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We dedicate this paper to the memory of David Blackwell

Consider the barycentric subdivision which cuts a given triangle along its medians to

produce six new triangles. Uniformly choosing one of them and iterating this procedure

gives rise to a Markov chain. We show that, almost surely, the triangles forming this chain

become flatter and flatter in the sense that their isoperimetric values go to infinity with time.

Nevertheless, if the triangles are renormalized through a similitude to have their longest

edge equal to [0, 1] ⊂ C (with 0 also adjacent to the shortest edge), their aspect does not

converge and we identify the limit set of the opposite vertex with the segment [0,1/2].

In addition we prove that the largest angle converges to π in probability. Our approach

is probabilistic, and these results are deduced from the investigation of a limit iterated

random function Markov chain living on the segment [0,1/2]. The stationary distribution

of this limit chain is particularly important in our study.

1. Introduction

Let � be a given triangle in the plane (to avoid triviality the vertices will always be

assumed not to be all the same). The three medians of � intersect at the barycentre:

this cuts it into six small triangles, say �1, �2, �3, �4, �5, �6. Next, each �i,

for i ∈ �1, 6� (which denotes the set {1, 2, . . . , 6}), can itself be subdivided in the same

way into six triangles, (�i,j)j∈�1,6�. Iterating this barycentric subdivision procedure, we

get 6n triangles (�I )I∈�1,6�n at stage n ∈ N. It is well known numerically (we learned it

from Blackwell [3]; see also the survey by Butler and Graham [4]) and it has been

proved (see Bárány, Beardon and Carne [1], Diaconis and McMullen [7] and Hough

[10]) that as the barycentric subdivision goes on, most of the triangles become flat. The

original motivation for this kind of result was to show that the barycentric subdivision

is not a good procedure for constructing nice triangularizations of surfaces. For more
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information on other kinds of triangle subdivisions, we refer to a recent manuscript of

Butler and Graham [4]. The goal of this paper is to propose a probabilistic approach to

this phenomenon.

First, we adopt a Markovian point of view. Let �(0) � �, and throw a fair die to

choose �(1) among the six triangles �i, i ∈ �1, 6�. Continuing in the same way, we get

a Markov chain (�(n))n∈N: if the first n triangles have been constructed, the next one is

obtained by choosing uniformly (and independently from what was done before) one of

the six triangles of the barycentric subdivision of the last-obtained triangle. Of course, at

any time n ∈ N
∗ (N∗ stands for N \ {0}), the law of �(n) is the uniform distribution on the

set of triangles {�I : I ∈ �1, 6�n}. So to deduce generic properties under this distribution

it is sufficient to study the chain (�(n))n∈N.

In order to describe our results more analytically, let us renormalize the triangles. For

any non-trivial triangle � on the plane, there is a similitude of the plane transforming �
into a triangle whose vertices are (0, 0), (0, 1) and (x, y) ∈ [0, 1/2] × [0,

√
3/2], such that

the longest (respectively the shortest) edge of � is sent to [(0, 0), (0, 1)] (resp. [(0, 0), (x, y)]).

The point (x, y) is uniquely determined and characterizes the aspect of � (as long as

orientation is not considered, otherwise we would have to consider positive similitudes

and x would have to belong to [0, 1]). Any time we are interested in quantities which

are invariant by similitude, we will identify triangles with their characterizing points.

In particular, this identification will endow the set of triangles with the topology (not

separating triangles with the same aspect) inherited from the usual topology of the plane.

This convention will implicitly be enforced throughout this paper. The triangle � will be

said to be flat if y = 0. So up to similitude the set of flat triangles can be identified with

[0, 1/2]. For n ∈ N, let (Xn, Yn) be the characterizing point of �(n). The first result justifies

the assertion that as the barycentric subdivision goes on, the triangles become flat.

Theorem 1.1. Almost surely (a.s.) the stochastic sequence (Yn)n∈N converges to zero expo-

nentially fast: there exists a constant χ > 0 such that a.s.

lim sup
n→∞

1

n
ln(Yn) � −χ.

It can be shown that this is true with χ = 0.035 (but this is not the best constant:

numerical experiments from [8] suggest that the above bound should hold with χ ≈ 0.07);

nevertheless the previous result remains asymptotical. Contrary to Blackwell [3] (see also

the remark at the end of Section 6), we have not been able to deduce a more quantitative

bound in probability on Yn for any given n ∈ N.

In particular, we recover the convergence in probability toward the set of flat triangles

which was previously proved by Bárány, Beardon and Carne [1], Diaconis and McMullen

[7] (using Furstenberg’s theorem on products of random matrices in SL2(R)) and Hough

[10], who used dynamical systems arguments (via an identification with a random walk

on SL2(R)).

There is a stronger notion of convergence to flatness that asks for the triangles to have

an angle which is almost equal to π. With the preceding notation, for n ∈ N, let An be the

angle between [(0, 0), (Xn, Yn)] and [(Xn, Yn), (0, 1)]: this is the largest angle of �(n).
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Theorem 1.2. The sequence (�(n))n∈N becomes strongly flat in probability:

∀ ε > 0, lim
n→∞

P[An < π − ε] = 0.

Of course, this result implies that (Yn)n∈N converges to zero in probability. Note that

the converse is not true in general: there are isosceles triangles that become flatter and

flatter, but their maximum angle converges to π/2. Indeed, Theorem 1.2 is more difficult

to obtain than Theorem 1.1 because (Xn)n∈N does not converge, as the following result

shows. Define the limit set of this sequence as the the intersection over p ∈ N of the

closures of the sets {Xn : n � p}.

Theorem 1.3. Almost surely, the limit set of (Xn)n∈N is [0, 1/2].

It follows from Theorem 1.1 that a.s. the limit set of a trajectory of the triangle Markov

chain (�(n))n∈N is the whole set of flat triangles.

A crucial tool behind these results is a limiting flat Markov chain Z . Strictly speaking,

the stochastic chain (Xn)n∈N is not Markovian, but eventually its evolution becomes almost

Markovian. Indeed, we note that the above barycentric subdivision procedure can formally

also be applied to flat triangles and their set is stable by this operation. This means that if

Y0 = 0, then for any n ∈ N, Yn = 0 a.s. In this particular situation (Xn)n∈N is Markovian.

Let M be its transition kernel, from [0, 1/2] to itself. In what follows, Z � (Zn)n∈N will

always designate a Markov chain on [0, 1/2] whose transition kernel is M. An important

part of this paper will be devoted to the investigation of the Markov chain Z since it

is the key to the above asymptotic behaviour. We will see that Z is ergodic in the sense

that it admits an attracting (and thus unique) invariant measure μ on [0, 1/2]. We will

also show that μ is continuous and that its support is [0, 1/2] (but we do not know if μ

is absolutely continuous).

The plan of the paper is as follows. Section 2 contains some preliminaries; in particular

we will show, by studying the evolution of a convenient variant of the isoperimetric value,

that the triangle Markov chain returns as close as we want to the set of flat triangles

infinitely often. This is a first step in the direction of Theorem 1.1. In Section 3, we begin

our investigation of the limiting Markov chain Z , to obtain some information valid in a

neighbourhood of the set of flat triangles. Then in Section 4 we put together the previous

global and local results to prove Theorem 1.1. Ergodicity and the attracting invariant

measure μ of the Markov chain Z are studied in Section 5, using results of Dubins and

Freedman [9], Barnsley and Elton [2] and Diaconis and Freedman [6] on iterated random

functions. This will lead to the proofs of Theorem 1.2 and Theorem 1.3 in Section 6.

Corresponding numerical experiments can be found in the appendix of [8], which is an

extended version of this paper.

2. A weak result on attraction to flatness

The purpose of this section is to give some preliminary information and bounds on

the triangle Markov chain obtained by barycentric subdivisions. By themselves, these
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results are not sufficient to conclude the a.s. convergence toward the set of flat triangles,

but at least they give a heuristic hint for this behaviour: a quantity comparable to

the isoperimetry value of the triangle has a tendency to increase after the barycentric

subdivision and so to diverge to infinity with time, in the mean.

To measure the separation between a given triangle � and the set of flat triangles, we

use the quantity J(�), which is the sum of the squares of the lengths of the edges divided

by the area (this is well defined in (0,+∞], since the vertices are assumed not to be all

the same). We have J(�) = +∞ if and only if � is flat. Furthermore, the functional J is

invariant under similitude, so it depends only on the characteristic point (x, y) of �, and

we have

J(�) = 2
1 + x2 + y2 + (1 − x)2 + y2

y
= 4

x2 + y2 − x + 1

y
,

and under the restriction x2 + y2 � (1 − x)2 + y2 � 1, we get 3 � J(�)y � 6, namely

y

6
� (J(�))−1 � y

3
, (2.1)

so that the convergence of y to zero is equivalent to the divergence of J(�) to +∞. Note

that J(�) is comparable with the isoperimetric value I(�) of �, defined as the square of

the perimeter of � divided by its area of �:

1

3
I(�) � J(�) � I(�). (2.2)

With the notation of the Introduction, for n ∈ N, write Jn � J(�(n)). Our first goal is to

show the following result.

Proposition 2.1. Almost surely, we have lim supn→∞ Jn = +∞.

The proof will be based on elementary considerations of one step of the barycentric

subdivision. Consider �, a triangle in the normalized form given in the Introduction. For

simplicity, we let A, B and C denote the vertices (0, 0), (x, y) and (1, 0) of �. Let also D, E,

F and G be, respectively, the middle points of [A,B], [B,C] and [A,C] and the barycentre

of �. We index the small triangles obtained by the barycentric subdivision as

�1 � {A,D,G}, �2 � {D,B,G}, �3 � {B,E,G},
�4 � {E,C,G}, �5 � {C, F, G}, �6 � {F, A, G}.

(2.3)

It is well known that all the triangles �i, for i ∈ �1, 6�, have the same area (one straight-

forward way to see it is to note that this property is invariant by affine transformations

and to consider the equilateral case).

Next define, with | · | denoting the length,

L1 � |[A,B]|, L2 � |[B,C]|, L3 � |[C,A]|,
l1 � |[D,C]|, l2 � |[E,A]|, l3 � |[F, B]|.

An immediate computation gives that

l21 =
x2

4
+

y2

4
− x + 1, l22 =

x2

4
+

y2

4
+

x

2
+

1

4
, l23 = x2 + y2 − x +

1

4
, (2.4)
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and since we also have

L2
1 + L2

2 + L2
3 = 2(x2 + y2 − x + 1), (2.5)

we get that

l21 + l22 + l23
L2

1 + L2
2 + L2

3

=
3

4
.

These ingredients imply the following probabilistic statement.

Lemma 2.2. For any n ∈ N, we have

E[Jn+1|Tn] =
4

3
Jn,

where the left-hand side is a conditional expectation with respect to Tn, the σ-algebra

generated by �(n),�(n − 1), . . . ,�(0).

Proof. By the Markov property, the above bound is equivalent to the fact that, for any

n ∈ N,

E[Jn+1|�(n)] =
4

3
Jn.

Since the Markov chain (�(n))n∈N is time-homogeneous, it is sufficient to deal with the

case n = 0. We come back to the notation introduced above. Because the small triangles

have the same area and the barycentre cuts the median segments into a ratio (1/3,2/3),

we get that

E[J(�(1))|�(0) = �] =
1

6

∑
i∈�1,6�

J(�i)

=
1

6

(
L2

1

2
+

L2
2

2
+

L2
3

2
+

10

9
(l21 + l22 + l23)

)
6

A(�)

=
4

3
J(�),

where A(�) is the area of �.

In general the previous submartingale information is not enough to deduce a.s.

convergence. Taking expectations, for any n ∈ N, E[Jn+1] � (4/3)E[Jn], thus E[Jn] �
(4/3)nJ(�), so we can just deduce L

1-divergence of Jn for large n ∈ N, but this is

not a very useful result.

Proof of Proposition 2.1. Note that the numbers Jn, n ∈ N, are uniformly bounded below

by a positive constant. This is a consequence of the usual isoperimetric inequality (see,

for instance, Osserman [11]), or more simply, we can get directly from (2.1) that

∀ n ∈ N, Jn � 2
√

3.
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But from Lemma 2.2 we see that

∀ n ∈ N, P[Jn+1 � (4/3)Jn|Tn] � 1

6
,

and consequently

∀ n, m ∈ N, P[Jn+m � (4/3)m2
√

3|Tn] � 1

6m
. (2.6)

Let R > 1 be an arbitrary large number and consider m ∈ N
∗ such that (4/3)m2

√
3 �

R. The {0, 1}-valued sequence (1Jm(n+1)�R)n∈N stochastically dominates a sequence of

independent Bernoulli variables of parameter 1/6m. It follows that a.s. we have

lim sup
n→∞

Jn � R,

and since R can be chosen arbitrarily large, Proposition 2.1 is proved.

To finish this section, we will prove another simple preliminary result.

Lemma 2.3. There exist two constants 0 < a < b < +∞ such that

∀ n ∈ N, aJn � Jn+1 � bJn.

Proof. Again it is sufficient to consider the first barycentric subdivision and to prove

that we can find two constants 0 < a < b < +∞ such that, with the above notation,

∀ i ∈ �1, 6�, aJ(�) � J(�i) � bJ(�).

Such inequalities are obvious for flat triangles, so assume that � is not flat. Since the

areas are easy to compare, we just need to consider the diameters (whose squares are

comparable, within the range [1,3], with the sums of the squares of the lengths of the edges),

denoted by d. We have clearly d(�) = 1 and d(�i) � 1 for i ∈ �1, 6�. The reverse bound

d(�i) � 1/4, for i ∈ �1, 6�, is a consequence of the equalities |[A, F]| = |[F, C]| = 1/2,

|[B,E]| = |[E,C]| � 1/2 and |[D,G]| = |[G,C]|/2 � 1/4.

3. Near the limit flat Markov chain

Our goal here is twofold. First we show that the kernel of the triangle Markov chain

converges nicely to the kernel of the flat triangle Markov chain as the triangle becomes

flat. Second, we study the evolution of a perimeter related functional for the flat triangle

Markov chain, to get a bound on the evolution of the isoperimetric functional for the

triangle Markov chain, valid at least in a neighbourhood of the set of flat triangles.

Let Q be the transition kernel of the Markov chain (Xn, Yn)n∈N considered in the

Introduction. For any (x, y) ∈ D, the set of characterizing points of triangles, we can write

Q((x, y), · ) =
1

6

∑
i∈�1,6�

δ(xi,yi),
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where δ stands for the Dirac mass and where, for any i ∈ �1, 6�, (xi, yi) is the characterizing

point of the triangle �i described in (2.3). Of course, the xi and yi, for i ∈ �1, 6�, have to

be seen as functions of (x, y). For i ∈ �1, 6�, let us define

∀ x ∈ [0, 1/2], zi(x) � xi(x, 0). (3.1)

The transition kernel M on [0, 1/2] of the flat triangle Markov chain alluded to in the

Introduction can be expressed as

∀ x ∈ [0, 1/2], M(x, · ) =
1

6

∑
i∈�1,6�

δzi(x). (3.2)

The next result gives bounds on the discrepancy between Q and M as the triangles become

flat.

Lemma 3.1. There exists a constant K > 0 such that

∀ i ∈ �1, 6�, ∀ (x, y) ∈ D, max(|xi(x, y) − zi(x)|, |yi(x, y)|) � Ky.

Proof. We first check that for any fixed i ∈ �1, 6�, the map

(x, y2) �→ (xi(x, y), y
2
i (x, y)) (3.3)

is (uniformly) Lipschitz on D2, where D2 is the image of D under (x, y) �→ (x, y2).

Indeed, denote by 0 � Li,1 � Li,2 � Li,3 the ordered lengths of the triangle �i. Applying

(2.5) to this triangle, it appears that

y2
i =

L2
i,1 + L2

i,2 + L2
i,3

2L2
i,3

− x2
i + xi − 1. (3.4)

Let hi be the height of �i orthogonal to the edge of length Li,3; we have L2
i,1 = h2

i + (xiLi,3)
2

and L2
i,2 = h2

i + ((1 − xi)Li,3)
2. It follows that

xi =
L2
i,3 − L2

i,2 + L2
i,1

2L2
i,3

. (3.5)

Finally, notice that (2.4) implies that the mappings (x, y2) �→ L2
i,j , for j ∈ �1, 3�, are

uniformly Lipschitz on D2. Furthermore, as seen in the proof of Lemma 2.3, on D2,

the mapping (x, y2) �→ L2
i,3 is bounded below by 1/16, so (3.5) and (3.4) imply that the

mapping described in (3.3) is uniformly Lipschitz.

The bounds given in Lemma 3.1 are an easy consequence of this Lipschitz property

and of the boundedness of D.

The second goal of this section is to study the sign of quantities like E[ln(In+1/In)|�(n) =

�], at least when � is close to a flat triangle. Here we define In as the isoperimetric

value of �(n). This amounts to evaluating the sign of 1/6
∑

i∈�1,6� ln(I(�i)/I(�)), by the

Markov property. Of course, the previous ratios are not rigorously defined if the triangle

� is flat. Nevertheless, let (x, y) be the characterizing point of �. When y goes to zero

0+, I(�i)/I(�) =
√

6P(�i)/P(�) converges to G(i, x), which is just the same ratio for
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the flat triangle � whose characterizing point is (x, 0). We have, for any x ∈ [0, 1/2] (see

the computations of Section 5 for more details),

G(1, x) =

√
2

3
(1 + x), G(2, x) =

√
1

6
(2 − x),

G(3, x) =

√
3

2
(1 − x), G(4, x) =

√
2

3
(2 − x),

G(5, x) =

√
2

3
(2 − x), G(6, x) =

√
3

2
.

(3.6)

From the previous considerations, we easily get that this convergence is uniform over x,

in the sense that, for any i ∈ �1, 6�,

lim
y→0+

sup
(x,y)∈D

∣∣∣∣I(�i)

I(�)
− G(i, x)

∣∣∣∣ = 0.

So, to prove that E[ln(In+1/In)|�(n) = �] > 0 for nearly flat triangles �, it would suffice

to show that the mapping x �→
∑

i∈�1,6� ln(G(i, x)) only takes positive values on [0, 1/2].

Unfortunately, this is not true, since it takes negative values in a neighbourhood of 1/2 (see

the appendix of [8]). To get around this problem, we iterate the barycentric subdivision

one more step.

Proposition 3.2. There exist a constant γ > 0 and a neighbourhood N of the set of the flat

triangles, such that

∀ n ∈ N, ∀ � ∈ N , E[ln(In+2/In)|�(n) = �] � γ

(for flat triangles �, the ratio is defined as a limit as above, or equivalently, as a ratio of

perimeters, before renormalization, up to the factor 6).

Proof. Coming back to the notation at the beginning of the Introduction, we want to

find N and γ as above and satisfying

∀ � ∈ N ,
1

36

∑
i,j∈�1,6�

ln

(
6P(�i,j)

P(�)

)
� γ. (3.7)

Let (x, y) be the characterizing point of �. As y goes to 0+, the left-hand side converges

(uniformly over x) to

F(x) �
1

36

∑
i,j∈�1,6�

ln(G(j, zi(x))G(i, x)), (3.8)

where the zi(x), for i ∈ �1, 6�, were defined in (3.1). More explicitly, we will compute in

Section 5 (see Lemma 5.1) that on each of the segments [0, 1/5], [1/5, 2/7] and [2/7, 1/2],

the zi, for i ∈ �1, 6�, are homographical mappings. So it seems more convenient to consider

the piecewise rational fraction

R(x) � exp(36F(x)) (3.9)

=
∏

i,j∈�1,6�

G(i, zj(x))G(j, x).
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After computations (see the appendix of [8]), it appears that this is indeed a piecewise

polynomial function. By numerically studying the zeros of R − 1 of the three underlying

polynomial functions, we show that F does not vanish on [0, 1/2]. So, by continuity, we

get that γ � min[0,1/2] F/2 > 0. Then, using the above uniform convergence, we can find a

neighbourhood N of the set of flat triangles so that (3.7) is fulfilled.

In the appendix of [8], it is checked that F is decreasing, so we can take γ = F(1/2)/2 ≈
0.035.

4. Almost sure convergence to flatness

We are now in a position to prove Theorem 1.1. The principle behind the proof is that there

is a neighbourhood N ′ of the set of flat triangles such that if the triangle Markov chain

is inside N ′, then it has a positive probability to always stay in this neighbourhood and

then to converge exponentially fast to the set of flat triangles. This event will eventually

occur, since triangle Markov chains always return to N ′.

In order to see that the triangle Markov chain has a positive chance of remaining

trapped in a neighbourhood of the set of flat triangles, we will use a general martingale

argument. To do so, we introduce some notation. On some underlying probability space,

let (Fn)n∈N be a filtration, namely a non-decreasing sequence of σ-algebras. Let γ > 0 and

A > 0 be two given constants. We assume that for any R large enough, say R � R0 > 0, we

are given a chain (V (R)
n )n∈N and a martingale (N(R)

n )n∈N, adapted to the filtration (Fn)n∈N,

satisfying V
(R)
0 = R, N(R)

0 = 0 and such that, for any time n ∈ N,

|N(R)
n+1 − N(R)

n | � A, (4.1)

V
(R)
n+1 − V (R)

n � γ + N
(R)
n+1 − N(R)

n . (4.2)

The next result shows that if R is large enough, with high probability V (R) will never

go below R/2. This is classical, but without a precise reference at hand, we recall the

underlying arguments.

Lemma 4.1. We have

P[∃ n ∈ N : V (R)
n < R/2] � exp(−γR/(2A2))

1

1 − exp(−γ2/(2A))
,

and furthermore, a.s.,

lim inf
n→∞

V (R)
n

n
� γ.

Proof. The first estimate is an immediate consequence of the Hoeffding–Azuma inequal-

ity, which, applied to the bounded difference martingale (−N(R)
n )n∈N starting from 0, asserts

that, for any t ∈ R+,

∀ n ∈ N
∗, P[−N(R)

n > t] � exp(−t2/(2nA2)).
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In particular, since for any n ∈ N we have

V (R)
n � R + nγ + N(R)

n , (4.3)

we get

P[V (R)
n < R/2] � P[−N(R)

n > R/2 + nγ]

� exp

(
− R

4nA2
− Rγ

2A2
− nγ2

2A2

)
� exp

(
− Rγ

2A2

)
exp

(
− nγ2

2A2

)
,

and the first stated bound follows by summation over n ∈ N
∗.

The second bound is also due to the fact that the increments of the martingale N(R) are

bounded, which implies the validity of the iterated logarithm law (see, for instance, Stout

[12]): almost surely,

lim sup
n→∞

|N(R)
n |√

n ln(ln(n))
� A.

Thus (4.3) enables us to conclude.

Lemma 4.1 will be applied with V (R), the logarithm of isoperimetric values, or rather

with a sequence of the kind (ln(I2n))n∈N.

More precisely, consider the neighbourhood N obtained in Proposition 3.2. There exists

a small constant ε > 0 such that N contains {(x, y) ∈ D : 0 � y < ε} and so taking

into account (2.1), there exists R1 > 1 such that {� : ln(I(�)) > R1} ⊂ N (again we are

slightly abusing notation here, identifying triangles with the characterizing points of their

normalized forms: this should not lead to confusion). Let T be a finite stopping time

for the triangle Markov chain (�(n))n∈N. Assume that R � ln(I(�(T ))) satisfies R � 2R1.

Define a stopping time τ for the shifted chain (�(T + 2n))n∈N by

τ � inf{n ∈ N : ln(I(�(T + 2n))) � R1},

which is infinite if the set on the right-hand side is empty. Let γ > 0 be the constant

appearing in Proposition 3.2. We construct a stochastic chain V (R) in the following way:

∀ n ∈ N, V (R)
n �

{
ln(I(�(T + 2n))) if n � τ,

ln(I(�(T + 2τ))) + γ(n − τ) otherwise.

Let us check that the assumptions for Lemma 4.1 are satisfied. Following the traditional

Doob–Meyer semi-martingale decomposition (see, for instance, Dellacherie and Meyer

[5]), we define

∀ n ∈ N, N(R)
n �

∑
m∈�1,n�

V (R)
m − E[V (R)

m |Fm−1],

where for any n ∈ N, Fn is the σ-algebra generated by the trajectory-valued variable

(�(m ∧ (T + n)))m∈N. Using classical stopping time notation, this is the σ-algebra TT+n,

where the filtration (Tm)m∈N was introduced in Lemma 2.2. After conditioning on F0 and
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taking advantage of the strong Markov property, we can apply Lemma 2.3 to see that

(4.1) is satisfied with A = (b/a)2 (we even have N
(R)
n+1 − N(R)

n = 0 for n � τ). Furthermore,

we have for any n ∈ N

V
(R)
n+1 − V (R)

n = E[V (R)
n+1|Fn] − V (R)

n + V
(R)
n+1 − E[V (R)

n+1|Fn]

= E[V (R)
n+1 − V (R)

n |Fn] + N
(R)
n+1 − N(R)

n

= E[ln(IT+2(n+1)/IT+2n)|�(T + 2n)]1n�τ + γ1n>τ + N
(R)
n+1 − N(R)

n

� γ + N
(R)
n+1 − N(R)

n ,

where the last inequality comes from Proposition 3.2. Then Lemma 4.1 implies the

following result.

Proposition 4.2. Let N ′ � {� : ln(I(�)) > R1}. There exists a large enough constant R2 �
2R1 such that, for any finite stopping time T for the triangle Markov chain (�(n))n∈N

satisfying ln(I(�(T ))) � R2, we have

P[∃ n ∈ N : �(T + n) �∈ N ′|TT ] < 1/2.

Furthermore, on the event {∀ n ∈ N : �(T + n) ∈ N ′}, we have a.s.

lim inf
n→∞

ln(In)

n
� γ/2.

Indeed, Lemma 4.1 shows that we can find R2 � 2R1 such that

P[τ < ∞|TT ] = P[∃ n ∈ N : �(T + 2n) �∈ N ′|TT ] < 1/2.

On the event {∀ n ∈ N : �(T + 2n) ∈ N ′}, we have a.s.

lim inf
n→∞

ln(IT+2n)

n
� γ.

Lemma 2.3 permits extending these results to the statement of Proposition 4.2 (up to

replacement of R2 by bR2/a).

Now the proof of Theorem 1.1 is clear. By iteration, introduce two sequences (Sn)n∈N

and (Tn)n∈N of stopping times for the triangle Markov chain: start with S0 = 0 and for

any n ∈ N, if Sn has been defined, take

Tn � inf{m > Sn : ln(I(�(m))) > R2},
Sn+1 � inf{m > Tn : ln(I(�(m))) < R1}.

Of course, if for some n ∈ N, Sn = ∞, then for any m � n, Sm = Tm = ∞. Conversely, via

Proposition 2.1, we see that if Sn < ∞, then a.s. Tn < +∞, so the events {Sn < ∞} and

{Tn < ∞} are the same, up to a negligible set. For n ∈ N, let us define the event

En � {Sn < ∞ and Sn+1 = ∞}
= {Tn < ∞ and ∀ m ∈ N, �(Tn + m) ∈ N ′}.

Up to conditioning on {Sn < ∞}, Lemma 4.2 shows that

P[Sn+1 = ∞|Sn < ∞] = P[En|Sn < ∞] � 1/2,
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thus it follows easily that P[∪n∈NEn] = 1. Lemma 4.2 also shows that on all the En, the

sequence (I−1
m )m∈N converges exponentially fast to zero with rate at least γ. Now the bound

(2.1) implies the validity of Theorem 1.1 with χ = γ/2.

Remark 4.3. Let γ2 � F(1/2) = minx∈[0,1/2] F(x). A closer look at the proof of Propos-

ition 3.2 shows that, for any γ < γ2, we can find a neighbourhood N of the set of flat

triangles such that the lower bound of Proposition 3.2 is satisfied. By the above arguments,

it follows that Theorem 1.1 also holds with χ = γ2/2, so we win a factor 1/2.

But one can go further. For N ∈ N \ {0, 1} and x ∈ [0, 1/2], consider

FN(x) �
1

6N

∑
(i1 ,...,iN )∈�1,6�N

ln
(
G(iN, ziN−1

◦ · · · ◦ zi1 (x)) · · ·G(i2, zi1 (x))G(i1, x)
)

= Ex

[ ∑
n∈�0,N−1�

ln(G(In+1, Zn))

]
,

where (ιn)n∈N∗ is a sequence of independent random variables uniformly distributed on

�1, 6�, and (Zn)n∈N is the Markov chain starting from x (Z0 � x) constructed from (ιn)n∈N∗

through the relations

∀ n ∈ N, Zn+1 � zιn+1
(Zn). (4.4)

Then define

γN � min
x∈[0,1/2]

FN(x).

An easy extension of the previous proof shows that Theorem 1.1 holds with χ = γN/N

and consequently with χ = limN→∞ γN/N. The quantity γN/N converges due to the weak

convergence of the Markov chain (Zn)n∈N, uniformly in its initial distribution, as we will

show in the next section. Indeed, if μ is the attracting invariant probability associated to

(Zn)n∈N, we will see that for any x ∈ [0, 1/2],

lim
n→∞

Ex

[
ln(G(ιn+1, Zn))

]
= L,

with

L �
1

6

∑
i∈�1,6�

∫
ln(G(i, x)) μ(dx). (4.5)

It follows from Cesaro’s lemma that

lim
n→∞

FN(x)

N
= lim

n→∞

1

N

∑
n∈�0,N−1�

Ex

[
ln(G(ιn+1, Zn))

]
= L.

Since this convergence holds uniformly in x ∈ [0, 1/2], we get that Theorem 1.1 is satisfied

with χ = L. In the appendix of [8], we get a numerical evaluation of L ≈ 0.07.

https://doi.org/10.1017/S0963548310000441 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548310000441


On Barycentric Subdivision 225

5. Ergodicity of the limit flat Markov chain

This section studies the limit flat Markov chain Z � (Zn)n∈N. First we will see that it

admits a unique invariant probability μ and that it converges exponentially fast to μ in

the Wasserstein distance. Next we will show that μ is continuous and that its support is

the whole state space [0, 1/2].

We begin by describing the kernel of Z given in (3.2) in the language of iterated random

functions.

Lemma 5.1. With the notation of the previous sections, we have, for all x ∈ [0, 1/2],

z1(x) =
3x

2 + 2x
, z2(x) =

3x

2 − x
1x<2/7 +

2 − 4x

2 − x
1x�2/7,

z3(x) =
1 + x

3 − 3x
1x<1/5 +

2 − 4x

3 − 3x
1x�1/5, z4(x) =

1 + x

4 − 2x
,

z5(x) =
1 − 2x

4 − 2x
, z6(x) =

1 − 2x

3
.

Proof. These are immediate computations, based on the fact that for any flat triangle,

the abscissa of the characteristic point is the ratio of the shortest edge by the longest

edge. For instance, the lengths of the edges of the triangle �2 are L1/2, l1/3 and 2l3/3

with L1 = x, l1 = 1 − x
2

and l3 = 1
2

− x, which leads to the above expression for z2(x).

To see that the Markov kernel M of Z is ergodic, in the sense that it admits an invariant

and attracting probability, we apply a result due to Barnsley and Elton [2]. Let S be a

compact segment of R (more generally, it can be a complete, separable metric space) on

which we are given n Lipschitz functions fi : S → S , for i ∈ �1, n�. Let p = (pi)i∈�1,n� be a

probability on �1, n� and consider the Markov kernel N from S to S given by

∀ x ∈ S, N(x, ·) �
∑

i∈�1,n�

piδfi(x). (5.1)

Then, under the assumption that there exists a constant r < 0 such that

∀ x �= y ∈ S,
∑

i∈�1,n�

pi ln

(
|fi(y) − fi(x)|

|y − x|

)
� r, (5.2)

the kernel N is ergodic: it admits a unique invariant and attracting probability μ,

satisfying μN = μ, and for any probability ν on S , limn→∞ νNn = μ (in the weak topology).

Furthermore, Barnsley and Elton [2] show that there exists q ∈ (0, 1] and ρ ∈ (0, 1) such

that

∀ x, y ∈ S,
∑

i∈�1,n�

pi|fi(y) − fi(x)|q � ρ|y − x|q. (5.3)

Let us rewrite this bound in a more probabilistic way. Let (ιn)n∈N be a sequence of

independent random variables taking values in �1, n� with distribution (pi)i∈�1,n�. For any

x ∈ S , we denote by Ux � (Ux
n )n∈N the stochastic chain constructed as follows: Ux

0 = x
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and for any n ∈ N, Ux
n+1 = fιn+1

(Ux
n ). This is a Markov chain with transition kernel N.

This construction enables us to couple together all the Markov chains Ux, for x ∈ S . Then

the above bound can be written as

∀ x, y ∈ S, E[|Uy
1 − Ux

1 |q] � ρ|y − x|q,

and admits an immediate extension:

∀ n ∈ N, ∀ x, y ∈ S, E[|Uy
n − Ux

n |q] � ρn|y − x|q.

This leads us to consider the Wasserstein distance D between probability measures on S:

if ν1 and ν2 are two such measures,

D(ν1, ν2) � sup
f∈L(1)

|ν1[f] − ν2[f]|,

where L(1) is the set of Lipschitz functions on S whose Lipschitz constant is less than (or

equal to) 1. We can now show the following result.

Lemma 5.2. Under the above assumption (5.2), we have for any n ∈ N and any x ∈ S ,

D(Nn(x, ·), μ) � diam(S)ρn,

where ρ and q are as in (5.3) and diam(S) is the diameter of S . It follows that Ux satisfies

the law of large numbers: for any continuous function f on S , we have a.s.

lim
N→∞

1

N + 1

∑
n∈�0,N�

f(Ux
n ) = μ[f]. (5.4)

Proof. Let f ∈ L(1). We compute that

|Nn(x, f) − μ[f]| =

∣∣∣∣∫ μ(dy)(Nn(x, f) − Nn(y, f))

∣∣∣∣
� sup

x,y∈S
|Nn(x, f) − Nn(y, f)|

= sup
x,y∈S

|E[f(Ux
n ) − f(Uy

n )]|

� sup
x,y∈S

E[|Ux
n − Uy

n |]

= diam(S) sup
x,y∈S

E

[
|Ux

n − Uy
n |

diam(S)

]
� diam(S) sup

x,y∈S
E

[∣∣∣∣Ux
n − Uy

n

diam(S)

∣∣∣∣q]
� diam(S)1−q sup

x,y∈S
ρn|y − x|q

� diam(S)ρn.

The stated bound follows by taking the supremum over all functions f ∈ L(1). The law of

large numbers is deduced from a traditional martingale argument based on the existence
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of a bounded solution to the Poisson equation. More precisely, for f ∈ L(1), we can define

∀ x ∈ S, ϕ(x) �
∑
n∈N

E[f(Ux
n ) − μ[f]],

since the right-hand side converges exponentially fast and uniformly with respect to x ∈ S .

Furthermore, we easily see that ϕ is a Lipschitz function and that it is a solution to the

Poisson equation {
∀ x ∈ S, ϕ(x) − N(x, ϕ) = f(x) − μ[f],

μ[ϕ] = 0.

This enables us to write for any n ∈ N

f(X0) + f(X1) + · · · + f(Xn) = (n + 1)μ[f] + ϕ(X0) − ϕ(Xn+1) + Mn+1,

where (Mn)n∈N is a martingale whose increments are bounded. The law of large numbers

for functions f belonging to L(1) then follows from the well-known fact that Mn/n

converges a.s. to zero. It is also true for all Lipschitz functions f. Next, given a continuous

function f on S and m ∈ N
∗, by usual approximations, it is possible to find a Lipschitz

function f̃m on S such that ‖f − f̃m‖S,∞ � 1/m, where ‖ · ‖S,∞ is the uniform norm on S .

It follows that on a measurable set Ωm of probability 1,

lim sup
N→∞

1

N + 1

∑
n∈�0,N�

f(Ux
n ) � μ[f] + 2/m,

lim inf
N→∞

1

N + 1

∑
n∈�0,N�

f(Ux
n ) � μ[f] − 2/m.

Thus on the set ∩m∈N∗Ωm of full probability, (5.4) is true.

Let us discuss condition (5.2). Note that since the functions fi, for i ∈ �1, n�, are Lipschitz,

they are absolutely continuous. Let us write f′
i for their respective weak derivatives. By

letting y and x become close in criterion (5.2), we get that almost everywhere in x ∈ S ,∑
i∈�1,n�

pi ln(|f′
i (x)|) � r. (5.5)

Condition (5.5) is not sufficient to ensure that the kernel N is ergodic. Consider the

following example with S = [0, 1], n = 2 and the functions f1 and f2 defined by

∀ x ∈ [0, 1], fi(x) �

{
min(2x, 1) if i = 1,

max(0,−1 + 2x) if i = 2.

In this case (5.5) is even satisfied with r = −∞ and the set of invariant probability

measures is {aδ0 + (1 − a)δ1 : a ∈ [0, 1]}, so none of them can be attractive (but the law

of a corresponding Markov chain converges exponentially fast to one of the invariant

probability measures).

Nevertheless, under some circumstances, the necessary condition (5.5) is also sufficient.

This is the case if, for all the functions |f′
i |, with i ∈ �1, n�, there exist ai, bi ∈ R such that
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almost everywhere (a.e.) in x ∈ S ,

|f′
i (x)| = (aix + bi)

−2 (5.6)

(in particular −bi/ai cannot belong to S , otherwise f′
i would not be integrable over this

interval). Indeed, in this situation we can write that, for any x < y ∈ S ,

|fi(y) − fi(x)|
|y − x| =

1

|y − x|

∣∣∣∣∫ y

x

f′
i (z) dz

∣∣∣∣
� 1

|y − x|

∫ y

x

|f′
i (z)| dz

=
1

|y − x|

∫ y

x

1

(aiz + b)2
dz

=
1

ai|y − x|

(
1

aix + bi
− 1

aiy + bi

)
=

1

ai|y − x|
ai(y − x)

(aiy + bi)(aix + bi)

=
1

|aiy + bi||aix + bi|

=
√

|f′
i (y)||f′

i (x)|,

where the last equality has to be understood a.e. It follows that, at least for a.e. x, y ∈ S ,

ln

(
|fi(y) − fi(x)|

|y − x|

)
� ln(|f′

i (y)|) + ln(|f′
i (x)|)

2
, (5.7)

and consequently

∑
i∈�1,n�

pi ln

(
|fi(y) − fi(x)|

|y − x|

)
� 1

2

∑
i∈�1,n�

pi ln(|f′
i (y)|) +

1

2

∑
i∈�1,n�

pi ln(|f′
i (x)|),

a formula which enables passing from (5.5) to (5.2). It only has to be checked for a.e.

x, y ∈ S .

It is now time to come back to the flat triangle Markov chain. Consider the setting

where N = M, i.e., S = [0, 1/2], n = 6, fi = zi for i ∈ �1, 6� and p the uniform distribution

on �1, 6�. Now condition (5.6) is satisfied. Since z′
2(2/7−) = −z′

2(2/7+) and z′
3(1/5−) =

−z′
3(1/5+), we see that |z′

i |(x) can be defined everywhere (a convention that we will adopt

from now on). Indeed, we compute that, for any x ∈ [0, 1/2],

|z′
1|(x) =

3

2(1 + x)2
, |z′

2|(x) =
6

(2 − x)2
,

|z′
3|(x) =

2

3(1 − x)2
, |z′

4|(x) =
3

2(2 − x)2
,

|z′
5|(x) =

3

2(2 − x)2
, |z′

6|(x) =
2

3
.
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Unfortunately (5.5) is not true and surprisingly it is a computation we have already

encountered: comparing with (3.6), we see that

∀ i ∈ �1, 6�, ∀ x ∈ [0, 1/2], |z′
i |(x) =

1

G2(i, x)
,

and thus, by the observation before Proposition 3.2, we know that
∑

i∈�1,6� ln(|z′
i(x)|) is

positive for x near 1/2. As in Section 3, we get around this difficulty by iterating the

kernel M one more time (this trick was also used by Barnsley and Elton in one example

of their paper [2]). So we consider N = M2, namely S = [0, 1/2], n = 36, fi,j = zi ◦ zj for

(i, j) ∈ �1, 6�2 and p the uniform distribution on �1, 6�2. The advantage is that we have for

any i, j ∈ �1, 6� and any x ∈ [0, 1/2],

|f′
i,j |(x) = |z′

i |(zj(x))|z′
i |(x)

=
(
G(i, zj(x))G(j, x)

)−2
.

Thus

∀ x ∈ [0, 1/2],
∑

i,j∈�1,6�

ln(|f′
i,j |(x)) = −2F(x),

and in particular the left-hand side is negative due to Proposition 3.2 (it is even increasing

as a function of x ∈ [0, 1/2] according to the observation made at the end of Section 3).

But (5.6) is no longer satisfied by the functions fi,j . To avoid this problem, we come back

directly to the bound (5.7): for i, j ∈ �1, 6� and y > x ∈ [0, 1/2], we write

ln

(
|fi,j(y) − fi,j(x)|

|y − x|

)
= ln

(
|zi(zj(y)) − zi(zj(x))|

|zj(y) − zj(x)|

)
+ ln

(
|zj(y) − zj(x)|

|y − x|

)
� ln(|z′

i(zj(y))|) + ln(|z′
i(zj(x))|)

2
+

ln(|z′
j(y)|) + ln(|z′

j(x)|)
2

=
ln(|f′

i,j(y)|) + ln(|f′
i,j(x)|)

2
.

In this situation we can also come back from (5.6) to (5.5) and the results of Barnsley

and Elton [2] ensure that the iterated Markov kernel M2 is ergodic. To come back from

M2 to M is not difficult, as is shown in the following result.

Proposition 5.3. The kernel M is ergodic and the Markov chain Z satisfies the strong law

of large numbers.

Proof. Let μ be the attracting and invariant probability for M2. Then we have (μM)M2 =

(μM2)M = μM, so μM is invariant for M2, and by uniqueness it follows that μM = μ.

Next, for any probability measure ν on [0, 1/2], the (weak) limit set of (νMn)n∈N is included

in {μ, μM} = {μ}, so μ is also attracting for M and the uniqueness of μ as the invariant

probability of M follows. Finally the strong law of large numbers for Z can be deduced

from that of the two Markov chains (Z2n)n∈N and (Z1+2n)n∈N.

Let us mention that there exists a cruder way to deduce the ergodicity of M.
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Remark 5.4. Diaconis and Freedman [6] consider a simpler criterion for ergodicity of a

random function Markov kernel (5.1): for i ∈ �1, n�, let Ki � supx �=y |fi(y) − fi(x)|/|y − x|
be the Lipschitz constant of fi and assume that there exists a constant r < 0 such that

∀ x, y ∈ S,
∑

i∈�1,n�

pi ln(Ki) � r. (5.8)

Then the kernel N is ergodic, and Diaconis and Freedman [6] show that the convergence

is exponentially fast in the Prokhorov distance (but for us the Wasserstein distance is

more convenient because in the end we would like to couple the two Markov chains

(Xn, Yn)n∈N and (Zn)n∈N). Of course, condition (5.8) implies (5.2). Since, for i ∈ �1, n�,

Ki is the essential supremum of |f′
i (x)|, (5.8) corresponds to the exchange of essential

supremum and sum in (5.2). Let us now come back to our flat triangle Markov chain.

From the previous considerations, (5.8) cannot be satisfied with N = M. It does not work

with N = M2 either, so this is an example where the criterion (5.2) is fulfilled while

(5.8) is not. But condition (5.8) is satisfied with N = M3, namely S = [0, 1/2], n = 216,

fi,j,k = zi ◦ zj ◦ zk for (i, j, k) ∈ �1, 6�3 and p the uniform distribution on �1, 6�3. For the

details of the underlying numerical computations, we refer to the appendix of [8].

To finish we prove two properties of μ which will be needed in the following section.

Lemma 5.5. The probability μ contains no atom, in particular μ({0}) = 0.

Proof. The proof needs a few steps and notation. Let us define

μ∗ � sup{μ({x}) : x ∈ [0, 1/2]},
S∗ � {x ∈ [0, 1/2] : μ({x}) = μ∗},

and, for any x ∈ [0, 1/2],

S̄(x) � {(i, y) ∈ �1, 6� × [0, 1/2] : zi(y) = x},
S(x) = {y ∈ [0, 1/2] : ∃ i ∈ �1, 6� with zi(y) = x}.

Step 1. We have μ({0} = μ({1/2}) � μ∗/2.

By invariance of μ we can write that

μ({0}) = μ(M[1{0}])

=
1

6

∑
(i,y)∈S̄(0)

μ({y})

=
2

6
μ({0}) +

4

6
μ({1/2}),
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and this relation implies that μ({0}) = μ({1/2}). Next consider the point 1/2. We get

μ({1/2}) =
1

6

∑
(i,y)∈S̄(1/2)

μ({y})

=
2

6
μ({1/2}) +

1

6
μ({1/5}) +

1

6
μ({2/7})

� 2

6
μ({1/2}) +

1

3
μ∗,

so it follows that μ({1/2}) � μ∗/2.

Step 2. For any x ∈ S∗, we have S(x) ⊂ S∗ ∪ {0}.

Looking at the graphs of the functions zi, for i ∈ �1, 6� (see Figure 1 in the appendix of

[8]), we get that

∀ x ∈ [0, 1/2], card(S̄(x)) =

⎧⎪⎪⎨⎪⎪⎩
4 if x = 1/2,

7 if x = 1/4 or x = 1/3,

6 otherwise.

So consider x ∈ S∗ \ {1/4, 1/3, 1/2}: writing

μ({x}) =
1

6

∑
(i,y)∈S̄(x)

μ({y})

� μ∗,

it appears that equality is possible only if μ({y}) = μ∗ for all y ∈ S(x), namely S(x) ⊂ S∗.

We now study the three particular cases of 1/4, 1/3 and 1/2.

• For 1/2: as seen in the first step, 1/2 ∈ S∗ implies that μ∗ = 0, so S∗ = [0, 1/2] and

the inclusion S(1/2) ⊂ S∗ is trivial.

• For 1/4: there exist five distinct points y′
1, y

′
2, y

′
3, y

′
4, y

′
5 ∈ [0, 1/2] such that we have

S(1/4) = {(4, 0), (5, 0), (1, y′
1), (2, y

′
2), (2, y

′
3), (3, y

′
4), (6, y

′
5)},

so by invariance of μ we get

μ({1/4}) =
1

6

(
2μ({0}) +

∑
i∈�1,5�

μ({y′
i})

)

� 1

6
(2μ({0}) + 5μ∗),

and since we know that μ({0}) � μ∗/2, the equality μ({1/4}) = μ∗ is possible only if

μ({y′
i}) = μ∗ for i ∈ �1, 5�, so we can conclude that S(1/4) ⊂ S∗ ∪ {0}.

• The same argument holds for 1/3 (even if 1/3 ∈ S(1/3)).

For the last step, let us denote by z̃2 the restriction of z2 to [0, 2/7]. This mapping is

one-to-one from [0, 2/7] to [0, 1/2], and we denote its inverse by z̃−1
2 .

Step 3. For x ∈ (0, 1/2], the set {z̃−n
2 (x) : n ∈ N} is infinite, so S∗ is infinite.
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The first assertion comes from the fact that for any x ∈ (0, 1/2], 0 < z̃−1
2 (x) < x, so

(z̃−n
2 (x))n∈N is indeed a decreasing sequence (converging to 0). By the first step, S∗

cannot be reduced to {0}, so there exists x ∈ S∗ \ {0}. By the previous step, the sequence

(z̃−n
2 (x))n∈N is included in S∗, since none of its elements can be equal to 0. It follows that

S∗ is infinite.

Of course, the last statement implies that μ∗ = 0, because μ is a probability

measure.

If all of the functions zi, for i ∈ �1, 6�, were strictly monotone, the fact that μ({0}) = 0

could have been deduced more directly from the uniqueness of μ and Theorem 2.10 from

Dubins and Freedman [9]. The second piece of information we need about μ is a direct

consequence of a result of the latter paper.

Lemma 5.6. The support of μ is the whole segment [0, 1/2].

Proof. By Theorem 4.9 of Dubins and Freedman [9], the support of μ is the whole

segment [0, 1/2] if we can cover it with the images of the functions zi which are

strict contractions. But this is the case here, since z4 and z5 are strict contractions

and z4([0, 1/2]) = [1/4, 1/2] and z5([0, 1/2]) = [0, 1/4].

6. More on the asymptotic behaviour

Our main goal here is to prove Theorems 1.2 and 1.3. The underlying tool is to couple

the Markov chains (Xn, Yn)n∈N and (Zn)n∈N to take advantage of the information we have

on the chain (Zn)n∈N.

A natural coupling between the above chains is based on the construction alluded to

in Remark 4.3. Assume that (X0, Y0) and Z0 are given and let (ιn)n∈N∗ be a sequence of

independent random variables uniformly distributed on �1, 6� and independent from the

previous initial conditions. We consider (Zn)n∈N constructed as in (4.4), and similarly we

iteratively define (Xn, Yn)n∈N via

∀ n ∈ N, (Xn+1, Yn+1) � (xιn+1
(Xn), yιn+1

(Yn)).

In these relations, the indices refer to the conventions made in (2.3) and (3.1). A first

simple property of this coupling is given in the following result.

Lemma 6.1. The random variables |Xn − Zn| converge in probability to zero as n goes to

infinity:

∀ ε > 0, lim
n→∞

P[|Xn − Zn| > ε] = 0.

Proof. First we iterate Lemma 3.1 to show that with K ′ � K2 + 8K/3 > 0 we have

∀ i, j ∈ �1, 6�, ∀ (x, y) ∈ D, |xi(xj(x, y), yj(x, y)) − zi(zj(x))| � K ′y.
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Indeed, taking into account that all the functions zi, i ∈ �1, 6� have a Lipschitz constant

less than (or equal to) 8/3, we deduce that for any i, j ∈ �1, 6� and any (x, y) ∈ D,

|xi(xj(x, y), yj(x, y)) − zi(zj(x))|
� |xi(xj(x, y), yj(x, y)) − zi(xj(x, y))| + |zi(xj(x, y)) − zi(zj(x))|

� K|yj(x, y)| +
8

3
|xj(x, y) − zj(x)|

� K2y +
8K

3
y.

Let q ∈ (0, 1] and ρ ∈ (0, 1) as in (5.3) but relative to the kernel N = M2. Then, for any

n ∈ N we can write

E[|Xn+2 − Zn+2|q|Xn, Yn, Zn]

= E[|xιn+2
(xιn+1

(Xn, Yn), yιn+1
(Xn, Yn)) − zιn+2

(zιn+1
(Zn))

q||Xn, Yn, Zn]

� E[|xιn+2
(xιn+1

(Xn, Yn), yιn+1
(Xn, Yn)) − zιn+2

(zιn+1
(Xn))|q|Xn, Yn, Zn]

+ E[|zιn+2
(zιn+1

(Xn)) − zιn+2
(zιn+1

(Zn))|q|Xn, Yn, Zn]

� (K ′)qY q
n + ρ|Xn − Zn|q.

For n ∈ N, denote

an � E[|Xn − Zn|q],
bn � (K ′)qE[Y q

n ].

After integration, the above bound leads to

∀ n ∈ N, an+2 � ρan + bn.

We deduce that

∀ n ∈ N, a2n � a0ρ
n +

∑
m∈�0,n−1�

b2mρ
n−1−m, (6.1)

where limn→∞ a2n = 0 is a consequence of limn→∞ bn = 0. A similar computation shows

that this latter condition also implies that limn→∞ a2n+1 = 0, i.e., in the end we will be

assured of

lim
n→∞

E[|Xn − Zn|q] = 0,

and thus of the claimed convergence in probability.

But we already know that (Yn)n∈N converges a.s. to zero, and since this sequence

is uniformly bounded, we see by the dominated convergence theorem that limn→∞ bn = 0.

Now Theorem 1.2 follows quite easily.

Proof of Theorem 1.2. For n ∈ N, let A′
n (resp. A′′

n) be the angle between [(0, 0), (Xn, Yn)]

and [(Xn, Yn), (Xn, 0)] (resp. [(Xn, 0), (Xn, Yn)] and [(Xn, Yn), (1, 0)]), so that An = A′
n + A′′

n .

Since the length of [(Xn, 0), (1, 0)] is larger than 1/2 and Yn converges a.s. to zero for large
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n ∈ N, it is clear that A′′
n converges a.s. to π/2. Furthermore, we have tan(A′

n) = Xn/Yn,

so to see that An converges in probability toward π, we must see that Yn/Xn converges in

probability toward 0. Let ε, η > 0 be given. We have for any n ∈ N

P[Yn/Xn � ε] = P[Yn/Xn � ε, Xn > 2η] + P[Yn/Xn � ε, Xn � 2η]

� P[Yn � 2εη] + P[Xn � 2η]

� P[Yn � 2εη] + P[|Xn − Zn| � η] + P[Zn � η]. (6.2)

By letting n go to infinity, taking into account that the stationary distribution μ of Z is

continuous, we get

lim sup
n→∞

P[Yn/Xn � ε] � lim
n→∞

P[Zn � η]

= μ([0, η]),

because as n goes to infinity, the law of Zn converges weakly to μ and this probability

gives weight 0 to the boundary {η} of (−∞, η]. Using again Lemma 5.5 and letting η go to

zero, we obtain that limn→∞ P[Yn/Xn � ε] = 0, and consequently the stated convergence

in probability.

Remark 6.2. We do not know if (An)n∈N converges to π a.s. One way to deduce this

result, via the Borel–Cantelli lemma, would be to show that, for any given ε > 0,∑
n∈N

P[Yn/Xn � ε] < +∞. (6.3)

In view of the above arguments, one of the main problems is that we have no bound

on the way μ([0, η]) goes to zero as η goes to zero. We want to find α > 0 such that

lim supη→0+
μ([0, η])/ηα < +∞, but we were not able to prove such an estimate. If we knew

that μ is absolutely continuous, Figure 7 in the appendix of [8] would suggest that this

property holds with α = 1 (and limη→0+
μ([0, η])/η � 1).

In order to prove Theorem 1.3, we need two technical results. In all that follows, let us

fix some a ∈ [0, 1/2] and ε > 0 and define O � [a − ε, a + ε] ∩ [0, 1/2].

Lemma 6.3. There exist η > 0 and N ∈ N
∗ such that

inf
z∈[0,1/2]

Pz[ZN ∈ O] � η

(the index z means that Z0 = z).

Proof. This is a consequence of Lemma 5.2 applied to M2: there exists ρ ∈ (0, 1) such that,

for any z ∈ [0, 1/2] and n ∈ N, D(Mn(z, ·), μ) � ρ�n/2�/2. Let ϕ be the function vanishing

outside (a − ε, a + ε), affine on [a − ε, a] and [a, a + ε] such that ϕ(a) = ε. By definition of

D, we have

∀ z ∈ [0, 1/2], ∀ n ∈ N, |Mn(z, ϕ) − μ[ϕ]| � ρ�n/2�

2
.
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Since the support of μ is [0,1/2], we have η � μ[ϕ] > 0. So if we choose N ∈ N such that

ρ�N/2� < η, we get that for any z ∈ [0, 1/2], Pz[XN ∈ O] � MN(z, ϕ) > η/2.

For the second technical result, we need further notation: for (x, y) ∈ D and (i1, i2, . . . , iN)

∈ �1, 6�N , we let xi1 ,i2 ,...,iN (x, y), yi1 ,i2 ,...,iN (x, y) and zi1 ,i2 ,...,iN (x) denote the values of Xn, Yn and

Zn when (X0, Y0, Z0) = (x, y, z) and (ι1, ι2, . . . , ιN) = (i1, i2, . . . , iN).

Lemma 6.4. There exists a constant KN such that

∀ (i1, i2, . . . , iN) ∈ �1, 6�N, ∀ (x, y) ∈ D,

{
|xi1 ,i2 ,...,iN (x, y) − zi1 ,i2 ,...,iN (x)| � KNy,

|yi1 ,i2 ,...,iN (x, y)| � KNy.

Proof. For N = 1 this is just Lemma 3.1. The general case is proved by an easy iteration,

similar to the one already used in the proof of Lemma 6.1, starting with

|xi1 ,i2 ,...,iN (x, y) − zi1 ,i2 ,...,iN (x)|
� |xiN (xi1 ,i2 ,...,iN−1

(x, y), yi1 ,i2 ,...,iN−1
(x, y) − ziN (xi1 ,i2 ,...,iN−1

(x, y))|
+ |ziN (xi1 ,i2 ,...,iN−1

(x, y)) − ziN (zi1 ,i2 ,...,iN−1
(x))|.

We can now come to our last task.

Proof of Theorem 1.3. Let O′ � [a − 2ε, a + 2ε] ∩ [0, 1/2]. We want to show an analog-

ous result to Lemma 6.3 but for the chain (Xn, Yn)n∈N, namely to find η′ > 0 and N ′ ∈ N
∗

such that

inf
(x,y)∈D

P(x,y)[XN′ ∈ O′] � η′ (6.4)

(let us recall that under P(x,y), (X0, Y0) = (x, y)). To do so, we first consider η and N as in

Lemma 6.3 and consider δ > 0 sufficiently small such that KNδ
1/2N−1

< ε. Then, according

to Lemmas 6.3 and 6.4, we have

inf
(x,y)∈D : y<δ

P(x,y)[XN ∈ O′] � η.

To extend this estimate to the whole domain D, we come back to (2.1) and (2.6), which

enables us to find N ′′ ∈ N such that

η′′ � inf
(x,y)∈D

P(x,y)[YN′′ < δ] > 0.

Now the Markov property implies (6.4) with η = η′η′′ and N ′ = N + N ′′.

Since this bound is uniform over (x, y) ∈ D, the sequence (1O′ (XnN′ ))n∈N is stochastically

bounded below by an independent family of Bernoulli variables of parameter η′, and we

deduce that a.s.

lim sup
n→∞

1O′ (Xn) = 1.

The stated result follows because a ∈ [0, 1/2] and ε > 0 are arbitrary.
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The details of the above proof are necessary because in general one cannot deduce

from the convergence in probability of |Xn − Zn| to zero as n goes to infinity the a.s.

equality of the limit sets of (Xn)n∈N and of (Zn)n∈N. This property instead requires the a.s.

convergence of |Xn − Zn| to zero, and this leads to the following observations.

Remark 6.5. Coming back to Remark 6.2, to prove (6.3) via (6.2), we are also missing

an estimate of the kind

∃ K, p, χ > 0 : ∀ n ∈ N, E[Y p
n ] � K exp(−χn). (6.5)

Blackwell [3] succeeded in obtaining such a bound (with p = 1/2) by exhibiting an

appropriate supermartingale with the help of the computer; see also the survey by Butler

and Graham [4]. His result can be seen to imply Theorem 1.1, with χ = 0.04.

Furthermore, it allows for a more direct proof of Theorem 1.3. Indeed, if (6.5) is satisfied

for some p > 0, then for any q > 0, ∑
n∈N

E[Y q
n ] < +∞

(this is immediate for q = p, and use the Hölder inequality for 0 < q < p and the

elementary bound yq � (
√

3/2)q−pyp for y ∈ [0,
√

3/2] and q > p). The arguments of

the proof of Lemma 6.1 (especially (6.1) and a similar relation for odd integers) then

show that ∑
n∈N

E[|Xn − Zn|q] < +∞,

and consequently that |Xn − Zn| converges a.s. to zero. This is sufficient to deduce that

almost surely the limit set of (Xn)n∈N coincides with that of (Zn)n∈N, thus the law of large

numbers for Z and Lemma 5.6 implies Theorem 1.3.

In the same spirit, one can go further toward justifying the assertion made in the

Introduction that asymptotically (Xn)n∈N is almost Markovian. Let us introduce the

supremum distance S on [0, 1/2]N, seen as the set of trajectories from N to [0, 1/2]:

∀ x � (xn)n∈N, z � (zn)n∈N ∈ [0, 1/2]N, S(x, z) � sup
n∈N

|xn − zn|.

For m ∈ N, let X�m,∞� = (Xm+n)n∈N ∈ [0, 1/2]N, and consider

sm � inf E[S(X�m,∞�, Z)],

where the infimum is taken over all couplings of X�m,∞� with a Markov chain Z whose

transition kernel is M. Then we have limm→∞ sm = 0. To be convinced of this convergence,

consider for fixed m ∈ N, (X̃n, Ỹn)n∈N and (Z̃n)n∈N two chains coupled as in the beginning

of this section and starting from the initial conditions (X̃0, Ỹ0) = (Xm, Ym) and Z̃0 = Xm.

Then (6.5) and (6.1) imply that the quantity
∑

n∈N
E[|X̃n − Z̃n|] converges exponentially

fast to zero as m goes to infinity.
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[1] Bárány, I., Beardon, A. F. and Carne, T. K. (1996) Barycentric subdivision of triangles and
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