
J. Fluid Mech. (2002), vol. 451, pp. 169–191. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112001006474 Printed in the United Kingdom

169

Fluidization of 1204 spheres:
simulation and experiment

By T.-W. P A N1, D. D. J O S E P H2, R. B A I2,
R. G L O W I N S K I1 AND V. S A R I N3

1Department of Mathematics, University of Houston, Houston, TX 77204, USA
2Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis,

MN 55454, USA
3Department of Computer Sciences, Texas A&M University, College Station, TX 77843, USA

(Received 10 April 2000 and in revised form 27 June 2001)

In this paper we study the fluidization of 1204 spheres at Reynolds numbers in the
thousands using the method of distributed Lagrange multipliers. The results of the
simulation are compared with an experiment. This is the first direct numerical simu-
lation of a fluidized bed at the finite Reynolds numbers encountered in applications.
The simulations are processed to give straight lines in log–log plots leading to power
laws as in the celebrated experimental correlations of Richardson & Zaki (1954).
The numerical method allows the first direct calculation of the slip velocity and
other averaged values used in two-fluid continuum models. The computation and the
experiment show that a single particle may be in balance with respect to weight and
drag for an interval of fluidizing velocities; the expectation that the fluidizing velocity
is unique is not realized. The numerical method reveals that the dynamic pressure
decreases slowly with the fluidizing velocity. Tentative interpretations of these new
results are discussed.

1. Introduction
The current popularity of computational fluid dynamics is rooted in the percep-

tion that information implicit in the equations of motion can be extracted without
approximation using direct numerical simulation (DNS).

Direct numerical simulation of solid–liquid flows is a way of solving the initial value
problem for the motion of particles in fluids. The particles are moved by Newton’s
laws under the action of hydrodynamic forces computed from the numerical solution
of the fluid equations. To perform a direct simulation in the above sense, therefore,
one must simultaneously integrate the Navier–Stokes equations (governing the motion
of the fluid) and the equations of rigid-body motion (governing the motion of the
particles). These equations are coupled through the no-slip condition on the particle
boundaries, and through the hydrodynamic forces and torques that appear in the
equations of rigid-body motion. These hydrodynamic forces and torques must of
course be those arising from the computed motion of the fluid, and so are not known
in advance, but only as the integration proceeds. It is crucial that no approximation of
these forces and torques be made – other than that due to the numerical discretization
itself – so that the overall simulation will yield a solution of the coupled initial value
problem upto the numerical truncation error.
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Many excellent numerical studies of particulate flows of many particles, which
are not direct simulations in the above sense, have appeared in recent years. These
approximate methods include simulations based on potential flow, Stokes flow, and
point-particle approximations; they all simplify the computation by ignoring some
possibly important effects like viscosity and wakes in the case of potential flow,
inertial forces which produce lateral migration and across-stream orientations in the
case of Stokes flow and the effects of stagnation and separation points in the case of
point-particle approximations. Point-particle approximations do advect particles by
Newton’s law but in some cases the influence of particles on the flow is neglected, in
some cases the force on the fluid from the particles is added to the Navier–Stokes
equations. Although this approach is often referred to as ‘direct simulations’ by its
practitioners, the forces on each particle are related to its motion and the fluid velocity
by semi-empirical relations and this method is only applicable to dilute flows where
there are no direct particle–particle interactions.

One goal pursued here is to demonstrate that data from numerical experiments on
fluidization can be processed on log–log plots, giving straight lines leading to power
laws as did Richardson & Zaki (1954) for real experiments. As far as we know, we are
the only group of researchers to carry out this program. There is no prior literature
in which power laws are obtained from numerical experiments, On the other hand,
there are a number of numerical packages for particles in fluids that might be used in
this way. The methods of Stokesian dynamics (see Brady 1993) can be recommended
for problems in which inertia is absent. Following earlier work by Wachmann et
al. (1998) and Wachmann & Schwarzer (1998), Hofler et al. (1999) introduced two
approximate Euler–Lagrangian simulation methods for particles in fluids. In one
method, the particle surface is discretized in grid topology; spheres are polygons on
flat plates between nodes. In the second method, a volume force term is introduced to
emulate rigid body motion on the particle surface; this method is similar to the force
coupling methods introduced by Maxey & Patel (1997). Hofler et al. (1999) calculated
the sedimentation of 65 000 spheres but at Reynolds numbers so small that it is
essentially Stokes flow. Johnson & Tezduyar (1999) used a fully resolved DNS/ALE
method to compute the sedimentation of 1000 spheres at Reynolds numbers not larger
than 10. A fully resolved method which is based on matching explicit Stokes flow
representations of flow near particles with computations on a grid has been proposed
by Ory, Oguz & Prosperetti (2000). The problem of particulates in turbulent flows has
been considered by a few authors, e.g. Crowe, Chung & Troutt (1996), McLaughlin
(1994), and Maxey et al. (1997); these approaches use point-particle approximations
because fully resolved computations in turbulent flow are not at present possible.
Numerical approaches to particulate flow based on the discrete lattice Boltzmann
equation have been presented by Ladd (1994a, b, 1996, 1997), Aidun (1996), Aidun,
Lu & Ding (1998) and Qi (1997, 1999).

The correlations of Richardson & Zaki (1954) are an empirical foundation for
fluidized bed practice. They performed many experiments with different liquids, gases
and particles. They plotted their data on log–log plots; these data fell on straight lines
whose slope and intercept could be determined. This showed that the variables follow
power laws. This method can also be used for numerical experiments on fluidization
and on the lifting of particles across streamlines in Poiseuille flow (see Patankar
et al. 2001a, b). The existence of power laws can be regarded as a consequence of
similarity (Barenblatt 1996); it is not an obvious consequence of the physics of flow
of particulates or of the equations of motion. The possibility that power laws underlie
the flows of dispersions generally could be considered.
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Figure 1. Part of a two-dimensional example of a fixed triangular grid used in DLM computation.
The same grid covers the fluid and solid. The fluid in the circle is constrained by Lagrange multipliers
to move as a rigid body.

In this article, we present the results of a simulation of the fluidization of 1204
spheres which are in satisfying agreement with results obtained by experiments. We
will discuss the numerical method briefly in § 2 and then experiments in § 3. In § 4 we
present numerical results and compare them with experimental ones in § 5. Section 6
deals with the problem of computing time averages from computations. Section 7
examines the decomposition of the pressure gradient and specifies the variation
with solids fraction of the part of the pressure gradient due to wall friction. The
Richardson–Zaki correlation from DNS is discussed in §§ 8 and 9.

2. Numerical method
To perform the direct numerical simulation of particulate flow, Glowinski et al.

(1997, 1998, 1999, 2001) have developed a methodology that is a combination of a
distributed Lagrange-multiplier-based fictitious domain method (DLM) and operator
splitting methods. The basic idea is to imagine that fluid fills the space inside as well
as outside the particle boundaries. The fluid-flow problem is then posed on a larger
domain (the ‘fictitious domain’). This larger domain is simpler, allowing a simple
regular mesh to be used. This in turn allows specialized fast solution techniques. The
larger domain is also time-independent, so the same mesh can be used for the entire
simulation, eliminating the need for repeated remeshing and projection (see figure 1).
This is a great advantage, since for three-dimensional particulate flow the automatic
generation of unstructured body-fitted meshes in the region outside a large number
of closely spaced particles is a difficult problem. In addition, the entire computation
is performed matrix-free, resulting in significant savings.

The velocity on each particle boundary must be constrained to match the rigid-
body motion of the particle. In fact, in order to obtain a combined weak formulation
with the hydrodynamic forces and torques eliminated, the velocity inside the particle
boundary must also be a rigid-body motion. This constraint is enforced using a
distributed Lagrange multiplier, which represents the additional body force per unit
volume needed to maintain the rigid-body motion inside the particle boundary, much
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Figure 2. Imaginary particle.

like the pressure in incompressible fluid flow whose gradient is the force required to
maintain the constraint of incompressibility.

For the space approximation of the problem by finite element methods, we use
P1-iso-P2 and P1 finite elements for the velocity field and pressure respectively,
like Bristeau, Glowinski & Periaux (1987). Then we apply the Marchuk–Yanenko
operator-splitting technique discussed in Marchuk (1990) for discretization in time
(Operating-splitting schemes have been used for solving the Navier–Stokes equations
by many authors, starting, to our knowledge, with Chorin 1967, 1968, 1973.) The
linearly constrainted quadratic minimization problems which arise from this splitting
are solved using conjugate gradient algorithms, yielding a method that is robust,
stable, and easy to implement. For further details, see Glowinski et al. (1999). The
immerse boundary methods of C. Peskin and his collaborators, Peskin (1977, 1981),
Peskin & McQueen (1980), for the simulation of incompressible viscous flow in
regions with elastic moving boundaries also use a fictitious domain method, but
without Lagrange-multipliers.

The statement that DNS fully resolves the solid–liquid flow should be qualified to
say that it is resolved up to the treatment of collisions. To prevent particles from
penetrating each other or the walls, we adopt the following collision strategy. If
we consider the particular case of circular particles in two dimensions or spherical
particles in three dimensions, and if Bi and Bj are such two particles, with radii Ri and
Rj and centres of mass Gi and Gj , we shall require the repulsive force F p

ij-between Bi
and Bj to satisfy the following properties:

F p
ij =


0 if dij > Ri + Rj + ρ

1

εp

(
Ri + Rj + ρ− dij

ρ

)2
GiGj

dij
if dij 6 Ri + Rj + ρ,

(2.1)

where dij = |GiGj |, ρ is the force range, and εp is a given small positive ‘stiffness’
parameter chosen so that particles never touch. To treat particle–wall interactions we
use a similar approach by introducing an imaginary particle as shown in figure 2,
where dij = |GiG

′
ij |. The choice of εp is discussed in Glowinski et al. (2001, § 5). Indeed,

the above repulsion force is not part of the problem’s description. It is invoked to
keep the particles apart. Smooth particles should not collide, as there is always a
liquid film; if we do not provide for film rupture, the repulsive lubrication forces
become larger and larger as the film becomes smaller.

Fortunately the artificial repulsive force does not seem to have much effect on the
global motion (see figure 5). However, the implementation of a security zone has the
unfortunate consequence that particles cannot close pack. Though this does not seem
to affect fluidized flows greatly, we must be able to generate close packing if we are
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Figure 3. Distribution of diameters of spheres used in the fluidization experiment; average =
0.639826 cm.

able to accurately model the frictional resistances between close-packed solids and
walls.

We have developed, but not yet implemented, several methods in which repulsive
forces are activated only when particles touch; this strategy will allow true tolerance
of the mesh.

The DLM approach uses uniform grids for two- and three-dimensional domains,
and relies on matrix-free operations on the velocity and pressure unknowns in the
domain. This simplifies the distribution of data on parallel architectures and ensures
excellent load balance (see Pan et al. 1999). The basic computational kernels, vector
operations such as additions and dot products and matrix-free matrix-vector-products,
yield excellent scalability on distributed shared memory computers such as the SGI
Origin 2000. A multilevel parallel elliptic solver (Sarin & Sameh 1998) has been
incorporated into the DLM algorithm for two-dimensional fluidized bed problems.
This has yielded speed-up of about 6 on 16 processors compared with the elapsed time
on two processors on an SGI Origin 2000 at the NCSA. In addition, this represents
an impressive eight-fold increase in speed over the best serial implementation. Even
though there is a serial component of the three-dimensional code, we have still
observed a speed-up of 1.6 on four processors compared with the time on two
processors on an SGI Origin 2000. But no further speed-up can be gained if we
increase the number of processors from four to eight. All numerical results reported
in this article are obtained on four processors on an SGI Origin 2000 at the Minnesota
Supercomputing Institute.

3. Experiments
We have carried out experiments on fluidization of 1204 nylon spheres in a slit bed

of dimensions

[depth, width, height] = [0.686 cm, 20.30 cm, 70.22 cm].

The cross-sectional area of the bed is

A = 0.686× 20.30 = 13.32 cm2.
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We could not measure variations of the gap, size inside the bed, but the glass plates
were held under pressure against 0.686 cm spacers by aluminium screw clamps. The
nominal diameter of the spheres was

d = 0.635 cm (1/4 in.).

The sphere diameters varied from 0.635 to 0.6465 cm (see figure 3), the average was

d̄ = 0.639826 cm.

The density of the spheres is

ρs = 1.14 g cm−3.

The spheres were fluidized in water (we did not monitor the room temperature) of
density and viscosity

ρf = 1 g cm−3, ηf = 0.01 P.

The Reynolds number based on the fluidization velocity for a single sphere is

R =
V (0)d

ηf/ρf
≈ 730. (3.1)

Local Reynolds numbers in a fluidized suspension can be larger because of the
backflow through constriction formed by nearby spheres. A velocity

V2 = 3.00 cm s−1 (3.2)

for incipient fluidization was identified roughly to within 0.1 cm s−1 as the value at
which spheres more loosely packed in the fixed bed lifted slightly away from nearby
spheres. According to the Richardson–Zaki formula (9.3), the velocity should vary
between Vi and V (0):

3 = Vi 6 V (φ)V (0) = 11.5 cm s−1 (3.3)

Our experiments were consistent with this inequality.
The water is injected at the bottom of the bed through an array of plastic tubes un-

der a distributor and an eddy dampening screen. The resulting fluidizing velocity is not
uniform but there is no evidence of systematic anisotropy as the flow passes through
the distributor screen. Large eddies of hydrodynamic origin exactly like the one shown
in the 1204 sphere animation at http://www.aem.umn.edu/Solid-Liquid Flows/ are
always present in the experiments. The fluidizing velocity is computed from values of
the mass flow rate measured by collecting the weight of the overflow in a beaker over
a fixed period of time. The mass flow rate is

ρfQ̇ = W/∆t (3.4)

where Q̇ is the volume flow rate; W is the weight of fluid in the beaker collected over
time ∆t. The fluidizing (superficial) velocity is

V (φ) = Q̇/A, (3.5)

where A is the cross-sectional area of 13.32 cm2.
The height of the bed is measured by averaging the height of the top layer of

particles. Stable bed heights with large fluctuations were typical. The measured values
of the bed height as a function of the fluidization velocity V (φ) are presented in
figures 17 and 18 where they are compared with numerical simulation.

The solids fraction at a fluidization velocity V (φ) is given by inverting the height
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H(φ):

φ =
Ωs

Ω
=

1204πd3/6

AH
=

4.437

H
. (3.6)

4. Numerical simulation
The calculation was carried using the distributed Lagrange multiplier method

(DLM) described in § 2. The mesh size for velocity is

hV = 0.06858 cm

so the number of nodes is 3 348 675 (11× 297× 1025). The mesh size for the pressure
is hp = 2hV (458 622) nodes. The time steps used in the computation are either 0.001
or 0.0005 s, with smaller time steps taken at times when the bed is fully expanded.
The main parts of the computation were carried out with a partially parallel code;
the computation time for running it is 115 s per time step on four R12000 processors
in a SGI Origin 2000 at the Minnesota Supercomputing Institute. For example, the
case V = 4.5 cm s−1 took about 1660 h to reach time τ = 26 s in the simulation; this
is 63.84 h of computation time for 1 s of real time.

In the simulation, the initial configuration of particles for the case of V = 3 cm s−1

is a square lattice; the initial flow field is zero everywhere. Then we used the results
of V = 3 cm s−1 at t = 13 (resp., t = 19.5) as the initial conditions for the case
of V = 3.5 cm s−1 (resp., V = 2 cm s−1). For the case of V = 4 cm s−1 (resp., V =
4.5 cm s−1), the initial conditions are obtained from the case of V = 3.5 cm s−1 (resp.,
V = 4 cm s−1) at t = 16.15 (resp., t = 2). And finally for the case V = 5 cm s−1, the
initial conditions are obtained from the case of V = 4.5 cm s−1 at t = 27.2. The above
choices of initial conditions explains why the starting values of the bed height for
different V are different in figure 4. For the parameters in (2.1) and (2.2), we took

εp = 5× 10−7, εw = εp, ρ = hν = 0.06858 cm. (4.1)

The force range 0.06858 cm is larger than the distance (0.686–0.635)/2 = 0.0255 cm
between a centred ball and a sidewall. Hence, in the simulation the balls are effectively
centred between the close walls by the particle–wall repulsive force. This centring
mechanism is artificial; in the experiments the balls can go closer to one wall or
other. Therefore, the drag on the balls in the experiment is larger than the drag in
the simulation.

Figure 4 gives the bed height H(t) as a function of time for different fluidizing
velocities. The bed height is the average height of the top layer of spheres. The rise
curves have been extrapolated to terminal rise for large times by a least-squares fit to
a+ b exp{−ct}. For the case V = 3 cm s−1 we fit H(t) to a+ b exp{−c(t− 2)} for t > 2
because the bed height first decreases. The terminal values

a = lim
t→0

H(t)

are given in table 1.
To test the effect of changing the size of the security zone in a relatively short time

we studied the fluidization of 150 spheres rather than 1204 spheres. The size of the
security zone was reduced to hν/2. Figure 5 shows that the change in the height rise
is modest: the smaller security zone allows for an increase in the bed height of about
2 or 3%.
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Figure 4. Bed height H vs. time for different values of the fluidizing velocity V . H is the average
height of the top layer of 1204 spheres. The letters (a)–(d) refer to the snapshots shown in figures 9
and 10. The dashed lines are least-square fits to H(t) = a+ b exp(−ct).
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Figure 5. Bed height H vs. time for V = 4 cm s−1. H(t) is the average height of the top layer of
150 spheres. The straighter lines are least square fits to H(t) = a + b exp(−c(t − 2)). Dashed line,
security zone 0.5 hν; solid line, security zone hν .

5. Qualitative comparison of experiment and simulation
The simulation was carried out in a fluidization column with coordinates shown in

figure 6. In figures 7 and 8 snapshots of a simulation of 1204 spheres are shown in per-
spective to emphasize that the simulation is three-dimensional. The video animations
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V (cm s−1) a (in.)

3.0 13.33
3.5 16.84
4.0 19.10
4.5 21.29
5.0 25.52

Table 1. Terminal rise height a for different flow velocities.

20.30 cm

0.686 cm

d = 0.635 cm (1/4 in.)

X3, V3

X2, V2

X1, V1

Figure 6. Coordinates and velocity components in the fluidization column. The fluidization
velocity is V ≡ V2.

of these simulations, which can be found at www.aem.umn.edu/Solid-Liquid Flows,
cannot be distinguished from real experiments. In figures 9 and 10 we compare
snapshots of simulations in frontal view with snapshots from experiments under
equivalent conditions. We also compare snapshots of simulations in frontal view for
V = 4 cm s−1 with snapshots from experiments under equivalent conditions for the
case of V = 4.037 cm s−1 in figures 11 and 12. We see that the simulation results do
have features shown in the snapshots from experiments.

6. Numerical computation of averaged quantities
DLM produces huge amounts of data at each of millions of nodes. The problem is

how to structure these data to extract useful information; we must decide beforehand
what data to collect as values to store for post-processing. The fixed node property
of DLM is well adapted to the collection of data in a form suitable for averaging
methods used to construct models.

To define data structure we define a data string; this is a sequence of numbers
produced at that node. We call the number of values in the data string the number of
hits. In these simulations in which time steps are ∆t = 0.001 s for start-up and 0.0005 s
for the later times there may be 10 000 hits or more in a long simulation. Sometimes a
particle is at the node; at the other times fluid is there. By processing data at hits we
can create time averages without significant computational cost. Suppose a solid is at
the node M times and the fluid is there M ′ times, M + M ′ = 104. Then φ = M/104

and ε = M ′/104, ε+ φ = 1 gives the volume fractions. If V (x, t) is the component of
velocity parallel to gravity and x is at a node and V1(x, t) is a data string of hits, then

Vs(x, t) =
1

M

M∑
i=1

Vi(x, t) (6.1)
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Figure 7. Snapshot of a simulation of 1204 spheres with V = 4
(a) and an enlargement (b), at t = 32.

where x is at a node; clearly

Vf(x, t) =
1

M ′

M ′∑
Vi(x, t). (6.2)

Then, at the same node, we should find

V (φ) = Vsφ+ Vfε. (6.3)

After transients have disappeared in the fluidization we should find that Vs = 0.
In the same way, we can find a data string of values of the angular velocity as the

difference of the velocity at a point in the solid and its mass centre and so on for
other averages.

The time averages formed from data strings can be thought of as ensemble averages
on non-transient flow and may be assumed to be local time averages on intervals
with a sufficiently large number of hits which is small relative to the duration of
transients. By repeating simulations we could initiate the procedure used to generate
ensemble averages. There is a mathematical literature on the relation of time averages
to ensemble averages which is rather theoretical and involves assumptions of a
mathematical nature which are difficult to verify.

In our simulation of 1204 spheres we created such data strings at 38 nodes on a
line across the width of the bed at a height of 10.179 in. in a plane in the centre of
the depth, 0.135 in. from each wall. The width of the bed is 8 in. and the 38 nodes
plus 2 wall points means that the nodes are separated by 1/10 in. The number of hits
was M = 7365 for the case V = 4.5 cm s−1 taken every 4 time steps. In figure 13 we
present the solid fraction φ and the three components of the average solid Vs, liquid
Vf and composite velocity V (φ) = Vsφ+ Vf(1− φ) for the case V = 4.5 cm s−1. The
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Figure 8. Snapshot of a simulation of 1204 spheres with V = 4.5
(a) and an enlargement (b), at t = 31.
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Figure 9. Comparison of frontal view snapshots of simulations (left) and experiments (right). (a)
V = 3 cm s−1, particle positions at t = 20 (corresponding to curve (a) of figure 4; maximum particle
Reynolds number = 1142 (average 131)). (b) V = 3.5 cm s−1 at t = 17.238 (corresponding to curve
(b) of figure 4; manimum particle Reynolds number = 1671 (average 236)).
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Figure 10. Comparison of frontal view snapshots of simulations (left) and experiments (right). (a)
V = 4 cm s−1, particle positions at t = 32 (corresponding to curve (c) of figure 4; maximum particle
Reynolds number = 1965 (average 276)). (b) V = 4.5 cm s−1 at t = 31 (corresponding to curve (d)
of figure 4; maximum particle Reynolds number = 1859 (average 292)).

velocity components V1, V2 and V3 correspond to coordinates in the cross-section of
the fluidization column shown in figures 13(b)–(d ).

The data presented in figure 13 show that the dynamics of the bed are strongly
two-dimensional, the velocity component V2 is in the vertical direction; in the one-
dimensional approximation the composite velocity

V2C(φ) = V2s(φ) + V2f(1− φ)

would equal V (φ). Clearly, V2 = V2(x3) because of a large circulating eddy which is
apparent on the video animations on http://www.aem.umn.edu/Solid-Liquid Flows
and in experiments. It is also apparent that the difference between averaged fluid
velocity V2f and the averaged solid velocity V2s is positive; the solid lags the fluid
by 3 to 5 cm s−1. The transverse components of velocity V1 and V3 are basically zero,
which is an assumption made in a one-dimensional theory. The fluctuation level of
V1 is very low because of the collision strategy interacting with nearby sidewalls, but
the particles are not rigorously centred by these artificial collision forces.

It would be desirable to have many more points in our data strings. Greater
computational efficiency and speed is a challenge for the future.

Figure 13 shows a strong two-dimensional variation of average equations across
the slit column which is suppressed in one-dimensional studies.

7. Dynamic and wall friction pressure in a fluidized bed
The stress in an incompressible Newtonian fluid is given by

σ = −P1 + 2µD[u] (7.1)
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Figure 11. Comparison of snapshots of simulations for V = 4 cm s−1 at t = 2 (a) and 4 (b), and
(right) snapshots from experiments under equivalent conditions for the case of V = 4.037 cm s−1.
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Figure 12. As figure 11 but at t = 6 (a) and 9 (b).

where D[u] is the symmetric part of the velocity gradient ∇u and P , the total pressure,
is the mean normal stress. The equation of motion in the z-direction is

ρ
dw

dt
= −dp

dz
+ µ∇2w, (7.2)

where w = ez·u and p = P + ρfgz is the dynamic pressure that we compute in our
DNS.
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Figure 13. Volume fraction φ and averaged components of velocity V1, V2, V3 in coordinate
directions x1, x2, x3 at 38 nodes spaced 1/10 in. apart across the 8 in. side of the fluidization
column when V = 4.5 cm s−1. (a) φ, (b) V1, (c) V2, (d ) V3. The difference between the averaged fluid
and averaged solid velocity is the slip velocity. This is the first exact calculation of the slip velocity
in a fluidized suspension.

We may compute an average dynamic pressure gradient dp̄/dz by averaging over
cross-sections and time. This quantity then is given by DNS and is

dp̄

dz
=

dP̄

dz
+ ρfg. (7.3)

We may decompose

p̄ = p̄w + p̄s, (7.4)

where p̄w is the wall friction pressure and p̄s is the pressure required to fluidize the
spheres. In fluidized bed practice it is assumed that when wall friction is negligible
the pressure gradient

dP̄

dz
= −(ρPφ+ ρfε)g = −ρcg (7.5)

balances the composite weight of fluid plus solids. In this case

dP̄

dz
=

dp̄

dz
− ρfg =

dp̄s
dz
− ρfg = −ρcg. (7.6)
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Figure 14. Solid fraction, dynamic pressure gradient and wall friction pressure gradient vs.
fluidizing velocity.

Hence
dp̄s
dz

= −(ρP − ρf)gφ. (7.7)

This expression was verified in experiments by Wilhelm & Kwauk (1948) and Lewis,
Gilliand & Bauer (1949). Combining (7.4) and (7.7) we get

dp̄

dz
=

dp̄w
dz
− (ρP − ρf)gφ. (7.8)

When φ = 0, the dynamic pressure is equal to the wall friction pressure.
Equation (7.8) is an equation for the wall friction pressure gradient with values of

dp̄/dz and φ given by DNS. Table 2 gives the values of terms in this equation for
different fluidizing velocities. The table shows that the wall friction pressure gradient
is about 1/4 of the pressure gradient needed to fluidize the spheres. As V increases,
φ decreases and the pressure gradient (ρP − ρf)gφ to fluidize spheres decreases. The
small decrease in the wall friction pressure gradient with fluidizing is surprising; the
wall friction should go up as the speed increases. We conjecture that the decreased
friction is due to a decrease in the effective viscosity µ(φ) of the mixture as φ is
decreased; the viscosity of densely packed mixtures is greater.

The calculation given here points a new direction for the interrogation of DNS
for new results in continuum engineering descriptions. Our conclusions are tentative
because the results on the wall friction pressure gradient depend on the accuracy
of our numerical simulation near walls. It is certainly true that the activation of
a repelling force when the particle approaches the wall reduces accuracy. We are
confident that the size of the security zone can be reduced to zero by techniques
under development so the full hydrodynamics of lubricating flow can be captured up
to mesh resolution.

8. Sedimentation and fluidization velocity of single spheres
We performed simulations and experiments on the sedimentation and fluidization

velocity of single spheres. It is sometimes assumed that these two velocities are the
same but in general this is true only in very special cases.

The flow of fluid up the slit bed is close to a developing Poiseuille flow in which the
velocity of the fluid vanishes at the wall but not at the centre. In the sedimentation
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V (cm s−1) −dp̄

dz
(dyn cm−2) φ ρcg (ρp − ρf)gφ −dp̄w

dz
= −dp̄

dz
− (ρp − ρf)gφ

3.0 63.570 0.3582 1050.1 49.177 14.393
3.5 52.050 0.2956 1021.2 41.246 11.463
4.0 44.694 0.2439 1014.2 34.155 11.202
4.5 39.171 0.2119 1009.8 29.758 10.076
5.0 34.990 0.1842 1006.0 25.957 9.705

Table 2. Terms in the dynamic pressure gradient equation (7.8) ρp = 1.14 g cm−3, ρf = 1 g cm−3.
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Figure 15. Sedimentation (©) and fluidization velocities (�, �) from experiments using different
sized spheres. The particle lifts off the distributor when V is greater than � (the start fluidization)
and is dragged out of the column only when V is greater than � (escape fluidization).

case the fluid does not move unless disturbed by a falling particle. The flow of fluid in
a fluidized bed need not be fully developed. The flow profile can change from station
to station in the fluidized bed case, but not in the sedimentation case.

In the ideal case there is only one fluidization velocity and, if we ignore the flow
variations just mentioned, this velocity is the sedimentation velocity; in both cases
the drag balances the buoyant weight. For steady flow, fluidized and sedimenting
particle velocities are equivalent under Galilean transformation. In fact we do not
verify this ideal case in sedimentation or fluidization; a unique velocity does not
emerge as can be seen from the experimental results given in figure 15, where we
have plotted fluidization and sedimentation velocities for different spheres. Focusing
first on sedimentation we note that even when we drop the same sphere in the quiet
slit bed, the sedimentation velocity differs from trial to trial. Variations of as much
as 7% are observed. How do we account for such variations?

As a practical matter our slit bed has a nominal gap size of 0.686 cm, but is
certainly not uniform; perhaps it varies between 0.6778 and 0.7239 cm. Obviously this
variation will lead to a variation in the sedimentation velocity.

A more fundamental reason for the variability in the sedimentation rate is that the
motion at Reynolds numbers in the thousands is not steady and is probably chaotic
in the sense of dynamical systems due to vortex shedding. The falling spheres do
not centre rigorously but are in some kind of unsteady off-centre motion that is not
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Diameter

0.6300 cm 0.6350 cm 0.6398 cm 0.6500 cm

h = 0.027 in. −8.085378 −8.130019 −8.155760 −7.790286
h = 0.018 in. −8.722692 −8.738451 −8.689694 −8.724728

Table 3. Averaged vertical terminal velocities of spheres of different diameter and ρp = 1.14 g cm−3

computed by DNS in the volume of figure 6.

understood well. How and why this kind of unsteadiness leads to different settling
velocities is not understood.

Table 3 lists the values of the velocity of sedimenting spheres of different diam-
eter falling in a 0.68 cm gap between the walls of the sedimentation column. The
sedimentation velocity appears to increase rather markedly with mesh refinement;
extrapolation to a fine mesh h → 0 would seem to imply a fall of about 10 cm s−1

rather than the 8.7 cm s−1 value observed in the smaller mesh. We do not see a
consistent variation with diameter. This may be due to some kind of unsteadiness
to which we alluded in the previous paragraph. There is a discrepancy between the
values in table 3 and those reported in the experiments of between 10% and 20% if
8.7 cm s−1 is taken as the representative simulation value. We think that it is probable
that the faster fall velocity in the experiments may be due to channelling through
places where the gap size is larger.

The fluidization results are of great interest. We do not obtain a unique fluidization
velocity; for each sphere there is a rather large interval of velocities for which the
sphere does not fall to the bottom or blow out of the bed. The interval may range,
say from 6 to 11 cm s−1. For fluidization velocities less than, say 6 cm s−1, the sphere
will not rise and for large velocities, say about 11 cm s−1, the sphere will blow out of
the bed.

An important and practically useful result arising from this study of fluidization is
that the height of the sphere above the bottom increases with the fluidizing velocity.
This positioning property is such that the position of the particle in the bed may be
controlled by setting the inlet flow rate. The positioning property also arises from
our simulation and is clearly evident in the rise curves shown in figure 16. We have
seen such positioning hydrodynamics in experiments on the fluidization of sensors in
round pipes where the ability to position the sensor is of practical importance.

The positioning hydrodynamics is not understood. A promising explanation follows
from the observation that the average distance between the particle and the wall is a
function of the flow speed. Loosely, we could say that the Segré–Siberberg position
of equilibrium between the centreline of close walls and the walls is a function of
flow speed. The overall drag on the sphere, which in any case must balance the
buoyant weight, is a function of flow speed and particle position. Evidently the flow
speed produces a particle position such that the drag–weight balance is preserved at
different heights in the bed.

In the simulation an exactly zero velocity of the sphere was not achieved. For
V 6 6 cm s−1 the particle will not rise. The particle velocity in the interval of
fluidization is very nearly zero and rather random as shown in table 4. The particle
rises out of the bed when V > 10.5 cm s−1.
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Figure 16. H vs. t for a single particle d = 0.635 cm from numerical simulation. For
V < Vm ≈ 6 cm s−1 the sphere remains at the distributor; for V > Vm ≈ 10.5 cm s−1 the sphere
is dragged out of the bed. Inflow speeds are 6, 6.5, 7.5, 9, 9.5, 10, 10.5, 10.75, 11, 12 cm s−1 from the
bottom to the top respectively.

In-flow velocity Averaged vertical speed
(cm s−1) (after it has stabilized)

6.0 −0.00522
6.5 0.00827
7.5 0.00219
9.0 −0.00178
9.5 0.00631

10.0 0.0006997
10.5 0.00521
10.75 0.276
11.0 0.265
12.0 1.260

Table 4. The averaged vertical velocities of a sphere of diameter 0.63 cm fluidized in a
two-dimensional-like bed of dimension D×W ×H = 0.27× 7.992× 8.1 in. The sphere was initially
located at the centre of the bottom of the bed.

9. Richardson–Zaki correlations from DNS
Here we introduce an application of DNS that we call the method of correlations.

The method is inspired by the work of Richardson & Zaki (1954). They processed
their data in log–log plots and found straight lines leading to power laws. The method
of correlations follows the same procedure but using numerical data from DNS rather
than experimental data. Data from our real and numerical experiments are shown in
figure 17. The experiment and simulations do not quite match. The 1204 spheres used
in the experiments are polydisperse (figure 3) with an average diameter of 0.6398 cm
rather than the 0.635 cm diameter used in the simulation. Moreover the lowest data
point for the simulation may be inaccurate because the artificial repulsive force which
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Figure 17. The bed height vs. fluidizing velocity for both experiment and simulation.

is activated to keep particles apart makes accurate calculations near close packing at
incipient fluidization less accurate.

The Richardson–Zaki correlation relates the fluidization velocity V (φ) to the solid
fraction φ = 1 − ε, where ε is the fluid fraction, in a factored form in which
V (0), the blow-out velocity for a single sphere, is multiplied by a settling function.
When V > V (0) all the particles will be dragged out of the fluidized bed. For the
monodispersed case studied in the rise height simulation

Hs = 4.564/(1− ε). (9.1)

The mean sphere size for the polydisperse case studied in the experiments is slightly
larger and

He = 4.636/(1− ε). (9.2)

The Richardson–Zaki correlation is given by

V (φ) = V (0)εn(Re) (9.3)

where V (0) = V when ε = 1, and

n = 4.65 + 19.5d/D when Re = V (0)d/ν < 0.2,

n = 4.36 + 17.6d/D when 0.2 < Re < 1,

n = 4.45Re−1 when 1 < Re < 500,

n = 2.39 when 500 < Re < 7000,

 (9.4)

and D is the tube radius. In our experiments and simulations Re is confined to the
range for which n = 2.39.

The data shown in figure 17 is plotted in a log–log plot in figure 18 as V vs. ε.
We draw a straight line with slope n = 2.39 through both sets of data. The fit is
not perfect but is encouraging. From the straight lines we determine the blow-out
velocities Vs(0) = 8.131 cm s−1 and Ve(0) = 10.8 cm s−1 and find the power laws

Vs(φ) = 8.131 ε2.39 cm s−1, Ve(φ) = 10.8 ε2.39 cm s−1. (9.5)

Different reasons could be considered for the discrepancy between numerical and
experimental blow-out velocities. A referee of this paper suggested that tangential
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Figure 18. Data from figure 17 plotted in a log–log plot. The slopes of the straight lines are
given by the Richardson–Zaki n = 2.39. The blow-out velocities Vs(0) and Ve(0) are defined as the
intercepts at ε = 1.

lubrication forces are not accurately calculated by our numerical method. We think,
however, that the discrepancy is due to the difference in the diameter, 0.635 cm, of
the sphere in the simulation and average diameter 0.6398 cm of the 1204 spheres
used in the experiments. This means that the walls will increase the drag more in the
experiments than in the simulations. To estimate the effect we use the wall correction
formula of Francis (1933), which was derived for Stokes settling of a sphere of
diameter d in a tube of diameter D:

V (0) =
ρs − ρf

18ηf
d2

(
1− d

D

)2.25

. (9.6)

If we take D = 0.686 cm, which is the distance between plane walls rather than a tube
diameter, then the ratio of velocities corresponding to the nominal diameter d1 and
the average diameter d2 is given by

Vs(0)

Ve(0)
=

(
d1

d2

)2.25(
D − d1

D − d2

)2.25

=

(
6.35

6.398

)2(
51

46.2

)2.25

= 1.233. (9.7)

The value 1.233 is very close to the shift ratio

10.8

8.131
= 1.248 (9.8)

necessary to bring the straight lines in figure 18 together. After shifting by the value
given in (9.8) we reverse the log–log plot to obtain the plot in figure 19.

10. Discussion
The fluidization of 1204 spheres at Reynolds numbers in the thousands was

simulated using the method of distributed Lagrange multipliers. The results of the
simulation are compared with a real experiment designed to match. This is the first
direct numerical simulation of a real fluidized bed at the finite Reynolds numbers
encountered in applications and the first attempt to match a real experiment to a
fully resolved simulation. The numerical method used is currently far in advance of
alternatives for fully resolved CFD approaches to solid–liquid flow. The experiments

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

64
74

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006474


Fluidization of 1204 spheres 189

40

0 1

Experiment
Simulation

B
ad

 h
ei

gh
t (

in
.)

2 5 6 7

30

20

10

3 4 8
Velocity (cm s–1)

Figure 19. Bed height vs. fluidizing velocity after shifting by the ratio given in (9.8) of blow-out
velocities obtained from the intercepts at ε = 1 in figure 18.

are carried out in a slit fluidization column in which the gap between close walls is
slightly larger than the fluidized spheres. The match between theory and experiment
is very good but not perfect: the spheres in the experiments are polydisperse with an
average diameter of 0.6398 cm whereas all the spheres in the simulation are 0.635 cm
in diameter. When these differences are factored into the comparison the simulations
and experiments are in good quantitative agreement; the qualitative agreement is
compelling. The emphasis of this paper is on the interrogation of DNS for results
in multiphase fluid mechanics and introduces four new directions. First, we have
shown how our numerical method can be used to generate averaged values of the
solid fraction, the average of velocity components of both the solid and fluid and
possibly other averaged values used in multiphase models; for example, we give
the first numerical simulation of the slip velocity, which might be used in drift
flux models. In a second application we obtain the contribution from wall friction
that is usually neglected in one-dimensional models of the dynamic pressure in a
fluidized flow. We find that in our slit bed the contribution of wall friction is about
1/4 of the total and that the contribution decreases modestly as the bed expands.
Our comparative study of sedimentation and fluidization of single spheres revealed
an unanticipated result that the balance between drag and buoyant weight can be
achieved in an interval of velocities. We framed this result as a positioning property;
the particle may be moved up and down the column by changing the fluidization
velocity. The fluid mechanics here are not understood; we conjectured that the
drag can be maintained as the velocity changes by a simultaneous change in the
stand-off distance from the wall. The fourth and most important application was
framed as the method of correlations inspired by the way that Richardson & Zaki
(1954) processed their experimental results for power-law correlations. The idea is
to plot results of experiments in log–log plots. Remarkably, straight lines emerge.
Apparently the flow of dispersions is governed at the foundation by similarity rules
which are not at all evident. We implemented this method using numerical rather
than real experiments and we think that our results establish this concept: the results
in the experiments and simulations do follow the Richardson–Zaki correlation in a
compelling if not perfect match. We prefer to frame our result as a demonstration
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that we can generate power laws by processing DNS data, rather than confirming
correlations already obtained. We intend to promote this approach strongly in the
future.
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