characteristics. We report p-values
in parentheses with respect to the 1/N portfolio, with the null hypothesis being that the portfolio being evaluated is no
better than the benchmark (so a small p-value suggests rejecting the null hypothesis that the portfolio being evaluated is
no better than the benchmark).

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel A. Daily Rebalancing

1/N 0.2083 0.5903 0.0134 0.2254 0.4963 0.0145

Sample cov 0.4204 –0.2277 3.7940 0.6481 –0.9411 4.6965
(1.00) (0.99) (1.00) (1.00)

Constrained 0.1370 0.3553 0.0624 0.1377 0.6083 0.0321
(0.00) (0.92) (0.00) (0.23)

Shrinkage 0.6747 –0.1630 3.9762 0.9947 –0.6261 6.9215
(1.00) (0.99) (1.00) (1.00)

Zero correlation 0.5700 –0.0683 1.6410 0.3427 0.1929 0.3008
(1.00) (0.98) (1.00) (0.91)

1/N + FFM 0.2079 0.6589 0.0515 0.2285 0.5453 0.0372
(0.38) (0.06) (1.00) (0.14)

Panel B. Weekly Rebalancing

1/N 0.1973 0.6045 0.0302 0.2127 0.5030 0.0325

Sample cov 0.4404 –0.0664 4.0024 0.7402 –0.6171 7.0693
(1.00) (0.99) (1.00) (1.00)

Constrained 0.1301 0.4018 0.0703 0.1301 0.6513 0.0426
(0.00) (0.92) (0.00) (0.13)

Shrinkage 0.8527 –0.0660 5.3350 1.1251 –0.4198 26.4889
(1.00) (0.99) (1.00) (1.00)

Zero correlation 0.6571 0.0195 2.5679 0.3980 0.2036 0.4230
(1.00) (0.99) (1.00) (0.95)

1/N + FFM 0.1979 0.6725 0.0624 0.2156 0.5617 0.0508
(0.66) (0.05) (0.94) (0.08)

Panel C. Fortnightly Rebalancing

1/N 0.1905 0.6081 0.0427 0.2055 0.5036 0.0462

Sample cov 0.4330 –0.0352 4.2037 0.8165 –0.5013 19.2794
(1.00) (0.99) (1.00) (1.00)

Constrained 0.1250 0.4124 0.0769 0.1267 0.6582 0.0508
(0.00) (0.90) (0.00) (0.13)

Shrinkage 0.8992 –0.0386 7.0368 1.1933 –0.3280 24.4343
(1.00) (0.98) (1.00) (0.99)

Zero correlation 0.6616 0.1669 9.9765 0.4239 0.1704 0.3918
(1.00) (0.96) (1.00) (0.96)

1/N + FFM 0.1903 0.6749 0.0719 0.2075 0.5657 0.0623
(0.48) (0.06) (0.77) (0.08)

only exceptions being the Sharpe ratio for the constrained minimum-variance
portfolio, and for the minimum-variance portfolio obtained by setting all
correlations equal to 0, in the case of Sample 2; but, for both cases the differ-
ences are not statistically significant.19

19It might seem strange to evaluate the Sharpe ratio of minimum-variance portfolios, whose
objective is to only minimize the volatility of the portfolio. This comparison is motivated by the
statement in Jagannathan and Ma ((2003), p. 1653) that “the global minimum variance portfolio has
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Of the four minimum-variance portfolios that we consider, the short-sale-
constrained portfolio and the portfolio obtained by setting all correlations equal
to 0 have turnover that is comparable to that of the 1/N portfolio and substantially
lower than the turnover of the unconstrained “Sample cov” portfolio. This is true
also in the tables that follow, where we use option-implied information.

Table 3 reports the performance of four mean-variance portfolios, “Sample
cov,” “Constrained,” “Shrinkage,” and “Zero correlation,” and the mean-variance
portfolio implemented using the parametric-portfolio methodology with the Fama
and French characteristics along with momentum, which in the table is labeled
“1/N + FFM.” The three mean-variance portfolios that do not have constraints on
short selling (“Sample cov,” “Shrinkage,” and “Zero correlation”) perform very
poorly along all metrics. The mean-variance strategy with short-sale constraints
achieves a lower volatility than the 1/N portfolio, but it has a lower Sharpe ra-
tio and higher turnover than the 1/N portfolio and also the short-sale-constrained
minimum-variance portfolio considered in Table 2. The parametric portfolio usu-
ally has the best Sharpe ratio compared to the 1/N portfolio and the other mean-
variance portfolios (though the difference is not always statistically significant),
with a turnover that is comparable to that of 1/N. The volatility of the parametric
portfolio is higher than that of the short-sale-constrained mean-variance portfolio
and the minimum-variance portfolios considered in Table 2, which is not sur-
prising, given that this portfolio is not designed with the objective of minimizing
volatility.

B. Performance of Portfolios Using Option-Implied Volatility

Motivated by the findings in Section V.A about the predictive power of
model-free implied volatilities after correction for the risk premium, R̂V, we use
them in diag(σ̂) to obtain the covariance matrix given in equation (9); that is,
Σ̂=diag(R̂V) Ω̂ diag(R̂V). Using this covariance matrix, and setting the expected
return on each asset equal to the grand mean across all stocks, we determine the
minimum-variance portfolio in equation (8), along with the portfolios where short
sales are constrained, where shrinkage is applied to this covariance matrix, and
where we impose the restriction that all correlations are equal to 0. In comput-
ing these portfolios, we continue to use historical correlations (except for the last
portfolio, where correlations are set equal to 0).

The results for the minimum-variance portfolios based on risk-premium-
corrected option-implied volatility are given in Table 4. In this table we report
two sets of p-values: the first with respect to the 1/N portfolio, and the second
with respect to the corresponding benchmark portfolio in Table 2. For Sample 2,
comparing the volatility (STD) of portfolio returns across the different portfo-
lio strategies, we see that the “Shrinkage” portfolio always achieves the lowest

as large an out-of-sample Sharpe ratio as other efficient portfolios when past historical average returns
are used as proxies for expected returns.” DeMiguel, Garlappi, and Uppal (2009) also find that the
minimum-variance portfolio performs surprisingly well in terms of Sharpe ratio when compared to
other portfolios that rely on estimates of expected returns.
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TABLE 4

Minimum-Variance Portfolios Using Option-Implied Volatility

In Table 4, we report the performance of the 1/N portfolio and various minimum-variance portfolios
that use the risk-premium-corrected model-free implied volatility calculated from option prices, while
correlations are estimated from historical data. The “Sample cov” portfolio is the minimum-variance port-
folio based on the sample covariance matrix, but where historical volatility is replaced by option-implied
volatility corrected for the volatility risk premium; “Constrained” is the minimum-variance portfolio based
on the same covariance matrix as for “Sample-cov” but with short sales constrained; “Shrinkage” is the
minimum-variance portfolio based on the same covariance matrix as for “Sample-cov” but with shrinkage
applied to the “Sample-cov” matrix; and “Zero correlation” is the minimum-variance portfolio based on a
covariance matrix where all correlations are set equal to 0 and historical volatility is replaced by option-
implied volatility corrected for the volatility risk premium. We report two p-values in parentheses, the first
with respect to the 1/N portfolio, and the second with respect to the corresponding minimum-variance
benchmark portfolio in Table 2, with the null hypothesis being that the portfolio being evaluated is no
better than the benchmark (so a small p-value suggests rejecting the null hypothesis that the portfolio
being evaluated is no better than the benchmark).

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel A. Daily Rebalancing

1/N 0.2083 0.5903 0.0134 0.2254 0.4963 0.0145

Sample cov 0.1554 0.2037 1.1646 0.1212 0.4963 1.3598
(0.00) (0.91) (0.00) (0.51)
(0.00) (0.67) (0.00) (0.10)

Constrained 0.1351 0.3427 0.1960 0.1342 0.4302 0.1911
(0.00) (0.94) (0.00) (0.68)
(0.11) (0.94) (0.00) (1.00)

Shrinkage 0.1320 0.2849 0.6466 0.1197 0.2828 0.9467
(0.00) (0.88) (0.00) (0.84)
(0.29) (0.96) (0.02) (0.53)

Zero correlation 0.1728 0.5018 0.0551 0.1759 0.4858 0.0615
(0.00) (0.93) (0.00) (0.57)
(0.00) (1.00) (0.00) (0.91)

Panel B. Weekly Rebalancing

1/N 0.1973 0.6045 0.0302 0.2127 0.5030 0.0325

Sample cov 0.1545 0.2366 1.1823 0.1189 0.5714 1.3774
(0.00) (0.95) (0.00) (0.36)
(0.01) (0.70) (0.00) (0.03)

Constrained 0.1295 0.3783 0.2014 0.1268 0.5046 0.1987
(0.00) (0.95) (0.00) (0.49)
(0.21) (0.93) (0.00) (1.00)

Shrinkage 0.1327 0.3461 0.6603 0.1177 0.3678 0.9629
(0.00) (0.90) (0.00) (0.78)
(0.19) (0.98) (0.00) (0.37)

Zero correlation 0.1624 0.5240 0.0615 0.1650 0.5216 0.0680
(0.00) (0.93) (0.00) (0.36)
(0.00) (1.00) (0.00) (0.73)

Panel C. Fortnightly Rebalancing

1/N 0.1905 0.6081 0.0427 0.2055 0.5036 0.0462

Sample cov 0.1504 0.1984 1.2019 0.1207 0.5890 1.3957
(0.00) (0.96) (0.00) (0.34)
(0.00) (0.69) (0.00) (0.02)

Constrained 0.1263 0.3687 0.2062 0.1257 0.5123 0.2048
(0.00) (0.94) (0.00) (0.47)
(0.54) (0.96) (0.01) (1.00)

Shrinkage 0.1305 0.3309 0.6745 0.1192 0.4044 0.9799
(0.00) (0.92) (0.00) (0.71)
(0.13) (0.98) (0.00) (0.29)

Zero correlation 0.1561 0.5394 0.0678 0.1595 0.5395 0.0747
(0.00) (0.89) (0.00) (0.24)
(0.00) (1.00) (0.00) (0.48)

https://doi.org/10.1017/S0022109013000616  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109013000616


DeMiguel, Plyakha, Uppal, and Vilkov 1833

volatility, and this is significantly lower than that of the 1/N portfolio and also
the “Shrinkage” benchmark strategy in Table 2, which uses historical volatility;
however, the “Shrinkage” strategy has the lowest Sharpe ratio of all the strategies
in Table 4, and also its turnover is quite high. For Sample 1, again the lowest
volatility for daily rebalancing is achieved by the “Shrinkage” strategy, but for
weekly and fortnightly rebalancing, it is the constrained strategy that has the low-
est volatility. For both samples and all three rebalancing frequencies, of the four
minimum-variance portfolios, it is the “Zero correlation” portfolio that achieves
the lowest turnover and the highest Sharpe ratio; for Sample 2, this Sharpe ratio
is higher than even that of the 1/N portfolio.20

We conclude that volatility of stock returns estimated from risk-premium-
corrected implied volatility is successful in achieving a significant reduction in
portfolio volatility.21

C. Performance of Portfolios with Option-Implied Correlations

In this section, we investigate the gains from using option-implied correla-
tions in portfolio selection. The performance of portfolios obtained from using
the risk-premium-corrected option-implied correlations in equation (9), instead
of historical correlations, is reported in Table 5. In order to isolate the effect of

TABLE 5

Minimum-Variance Portfolios Using Option-Implied Correlation

In Table 5, we report the performance of the 1/N portfolio and various minimum-variance portfolios that use risk-premium-
corrected option-implied correlation without restricting correlations to be the same across asset pairs, as computed in
Buss and Vilkov (2012), while volatilities are estimated from historical data. The “Sample cov” portfolio is the minimum-
variance portfolio based on the sample covariance matrix, but with option-implied correlations that are not assumed to be
the same across all asset pairs; “Constrained” is the minimum-variance portfolio based on the same covariance matrix as
for “Sample-cov” but with short sales constrained; and “Regularization” is the minimum-variance portfolio based on the
same covariance matrix as for “Sample-cov” but with regularization applied to the “Sample-cov” matrix using the Zumbach
(2009) methodology. We report two p-values in parentheses, the first with respect to the 1/N portfolio, and the second
with respect to the corresponding minimum-variance benchmark portfolio in Table 2, with the null hypothesis being that
the portfolio being evaluated is no better than the benchmark (so a small p-value suggests rejecting the null hypothesis
that the portfolio being evaluated is no better than the benchmark).

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel A. Daily Rebalancing

1/N 0.2083 0.5903 0.0134 0.2254 0.4963 0.0145

Sample cov 0.2374 0.2771 3.6129 0.2204 0.2838 4.4839
(1.00) (0.84) (0.27) (0.76)
(1.00) (0.47) (1.00) (0.37)

Constrained 0.1549 0.8235 0.0843 0.1803 0.5867 0.0895
(0.00) (0.17) (0.00) (0.36)
(1.00) (0.03) (1.00) (0.62)

Regularization 0.1367 0.6334 0.2659 0.1506 0.6321 0.4240
(0.00) (0.43) (0.00) (0.26)
(0.82) (0.25) (1.00) (0.07)

(continued on next page)

20The reason for the relatively poor Sharpe ratio and turnover of the other portfolios based on im-
plied volatility is that implied volatility is a highly unstable estimator of future volatility; this instabil-
ity increases the error in portfolio weights and reduces the gains from having a better predictor of RV.

21For the portfolio constructed using implied volatility without correcting for the risk premium, the
volatility, Sharpe ratio, and turnover are worse than for the case where one uses the risk-premium-
corrected implied volatility.
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TABLE 5 (continued)

Minimum-Variance Portfolios Using Option-Implied Correlation

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel B. Weekly Rebalancing

1/N 0.1973 0.6045 0.0302 0.2127 0.5030 0.0325

Sample cov 0.2307 0.4974 3.6233 0.2034 0.3755 4.5216
(1.00) (0.67) (0.16) (0.71)
(1.00) (0.16) (1.00) (0.24)

Constrained 0.1416 0.7545 0.0879 0.1651 0.5673 0.0945
(0.00) (0.22) (0.00) (0.36)
(0.99) (0.03) (1.00) (0.71)

Regularization 0.1321 0.6429 0.2756 0.1454 0.6261 0.4381
(0.00) (0.43) (0.00) (0.23)
(0.28) (0.22) (0.99) (0.05)

Panel C. Fortnightly Rebalancing

1/N 0.1905 0.6081 0.0427 0.2055 0.5036 0.0462

Sample cov 0.2160 0.4381 3.6494 0.2117 0.2819 4.5829
(0.98) (0.77) (0.71) (0.83)
(1.00) (0.17) (1.00) (0.47)

Constrained 0.1347 0.7294 0.0909 0.1608 0.5446 0.0983
(0.00) (0.27) (0.00) (0.40)
(0.94) (0.05) (1.00) (0.73)

Regularization 0.1277 0.6214 0.2857 0.1431 0.6051 0.4522
(0.00) (0.47) (0.00) (0.28)
(0.12) (0.18) (0.83) (0.05)

using implied correlations, we use volatilities calculated from historical data when
computing the portfolio weights.

We consider three minimum-variance portfolios in Table 5: The first is based
on the sample-covariance matrix with option-implied correlations; the second is
the same as the first, but with short sales constrained; and the third, which is la-
beled “regularization,” replaces the “shrinkage” portfolio considered in the earlier
tables. We use the regularization approach of Zumbach (2009) because we are us-
ing option-implied correlations and, hence, do not know the distribution of returns
for the resulting covariance matrix, which means that we cannot use the shrinkage
results of Ledoit and Wolf (2004a), (2004b) that rely on particular distributional
assumptions.

We observe from Table 5 that using the risk-premium-corrected implied
correlations does not lead to much of an improvement in the out-of-sample per-
formance of the minimum-variance portfolios.22 While the volatility of the port-
folios with short-sale constraints and regularization is less than that of the 1/N
for both Sample 1 and Sample 2, it exceeds that of the corresponding benchmark
portfolios studied in Table 2. The portfolios based on option-implied correlations
also have higher turnover. The only positive result is that the Sharpe ratio of the
constrained portfolio is greater than that of the 1/N portfolio and also the corre-
sponding benchmark portfolio in Table 2, though the improvement is not always
statistically significant.

22The performance of portfolios based on implied correlations without the correction for the risk
premium is slightly worse.
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Thus, we conclude that using the option-implied correlations does not lead
to a significant improvement in portfolio performance. The reason for the poor
performance of portfolios based on implied correlations is that the covariance
matrix based on these correlations is highly unstable over time. Consequently, the
resulting portfolio weights are highly variable and perform poorly out of sample.

D. Performance of Portfolios with Returns Predicted Using Options

In this section, we examine the effect on portfolio performance of using four
option-implied quantities that explain the cross section of stock returns: MFIV;
volatility risk premium, measured as the spread between the currently observed
Black-Scholes (1973) option-implied volatility and realized (historical) volatility
(IRVS); MFIS; and skewness, measured as the spread between the Black-Scholes
implied volatilities for calls and for puts (CPVS). There are two ways in which
we use these quantities to improve the performance of portfolios. In the first,
described in Section V.D.1, we rank all stocks based on each characteristic and
adjust the returns of the top and bottom decile portfolios. In the second, described
in Section V.D.2, we use the parametric-portfolio methodology of Brandt et al.
(2009).

1. Performance of a Mean-Variance Portfolio with Option Characteristics

The out-of-sample performance of the mean-variance portfolios that use
option-implied characteristics to adjust returns is reported in Table 6. There are
four portfolios, each with short-sale constraints, considered in this table corre-
sponding to the following four option characteristics: MFIV, IRVS, MFIS, and
CPVS. We compare performance of these portfolios to two sets of benchmarks:
the 1/N portfolio and the constrained minimum-variance portfolio reported in
Table 2, which does not rely on option prices.23

From Table 6, we see that other than MFIV, the portfolios whose returns are
adjusted based on any of the other three characteristics have a significantly higher
Sharpe ratio than the 1/N portfolio and the benchmark portfolios in Table 3. The
difference in Sharpe ratios is largest for daily rebalancing, and it declines as the
rebalancing frequency decreases. For example, for Sample 1, the Sharpe ratio for
the 1/N portfolio is 0.5903, while for the portfolio using IRVS it is 0.9232, for the
portfolio using MFIS it is 1.0092, and for the portfolio using CPVS it is 1.4291.
However, the improvement in the Sharpe ratio is accompanied by an increase in
turnover.

To understand whether the mean-variance portfolios using option-implied
characteristics to forecast expected returns outperform the benchmark portfolios
even in the presence of transaction costs, we compute the equivalent transaction
cost for each portfolio. Recall from Section IV.D that this is the transaction cost
level that equates the performance metric (mean return or Sharpe ratio) of a given
strategy with that for the benchmark strategy.

23We use as a benchmark the short-sale-constrained minimum-variance portfolio rather than the
constrained mean-variance portfolios because the constrained minimum-variance portfolio has better
performance in terms of all three metrics.
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TABLE 6

Mean-Variance Portfolios with Option-Characteristic-Adjusted Returns

In Table 6, we report the performance of the 1/N portfolio and various short-sale-constrained mean-variance portfolios
based on mean returns that are adjusted using the option-implied characteristics: model-free implied volatility (MFIV),
implied-realized volatility spread (IRVS), model-free implied skewness (MFIS), and call-put volatility spread (CPVS). The
methodology used to adjust returns is described in Section V.D.1. We report two p-values in parentheses, the first with
respect to the 1/N portfolio, and the second with respect to the corresponding constrained minimum-variance benchmark
portfolio in Table 2, with the null hypothesis being that the portfolio being evaluated is no better than the benchmark (so a
small p-value suggests rejecting the null hypothesis that the portfolio being evaluated is no better than the benchmark).

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel A. Daily Rebalancing

1/N 0.2083 0.5903 0.0134 0.2254 0.4963 0.0145

Constrained + MFIV 0.3959 0.6785 0.0983 0.4523 0.4121 0.0983
(1.00) (0.30) (1.00) (0.73)
(1.00) (0.19) (1.00) (0.85)

Constrained + IRVS 0.2499 0.9232 0.2265 0.2634 0.7650 0.2097
(1.00) (0.01) (1.00) (0.01)
(1.00) (0.02) (1.00) (0.29)

Constrained + MFIS 0.2520 1.0092 0.2859 0.2681 1.0130 0.2701
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.00) (1.00) (0.02)

Constrained + CPVS 0.2518 1.4291 0.6209 0.2726 1.3596 0.6088
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.00) (1.00) (0.00)

Panel B. Weekly Rebalancing

1/N 0.1973 0.6045 0.0302 0.2127 0.5030 0.0325

Constrained + MFIV 0.3898 0.5974 0.1245 0.4387 0.3657 0.1286
(1.00) (0.53) (1.00) (0.89)
(1.00) (0.28) (1.00) (0.94)

Constrained + IRVS 0.2567 0.7982 0.2454 0.2689 0.6216 0.2316
(1.00) (0.03) (1.00) (0.08)
(1.00) (0.03) (1.00) (0.65)

Constrained + MFIS 0.2549 0.8397 0.3023 0.2690 0.8063 0.2876
(1.00) (0.01) (1.00) (0.00)
(1.00) (0.01) (1.00) (0.20)

Constrained + CPVS 0.2472 0.9270 0.6338 0.2578 0.9058 0.6229
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.00) (1.00) (0.06)

Panel C. Fortnightly Rebalancing

1/N 0.1905 0.6081 0.0427 0.2055 0.5036 0.0462

Constrained + MFIV 0.3745 0.5850 0.1445 0.4158 0.3300 0.1513
(1.00) (0.58) (1.00) (0.94)
(1.00) (0.31) (1.00) (0.95)

Constrained + IRVS 0.2590 0.7070 0.2594 0.2714 0.5271 0.2479
(1.00) (0.15) (1.00) (0.39)
(1.00) (0.08) (1.00) (0.81)

Constrained + MFIS 0.2520 0.7867 0.3151 0.2701 0.7291 0.3010
(1.00) (0.04) (1.00) (0.00)
(1.00) (0.02) (1.00) (0.37)

Constrained + CPVS 0.2392 0.8132 0.6436 0.2515 0.7453 0.6337
(1.00) (0.01) (1.00) (0.00)
(1.00) (0.02) (1.00) (0.33)

In Table 7, for each data set and rebalancing frequency, we report two sets of
numbers, each set consisting of two numbers. The first set of numbers is for the
case where the benchmark portfolio is the 1/N portfolio; the second set of num-
bers is for the case where the benchmark is the constrained minimum-variance
portfolio reported in Table 2. The first number in each set indicates the trans-
action cost that equates the mean return on the portfolio using option-implied
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characteristics to that of the benchmark portfolio. The second number is the trans-
action cost that equates the Sharpe ratio of the two portfolios. For comparison,
note that the typical cost for trading the stocks that are in our data sets is about 10
basis points (bp) (see French (2008)), with the actual cost depending on the size
of the trade and the execution capability of the trader.

TABLE 7

Equivalent Transaction Costs for Mean-Variance Portfolios
with Option-Characteristic Adjusted Returns

In Table 7, we evaluate the effect of transaction costs on the mean return and Sharpe ratio of mean-variance portfolios
that rely on returns adjusted using option-implied characteristics, as described in Section 1. The four characteristics we
consider are: model-free implied volatility (MFIV), implied-realized volatility spread (IRVS), model-free implied skewness
(MFIS), and call-put volatility spread (CPVS). We report the transaction cost (in basis points) that makes the performance
of the parametric portfolio equal to that of the benchmark portfolio, and we consider two benchmark portfolios: the 1/N
portfolio and the short-sale-constrained minimum-variance portfolio. A “�” indicates the portfolio using option-implied in-
formation performs worse than the benchmark and also has higher turnover than the benchmark. A “—” indicates the
performance of both portfolios, net of transaction costs, is negative.

Sample 1 Sample 2

Strategy TC Mean TC SR TC Mean TC SR

Panel A. Daily Rebalancing

Constrained + MFIV 0.68 0.19 0.35 �
1.92 — 0.56 �

Constrained + IRVS 0.20 0.16 0.18 0.15
0.39 0.38 0.25 0.08

Constrained + MFIS 0.19 0.16 0.25 0.22
0.33 0.31 0.30 0.18

Constrained + CPVS 0.16 0.14 0.17 0.16
0.21 0.19 0.19 0.14

Panel B. Weekly Rebalancing

Constrained + MFIV 2.40 � 1.11 �
5.60 — 1.61 �

Constrained + IRVS 0.79 0.48 0.60 0.33
1.58 1.43 0.81 �

Constrained + MFIS 0.69 0.45 0.86 0.66
1.28 1.08 1.03 0.34

Constrained + CPVS 0.36 0.27 0.43 0.35
0.59 0.45 0.49 0.22

Panel C. Fortnightly Rebalancing

Constrained + MFIV 4.04 � 1.28 �
8.60 — 1.95 �

Constrained + IRVS 1.24 0.51 0.78 0.14
2.64 2.24 1.12 �

Constrained + MFIS 1.20 0.69 1.46 1.01
2.29 1.89 1.74 0.31

Constrained + CPVS 0.52 0.33 0.57 0.42
0.95 0.67 0.68 0.14

In Table 7, there are two possibilities when comparing the performance of
portfolios that use option-implied information to the performance of benchmark
strategies. The first possibility is that the portfolio using option-implied informa-
tion performs better than the benchmark portfolio but has a higher turnover; in this
case, the positive number reported in the table indicates the transaction cost that
the portfolio using option-implied information can incur before its performance
drops to the level of the benchmark, which is also considered net of transaction
costs. The second possibility is that the benchmark portfolio performs better and
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has better turnover; in this case, there is no positive level of transaction costs that
equates the performance of the two strategies, and we indicate this in the table
with the symbol “�”. The third possibility is that the performance of both portfo-
lios turns negative after adjustment for transaction costs; in the table, we use “—”
to represent this case.

We observe from Panel A of Table 7 that for the case of daily rebalancing,
the equivalent transaction cost for the Sharpe ratio ranges from 14 bp to 38 bp; for
example, in the case of Sample 2, the portfolio with returns adjusted using MFIS
has a higher Sharpe ratio than the 1/N portfolio for transaction costs of up to
22 bp. In Panels B and C, we see that as the rebalancing frequency decreases, and
the equivalent transaction cost increases; for example, in the case of Sample 2, the
portfolio with returns adjusted using MFIS has a higher Sharpe ratio than the 1/N
portfolio for transaction costs of up to 66 bp for weekly rebalancing, and up to
101 bp for fortnightly rebalancing.

We conclude from this analysis that information in MFIV, IRVS, MFIS, and
CPVS can be used to improve the Sharpe ratio of mean-variance portfolios even
after adjusting for the higher transaction cost as a consequence of higher turnover
in implementing the option-based strategy.

2. Performance of a Parametric Portfolio Based on Option Characteristics

Next, we examine the out-of-sample performance of the parametric port-
folios that use option-implied characteristics. We consider two benchmark port-
folios: the 1/N portfolio and the mean-variance parametric portfolio “1/N +
FFM” that starts with the 1/N portfolio and uses the Fama-French and momentum
characteristics to adjust the portfolio weights; we do not allow for short sales.
Comparing the two benchmarks, we see that the 1/N portfolio has better turnover
and volatility, but the parametric portfolio has a better Sharpe ratio.

From Table 8, we see that when we use the option-implied characteristics
alone instead of the FFM, then the implied skewness measures (MFIS and CPVS)
improve the risk-return tradeoff significantly compared to the two benchmarks.
Moreover, the improvement over 1/N is significant for daily, weekly, and fort-
nightly holding periods, while the improvement over the parametric portfolio is
significant only for daily rebalancing. For instance, in Panel A for Sample 1,
the Sharpe ratio for the 1/N portfolio is 0.5903 and for the parametric portfolio
with FFM factors it is 0.6589, while for the parametric portfolio with IRVS it is
0.6433, for the parametric portfolio with MFIS it is 0.7908, and for the parametric
portfolio with CPVS it is 0.9390; the results are similar for Sample 2. However,
these gains are accompanied by higher turnover. Note that as the rebalancing pe-
riod increases, the improvement decreases, while turnover per rebalancing period
stays at about the same level. This implies that the total transaction cost paid over
the entire time period is decreasing.

We can also ask whether the option-implied characteristics improve perfor-
mance if one is already using the traditional size, value, and momentum charac-
teristics when selecting the parametric portfolio. This question is answered in the
second part of each panel of Table 8, where we consider each option-implied char-
acteristic in addition to the FFM characteristics considered in the benchmark port-
folio. From the lower part of each panel, we see that MFIS and CPVS improve the
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TABLE 8

Parametric Portfolios Using Option-Implied Information

In Table 8, we evaluate the performance of parametric portfolios that rely on option-implied characteristics about expected
returns, using the methodology proposed in Brandt et al. (2009). In each panel, we first consider the effect of choosing a
portfolio that is based on option-implied characteristic (individually and together), rather than the traditional FFM charac-
teristics. The characteristics we consider are: model-free implied volatility (MFIV), implied-realized volatility spread (IRVS),
model-free implied skewness (MFIS), and call-put volatility spread (CPVS). In the second part of each panel, we consider
the effect of considering these option-implied characteristics (individually and together) in addition to the FFM character-
istics. We report two p-values in parentheses, the first with respect to the 1/N portfolio and the second with respect to the
“1/N + FFM” portfolio, with the null hypothesis being that the portfolio being evaluated is no better than the benchmark
(so a small p-value suggests rejecting the null hypothesis that the portfolio being evaluated is no better than the bench-
mark).

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel A. Daily Rebalancing

1/N 0.2083 0.5903 0.0134 0.2254 0.4963 0.0145

1/N + FFM 0.2079 0.6589 0.0515 0.2285 0.5453 0.0372
(0.38) (0.06) (1.00) (0.14)
(0.50) (0.50) (0.50) (0.50)

1/N + MFIV 0.2142 0.6180 0.0780 0.2269 0.5063 0.0605
(1.00) (0.33) (0.84) (0.44)
(1.00) (0.75) (0.16) (0.74)

1/N + IRVS 0.2062 0.6433 0.0904 0.2246 0.5413 0.0855
(0.00) (0.01) (0.19) (0.04)
(0.09) (0.63) (0.00) (0.54)

1/N + MFIS 0.2143 0.7908 0.2033 0.2378 0.7075 0.1950
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.01) (1.00) (0.00)

1/N + CPVS 0.2093 0.9390 0.2944 0.2300 0.8516 0.2935
(0.98) (0.00) (1.00) (0.00)
(0.87) (0.00) (0.92) (0.00)

1/N + ALL IMPLIED 0.2178 0.9269 0.3352 0.2346 0.8493 0.2844
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.00) (1.00) (0.00)

1/N + FFM + MFIV 0.2140 0.6635 0.0891 0.2270 0.5714 0.0613
(1.00) (0.12) (0.85) (0.09)
(1.00) (0.47) (0.07) (0.23)

1/N + FFM + IRVS 0.2070 0.6645 0.0932 0.2257 0.5556 0.0607
(0.08) (0.04) (0.60) (0.09)
(0.02) (0.39) (0.00) (0.29)

1/N + FFM + MFIS 0.2091 0.7996 0.2011 0.2340 0.6649 0.1683
(0.79) (0.00) (1.00) (0.00)
(0.98) (0.00) (1.00) (0.00)

1/N + FFM + CPVS 0.2127 1.0174 0.3497 0.2333 0.8655 0.3047
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.00) (1.00) (0.00)

1/N + FFM + ALL IMPLIED 0.2167 1.0184 0.3999 0.2351 0.8619 0.3164
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.00) (1.00) (0.00)

Panel B. Weekly Rebalancing

1/N 0.1973 0.6045 0.0302 0.2127 0.5030 0.0325

1/N + FFM 0.1979 0.6725 0.0624 0.2156 0.5617 0.0508
(0.66) (0.05) (0.94) (0.08)
(0.50) (0.50) (0.50) (0.50)

1/N + MFIV 0.2046 0.6349 0.0880 0.2157 0.4965 0.0723
(1.00) (0.30) (0.89) (0.55)
(1.00) (0.76) (0.53) (0.89)

1/N + IRVS 0.1966 0.6270 0.0970 0.2144 0.5250 0.0938
(0.23) (0.12) (0.94) (0.13)
(0.25) (0.84) (0.30) (0.81)

1/N + MFIS 0.2045 0.6757 0.2064 0.2269 0.5884 0.1992
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.47) (1.00) (0.26)

1/N + CPVS 0.1978 0.7034 0.2960 0.2167 0.6031 0.2956
(0.91) (0.00) (1.00) (0.00)
(0.46) (0.23) (0.75) (0.13)

(continued on next page)
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TABLE 8 (continued)

Parametric Portfolios Using Option-Implied Information

Sample 1 Sample 2

Strategy STD SR TRN STD SR TRN

Panel B. Weekly Rebalancing (continued)

1/N + ALL IMPLIED 0.2074 0.6915 0.3372 0.2215 0.6097 0.2869
(1.00) (0.01) (1.00) (0.00)
(1.00) (0.33) (1.00) (0.11)

1/N + FFM + MFIV 0.2042 0.6697 0.0973 0.2149 0.5732 0.0724
(1.00) (0.11) (0.80) (0.07)
(1.00) (0.52) (0.34) (0.35)

1/N + FFM + IRVS 0.1963 0.6700 0.1006 0.2141 0.5505 0.0712
(0.31) (0.04) (0.79) (0.11)
(0.01) (0.56) (0.02) (0.78)

1/N + FFM + MFIS 0.1990 0.7075 0.2044 0.2237 0.5760 0.1729
(0.88) (0.00) (1.00) (0.01)
(0.90) (0.06) (1.00) (0.31)

1/N + FFM + CPVS 0.2021 0.7538 0.3511 0.2209 0.6168 0.3068
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.01) (1.00) (0.04)

1/N + FFM + ALL IMPLIED 0.2075 0.7600 0.4014 0.2235 0.6284 0.3185
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.01) (1.00) (0.01)

Panel C. Fortnightly Rebalancing

1/N 0.1905 0.6081 0.0427 0.2055 0.5036 0.0462

1/N + FFM 0.1903 0.6749 0.0719 0.2075 0.5657 0.0623
(0.48) (0.06) (0.77) (0.08)
(0.50) (0.50) (0.50) (0.50)

1/N + MFIV 0.1979 0.6441 0.0972 0.2084 0.5023 0.0830
(0.99) (0.29) (0.82) (0.53)
(1.00) (0.71) (0.61) (0.88)

1/N + IRVS 0.1913 0.6226 0.1036 0.2085 0.5114 0.1020
(0.74) (0.20) (0.98) (0.33)
(0.64) (0.87) (0.66) (0.90)

1/N + MFIS 0.1986 0.6631 0.2103 0.2205 0.5585 0.2041
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.59) (1.00) (0.58)

1/N + CPVS 0.1911 0.6627 0.2984 0.2094 0.5559 0.2985
(0.92) (0.00) (1.00) (0.00)
(0.61) (0.60) (0.79) (0.59)

1/N + ALL IMPLIED 0.2008 0.6662 0.3398 0.2137 0.5678 0.2901
(1.00) (0.05) (1.00) (0.00)
(1.00) (0.58) (0.99) (0.49)

1/N + FFM + MFIV 0.1973 0.6712 0.1051 0.2078 0.5665 0.0825
(0.98) (0.15) (0.76) (0.11)
(1.00) (0.55) (0.57) (0.49)

1/N + FFM + IRVS 0.1897 0.6681 0.1076 0.2068 0.5480 0.0808
(0.36) (0.07) (0.70) (0.13)
(0.22) (0.67) (0.23) (0.91)

1/N + FFM + MFIS 0.1926 0.7030 0.2084 0.2163 0.5484 0.1782
(0.86) (0.00) (1.00) (0.07)
(0.99) (0.12) (1.00) (0.72)

1/N + FFM + CPVS 0.1957 0.7165 0.3533 0.2146 0.5731 0.3097
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.11) (1.00) (0.41)

1/N + FFM + ALL IMPLIED 0.2009 0.7286 0.4034 0.2166 0.5865 0.3212
(1.00) (0.00) (1.00) (0.00)
(1.00) (0.06) (1.00) (0.24)
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Sharpe ratio beyond the gains obtained from using only the FFM characteristics.
This improvement in Sharpe ratio for daily rebalancing is statistically significant
for both Samples 1 and 2 when using MFIS and CPVS; for weekly rebalancing,
it is statistically significant for CPVS for both samples, and for MFIS only for
Sample 1; and it is not statistically significant for fortnightly rebalancing. Finally,
looking at the last row of each panel, where we add all four option-implied charac-
teristics to the portfolio that already considers the FFM characteristics, we observe
that the Sharpe ratio increases substantially, and this improvement is statistically
significant for daily and weekly rebalancing for both samples; for fortnightly
rebalancing it is significant for Sample 1.

To understand if the parametric portfolios using option-implied character-
istics outperform the benchmark portfolios even in the presence of transaction
costs, just as before, we compute the equivalent transaction cost for each port-
folio. In Table 9, for each data set and rebalancing frequency, we report two sets
of numbers, each set having two numbers. The first set of numbers is for the case
where the benchmark portfolio is the 1/N portfolio; the second set of numbers
is for the case where the benchmark is the parametric portfolio with the FFM
characteristics.

TABLE 9

Equivalent Transaction Costs for Parametric Portfolios Using Option-Implied Information

In Table 9, we evaluate the effect of transaction costs on the mean return and Sharpe ratio of parametric portfolios that
rely on option-implied characteristics, using the methodology proposed in Brandt et al. (2009). The four characteristics
we consider (individually and together) are: model-free implied volatility (MFIV), implied-realized volatility spread (IRVS),
model-free implied skewness (MFIS), and call-put volatility spread (CPVS). In the second part of each panel, we consider
the effect of considering these option-implied characteristics (individually and together) in addition to the FFM character-
istics. We report the transaction cost (in basis points) that makes the performance of the parametric portfolio equal to that
of the benchmark portfolio, and we consider two benchmark portfolios: the 1/N portfolio and the “1/N + FFM” parametric
portfolio. A “�” indicates the portfolio using option-implied information performs worse than the benchmark and also has
higher turnover than the benchmark.

Sample 1 Sample 2

Strategy TC Mean TC SR TC Mean TC SR

Panel A. Daily Rebalancing

1/N + MFIV 0.06 0.04 0.03 0.02
� � � �

1/N + IRVS 0.05 0.06 0.05 0.06
� � � �

1/N + MFIS 0.10 0.09 0.12 0.11
0.09 0.07 0.11 0.10

1/N + CPVS 0.10 0.10 0.12 0.12
0.10 0.10 0.11 0.11

1/N + ALL IMPLIED 0.10 0.09 0.13 0.12
0.09 0.08 0.12 0.12

1/N + FFM + MFIV 0.10 0.08 0.15 0.15
0.05 0.01 0.08 0.10

1/N + FFM + IRVS 0.07 0.08 0.12 0.12
0.00 0.01 0.01 0.04

1/N + FFM + MFIS 0.09 0.09 0.11 0.10
0.08 0.08 0.09 0.09

1/N + FFM + CPVS 0.11 0.11 0.12 0.12
0.11 0.10 0.12 0.11

1/N + FFM + ALL IMPLIED 0.10 0.10 0.12 0.11
0.10 0.09 0.11 0.11

(continued on next page)
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TABLE 9 (continued)

Equivalent Transaction Costs for Parametric Portfolios Using Option-Implied Information

Sample 1 Sample 2

Strategy TC Mean TC SR TC Mean TC SR

Panel B. Weekly Rebalancing

1/N + MFIV 0.37 0.22 0.01 �
� � � �

1/N + IRVS 0.12 0.13 0.18 0.15
� � � �

1/N + MFIS 0.21 0.17 0.32 0.23
0.07 0.01 0.17 0.08

1/N + CPVS 0.15 0.15 0.18 0.16
0.05 0.05 0.08 0.07

1/N + ALL IMPLIED 0.16 0.12 0.22 0.19
0.07 0.03 0.12 0.09

1/N + FFM + MFIV 0.52 0.40 0.81 0.76
0.21 � 0.19 0.23

1/N + FFM + IRVS 0.35 0.36 0.56 0.53
� � � �

1/N + FFM + MFIS 0.25 0.23 0.31 0.23
0.11 0.10 0.13 0.05

1/N + FFM + CPVS 0.21 0.19 0.21 0.18
0.13 0.11 0.12 0.10

1/N + FFM + ALL IMPLIED 0.21 0.17 0.23 0.20
0.14 0.11 0.14 0.11

Panel C. Fortnightly Rebalancing

1/N + MFIV 0.85 0.53 0.13 �
� � � �

1/N + IRVS 0.21 0.18 0.22 0.12
� � � �

1/N + MFIS 0.38 0.26 0.50 0.31
0.09 � 0.16 �

1/N + CPVS 0.17 0.16 0.20 0.17
� � � �

1/N + ALL IMPLIED 0.24 0.16 0.29 0.23
0.08 � 0.07 0.01

1/N + FFM + MFIV 1.06 0.82 1.56 1.46
0.48 � 0.07 0.03

1/N + FFM + IRVS 0.67 0.70 1.14 1.07
� � � �

1/N + FFM + MFIS 0.47 0.44 0.46 0.30
0.20 0.16 0.04 �

1/N + FFM + CPVS 0.31 0.27 0.29 0.23
0.17 0.12 0.09 0.03

1/N + FFM + ALL IMPLIED 0.34 0.27 0.34 0.26
0.22 0.13 0.15 0.07

We observe from Panel A of Table 9 that for the case of daily rebalancing,
the benefits of using option-implied information would be eliminated if one had to
pay a transaction cost of more than 11 bp. This is because of the relatively higher
turnover of the strategies using option-implied information. However, when we
rebalance less frequently, the benefits of using option-implied information survive
higher transaction costs. For example, the results in Panel C for fortnightly rebal-
ancing indicate that MFIS improves performance relative to the 1/N strategy even
when we pay transaction costs of about 30 bp. However, option-implied charac-
teristics improve performance relative to the benchmark parametric portfolio for
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transaction costs of up to 10 bp. Using all of the implied characteristics is bene-
ficial in the presence of transaction costs of about 20 bp with respect to the 1/N
benchmark, and about 10 bp for the parametric-portfolio benchmark.

In summary, Table 9 suggests that in the presence of transaction costs, MFIS
and CPVS are useful characteristics for choosing portfolios, while the value of
using other characteristics is smaller, and their contribution is not robust across the
two samples. Overall, the empirical evidence suggests that using option-implied
skewness can lead to an improvement in the out-of-sample portfolio Sharpe ratio,
even after adjusting for the higher transaction costs incurred by these strategies.

VI. Conclusion

Mean-variance portfolio weights depend on estimates of volatilities, correla-
tions, and expected returns of stocks. In this paper, we have studied how informa-
tion implied in prices of stock options can be used to improve estimates of these
three moments in order to improve the out-of-sample performance of portfolios
with a large number of stocks. Performance is measured in terms of portfolio
volatility, Sharpe ratio, and turnover. The benchmark portfolios are the 1/N port-
folio; four types of minimum-variance portfolios and four types of mean-variance
portfolios based on historical returns; and the parametric portfolios of Brandt et al.
(2009), based on historical returns and size, value, and momentum characteristics.

We find that using option-implied volatilities can lead to a significant im-
provement in portfolio volatility; however, option-implied correlations are less
useful in reducing portfolio volatility. We also find that forming portfolios using
expected returns that exploit information in option-implied model-free skewness
and implied volatility achieve a higher Sharpe ratio than portfolios that ignore
option-implied information; this improvement in performance is present even af-
ter adjusting for transaction costs. Based on our empirical analysis, we conclude
that prices of stock options contain information that can be useful for improving
the out-of-sample performance of portfolios.
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