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In this paper, we prove the existence and regularity of pullback attractors for
non-autonomous nonclassical diffusion equations with nonlocal diffusion when the
nonlinear term satisfies critical exponential growth and the external force term
h ∈ L2

loc(R; H−1(Ω)). Under some appropriate assumptions, we establish the
existence and uniqueness of the weak solution in the time-dependent space Ht(Ω)
and the existence and regularity of the pullback attractors.
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1. Introduction

It is well-known that the study of global, pullback and uniform attractors is of great
significance for characterizing the long-time behavior of the solutions of nonlinear
evolutionary partial differential equations (see [7, 8, 17, 27]). Therefore, in recent
decades, as an important class of the nonlinear partial differential equations, the
autonomous and non-autonomous diffusion equations have been extensively studied
(see [2, 3, 28, 29]). However, there are still relatively few results on the exis-
tence of time-dependent pullback attractors in the Sobolev space H2(Ω) ∩ H1

0 (Ω).
To this end, this paper is devoted to studying the existence and regularity of the
time-dependent pullback attractors of the non-autonomous diffusion equations with
nonlocal diffusion in the time-dependent space Ht(Ω).

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. We consider the

long-time behavior of the solutions for the following non-autonomous nonclassical
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diffusion equations:⎧⎨⎩
ut − ε(t)Δut − a(l(u))Δu = f(u) + h(t) in Ω × (τ,∞),
u = 0 on ∂Ω × (τ,∞),
u(x, τ) = uτ , x ∈ Ω,

(1.1)

where τ ∈ R is the initial time and ε(t) ∈ C1(R) is a decreasing bounded function
with respect to the parameter t satisfying

lim
t→+∞ ε(t) = 1, (1.2)

and there exists a constant L > 0 such that

sup
t∈R

(|ε(t)| + |ε′(t)|) � L. (1.3)

For the nonlocal functional a(l(u)), we assume that l(u) is a linear functional
acting on u that satisfies l(u) = (u, l), whose definition of (·, ·) is below, and a ∈
C(R; R+) is a locally Lipschitz continuous function satisfying

1
2

< m � a(s) � M, ∀s ∈ R, (1.4)

where m and M are constant. In addition, suppose the nonlinear term f ∈ C1(R)
and satisfies the following assumptions:

lim sup
|s|→∞

f(s)
s

< λ1, (1.5)

f ′(s) � η, ∀s ∈ R, (1.6)

|f(s)| � C (1 + |s|p) , ∀s ∈ R, (1.7)

where λ1 > 0 is the first eigenvalue of −Δ in Ω with the homogeneous Dirichlet
boundary conditions, η and C are arbitrarily positive constants.

Throughout this paper, the inner product of L2(Ω) is represented by (·, ·), and the
corresponding norm is denoted by ‖ · ‖2. For simplicity, ‖ · ‖2 is written as ‖ · ‖. The
norm of H−1(Ω) is denoted as ‖ · ‖−1, the norm of H1

0 (Ω) is denoted as ‖ · ‖1, and
the dual product between them will be represented by 〈·, ·〉. From [15], the chain of
dense and continuous embeddings H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) holds. In particular,
H1

0 (Ω) ⊂ L2(Ω) is compact.
When hypothesis (1.7) holds, the Sobolev embedding theorem (see [1]) shows that

when n = 1, 2 and n � 3, the index p satisfies p > 1 and 1 < p < n
n−2 , respectively,

hence it can be concluded that there is an embedding H1
0 (Ω) ⊂ L2p(Ω), and then

by using the Poincaré inequality, we can deduce that

|f (un)|22 � C + C

∫
Ω

|un|2p
dx � C + C ‖un‖2p

. (1.8)

It is easy to check that if the function un is bounded in L2p(Ω), then f(un)
is bounded in L∞(τ, t;L2(Ω)). Furthermore, let the external force term h ∈
L2

loc(R;H−1(Ω)).
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Let us recall some works of problem (1.1) in the literature, which are based on
the classic general diffusion equation ut − Δu = f(u). The asymptotic behavior of
nonlocal problem ut − a(l(u(t)))Au = f was studied when there was only one equi-
librium point in [9]. Later, this result was expanded to investigate the convergence
of the solution towards a steady state in [10]. In [11], the well-posedness of the
solutions to

ut − a

(∫
Ω

|∇u|2 dx

)
Δu = f

was obtained by using the energy method. In order to make the solutions not only
exist in finite-time interval, hypothesis (1.4) was introduced and the asymptotic
behavior of the solutions was studied in [12]. The existence of pullback attractors
in L2(Ω) for

du

dt
− a(l(u))Δu = f(u) + h(t)

was obtained when f is a sublinear function in [4]. Besides, some researchers
assumed that f satisfies

−κ − α1|s|p � f(s)s � κ − α2|s|p, ∀s ∈ R,

and got similar results (see [5, 6]).
In addition, there are several results in Ht(Ω). Note that the definition of time-

dependent space Ht(Ω) can be checked in § 2. The existence and regularity of the
time-dependent global attractors of problem

ut − ε(t)Δut − Δu + λu = f(u) + g(x)

are established by the decomposition method in [19]. Besides, the method of con-
traction function was used to prove the existence of the time-dependent global
attractors in [34] of problem

ut − ε(t)Δut − Δu + f(u) = g(x).

The Lebesgue-dominated convergence theorem was applied in [30] to verify the
pullback asymptotic compactness of the global attractors of problem

ut − ε(t)Δut −�u + λu + f(u) = g.

Furthermore, time-dependent attractors have also been extensively studied in
[14, 18, 20, 21, 23] and other papers.

Since problem (1.1) contains a(·), ε(t), f(u) and h(t), which results in some
difficulties to study the long-time behavior of solutions. To this end, our main
solutions are as follows:

(1) When using the condition C, the contraction function or the decomposition
method to prove the asymptotic compactness of pullback attractors, we are
supposed to select suitable test functions and inequalities to transform (1.1)1
into a formula to ensure it satisfies the Gronwall lemma. But because a =
a(l(u)) is a compound function, these methods do not work. To overcome
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this prominent technical difficulty, we use the diagonal method in functional
analysis to obtain the upper and lower bounds of the process of problem (1.1),
which is very challenging.

(2) The time-dependent function ε(t) complicates calculations of energy estima-
tion. Some common techniques, such as multiplying by (1.1)1 with u or ut as
a test function, does not offer any meaningful results. In order to make the
Gronwall inequality work, we bring

ε(t)
d
dt

‖∇u‖2 =
d
dt

(
ε(t)‖∇u‖2

)− ε′(t)‖∇u‖2

into a priori estimate, then obtain (3.1). Although this seems to complicate
the energy equation, it actually helps to discuss the existence of solutions in
Ht(Ω).

(3) It is worth mentioning that the nonlinear term f(u) and the external force
term h(t) makeproblem (1.1) be studied in a more general functional frame-
work. To obtain the dissipative properties of the process, we assume that f
satisfies (1.5)–(1.7), which is weaker than the conditions in [22].

The structure of our paper is organized as follows. In § 2, some function spaces,
abstract definitions and functions to be used later are introduced. As is known, when
studying the pullback attractors of an equation, it is often necessary to attain the
existence and uniqueness of the solution at first, which will be obtained by the
standard Faedo-Galerkin approximations in § 3. The most important parts § 4 and
§ 5 are arranged in the last two sections. We mention here the energy method,
the diagonal method, the decomposition method and multiple inequalities are used
to overcome the difficulties in proving the existence and regularity caused by the
nonlocal function and nonlinear term.

2. Preliminaries

In this section, we shall introduce the definitions of some spaces and functions
involved in the paper, and some abstract concepts related to the time-dependent
pullback attractors theory.

For any t, let Xt be a family of normed spaces, where the sphere with radius R
is denoted as

B̄Xt
(R) =

{
u ∈ Xt : ‖u‖2

Xt
� R

}
.

Besides, for any t ∈ R, the time-dependent space Ht(Ω) is endowed with the norms

‖u‖2
Ht

= ‖u‖2
2 + ε(t)‖∇u‖2

2,

and the space H1
t (Ω), more regular than Ht(Ω), is endowed with the norms

‖u‖2
H1

t
= ‖∇u‖2

2 + ε(t)‖Δu‖2
2.

We define the Hausdorff semidistance of two nonempty sets A,B ⊂ Ht(Ω) by

distHt
(A,B) = sup

x∈A
inf
y∈B

‖x − y‖Ht
.
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Lemma 2.1 Aubin-Lions Compactness Lemma [16]. Let X0, X and X1 be Banach
spaces, and satisfy that X ⊂ X0 ⊂ X1 are dense and continuous embeddings and
X ⊂ X0 is a compact embedding. Assuming that p � 1, 1 � q � +∞ and T > 0 is
given. Let

W =
{

u ∈ Lp([0, T ];X),
du

dt
∈ Lq([0, T ];X)

}
,

then

(i) if p < +∞, W ⊂ Lp([0, T ];X0) is compact;

(ii) if p = +∞, W ⊂ C([0, T ];X0) is compact.

Remark 2.1. Let p = q = 2, X0, X and X1 are Hilbert spaces, X ⊂ X0 ⊂ X1 are
dense and continuous embeddings, if X0 is the interpolation space between X and
X1 and the coefficient is 1

2 , then W ⊂ C([0, T ];X0) is a continuous embedding.

Definition 2.2 [19, 34]. Let {Ht}t∈R be a family of time-dependent normed
spaces. A process or a two-parameter semigroup on Ht is a family {U(t, τ) | t, τ ∈
R, t � τ} of continuous mapping U(t, τ) : Hτ → Ht satisfies that U(τ, τ)u = u for
any u ∈ Hτ and U(t, s)U(s, τ) = U(t, τ) for all t � s � τ .

Definition 2.3 [6, 22]. For any δ > 0, let Dδ,Ht
be a nonempty class of all families

of parameterized sets D̂δ = {Dδ(t) : t ∈ R} ⊂ Γ(Ht) such that

lim
τ→−∞

(
eδτ sup

u∈Dδ(τ)

‖u‖2
Ht

)
= 0,

where Γ(Ht) denotes the family of all nonempty subsets of Ht(Ω).

Definition 2.4 [22, 33]. The process {U(t, τ)}t�τ is said to be pullback Dδ,Ht
-

asymptotically compact if for any t ∈ R, any D̂δ ∈ Dδ,Ht
, any sequence τn → −∞,

and any sequence xn ∈ Dδ(τn) ⊂ Ht(Ω), the sequence {U(t, τ)xn}∞n=1 is relatively
compact in Ht(Ω).

Definition 2.5 [22, 33]. It is said that D̂0 ∈ Dδ,Ht
is pullback Dδ,Ht

-absorbing
for the process {U(t, τ)}t�τ if for any t ∈ R and D̂δ ∈ Dδ,Ht

, there exists a τ0 =
τ0(t, D̂δ) < t such that U(t, τ)Dδ(τ) ⊂ D0(t), for all τ � τ0(t, D̂δ).

Definition 2.6 [22, 33]. A family Ât = {A(t) : t ∈ R} ⊂ Γ(Ht(Ω)) is said to be a
time-dependent pullback Dδ,Ht

-attractor for the process {U(t, τ)}t�τ in Ht(Ω) if

(i) A(t) is compact in Ht(Ω) for any t ∈ R;

(ii) Ât is pullback Dδ,Ht
-attracting in Ht(Ω), i.e.,

lim
τ→−∞distHt

(U(t, τ)Dδ(τ),A(t)) = 0,

for all D̂δ ∈ Dδ,Ht
and t ∈ R;

(iii) Ât is invariant, i.e., U(t, τ)A(τ) = A(t), for any −∞ < τ � t < +∞.
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3. Existence and uniqueness of solutions

In order to obtain the existence of the time-dependent pullback attractors of prob-
lem (1.1), we need to establish the existence and uniqueness of solutions. First, we
give the definition of the weak solution.

Definition 3.1. A weak solution to problem (1.1) is a function u ∈ C([τ, t],Ht(Ω))
for any t � τ , with u(τ) = uτ , and such that for all ϕ ∈ H1

0 (Ω), it holds that

d
dt

[(u(t), ϕ) + ε(t)(∇u(t),∇ϕ)] + (2a(l(u)) − ε′(t)) (∇u(t),∇ϕ)

= 2(f(u(t)), ϕ) + 2 〈h(t), ϕ〉 . (3.1)

Remark 3.1. The equation (3.1) is supposed to be understood in the sense of the
generalized function space D′(τ,+∞).

Remark 3.2. If u(x, t) is a weak solution of problem (1.1), then it satisfies the
following energy equality:

‖u(t)‖2 + ε(t)‖∇u(t)‖2 +
∫ t

s

(2a(l(u)) − ε′(r)) ‖∇u(r)‖2 dr

= ‖u(s)‖2 + ε(s)‖∇u(s)‖2 + 2
∫ t

s

(f(u(r)), u(r)) dr + 2
∫ t

s

(h(r), u(r)) dr. (3.2)

The following theorems, theorems 3.2–3.3 will clarify the existence and uniqueness
of the solution to problem (1.1). In addition, the former theorem is proved by the
classic Faedo-Galerkin method, and the proof also involves the energy estimate
method.

Theorem 3.2. Assume that a(·) is a local Lipschitz continuous function and
satisfies (1.4), f ∈ C1(R) and satisfies (1.5)–(1.7), h ∈ L2

loc(R;H−1), l(·) is given,
and the initial value uτ ∈ Ht(Ω), then for any τ ∈ R and t � τ , there exists
a weak solution to problem (1.1), which satisfies u ∈ C([τ, t];Ht(Ω)) and ut ∈
L2(τ, t;Ht(Ω)). Moreover, the solution u in Ht(Ω) depends continuously on the
initial values.

Proof. Using the spectral theory, we conclude that there exists a sequence {ωj}∞j=1

of eigenfunctions of −Δ in H1
0 (Ω), which is a Hilbert basis of L2(Ω). Fix an

integer j, then {ω1, ω2, · · · , ωj} are j linearly independent functions in H1
0 (Ω),

which can be expanded into a j-dimensional linear subspace, denoted as Wj(Ω) =
span{ω1, ω2, · · · , ωj}. The Faedo-Galerkin method needs to find the approxi-

mate sequence uk(t, τ ;uτ ) =
k∑

j=1

rk,j(t)ωj(x), so that for any k � n, the following

approximate system holds:⎧⎪⎨⎪⎩
d
dt

[(uk(t), ωj) + ε(t)(∇uk(t),∇ωj)] + (2a(l(uk)) − ε′(t)) (∇uk(t),∇ωj)

= 2(f(uk(t)), ωj) + 2 〈h(t), ωj〉 , ∀uk ∈ Wj(Ω),
uk,τ (x) = uτ (x).

(3.3)
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Step 1: (A priori estimate) In order to ensure that for any t ∈ [τ,+∞), there
is a weak solution uk of the system (3.3), therefore a priori estimate needs to be
established. Taking γk,j(t) as the test function of the above approximate system,
and then summing j from 1 to k, we obtain

d
dt

(‖uk(t)‖2 + ε(t) ‖∇uk(t)‖2) +
(
2m − ε′(t) ‖∇uk(t)‖2

)
� 2 (f (uk) , uk) + 2 (h(t), uk) . (3.4)

From (1.5) and the Poincaré inequality, it follows that there is a constant
w ∈ (0,mλ1) such that

(f (uk) , uk) � (λ1uk, uk) � w

λ1
‖∇uk‖2 + C. (3.5)

By the Hölder, Young and Poincaré inequalities, we have

(h(t), uk) � ‖h(t)‖−1 ‖uk‖1 � ε ‖∇uk‖2 + c(ε)‖h(t)‖2
−1, (3.6)

where ε = m − w
λ1

, c(ε) = (2ε)−12−1 = λ1
4(mλ1−w) . Substituting (3.5) and (3.6) into

(3.4), we can derive

d
dt

(‖uk(t)‖2 + ε(t) ‖∇uk(t)‖2) − ε′(t) ‖∇uk(t)‖2 � λ1

2 (mλ1 − w)
‖h(t)‖2

−1. (3.7)

Integrating (3.7) with respect to t in [τ, t], we deduce that

‖uk(t)‖2 + ε(t) ‖∇uk(t)‖2 −
∫ t

τ

ε′(s) ‖∇uk(s)‖2 ds

� ‖uk(τ)‖2 + ε(τ) ‖∇uk(τ)‖2 +
λ1

2 (mλ1 − w)

∫ t

τ

‖h(s)‖2
−1 ds.

From ε′(t) < 0, we conclude that

‖uk(t)‖2 + ε(t) ‖∇uk(t)‖2 � ‖uk(τ)‖2 + ε(τ) ‖∇uk(τ)‖2 + C

∫ t

τ

‖h(s)‖2
−1 ds.

(3.8)

It can be seen from (3.8) that for any t � τ , {uk}k�n is bounded
in L∞(τ, t;Ht(Ω)) ∩ L2(τ, t;H1

0 (Ω)) ∩ Lp(τ, t;Lp(Ω)), hence {−a(l(un)Δun} is
bounded in L2(τ, t;H−1(Ω)). From (1.5), the Hölder inequality and Sobolev
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embedding theorem, we have∫ t

τ

∫
Ω

|f (uk(s))|q dx ds � C

∫ t

τ

‖uk(s)‖p
Lp(Ω) ds + C, (3.9)

where 1
p + 1

q = 1. Therefore, for any t � τ , we have

{f (uk)}k�n is bounded in Lq (τ, t;Lq(Ω)) . (3.10)

Step 2: (Uniform estimate for the time derivatives) Multiplying the
approximate system (3.3) by γ′

k,j(t) and summing from 1 to k, we obtain that

‖(uk(t))t‖2 + ε(t) ‖∇ (uk(t))t‖2 + a (l (uk))
d
dt

‖∇uk(t)‖
= 2 (f (uk) + h(t), (uk(t))t) . (3.11)

Integrating (3.11) in [τ, t], and then using (1.4), and the boundedness of function
f and h, the following equation can be obtained through the similar estimates in
step 1:

m ‖∇uk(t)‖2 +
∫ t

τ

‖(uk(s))s‖2 + ε(s) ‖∇ (uk(s))s‖2 ds � m ‖∇uk(τ)‖2 + C.

(3.12)

Then it is easy to get that {(uk)t}k�n is bounded in L∞(τ, τ ;Ht(Ω)).

Step 3: (Existence of solutions) From the boundedness of functions {uk}k�n,
{f(uk)}k�n, {(uk)t}k�n and lemma 2.1, we can deduce that for any t � τ ,
there exist functions u ∈ L∞(τ, t;Ht(Ω)) ∩ L2(τ, t;H1

0 (Ω)) ∩Lp(τ, t;Lp(Ω)), ut ∈
L∞(τ, τ ;Ht(Ω)), ξ ∈ L2(τ, t;H1

0 (Ω)) and χ ∈ Lq(τ, t;Lq(Ω)) such that

uk ⇀ u weakly-star in L∞ (τ, t;Ht(Ω)) ; (3.13)

a (l(uk)) uk ⇀ ξ weakly in L2
(
τ, t;H1

0 (Ω)
)
; (3.14)

f (uk) ⇀ χ weakly in Lq (τ, t;Lq(Ω)) ; (3.15)

(uk)t ⇀ ut weakly in L2(τ, t;Ht(Ω)
)
; (3.16)

uk → u strongly in L2
(
τ, t;L2(Ω

))
; (3.17)

uk → u a.e. (x, t) ∈ Ω × [τ,+∞). (3.18)

From lemma 2.1, it is easy to prove that a(l(u))u = ξ and f(u) = χ. Then we can
conclude that

f (uk) → f(u) a. e. in Ω × [τ,+∞).

When Wj(Ω) is dense in H1
0 (Ω), then from the convergence obtained above, we

can see that u is a weak solution of problem (1.1), while when Wj(Ω) is not dense
in H1

0 (Ω), this more general case will be demonstrated below. Let ul be a weak
solution of problem (1.1). Now estimating the energy of uk and ul respectively, and
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then using (1.6) and the Poincaré, Hölder inequalities, and the Sobolev embedding
theorem, we can obtain

d
dt

[
‖uk − ul‖2 + ε(t) ‖uk − ul‖2

1

]
+ (2al(u)) − ε′(t) ‖uk − ul‖2

1

� 2 |(f (uk) − f (ul) , uk − ul)|
= 2 |(f ′ (θuk + (1 − θ)ul) (uk − ul) , uk − ul)|
� C ‖uk − ul‖2

� C ‖uk − ul‖2
1 . (3.19)

Moreover, from ε′(t) � 0 and noting that a(·) is a positive bounded function, we
can obtain that

d
dt

[‖uk − ul‖2 + ε(t)‖uk − ul‖2
1] � C‖uk − ul‖2

1. (3.20)

Applying the generalized Gronwall lemma (see [24–26]) to (3.20), we can
conclude

‖uk − ul‖Ht
� eC(t−τ) ‖uk − ul‖2

Ht
, (3.21)

which implies that {uk} → {ul} in u ∈ C([τ, t];Ht(Ω)), for any t � τ .
Obviously, u is a weak solution of problem (1.1). �

Theorem 3.3. Under the assumptions of theorem 3.2, if the weak solution of
problem (1.1) exists, then it is a unique solution.

Proof. Assuming that the solutions corresponding to the initial values uτ,1 and uτ,2

are u1 and u2, respectively, they satisfy the following equations, respectively:⎧⎨⎩
(u1)t − ε(t)Δ(u1)t − a(l(u1))Δu1 = f(u1) + h(t) in Ω × (τ,∞),
u1 = 0 on ∂Ω × (τ,∞),
u1(x, τ) = uτ,1(x), x ∈ Ω,

(3.22)

and⎧⎨⎩
(u2)t − ε(t)Δ(u2)t − a(l(u2))Δu2 = f(u2) + h(t) in Ω × (τ,∞),
u2 = 0 on ∂Ω × (τ,∞),
u2(x, τ) = uτ,2(x), x ∈ Ω.

(3.23)

Subtracting (3.22) from (3.23), and setting u = u1 − u2, then u satisfies⎧⎪⎪⎨⎪⎪⎩
ut − ε(t)Δut − a (l (u1)) Δu1 + a (l (u2)) Δu2

= f (u1) − f (u2) in Ω × (τ,∞)
u(x, t) = 0 on ∂Ω × (τ,∞)
u(x, τ) = uτ,1 − uτ,2, x ∈ Ω.

(3.24)

Taking u = u1 − u2 as a test function of (3.24), then we can obtain

d
dt

[‖u‖2 + ε(t)‖∇u‖2
]
+ (2a (l (u1)) − ε′(t)) ‖∇u‖2

= 2 [a (l (u2)) − a (l (u1))] (∇u2,∇u) + 2 (f (u1) − f (u2) , u) . (3.25)
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Since l ∈ L2(Ω) is a bounded linear functional and by the Hölder inequality, it is
easy to get

l (u1) − l (u2) = l (u1 − u2) = (l, u1 − u2) � ‖l‖2‖u‖2. (3.26)

Besides, since a(·) is a locally Lipschitz continuous function, when l(u1), l(u2) ∈
[0, C1], we have

|a (l (u2)) − a (l (u1))| � Lip (C1) ‖l‖2‖u‖2, (3.27)

where Lip(C1) is the Lipschitz constant of a(·). By (3.26) and (3.27) and the Young
inequality, we obtain

|(a (l (u2)) − a (l (u1))) (∇u2,∇u)| � d‖∇u‖2 +
1
4d

(Lip (C1))
2

× ‖l‖2‖u‖2 ‖∇u2‖2
. (3.28)

From the proof of theorem 3.2, we deduce that

|(f (u1) − f (u2) , u)| � c‖∇u‖2. (3.29)

In addition, substituting (3.28)–(3.29) into (3.25), then we can obtain the
following inequality

d
dt

[‖u‖2 + ε(t)‖∇u‖2
]

� C
(‖u‖2 + ε(t)‖∇u‖2

)
. (3.30)

Applying the Gronwall lemma to (3.30), we conclude

‖u(t)‖2 + ε(t)‖∇u(t)‖2 � eC(t−τ)
(
‖uτ‖2 + ε(τ) ‖∇uτ‖2

)
. (3.31)

Consequently, the uniqueness of the solution follows readily. �

4. The time-dependent pullback attractors

In this section, we will verify the existence of the time-dependent pullback attractors
in Ht. In order to prove the existence of time-dependent pullback attractors for
the process {U(t, τ)}t�τ , we need to check that the process U is pullback Ds,Ht

-
asymptotically compact, thus we first need to give the following lemma.

Lemma 4.1. Under the assumptions of theorem 3.2, then for any t � τ , the solution
of problem (1.1) satisfies

‖u(t)‖2 + ε(t)‖∇u(t)‖2 � e−δ(t−τ) ‖uτ‖2
Ht

+
C

δ

+
e−δt

2
(
m − wλ−1

1

)− δ

∫ t

τ

eδs‖h(s)‖2
−1 ds, (4.1)

where 0 < δ < min{2(m − wλ−1
1 ), −ε′(t)λ1

1+λ1ε(t)−λ1
}.
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Proof. From the energy equality (3.2) of problem (1.1), it can be seen that the weak
solution u satisfies

d
dt

[‖u(t)‖2 + ε(t)‖∇u(t)‖2
]
+ (2a(l(u(t))) − ε′(t)) ‖∇u(t)‖2

= 2(f(u(t)), u(t)) + 2(h(t), u(t)). (4.2)

Using the Young, Cauchy-Schwartz and Poincaré inequalities, from (1.2), (4.2)
and w ∈ (0,mλ1), we can derive

‖u(t)‖2 + ε(t)‖∇u(t)‖2 + δ
(‖u(t)‖2 + ε(t)‖∇u(t)‖2

)
� C +

1
2
(
m − wλ−1

1

)− δ
‖h(s)‖2

−1. (4.3)

Then by the Gronwall lemma, (4.1) follows directly. �

Remark 4.1. The choice of δ in lemma 4.1 is not unique. For example, if for any
t � τ , 0 < δ < min{−ε′(t)

ε(t) , 2(m − wλ−1
1 )λ1} is selected, the solution u of problem

(1.1) can be obtained through similar calculations, which satisfies

‖u(t)‖2 + ε(t)‖∇u(t)‖2 � e−δ(t−τ) ‖uτ‖2
Ht +

C

δ

+
e−δt

2 (m − wλ−1) − δλ−1
1

∫ t

τ

eδs‖h(s)‖2
−1 ds. (4.4)

As a consequence, the existence of the time-dependent pullback attractors can
be obtained by both (4.3) and (4.4).

Lemma 4.2. Under the assumptions of theorem 3.2, moreover if h satisfies that∫ t

−∞
eδs‖h(s)‖2

−1ds < +∞, (4.5)

for some 0 < δ < min{2(m − wλ−1
1 ), −ε′(t)λ1

1+λ1ε(t)−λ1
}. Then the family D̂δ = {Dδ(t) :

t ∈ R} with Dδ(t) = B̄Ht
(0, ρ(t)), the closed ball in Ht(Ω) of centre zero and radius

ρ(t), where

ρ2(t) = 1 +
C

δ
+

e−δt

2 (m − wλ−1) − δ

∫ t

τ

eδs‖h(s)‖2
−1 ds (4.6)

is pullback Dδ,Ht
-absorbing for the process {U(t, τ)}t�τ of the solution of the

equation (1.1). Moreover, we have D̂δ ∈ Dδ,Ht
.

Proof. It is clear that D̂δ is pullback Dδ,Ht
-absorbing for the process {U(t, τ)}t�τ

is an immediate consequence of lemma 4.1. Thanks to (4.5), for any t � τ , we have
eδtρ2(t) → 0, as t → ∞. Then, D̂δ belongs to Dδ,Ht

. �

In order to prove the existence of time-dependent pullback attractors for the
process {U(t, τ)}t�τ , we need to check that the process U is pullback Ds,Ht

-
asymptotically compact, which is stated in the next lemma.
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Lemma 4.3. Under the assumptions of theorem 3.2, the process {U(t, τ)}t�τ is
pullback Ds,Ht

-asymptotically compact in Ht(Ω).

Proof. To prove the lemma, obviously we ought to estimate that for any uτn
∈

Dδ(τn), τn ∈ (−∞, t), n ∈ N
+ and t ∈ R, the sequence {U(t, τn)uτn

}∞n=1 is relatively
compact in Ht(Ω).

To simplify the notation, let U(t, τn)uτn
= un(t). In the following, we will use the

diagonal method to get the compactness of the process {U(t, τn)uτn
}∞n=1.

From lemma 4.3, we can conclude that for any r � 0, there is τr(D̂δ, t) � t − r

such that U(t − r)D̂δ(τ) ⊂ Dδ(t − r) for any τ � τr(D̂δ, t). Besides, we can also
obtain that D̂δ(t) is bounded in Ht(Ω).

According to the diagonal parameter method, there is a subsequence {uτm
} ⊂

{uτn
} for any r � 0 such that

U (t − r, τm) uτm
⇀ uk in Ht(Ω), (4.7)

where uk ∈ Dδ(t − r).
From theorems 3.2–3.3, (1.4) and (1.7), we can conclude that for a fixed inter-

val [t − r, t], the sequence {un} is bounded in L∞(t − r, t;Ht(Ω)), {−a(l(u))Δun} is
bounded in L2(t − r, t;H−1(Ω)), and f(un) is bounded in Lq(t − r, t;Lq(Ω)). There-
fore, there is a subsequence ũn of {un}∞n=1 that belongs to L∞(t − r, t;Ht(Ω)) and
satisfies

um ⇀ ũn weakly-star in L∞ (t − r, t;Ht(Ω)) ;

um ⇀ ũn weakly in L2 (t − r, t;Ht(Ω)) ;

um → ũn strongly in L2
(
t − r, t;L2(Ω)

)
;

f (um) ⇀ f (ũn) weakly in Lq (t − r, t;Lq(Ω)) .

(4.8)

Furthermore, from (4.7) and (4.8), we can conclude that

ũn = U(t, t − r)ur, (4.9)

U(t, t − r)U (t − r, τm) uτm
⇀ U(t, t − r)ur in L2 (t − r, t;Ht(Ω)) , (4.10)

and

U(t, t − r)U (t − r, τm) uτm
→ U(t, t − r)ur in L2

(
t − r, t;L2(Ω)

)
. (4.11)

Thanks to (4.8), we have

‖ũn‖ � lim
m→∞ inf ‖U (t, τm) uτm

‖ . (4.12)

In order to prove the lemma, we only need to check that

lim
m→∞ sup ‖U (t, τm) uτm

‖ � ‖ũn‖ . (4.13)
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Multiplying both sides of the energy equation (3.2) by eδt, and then integrating
it on [t − r, t], we have

‖u(t)‖2 + ε(t)‖∇u(t)‖2 = e−δr
(‖u(t − r)‖2 + ε(t)‖∇u(t − r)‖2

)
+ δ

∫ t

t−r

eδ(s−t)‖u(s)‖2 ds

+ δ

∫ t

t−r

eδ(s−t)ε(s)‖∇u(s)‖2 ds

−
∫ t

t−r

eδ(s−t) (2a(l(u(s))) − ε′(s)) ‖∇u(s)‖2 ds

+ 2
∫ t

t−r

eδ(s−t)(f(u(s)), u(s) ds

+ 2
∫ t

t−r

eδ(s−t)(h(s), u(s)) ds. (4.14)

Furthermore, from (4.14) and definition 2.2, for any solution U(t, τm)uτm
� t − r

with τm � t − r, it is easy to check that

‖U (t, τm) uτm
‖2 + ε(t) ‖∇U (t, τm) uτm

‖2

= e−δt
(
‖U (t − r, τm) uτm

‖2 + ε(t) ‖∇U (t − r, τm) uτm
‖2
)

+ δ

∫ t

t−r

eδ(s−t) ‖U(s, t − r)U (t − r, τm) uτm
‖2 ds

+ δ

∫ t

t−r

eδ(s−t)ε(s) ‖∇U(s, t − r)U (t − r, τm) uτm
‖2 ds

−
∫ t

t−r

eδ(s−t) (2a (l (U (s, τm) uτm
)) − ε′(s)) ‖∇U (s, τm) uτm

‖2 ds

+ 2
∫ t

t−r

eδ(s−t) (f (U (s, τm) uτm
) , U (s, τm) uτm

) ds

+ 2
∫ t

t−r

eδ(s−t)(h(s), U(s, t − r)U(t − r, τm)uτm
) ds. (4.15)

By (4.11), we have

lim
m→∞ δ

∫ t

t−r

eδ(s−t) ‖U(s, t − r)U (t − r, τm) uτm
‖2 ds

= δ

∫ t

t−r

eδ(s−t) ‖U(s, t − r)ur‖2 ds, (4.16)
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and

lim
m→∞ 2

∫ t

t−r

eδ(s−t) (f (U (s, τm) uτm
) , U (s, τm) uτm

) ds

= 2 lim
m→∞

∫ t

t−r

eδ(s−t)(f (U(s, t − r)U (t − r, τm) uτm
) ,

× U(s, t − r)U (t − r, τm) uτm
) ds

= 2
∫ t

t−r

eδ(s−t)(f(U(s, t − r)ur), U(s, t − r)ur) ds (4.17)

According to (1.4) and (4.10), we obtain that∫ t

t−r

eδ(s−t) (2a (l (U (s, τm) uτm
)) − ε′(s) − δε(s)) ‖∇U (s, τm) uτm

‖2 ds

� lim
m→∞ inf

∫ t

t−r

eδ(s−t) (2a (l (U (s, τm) uτm
)) − ε′(s) − δε(s))

× ‖∇U(s, t − r)U (t − r, τm) uτm
‖2 ds

=
∫ t

t−r

eδ(s−t) (2a (l (U(s, t − r)ur)) − ε′(s) − δε(s)) ‖∇U(s, t − r)ur‖2 ds.

(4.18)

By eδ(s−t)h(s) ∈ L2(t − r, t;H−1(Ω)) and (4.10), we have

lim
m→∞ 2

∫ t

t−r

eδ(s−t) (h(s), U(s, t − r)U (t − r, τm) uτm
) ds

= 2
∫ t

t−r

eδ(s−t) (h(s), U(s, t − r)ur) ds. (4.19)

Using lemmas 4.1 and 4.2, we deduce that

e−δr
(
‖U (t − r, τm) uτm

‖2 + ε(t) ‖∇U (t − r, τm)uτm
‖2
)

� e−δrρ2(t − r) (4.20)

Taking (4.16)–(4.20) into (4.15), we have

‖ũn‖2 + ε(t) lim
m→∞ sup‖∇U (t, τm) uτm

‖2

� e−δrρ2(t − r) + δ

∫ t

t−r

eδ(s−t) ‖U(s, t − r)ur‖2 ds

−
∫ t

t−r

eδ(s−t) (2a (l (U(s, t − r)ur)) − ε′(s) − δε(s)) ‖∇U(s, t − r)ur‖2 ds

+ 2
∫ t

t−r

eδ(s−t)(f(U(s, t − r)ur, U(s, t − r)ur) ds

+ 2
∫ t

t−r

eδ(s−t) (h(s), U(s, t − r)ur) ds. (4.21)
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In addition, substituting (4.9) into the equation (1.1) and performing a calcula-
tion similar to (4.14), we can deduce that

‖ũn‖2 + ε(t) ‖∇ũn‖2 � e−δr
(
‖ur‖2 + ε(t) ‖∇ur‖2

)
+ δ

∫ t

t−r

eδ(s−t) ‖U(s, t − r)ur‖2 ds

−
∫ t

t−r

eδ(s−t) (2a (l (U(s, t − r)ur)) − ε′(s) − δε(s))

× ‖∇U(s, t − r)ur‖2 ds

+ 2
∫ t

t−r

eδ(s−t) (f (U(s, t − r)ur) , U(s, t − r)ur) ds

+ 2
∫ t

t−r

eδ(s−t) (h(s), U(s, t − r)ur) ds. (4.22)

Furthermore, by (4.21), (4.22) and the Poincaré inequality, we have

lim
m→∞ sup ‖U (t, τm) uτm

‖2 � e−δrλ−1
1 ρ2(t − r) + ‖ũn‖2

.

Obviously, lim
r→∞ e−δrλ−1

1 ρ2(t − r) = 0 can be obtained from lemma 4.2, therefore

(4.13) holds. From (4.12) and (4.13), we have

lim
m→∞ inf ‖U (t, τm) uτm

‖ = lim
m→∞ sup ‖U (t, τm) uτm

‖ = ‖ũn‖ ,

which implies the process U converges to ũn, thus we can obtain that process U is
relatively compact. Hence, the proof is complete. �

Theorem 4.4. Under the assumptions of theorem 3.2, then from the lemmas in this
section, we can conclude that the process of problem (1.1) exists time-dependent pull-
back attractors {Ât}t∈R, which satisfy nonempty, compact, invariant and pullback
attracting.

5. Regularity of the attractors

In this section, we shall establish the regularity of time-dependent pullback attrac-
tors for non-autonomous system (1.1). The methods used in the proof process can
also be seen in [13, 31, 32].

Theorem 5.1. Under the assumptions of theorem 3.2, then {Ât}t∈R is bounded in
H1

t (Ω).

Proof. Since L2(Ω) ⊂ H−1(Ω) is dense, for any h, there exists a function hξ ∈ L2(Ω)
such that

‖h − hξ‖ < ξ, (5.1)

where ξ � 0 is a constant.
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Fix τ ∈ R, suppose uτ ∈ {Ât}t∈R, decompose U(t, τ)uτ = u(t) into U(t, τ)uτ =
U1(t, τ)uτ + U2(t, τ)uτ , where U1(t, τ)uτ = v(t) and U2(t, τ)uτ = g(t) satisfy the
following two equations respectively,⎧⎨⎩

vt − ε(t)Δvt − a (l(u)) Δv = h(t) − hξ(t) in Ω × (τ,∞),
v = 0 on ∂Ω × (τ,∞),
v(x, τ) = uτ (x), x ∈ Ω,

(5.2)

and ⎧⎨⎩
gt − ε(t)Δgt − a (l(u)) Δg = f(u) + hξ(t) in Ω × (τ,∞),
g = 0 on ∂Ω × (τ,∞),
g(x, τ) = 0, x ∈ Ω.

(5.3)

Multiplying (5.2)1 by −Δv and integrating it in Ω, we have

d
dt

(‖∇v‖2 + ε(t)‖Δv‖2
)

+ (2a(l(u)) − ε′(t)) ‖Δv‖2 = 2
(
h(t) − hξ(t),−Δv

)
.

By (1.4), (5.1), the Cauchy and Poincaré inequalities, we deduce that

d
dt

E1(t) + δ1E1(t) � ξ2, (5.4)

where E1(t) = ‖∇v‖2 + ε(t)
∥∥Δv‖2 and 0 < δ1 � 2m−ε′(t)−1

λ−1
1 +ε(t)

.
Using the Gronwall lemma, we obtain

‖v(t)‖2
H1

t
= ‖U1(t, τ)uτ‖2

H1
t

� e−δ1(t−τ) ‖uτ‖2
H1

t
+

ξ2

δ1
. (5.5)

Then, multiplying (5.3)1 by −Δg and integrating it in Ω, we obtain

d
dt

(‖∇g‖2 + ε(t)‖Δg‖2
)

+ (2a(l(u)) − ε′(t)) ‖Δg‖2

= 2(f(u),−Δg) + 2
(
hξ(t),−Δg

)
. (5.6)

Besides, from (1.5) and the Young inequality, we have

2(f(u),−Δg) � 2λ2
1‖u‖2 +

1
2
‖Ag‖2, (5.7)

and

2(hξ(t),−Δg) � 2‖hξ(t)‖2 +
1
2
‖Ag‖2, (5.8)

where A = −Δ.
In addition, taking (5.7), (5.8) into (5.6), and from (1.4), we have

d
dt

E2(t) + δ1E2(t) � 2λ2
1‖u‖2 + 2‖hξ(t)‖2, (5.9)

where E2(t) = ‖∇g‖2 + ε(t)
∥∥Δg‖2.
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It follows from (4.1) that

d
dt

E2(t) + δ1E2(t) � 2λ2
1R1 + 2‖hξ(t)‖2, (5.10)

where R1 = e−δ(t−τ) ‖uτ‖2
Ht

+ C
δ + e−δt

2(m−wλ−1
1 )−δ

∫ t

τ
eδs‖h(s)‖2

−1 ds.

By the Gronwall lemma, we conclude that

‖g(t)‖2
H1

t
= ‖U2(t, τ)uτ‖2

H1
t

� R2, (5.11)

where R2 = e−δ1t
∫ t

τ
eδ1s(2λ2

1R1 + 2
∥∥hξ(s)

∥∥2

−1
) ds.

Thanks to (5.5) and (5.11), for any t ∈ R, we can deduce that

dist
(
At, B̄H1

t
(R2)

)
= dist

(
U(t, τ)Aτ , B̄H1

t
(R2)

)
� C e−δ2(t−τ) → 0, τ → −∞,

(5.12)
where δ2 > 0.

As a result, we have At ⊆ B̄H1
t
, which represents the time-dependent pullback

attractor {Ât}t∈R is bounded in H1
t (Ω). �
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