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Ideal Uniform Polyhedra in Hn and
Covolumes of Higher Dimensional
Modular Groups

Ruth Kellerhals

In memoriam Norman Johnson

Abstract. Higher dimensional analogues of the modular group PSL(2,Z) are closely related to hyper-
bolic re�ection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop
a theory and dissection properties of ideal hyperbolic k-rectiûed regular polyhedra, which is of inde-
pendent interest. As an application, we can identify the covolumes of the quaternionicmodular groups
with certain explicit rational multiples of the Riemann zeta value ζ(3).

1 Introduction

First and eminent prototypes of arithmetic groups are the modular group PSL(2,Z),
the Eisenstein modular group PSL(2,Z[ω]), where ω = 1

2(−1 + i
√

3) is a primi-
tive third root of unity, and the Hamilton modular group PSL(2,Z[i , j]). hey act
by orientation preserving isometries on real hyperbolic n-space for n = 2, 3, and 4,
respectively, and they are isomorphic to ûnite index subgroups of discrete hyper-
bolic re�ections groups (see [11, 13, 21]). In this way, their arithmetic, combinatorial,
and geometric structure can be characterised by means of ûnite volume hyperbolic
Coxeter polyhedra of particularly nice shape. Best known is the geometry of
PSL(2,Z), which is related to the Coxeter group with Coxeter symbol [3,∞] and an
ideal hyperbolic triangle of angle π

3 and area π. he group PSL(2,Z[ω]) ⊂ PSL(2,C)

is a Bianchi group and isomorphic to a subgroup of index 4 in the hyperbolic Coxeter
simplex group with Coxeter symbol [3, 3, 6]. In this way, the volume of a funda-
mental domain, or the covolume of PSL(2,Z[ω]), can be expressed by means of
Humbert’s volume formula for imaginary quadratic number ûelds [6] as well as by
means of Lobachevsky’s volume formula (see [27, part I, Chapter 7] and [22], for ex-
ample) according to

covol3(PSL(2,Z[ω])) =
33/2

4π2 ζQ(
√
−3)(2) =

1
2
JI2(

π
3
).

Here, ζk(s) denotes the Dedekind zeta function of the algebraic number ûeld k,
and JI2(x) is Lobachevsky’s function (see Section 2.4).
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R. Kellerhals

he aim of this work is twofold. First, we study the geometry of the higher di-
mensional modular and pseudo-modular groups of 2× 2 matrices whose coeõcients
form a basic system of algebraic integers in an associative normed real division al-
gebra. In this way, they act by fractional linear transformations on the boundary
Rn−1 ∪ {∞} and—by Poincaré extension—as hyperbolic isometries in the upper half
space U n . Since the octonion multiplication is no longer associative, such groups
can be realised by means of quaternionic matrices with unit Dieudonné determi-
nant ∆ and by certain Cliòord matrices for n ≤ 5 only. Of particular interest is the
quaternionic modular group PS∆L(2,Hyb) with coeõcients in the ring of hybrid in-
tegersHyb = Z[ω, j]. his group is closely related to the Coxeter pyramid group with
Coxeter symbol [6, 3, 3, 3, 3, 6] whose explicit covolume computation, however, is
very diõcult.

In this context, we discovered a beautiful, highly symmetric, hyperbolic polyhe-
dron, the ideal birectiûed 6-cell r2Sre g , which can be interpreted as a 5-dimensional
analogue of the ideal regular tetrahedron Sre g (see Example 2.3). Based on this, and
as our second and main achievement, we introduce and develop the theory of ideal
hyperbolic k-rectiûed regular polyhedra rkP in hyperbolic n-space viewed in the pro-
jective model of Klein-Beltrami. Such a polyhedron is uniform; that is, its symmetry
group acts transitively on the set of its vertices. For the important families of reg-
ular simplices P = Sre g and regular orthoplexes (or cross-polytopes) P = Ore g , we
derive explicit dissection relations by means of certain truncated characteristic sim-
plices Û i(αn

k ) and V̂i(αn
k ) characterised by a dihedral angle α

n
k depending on the

dimension n and on the rectiûcation degree k (for notation and the construction, see
Section 3.2). Denote by δ i k ∈ {0, 1} the Kronecker-Delta function deûned for ele-
ments i , k in an index set I. hen one of our main results can be stated as follows
(see heorem 3.6).

heorem 1.1 Let n ≥ 3 and 1 ≤ k ≤ n − 2 be integers. For a regular polyhedron
P ⊂ En with Schlä�i symbol {p1 , . . . , pn−1}, the ideal k-rectiûed regular n-polyhedron
P̂ = rkP ⊂ Hn admits the following dissections.

(i) If P is a simplex Sre g with p1 = ⋅ ⋅ ⋅ = pn−1 = 3, then rkSre g admits for 0 ≤ i ≤ n a
dissection into i!(n + 1 − i)! of (2 − δ0i)-truncated orthoschemes isometric to Û i(αn

k ),
and each of these splits into (

n+1
i ) simply-truncated orthoschemes isometric to Û0(αn

k ),

where αn
k = arccos

√
n−k

2(n−k−1) .
(ii) If P is an orthoplex Ore g with p1 = ⋅ ⋅ ⋅ = pn−2 = 3 and pn−1 = 4, then rkOre g

admits for 0 ≤ i ≤ n−1 a dissection into 2n i!(n− i)! of (2−δ0i)-truncated orthoschemes
isometric to V̂i(αn

k ), and each of these splits into (
n
i) simply-truncated orthoschemes

isometric to V̂0(αn
k ), where αn

k = arccos
1

√
n−k−1

.

Our proof is based on Debrunner’s heorem [4] and the theory of Napier cycles as
introduced by Im Hof [9].
As a consequence, the ideal birectiûed 6-cell r2Sre g admits a dissection into 6! iso-

metric copies of the Coxeter prism [6, 3, 3, 3, 3, 6], which in turn is part of a crystal-
lographic Napier cycle (see Section 2.3). his relationship allows us to determine the
volume of r2Sre g and the covolume of PS∆L(2,Hyb) as follows (see heorem 4.1).
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heorem 1.2 For the hybrid modular group PS∆L(2,H yb) = PS∆L(2,Z[ω, j]),

covol5(PS∆L(2,H yb)) =
13
180

ζ(3).

As a curious by-product, we obtain the following and seemingly new expression
for ζ(3) by combining the two diòerent volume representations for the Coxeter poly-
hedron [6, 3, 3, 3, 3, 6] (see Section 2, (2.11)):

ζ(3) =
360
13

[
π
4
JI2(

π
3
) + ∫

π
2

π
3

{JI2(
π
6
+ ω(t)) + JI2(

π
6
− ω(t))}dt], where

cosω(t) =
sin t

√
4 sin2 t − 1

.

his work is organised as follows. In Section 2, we provide the basic concepts about
hyperbolic polyhedra and Coxeter orthoschemes. We discuss Napier cycles and
present some distinguished examples. At the end of the section, we supply the volume
identities that will play a crucial role. In Section 3, we present Debrunner’s classical
dissection result for regular simplices and orthoplexes in a standard geometric space.
henwe develop the theory of ideal hyperbolic k-rectiûed regular polyhedra and pro-
vide an interpretation by (polarly) truncated polyhedra. Our key dissection result as
given byheorem 1.1 can then be established. In the last part, in Section 4, we exploit
the relation between certain quaternionic (pseudo)-modular groups and arithmetic
hyperbolic Coxeter groups as described by Johnson [11]. By combining various of our
results and applying them to the ideal birectiûed 6-cell, we will be able to establish our
secondmain result as stated inheorem 1.2. hework endswith the Remark 4.2 about
the incommensurability of the modular 5-orbifolds given byH5/PS∆L(2,H am) and
H5/PS∆L(2,H yb). In fact, there is no (orientable) hyperbolic 5-manifold that is a
ûnite cover of both orbifolds.

2 Napier Cycles and Volumes in Hyperbolic 5-space

In this section, we present the necessary background about hyperbolic polyhedra and
their description as fundamental polyhedra for discrete hyperbolic re�ection groups.
Of particular interest are regular polyhedra and their characteristic simplices. he
truncation by (polar) hyperplanes will lead us to the notion of Napier cycles. Finally,
some related volume formulas will be presented that will form a key ingredient in the
proofs of our main results.

2.1 Hyperbolic Polyhedra and Coxeter Orthoschemes

Denote by Xn either the Euclidean space En , the sphere Sn , or the hyperbolic space
Hn , together with its isometry group Isom(Xn). In the sequel, we will focus on the
hyperbolic case assuming that the corresponding classical concepts in the euclidean-
aõne and spherical cases are well known.

he hyperbolic spaceHn can be viewed in diòerent ways, for example, bymeans of
the Poincaré models in the upper half space U n and in the unit ball Bn of En , as well
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as the projective unit ball model Kn of Klein-Beltrami, closely related to the vector
space model Hn in the space En ,1 of Lorentz–Minkowski.
For the description of polyhedral objects, the vector space model Hn (and its

projective counterpart Kn) of hyperbolic space is most convenient (see [26, Chap-
ter I], for example). More concretely, let Hn be deûned in the quadratic space En ,1 =

(Rn+1 , ⟨x , y⟩n ,1 = ∑n
i=1 x i y i − xn+1 yn+1) of signature (n, 1), that is,

Hn
= {x ∈ En ,1

∣ ⟨x , x⟩n ,1 = −1, xn+1 > 0},

with distance function dH(x , y) = arcosh(−⟨x , y⟩n ,1). A non-zero vector x ∈ En ,1

is time-like, light-like, or space-like, if its square Lorentzian norm is negative, zero, or
positive, respectively. he boundary ∂Hn can be identiûed with the set of light-like
vectors x ∈ En ,1 ∩ Sn on the unit sphere such that xn+1 > 0. Furthermore, for an
integer 1 ≤ k ≤ n − 1, a hyperbolic k-plane in H

n is the non-empty intersection of a
(k+1)-dimensional subspace ofRn+1 withHn . Of importance will be the fact that the
Lorentz-orthogonal complement of a hyperbolic hyperplane is generated by a space-
like vector. Let us add that the group Isom(H

n
) coincides with the group PO(n, 1)

of positive Lorentzian matrices. For more details, see [23, Chapter 3] and [26].
Now, any discrete subgroup of Isom(H

n
) has a convex fundamental domain in

H
n whose closure can be assumed to be polyhedral. Of particular interest will be

discrete groups generated by ûnitely many re�ections in hyperplanes of Hn . For
their description, we rely on the combinatorics and geometry of their fundamental
polyhedra.

To this end, represent a hyperplane H ⊂ H
n by a unit normal vector, that is, by a

space-like vector e ∈ En ,1 of Lorentzian norm 1 such that

H = {x ∈Hn
∣ ⟨x , e⟩n ,1 = 0},

and which bounds two closed half-spaces, for example,

H−
= {x ∈Hn

∣ ⟨x , e i⟩n ,1 ≤ 0}.

A (convex, closed, and indecomposable) polyhedron P ⊂H
n is of the form

P = ⋂
i∈I

H−
i ,

where the index set I is always supposed to be ûnite. A polyhedron P is compact
(or of ûnite volume) if P is the convex hull of ûnitely many points ofHn , called the
vertices of P (or of Hn

∪ ∂Hn). he polyhedron P is ideal if all vertices belong to
∂Hn . In the sequel, we will consider acute-angled polyhedra, that is, polyhedra with
(interior) dihedral angles ∡(H i ,H j) ≤ π/2 for i , j ∈ I. Consider the Gram matrix
G(P) of P formed by the products ⟨e i , e j⟩n ,1 , i , j ∈ I. It is known that an indecom-
posable real symmetric N × N matrix A with diagonal elements [A]i i = 1 and non-
diagonal elements [A]i j ≤ 0, i /= j, is the Gram matrix G(P) of an acute-angled poly-
hedron P ⊂H

n (uniquely determined up an isometry) if and only if the signature of A
equals (n, 1). Similar results for acute-angled polyhedra in En and Sn are well known
(see [27, Part I, Chapter 6]). Furthermore, many of the combinatorial, metrical,
and arithmetic properties of P can be read oò from G(P). In particular, for i /= j,
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the coeõcients ⟨e i , e j⟩n ,1 characterise the mutual position of the hyperplanes H i ,H j
as follows:

(2.1) −⟨e i , e j⟩n ,1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

cos α i j if H i ,H j intersect at the angle α i j in H
n ,

1 if H i ,H j meet at ∂Hn ,
cosh l i j if H i ,H j are at distance l i j in H

n .

For more details, see Vinberg’s seminal work [26], [27, Part I, Chapter 6].
In case of many orthogonal bounding hyperplanes and small ∣I∣, it is convenient

to represent a given polyhedron P ⊂ H
n in terms of a (weighted) graph Σ = Σ(P)

of order ∣I∣. With each bounding hyperplane H with normal vector e ∈ En ,1 directed
outwards with respect to P, we associate a node ν in Σ. Two diòerent nodes ν i , ν j are
connected by an edge with a weight c i j if the hyperplanes H i ,H j are not orthogonal in
H

n . he weight c i j is given by ⟨e i , e j⟩n ,1. However, if −1 < c i j < 0, then c i j = −cos α i j ,
and we replace c i j by α i j . An edge with weight −1 will be decorated by the symbol∞.
Edges with weights ∣c i j ∣ > 1 are replaced by a dashed edge, and the weights are omitted
in most cases.

More speciûcally, if P is a Coxeter polyhedron having by deûnition dihedral an-
gles of the form α i j = π/m i j for integers m i j ≥ 2, only, the corresponding weights
traditionally carry only the label m i j > 3. Hence, simple edges indicate an intersec-
tion angle equal to π/3, and nodes not connected by an edge symbolise orthogonal
hyperplanes. In order to depict a Coxeter graph in an abbreviated way, we o�en use
the Coxeter symbol. In particular, [p1 , . . . , pk] or [q1 , . . . , q l ,∞] with integer labels
p i , q j ≥ 3 are associated with linear Coxeter graphs with k+ 1 or l +2 edges marked by
the respective weights. he Coxeter symbol [(p, q)[r]] describes a group with cyclic
Coxeter graph consisting of r ≥ 2 consecutive Coxeter graphs [p, q] (see [12, Appen-
dix], for example). In the sequel, we o�en represent a Coxeter polyhedron by quoting
its Coxeter symbol.

Recall that the re�ections with respect to the bounding hyperplanes of a Coxeter
polyhedron P ⊂ H

n generate a discrete group ΓP ⊂ Isom(H
n
) that is called a hy-

perbolic Coxeter group. he group ΓP is denoted by the Coxeter graph and Coxeter
symbol of P, and we do not distinguish between Coxeter polyhedron and re�ection
group. Notice that in contrast to the hyperbolic ones, the irreducible spherical (û-
nite) and euclidean (or aõne) Coxeter groups are completely classiûed. For a list, see
[8, Chapter 2] or [27, Chapter 5].
A polyhedron R ⊂ Xn with linear graph Σn = Σn(α1 , . . . , αn) of order n+1 = ∣I∣ ≥ 2

given by Figure 1:

Figure 1: he graph of an n-orthoscheme R ⊂ Xn .

is a geometric n-simplex whose bounding hyperplanes are indexed by H i , 0 ≤ i ≤ n,
in such a way that H i ⊥ H j for ∣i − j∣ > 1. he polyhedron R is parametrised by the
dihedral angles α i = ∡(H i−1 ,H i), 1 ≤ i ≤ n. hese simplices are called orthoschemes
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and were introduced by L. Schlä�i [25] in the spherical case. hey play an impor-
tant role when studying polyhedra with high degree of symmetry and provide the
characteristic simplices in the barycentric decomposition of regular polyhedra in Xn

(see Section 3.1, [3, Section 7.9], and [27, Part II, Chapter 5]).
Consider the special case of a graph Σn(α, β) as given in Figure 2, where the pa-

rameters α, β ∈ [0, π/2) are such that the graph Σn(α, β) relates to a polyhedron
R(α, β) ⊂ Xn (possibly of inûnite volume).

Figure 2: Graphs related to certain characteristic n-orthoschemes.

● he graph Σn(α, π
3 ) describes the characteristic (or barycentric) simplex of a û-

nite volume regular n-simplex Sre g(2α) ⊂ Xn with dihedral angle 2α, which is spheri-
cal, euclidean, or hyperbolic if −1 < cos(2α) < 1

n , cos(2α) =
1
n , or

1
n < cos(2α) ≤ 1

n−1 ,
respectively (see [17], for example). Indeed, by barycentric decomposition from its
in-center, Sre g(2α) can be decomposed into (n+ 1)! isometric copies of R(α, π

3 ). Ob-
serve that ûnite volume regular simplices tesselating hyperbolic spaceHn exist only
for n = 2, 3, and 4 (see [27, Part II, Chapter 5, Section 3]). A particular role is played by
the non-compact, ûnite volume orthoscheme R( π

6 ,
π
3 ) with Coxeter symbol [6, 3, 3],

which is the characteristic simplex of an ideal regular hyperbolic tetrahedron or 4-cell
Sre g(

π
3 ) ⊂H

3.
● he graph Σn(α, π

4 ) arises with respect to the barycentric decomposition into
2nn! isometric copies of the characteristic simplex of an n-dimensional regular cross-
polytope or n-orthoplex Ore g(2α) (in the terminology of J. Conway) with dihedral
angle 2α, which is hyperbolic of ûnite volume if 1

√
n < cos α ≤ 1

√
n−1

. In particular, the

Coxeter orthoscheme [4, 4, 3] is related to an ideal regular octahedronOre g(
π
2 ) ⊂H

3.
he graph Σn(α, π

4 ) (read from right to le� in Figure 2) describes the dual polyhedron
of Ore g(2α), that is, a regular n-cube Tre g(2α) ⊂ Xn with dihedral angle 2α. Of
course, the polyhedron Tre g(2α) exists with ûnite volume in H

n under the identical
angle constraint.

2.2 Napier Cycles

An n-orthoscheme R ⊂H
n as given by the graph in Figure 1 is characterised by n + 1

outer (unit) normal vectors e0 , . . . , en ∈ En ,1, forming a basis of En ,1 and satisfying
−1 < ⟨e i−1 , e i⟩n ,1 < 0 and ⟨e i , e j⟩n ,1 = 0 for i /= j. In this respect, an orthoscheme is a
part of and generates a so-called Napier cycle as introduced by Im Hof [9].

Deûnition 2.1 ANapier cycle in En ,1 is a setN = {e i ∈ En ,1 ∣ i ∈ Z/(n+ 3)} of n+ 3
vectors subject to the conditions

c i ∶= ⟨e i−1 , e i⟩n ,1 < 0 for all i ,(2.2)
⟨e i , e j⟩n ,1 = 0 for j /= i − 1, i , i + 1.

470

https://doi.org/10.4153/S0008414X20000036 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000036


Ideal Uniform Polyhedra and Covolumes of Higher Dimensional Modular Groups

Any n+1 consecutive vectors in aNapier cycleN form a basis ofEn ,1. Furthermore,
the deletion of two non-adjacent vectors fromN deûnes two Lorentz-orthogonal sub-
spaces of En ,1. Either these subspaces are both light-like, or one of them is space-like,
while the other one is time-like (or negative). A Napier cycleN can be of three diòer-
ent types. Either all vectors ofN are space-like, or exactly one vector is not space-like,
or exactly two vectors are not space-like. For n ≥ 4, the vectors in N admit a num-
bering and can be normalised in such a way that, for 0 ≤ i ≤ n, ⟨e i , e i⟩n ,1 = 1 with
−1 < c i = ⟨e i−1 , e i⟩n ,1 < 0. Consider such a normalised Napier cycle N with given
negative numbers c1 , . . . , cn . he setN is of type d if it contains precisely n+d vectors
of positive Lorentzian norm, equal to 1, say, whose non-vanishing Lorentzian prod-
ucts c i admit the interpretation according to (2.1). Moreover, the respective additional
products cn+1 = ⟨en , en+1⟩n ,1, cn+2 = ⟨en+1 , en+2⟩n ,1 and c0 = ⟨en+2 , e0⟩n ,1 can be easily
computed bymeans of a suitable Gram determinant calculation in terms of the values
c1 , . . . , cn . In fact, let δ(c1 , . . . , cn) be the determinant of the Gram matrix

G(e0 , . . . , en) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 c1
c1 1 ⋱

⋱ ⋱ ⋱

⋱ 1 cn
cn 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

of the vectors e0 , . . . , en , which satisûes nice recursion formulas. In particular, one
easily veriûes that

(2.3) δ(c1 , . . . , cn) =
n + 1
2n , δ(−

1
√

2
, c2 , . . . , cn) =

1
2n−1 if all c i = −

1
2
.

In the same spirit, by [9, Proposition 1.6] (or [25, Section 27]), one can show that

c20 =
δ(c1 , . . . , cn)
δ(c2 , . . . , cn)

, c2n+1 =
δ(c1 , . . . , cn)
δ(c1 , . . . , cn−1)

,

1 − c2n+2 =
δ(c1 , . . . , cn)δ(c2 , . . . , cn−1)

δ(c1 , . . . , cn−1)δ(c2 , . . . , cn)
.

(2.4)

Now, since the Lorentzian orthogonal complement of each unit space-like vector e in
N deûnes a hyperplaneH bounding two half-spaces inH

n , it is not diõcult to under-
stand the polyhedral conûguration provided by a Napier cycle of type d. In fact, type
1 Napier cycles correspond to orthoschemes in H

n . Type 2 Napier cycles (with en+2
not space-like, say) are inûnite volume orthoschemes bounded by H0 , . . . ,Hn and
truncated by Hn+1 to yield ûnite volume, simply-truncated orthoschemes in H

n . In a
similar way, Napier cycles of type 3 are ûnite volume, doubly-truncated orthoschemes
bounded by hyperplanes H0 , . . . ,Hn+2 in H

n . hey arise from inûnite volume or-
thoschemes bounded by n + 1 hyperbolic hyperplanes by truncation by means of the
two remaining ones. For details, see [9].

2.3 Crystallographic Napier Cycles

Consider a Napier cycle of type d in En ,1 and assume that it yields a (d − 1)-truncated
Coxeter orthoscheme in H

n . his means that for each weight c i with −1 < c i < 0,
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one has that c i = −cos π
m i
for some integer m i ≥ 3. In [9], Im Hof completely classi-

ûed these particular Coxeter polyhedra, referring to them as crystallographic Napier
cycles, and showed that they exist in H

n for n ≤ 9, only. In the sequel, the following
examples will be of particular interest.

Example 2.2 he Coxeter polyhedron [6, 3, 3, 3,∞] in H
4 with graph given by

Figure 3 gives rise to a crystallographic Napier cycle of type 2 (here with e6 not space-
like) and describes a simply-truncated Coxeter orthoscheme. Underlying is the inû-
nite volume orthoscheme R0 = [6, 3, 3, 3] bounded by the hyperplanes H0 , . . . ,H4
according to the graph in Figure 3. Denote by pk the vertices of R0 opposite to
the bounding hyperplane Hk for 0 ≤ k ≤ 5. By construction, they form an or-
thogonal edge path p0p1 , . . . , p4p5 in E4,1. he polyhedron R0 can be interpreted as
the characteristic simplex (see Section 3.1) of an inûnite volume regular hyperbolic
4-simplex Sre g(

π
3 ) with in-center equal to p0 and all of whose vertices v0 , . . . , v4

are given by space-like vectors. In particular, one vertex of Sre g(
π
3 ) corresponds to

p4 whose neighborhood in R0 is a cone over the hyperbolic Coxeter tetrahedron
[6, 3, 3]. he truncating hyperplaneH5 intersects H4 at the point p3 on the boundary
∂H4, indicated by a circle in Figure 3. In this way, the polyhedron [6, 3, 3, 3,∞] is a
Coxeter pyramid with apex at inûnity p3 over a product of two (euclidean) Coxeter
simplices with symbols [6, 3] and [∞] (see [7], for example). In particular, all edges
v iv j of Sre g(

π
3 ) are bisected at an ideal point, denoted by q i j , on ∂H4. he convex

hull of q i j , 0 ≤ i < j ≤ 4, gives rise to an ideal polyhedron of ûnite volume in ∂H4,
with dihedral angles π

3 and π
2 , called the ideal rectiûed 5-cell, denoted by r1Sre g

(see Section 3.2).

Figure 3: he 4-dimensional ûnite volume analogue of [6, 3, 3].

Example 2.3 Consider the Coxeter polyhedron [6, 3, 3, 3, 3, 6] in H
5 given by

Figure 4. It is a simply-truncated Coxeter orthoscheme which belongs to a crystallo-
graphic Napier cycle of type 2. he Coxeter orthoscheme R0 = [6, 3, 3, 3, 3] bounded
by the hyperplanes H0 , . . . ,H5 and with vertices p0 , . . . , p5 opposite to them is of in-
ûnite volume. he vertices p4 , p5 of R0 are given by space-like vectors described by
principal submatrices of G(R0) of signature (4, 1), while the vertex p3 is given by a
light-like vector. heneighborhood of p3 is a cone over the product of two (euclidean)
Coxeter triangles with symbol [6, 3] as indicated by a circle in Figure 4. he polyhe-
dron R0 is the characteristic simplex arising in the barycentric decomposition of an
inûnite volume hyperbolic regular 5-simplex Sre g(

π
3 ) with in-center p0. All vertices

of Sre g(
π
3 ) are given by space-like vectors v0 , . . . , v5 such that they span space-like

planes span(v i , v j) in E5,1. By applying Vinberg’s theory about the face complex of
acute-angled hyperbolic polyhedra, the graph in Figure 4 indicates that the barycen-
ter of each 2-face (the vertex p3, for example) of Sre g(

π
3 ) is a point on the bound-

ary ∂H5. Taking the convex hull of all these ideal barycenters yields a ûnite volume
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Figure 4: he 5-dimensional ûnite volume analogue of [6, 3, 3].

hyperbolic polyhedron, of dihedral angles equal to π
3 and

π
2 , which is called the ideal

birectiûed 6-cell and denoted by r2Sre g ⊂H
5 (see Section 3.2).

Example 2.4 Similarly to Example 2.2, the Coxeter pyramid [4, 4, 3, 3,∞] in H
4

associated with an inûnite volume regular 4-orthoplex Ore g(
π
2 ) describes a simply-

truncated orthoscheme that decomposes the ideal rectiûed 4-orthoplex r1Ore g ⊂ H
4

with all dihedral angles equal to π
2 into 384 isometric copies (see Section 3.2).

Similarly to Example 2.3, the Coxeter polyhedron [4, 4, 3, 3, 3, 6] inH
5 associated

with an inûnite volume regular 5-orthoplex Ore g(
π
2 ) describes a simply-truncated

orthoscheme which decomposes the ideal birectiûed 5-orthoplex r2Ore g ⊂ H
5 with

dihedral angles π
2 and

π
3 into 3, 840 isometric copies (see Section 2.4, Remark 2.7,

and Section 3.2).

Example 2.5 he Coxeter polyhedron [3, 4, 35 , 6] in H
7 is a simply-truncated or-

thoscheme that decomposes barycentrically the ideal birectiûed 7-orthoplex r2Ore g ⊂

H
7 with dihedral angles 2π

3 ,
π
3 and

π
2 into 645, 120 isometric copies (see Section 3.2

with Corollary 3.7).

2.4 Some Volume Identities

Consider a normalisedNapier cycleN = {e i ∈ En ,1 ∣ i ∈ Z/(n+3)}of type d , 1 ≤ d ≤ 3,
in En ,1 such that −1 < c i = ⟨e i−1 , e i⟩n ,1 < 0 for 1 ≤ i ≤ n. As described in Section 2.2,
N yields a k-truncated orthoscheme Rk in H

n for k = d − 1. We are interested in
ûnding explicit volume expressions for crystallographic Napier cycles containing the
building blocks of tesselating k-rectiûed regular polyhedra in H

n (see Section 3.2).
By [14, 15], we dispose of closed volume formulae available for dimension n = 3 and
for even dimensions.
● For n = 3, the volume of any k-truncated orthoscheme can be expressed in

terms of its dihedral angles and by means of the Lobachevsky function JI2(x), which
is deûned as follows (see [14]):

JI2(x) =
1
2

∞

∑
r=1

sin(2rx)
r2

= −∫

x

0
log ∣2 sin t∣dt, x ∈ R.

For example, by the classical Lobachevsky formula [14, (2)], the volume of a non-
compact (0-truncated) orthoscheme R ⊂ H3 with linear graph Σ3(

π
2 − α, α, β) (see

Figure 1) is given by the expression

vol3(R) =
1
2
JI2(α) +

1
4
{JI2(

π
2
− α + β) − JI2(

π
2
+ α + β)}.

In particular, the volume of the Coxeter orthoscheme [6, 3, 3] equals 1
8 JI2(

π
3 ) so that

vol3(Sre g(
π
3 )) = 3 JI2( π

3 ).
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● For n = 2m even, the volume of a k-truncated hyperbolic n-orthoscheme Rk
with graph Σk = Σ(Rk) can be expressed in terms of certain real-valued modiûed
volume functions Fn and f l deûned on (the set of measurable subsets of) Hn and Sl ,
respectively, in a more elegant way. More concretely, let f0 = F0 = 1, and deûne for
l = 1, . . . , n − 1, n ≥ 2, the volume functions

f l ∶= ν l voll , Fn ∶= inνn voln with i2 = −1, ν l =
2l+1

voll(Sl)
.

hen the so-called Reduction Formula as presented in [15, Section 3] allows one to
express the volume of a k-truncated n-orthoscheme Rk with graph Σk in terms of its
dihedral angles as follows:

(2.5) F2m(Σk) =
m

∑
r=0

(−1)r

r + 1
(
2r
r
)∑

σ
f2m−(2r+1)(σ), ∑

σ
f−1 ∶= 1.

Here, σ runs through all spherical subgraphs of order 2(m − r) of Σk all of whose
connected components are of even order. Observe that, for m > r, each such compo-
nent describes a spherical orthoscheme of odd dimension < 2(m − r). By means of
formula (2.5) for n = 2m and by Schlä�i’s results about the order of a ûnite Coxeter
group providing the values f l for l ≤ m − 1 (see [25, No. 23, p. 268 ò]), the volumes
of all k-truncated Coxeter n-orthoschemes were determined in [15, Appendix] (up to
someminor calculation errors). In particular, for n = 4, the simply-truncated Coxeter
orthoscheme [6, 3, 3, 3,∞] is of volume π2/540, while for n = 6, the simply-truncated
Coxeter orthoscheme [3, 4, 3, 3, 3, 3,∞] is of volume π3/259, 200.

In the sequel, we are particularly interested in the volume computation for those
polyhedra in H5 that are related to orbit spaces by certain quaternionic modular
groups. In general, it is very diõcult to ûnd a closed volume formula for a family
of polyhedra of ûxed combinatorial-metrical type in H

5. However, there are some
partial but very useful results for k-truncated 5-orthoschemes. For k = 0, consider a
5-orthoscheme

(2.6) R(α, β, γ) = ⋂
0≤i≤5

H−
i such that cos2 α + cos2 β + cos2 γ = 1,

which is deûned by the graph in Figure 5.

Figure 5: he orthoscheme R(α, β, γ) ⊂H5 with cos2 α + cos2 β + cos2 γ = 1.

he angle condition in (2.6) ensures that the vertices p0 and p5 of R(α, β, γ) opposite
to the bounding hyperplanes H0 andH5 are ideal points. In [16,heorem, p. 659], we
obtained the following volume formula:

(2.7) vol5 (R(α, β, γ)) =
1
4
{JI3(α) + JI3(β) −

1
2
JI3(

π
2
− γ)}

−
1
16

{JI3(
π
2
+ α + β) + JI3(

π
2
− α + β)} +

3
64

ζ(3).
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Here, the Lobachevsky function of order three JI3(ω),ω ∈ R, is related to the classi-
cal trilogarithm function Li3(z) = ∑∞

r=1
zr

r3 , ∣z∣ ≤ 1, satisfying Li3(1) = ζ(3), as follows:

(2.8) JI3(x) =
1
4
R(Li3(e2ix)) =

1
4

∞

∑
r=1

cos(2rx)
r3

, x ∈ R.

he function JI3(x) is even, π-periodic, and fulûls the distribution law

(2.9)
1

m2 JI3(mx) =
m−1

∑
r=0

JI3(x +
rπ
m

), where x ∈ R and m ∈ Z>0 ,

which allows one to identify some special values of JI3(x) with certain rational mul-
tiples of ζ(3) (see [16, Section 2.3]).
As a consequence of the identities (2.7), (2.8), and (2.9), the Coxeter orthoscheme

R( π
3 ,

π
4 ,

π
3 ) in H

5 has volume

(2.10) vol5([3, 4, 3, 3, 4]) =
7

4, 608
ζ(3).

However, the volume computation for the simply-truncated Coxeter orthoscheme
[6, 3, 3, 3, 3, 6] inH

5 discussed in Example 2.3 cannot be performed in an exact man-
ner by exploiting results in the spirit of (2.7). Nevertheless, based on Schlä�i’s volume
diòerential formula (see [18, Section 2.1], for example), its volume can be represented
by a single integral as follows. Denote by R(ω) ⊂ H

3 a non-compact orthoscheme
with dihedral angles ω, π

3 ,
π
6 (see Figure 1). As a function of ω, its volume is given by

the classical Lobachevsky formula [14, (2)] according to

vol3(R(ω)) =
1
2
JI2(

π
3
) +

1
4
{JI2(

π
6
+ ω) + JI2(

π
6
− ω)}.

With these preparations, the volume of [6, 3, 3, 3, 3, 6] can be written as follows:

vol5([6, 3, 3, 3, 3, 6])(2.11)

=
1
4
[∫

π
2

π
3

vol3(R(ω(t)))dt −
1
48

JI2(
π
3
)]

=
1
16

[
π
4
JI2(

π
3
) + ∫

π
2

π
3

{JI2(
π
6
+ ω(t)) + JI2(

π
6
− ω(t))}dt]

≃ 0.0027129757, where cosω(t) =
sin t

√
4 sin2 t − 1

.

Remark 2.6 By a structural result of Prasad (see [5, Proposition 2.1 (1)], for ex-
ample), the volume of the non-compact arithmetic orbifold deûned over Q as given
by the orbit space of [6, 3, 3, 3, 3, 6] is a rational multiple of ζ(3). Now, numerical
evidence suggests that the value (2.11) for the volume of [6, 3, 3, 3, 3, 6] is equal to

13
5,760 ζ(3). By means of a combinatorial-metrical argument, we will prove rigorously

the conjectural identity vol5([6, 3, 3, 3, 3, 6])
?
= 13

5,760 ζ(3) (see heorem 4.1).
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Remark 2.7 In a similar way, the volume of the simply-truncated Coxeter or-
thoscheme [6, 3, 3, 3, 4, 4] in H

5 can be identiûed as follows:

vol5 ([6, 3, 3, 3, 4, 4]) =
1
16

[
3π
8

JI2(
π
3
) + ∫

π
2

π
4

{JI2(
π
6
+ ω(t)) + JI2(

π
6
− ω(t))}dt].

In [24], Ratcliòe and Tschantz determined—among other things—the covolume of
the group of units of the quadratic form f n3 (x) = x2

1 +⋅ ⋅ ⋅+x2
n −3x2

n+1 , which is known
to contain a (maximal) re�ection subgroup Γ of ûnite index for n ≤ 13. In the case
of n = 5, the Coxeter group Γ ⊂ Isom(H

5
) is given by [6, 3, 3, 3, 4, 4]. heir volume

computation yields the precise expression

vol5([6, 3, 3, 3, 4, 4]) =
√

3
320

L(3, 12) ≃ 0.0053587488,

where L(s,D) = ∑
∞
r=1 (

D
r )

1
rs denotes the Dirichlet L-series with Kronecker symbol

( Dr ) (see [24, Table 1] and compare with [5, Proposition 2.1 (2)]). Notice that the two
arithmetic hyperbolic Coxeter groups [6, 3, 3, 3, 4, 4] and [6, 3, 3, 3, 3, 6] have non-
compact fundamental polyhedra of identical combinatorial type being pyramids over
a product of two simplices. If the two groups were commensurable, the volumes
would be necessarily Q-proportional. However, in [7], we proved that the groups
are incommensurable.

We ûnish the volume considerations by quoting and applying the following result
for doubly-truncated 5-orthoschemes as proved in [18, (24)].

Figure 6: A doubly-truncated 5-orthoscheme with cyclic graph Ω(α).

Proposition 2.8 Consider a doubly-truncated orthoscheme in H
5 with cyclic graph

Ω(α) of order 8 as given in Figure 6. hen its volume equals

vol5(Ω(α)) =
1
32

ζ(3) −
1
2
{JI3(α) + JI3(

π
2
− α)}.

Example 2.9 By the above proposition together with the identity (2.9), we obtain
that

(2.12) vol5 ([(3, 6)[4]]) =
13
288

ζ(3) = 20 ⋅
13

5, 760
.
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By comparing (2.12) with the result of Remark 2.6, we deduce the following conjec-
tural volume identity between Ω( π

3 ) = [(3, 6)[4]] and [6, 3, 3, 3, 3, 6]:

(2.13) vol5([(3, 6)[4]])
?
= (

6
3
) ⋅ vol5 ([6, 3, 3, 3, 3, 6]).

his volume identity will be a direct consequence of a dissection result for an ideal
birectiûed regular simplex inH5 (see Section 3.5,heorem 3.6(i) for n = 5 and k = 2).

3 Rectifying Hyperbolic Regular Polyhedra

In this section, we present Debrunner’s dissection result for regular simplices and or-
thoplexes by means of certain orthoschemes. hen we develop the theory of ideal hy-
perbolic k-rectiûed regular polyhedra in the projective model of hyperbolic n-space
and provide an interpretation by polarly truncated polyhedra. In this way, we can de-
scribe the two families of ideal k-rectiûed regular simplices and orthoplexes bymeans
of Napier cycles and prove one of our main results as given by heorem 3.6.

3.1 Regular Polyhedra in Xn and Debrunner’s Result

Consider a polyhedron P ⊂ Xn and its �ags of the form F = {F0 , . . . , Fn−1}, F−1 ∶= ∅,
consisting of k-dimensional faces Fk of P such that Fk−1 ⊂ Fk for k = 0, . . . , n − 1.
he polyhedron P is regular (and denoted by Pre g at times) if its symmetry group
Sym(P) acts (simply) transitively on its �ags (see [27, Part II, Chapter 5, Section 3],
for example). It follows that each face of P is itself a regular polyhedron and that the
symmetry group of P has a unique ûxed point, the (bary- or in-)center of P, denoted by
bn . he point bn is the center of the diverse in- and circumspheres attached to P. Fix
a �ag F of P and consider the centers bk of its k-faces (0 ≤ k ≤ n − 1). In particular,
the point b0 coincides with a vertex v ∈ P. Each sequence b0 , . . . , b i−1 , b i+1 , . . . , bn
deûnes an (aõne) hyperplane H i , 0 ≤ i ≤ n − 1, which bounds the half-space H−

i in
Xn containing the point b i . Consider the polyhedral cone C = ∩n−1

i=0H
−
i with apex bn

in Xn whose edges pass through b0 , . . . , bn−1. It provides a fundamental domain for
Sym(P), which is generated by the n re�ections in the hyperplanes H0 , . . . ,Hn−1. It
is not diõcult to see that R ∶= C ∩ P is an n-orthoscheme, called the characteristic
simplex of P. he regular polyhedron P is of dihedral angle 2α if the hyperplane Hn
opposite to bn in the boundary of R (and of P) and the hyperplaneHn−1 form the angle
∡(Hn−1 ,Hn) = α. For k = 1, . . . , n − 1, let pk denote the number of k-dimensional
faces of P containing the face Fk−2 and being contained in the face Fk+1 where Fn ∶= P.
hen the Schlä�i symbol of P is the ordered set {p1 , . . . , pn−1}. Reading a given Schlä�i
symbol in reversed order yields the Schlä�i symbol of the regular polyhedron dual
to P. Observe that the cone C and the re�ection group generating Sym(P) can be
represented by the Coxeter graph ΣC as given in Figure 7. Furthermore, the graph ΣC
relates to a ûnite Coxeter group (of type An , Bn , Dn , E6, E7, E8, F4, H3, H4, or I2(m);
see [8, part I, Section 2]).

he vertex ûgure Pv at v of an arbitrary polyhedron P is the intersection of P
with a sphere centered at v of suõciently small radius in Xn (intersecting only the
edges passing through v). Up to a normalisation, each vertex ûgure of an (ordinary)
vertex v in Xn is a spherical (n − 1)-polyhedron. In the hyperbolic case, a vertex q of

477

https://doi.org/10.4153/S0008414X20000036 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000036


R. Kellerhals

Figure 7: he Coxeter graph ΣC associated with the cone C ⊂ Xn .

a ûnite volume polyhedron P may be on the boundary at inûnity ∂Hn , in which case
its vertex ûgure—as intersection of P with a suitable horosphere centered at q—turns
into a Euclidean (n − 1)-polyhedron. It is easy to see that each vertex ûgure Pv of a
regular polyhedron P is itself a regular polyhedron and admits a barycentric decom-
position into (n−1)-orthoschemes isometric to R∩Pv . In this way, the Schlä�i symbol
{p1 , . . . , pn−1} can be interpreted as the union of the Schlä�i symbol {p1 , . . . , pn−2}

of a facet with the Schlä�i symbol {p2 , . . . , pn−1} of a vertex ûgure of a regular poly-
hedron P. he graph ΣC is the Coxeter graph associated with the spherical vertex
ûgure R∩Pbn . Finally andmost importantly, a regular polyhedron P ⊂ Xn of dihedral
angle 2α can be entirely described bymeans of its characteristic simplex R with graph
Σn(

π
p1
, . . . , π

pn−1
, α) according to Figure 1 (see [3, Sections 7.5–7.9]).

Examples are the Schlä�i symbols {3, . . . , 3} and {4, 3, . . . , 3}, which describe
(self-dual) regular simplices and regular hypercubes in Xn , while the Schlä�i sym-
bol {3, . . . , 3, 4} describes a regular orthoplex (or cross-polytope). Notice that these
are the only regular polyhedra existing in every dimension. For these types of reg-
ular polyhedra, realised on the sphere Sn , Schlä�i [25, Sections 29 and 31] obtained
volume identities for certain related orthoscheme families. More precisely, these are
the orthoscheme family U i(α), 0 ≤ i ≤ n + 1, associated with a regular n-simplex
Sre g(2α) ⊂ Xn and the orthoscheme family Vi(α), 0 ≤ i ≤ n, associated with a reg-
ular orthoplex Ore g(2α) ⊂ Xn as given by the graphs in Figures 8 and 9. For their
realisation conditions, see Section 2.1 and [4, Remark (7.5), Remark (7.9)]. Further-
more, the orthoschemes U0(α) = R(α, π

3 ) and V0(α) = R(α, π
4 ) are isometric to the

orthoschemes Un+1(α) and Vn(α), respectively, the latter being the corresponding
characteristic simplices (see Section 2.1 and Figure 2).

Figure 8: Orthoschemes U i(α), 0 ≤ i ≤ n + 1, tiling Sre g(2α) ⊂ Xn .

Figure 9: Orthoschemes Vi(α), 0 ≤ i ≤ n, tiling Ore g(2α) ⊂ Xn .

In [4,heorems (7.4) and (7.8)], Debrunner provided an alternative proof for Schlä�i’s
volume identities, in the cases of Sre g(2α) and Ore g(2α) in Xn , by using only a dis-
section argument. More precisely, he deduced the following result (see also the proof
of heorem 3.6 below).
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heorem 3.1 (Debrunner)
(i) A regular simplex Sre g(2α) ⊂ Xn of dihedral angle 2α admits for 0 ≤ i ≤ n a

dissection into i!(n + 1 − i)! orthoschemes isometric to U i(α), and each of these splits
into (

n+1
i ) orthoschemes isometric to U0(α).

(ii) A regular orthoplex Ore g(2α) ⊂ Xn of dihedral angle 2α admits for 0 ≤ i ≤ n− 1
a dissection into 2n i!(n − i)! orthoschemes isometric to Vi(α), and each of these splits
into (

n
i) orthoschemes isometric to V0(α).

In the next section, we will extend these results to their ideal truncated or
k-rectiûed hyperbolic counterparts.

3.2 Rectification of Regular Polyhedra

Let P ⊂ En be a regular Euclidean polyhedron with fk faces Fk of dimension k for
0 ≤ k ≤ n. Consider a �ag F0 , . . . , Fn−1 , Fn of faces Fk with centers bk as above. hen
the orbit Mk ∶= Sym(P)bk consists of the centers (or midpoints) of all k-dimensional
faces of P and has cardinality equal to fk .
For 0 ≤ k ≤ n−1, the k-rectiûed regular polyhedron rkP ⊂ En of P is the (Euclidean)

convex hull of the fk points in Mk . he polyhedron rkP arises from P by shrinking
all the k-dimensional faces of P to their centers. Hence, r0P = P, while r1P is the
result of the truncation from P of each vertex cone, denoted by cone(v , Pv), v ∈ M0 ,
by the aõne hyperplane Ev determined by the centers of the edges of P ending at v.
he facets of r1P consist of the polyhedra Ev ∩ P associated with the vertices v ∈ M0,
and the truncated facets of P. As a reference, see [3, Chapter VIII].

Observe that the polyhedron rn−1P coincides with the dual of the regular poly-
hedron P. Consequently, we will consider k-rectiûed regular polyhedra in En for
1 ≤ k ≤ n − 2, only.
A k-rectiûed regular polyhedron rkP ⊂ En gives rise to an ideal hyperbolic

n-polyhedron (of ûnite volume) in the following way. Interpret hyperbolic n-space
Hn in the projective unit ball model Kn of Klein–Beltrami. Next, consider the in-
sphere S of rkP ⊂ En centered at bn , which touches all points m1 , . . . ,m fk of Mk .
By normalising appropriately, the sphere S can be identiûed with the unit boundary
sphere Sn−1 of Kn . Since k ≥ 1, the vertices of P are ultra-ideal points, lying outside
of S with respect to Kn , and P ∩ Hn is a convex region bounded by the hyperbolic
hyperplanes Sym(P)Fn−1, which is of inûnite volume.

Deûnition 3.2 Let 1 ≤ k ≤ n − 2 be an integer. he ideal hyperbolic k-rectiûed
regular polyhedron P̂ ⊂ Hn associated with P is the (hyperbolic) convex hull of the
ideal points m1 , . . . ,m fk ∈ Sn−1 of Hn . We identify P̂ with rkP and write P̂ = rkP
accordingly.

An ideal hyperbolic k-rectiûed regular polyhedron P̂ ⊂ Hn is of ûnite volume and
determined uniquely up to isometry by the Schlä�i symbol of the underlying regu-
lar polyhedron P and the degree of rectiûcation k. Of particular interest will be the
ideal hyperbolic k-rectiûed regular simplex rkSre g and the ideal hyperbolic k-rectiûed
regular orthoplex rkOre g in Hn (for k = 2 and n = 5, 7, see Examples 2.3 and 2.5).
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We will provide a complete description of their facial structure and dihedral angles
(see Section 3.4, Remark 3.5).

3.3 Rectification and Polar Truncation

Our aim is to extend Debrunner’s heorem 3.1 to the families of ideal k-rectiûed reg-
ular simplices rkSre g and orthoplexes rkOre g in Hn , forming the single categories of
such polyhedra (up to duality) existing in all dimensions. To this end, we exploit the
properties of the Klein–Beltrami model Kn in real projective space Pn in order to
adjust Debrunner’s proof appropriately. In fact, this approach will allow us to inter-
pret an ideal rectiûed regular polyhedron as a regular polyhedron, which is suitably
(polarly) truncated.
First, there is the well known relationship between points X = [x] ∈ Pn , repre-

sented by non-zero vectors x ∈ En ,1, and hyperplanes πX = {[y] ∈ Pn ∣ ⟨x , y⟩n ,1 = 0}
relative to the quadric Qn ,1 = {[x] ∈ Pn ∣ ⟨x , x⟩n ,1 = 0}, which yields a bijection
between the set of all points or poles X =∶ pol(πX) and the set of all hyperplanes or
polar hyperplanes πX =∶ pol(X) of Pn . his duality principle for Pn relative to Qn ,1 is
characterised by the following important properties (see [14, Section 1], for example).

Properties 3.3 (i) he polar hyperplane πX of X = [x] ∈ Pn respectively in-
tersects, touches, or avoids the quadric Qn ,1 if and only if the vector x is space-like,
light-like, or time-like.

(ii) If two lines g , h in P2 intersect at I = g ∩ h, then pol(I) is the line determined
by pol(g) and pol(h).

(iii) If a hyperplane π1 in Pn contains the pole pol(π2) of the hyperplane π2, then
π1 ⊥ π2 holds.

Consider an ideal hyperbolic 1-rectiûed regular polyhedron P̂ = r1P ⊂ Kn with
underlying regular polyhedron P having the barycenter bn . For each vertex v ∈ P,
interpreted as a unit space-like vector inEn ,1 , the polar hyperplane π[x] consists of all
points [y]with y ∈ Ev where Ev is the hyperplane determined by the (ideal) centersm i
of the edges vv i , 1 ≤ i ≤ N , of P ending at v (N ≥ n). Indeed, Ev is the hyperbolic vec-
tor subspace of En ,1 generated by the (non-zero) light-like vectors v + v i representing
the centers m i , up to normalisation (1 ≤ i ≤ N). For a vector y = ∑i λ i(v + v i) ∈ Ev ,
one gets ⟨y, v⟩n ,1 = ∑i λ i{1+⟨v i , v⟩n ,1}=∑i λ i{1−∥v i∥n ,1 ∥v∥n ,1} = 0 since v , v i lie on
opposite sides of the light-like line generated by m i (see [23,heorem 3.2.9, heorem
3.2.10], for example).
As a consequence (see Property (iii) above), the hyperbolic hyperplane Ev inter-

sects orthogonally all those hyperplanes, bounding P or bounding a characteristic
simplex R = C ∩ P for a �ag F = {F0 , . . . , Fn−1} of P, which contain the vertex
v = F0 ∈ P (see Section 3.1). Write R = ∩n

i=0H
−
i , where H0 is the hyperplane op-

posite to v = b0, as usually. Since P̂ = r1P is 1-rectiûed, the hyperplanes H0 and
Ev are (hyperbolic) parallel (intersecting at b1 ∈ ∂Kn) with ∡(H0 , Ev) = 0, while
∡(H i , Ev) = π

2 for 1 ≤ i ≤ n. For later purpose, it is convenient to write H−1 ∶= Ev .
Next, consider all vertices v =∶ v1 , . . . , v f0 of P. For 1 ≤ i ≤ f0, deûne (aõne) rays

ρ i through bn and v i , parametrised by t ≥ 0 such that bn = ρ i(0) and v i = ρ i(t1)
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Figure 10: he graphs of Û0(αn
k ) and V̂0(αn

k ).

for some t1 > 0. Moreover, intersecting hyperplanes E i(t1) ∶= Ev i = v⊥i meet at the
points ofM1 = Sym(P)b1, being the centers of the edges v iv j for i /= j. Recall that the
(hyperbolic) convex hull of the points of M1 = Sym(P)b1 equals r1P = P̂ =∶ P̂(t1). In
this context, for k > 1, the ideal hyperbolic k-rectiûed regular polyhedron rkP = P̂ can
be interpreted as P̂(tk) for some (unique) tk > tk−1. Indeed, by Property (ii) (describ-
ing a way to construct polar hyperplanes), for t↗tk , the points ρ i(t) go uniformly
away from the polyhedron P, while the polar hyperplanes represented by E i(t) tend
inwards of P until they meet points of Mk = Sym(P)bk at time t = tk . Observe that
E1(tk) intersects the hyperplane H0 bounding R under a certain non-zero dihedral
angle, while E1(t1) = Ev and H0 are (hyperbolic) parallel. he dihedral angle will be
made explicit in the cases rkSre g and rkOre g (see (3.1)).

3.4 Napier Cycles Associated with rkSre g and rkOre g

Let n ≥ 3 and 1 ≤ k ≤ n − 2. he above considerations restricted to the special cases
rkSre g and rkOre g motivate us to look at the simply-truncated orthoschemes Û0 =

Û0(αn
k ), where αn

k = arccos
√

n−k
2(n−k−1) , and V̂0 = V̂0(αn

k ), where αn
k = arccos

1
√

n−k−1
inHn , whose graphs are given by Figure 10 and carry the additional weights c0n+1(Û0)

and c0n+1(V̂0) (denoted by c0n+1, for short). he polyhedra Û0 and V̂0 are bounded by
n + 2 hyperbolic hyperplanes H i whose intersection behavior is indicated in
Figure 10, by associating with H i the node labeled by i , 0 ≤ i ≤ n + 1. he underlying
orthoschemes U0 and V0, bounded by the hyperplanes H0 , . . . ,Hn , respectively, are
such that the vertex opposite to the hyperplane Hn−k is an ideal point. Furthermore,
the hyperplane Hn+1 corresponds to the polar hyperplane (denoted earlier by H−1),
and it lies opposite to the ultra-ideal vertex opposite to Hn . he vertex ûgure of U0
of the vertex opposite to H0 is of type An−1 = [3, . . . , 3], while the vertex ûgure of
V0 of the vertex opposite to H0 is of type Bn−1 = [4, 3, . . . , 3]. hese facts allow us to
deduce the explicit formulas for αn

k . Indeed, for Û0, for example, since the vertex op-
posite of Hn−k is an ideal point, having a Euclidean vertex neighborhood, the leading
principal minor of order n−k of the Gram determinant associated with H0 , . . . ,Hn+1

must vanish. For example, in the case of Û0, and based on (2.3), the requirement
δ(− cos αn

k ,−
1
2 , . . . ,−

1
2 ) = 0 yields the expression for αn

k as mentioned above (see
also the proof of Lemma 3.4).

Lemma 3.4 Let n ≥ 3 and 1 ≤ k ≤ n − 2. hen, c0n+1(Û0) = c0n+1(V̂0) = −
√

k+1
2k .
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Proof he polyhedra Û0 and V̂0 are bounded by n + 2 hyperplanes H0 , . . . ,Hn+1
inH

n , characterised by (space-like) normal vectors e0 , . . . , en+1 ∈ En ,1, which are lin-
early dependent in Rn+1. Hence, their Gram matrices GU = G(Û0) and GV = G(V̂0)

have vanishing determinant. For 3 ≤ m ≤ n, consider the principal submatrix Gm
U

of GU formed by the vectors e0 , . . . , em . By some well known recursion formulas for
the determinant of such matrices (see [3, Sections 7.74–7.76], for example), we easily
deduce that

detGm
U = detAm − cos2 αk

n detAm−1 =
1

2m (1 −
m

n − k − 1
),

since detA l = (l + 1)/2l . herefore, we obtain

(c0n+1(Û0))
2
=
detGn

U

detGn−1
U

=
k + 1
2k

≤ 1,

which implies the assertion. In a similar vein, one identiûes the determinant of the
submatrix Gm

V of GV formed by the vectors e0 , . . . , em with

detGm
V = detBm − cos2 αk

n detAm−1 =
1

2m−1 (1 −
m

n − k − 1
),

since detB l = 1/2l−1. Hence, we deduce that

(c0n+1(V̂0))
2
=
detGn

V

detGn−1
V

=
k + 1
2k

≤ 1,

which ûnishes the proof. ∎

Remark 3.5 Let P be a regular simplex Sre g or a regular orthoplexOre g in Euclidean
n-space. he ideal hyperbolic k-rectiûed regular polyhedron P̂ = rkP ⊂ Hn has facets
(faces of codimension 1) of two sorts: (truncated) facets belonging to P and polar
facets, that is, facets contained in the polar hyperplanes πv of the ultra-ideal vertices
v of P (k ≥ 1). Furthermore, rkP has dihedral angles 2αn

k formed by intersecting facets
of P, dihedral angles π

2 between each polar facet in a πv and the facets of P containing
the pole v, as well as dihedral angles 2γn

k attached to the intersection of a polar facet
in πv with a facet of P not containing v. By Lemma 3.4, the angle 2γn

k ∈]0,
π
2 ] can be

identiûed as follows:

(3.1) γn
k =

⎧⎪⎪
⎨
⎪⎪⎩

0 for k = 1,

arccos
√

k+1
2k for k > 1.

Each of the polyhedra Û0 and V̂0 is part of a Napier cycle of type 2 (see Section 2.2).
Furthermore, for i ≥ 1, we can form doubly-truncated orthoschemes Û i = Û i(αn

k )

and V̂i = V̂i(αn
k ) in H

n with graphs and additional weights as indicated in Figure 11
and in Figure 12, respectively, each deûning a Napier cycle of type 3.

he additional weights c ih(Û i) and c ih(V̂i), where h = n+ 1, n+2, 0, as indicated in
Figures 11 and 12 are determined by formula (2.4) upon passing from angular weights
ω such as π

3 ,
π
4 or αn

k to c = − cosω (see (2.2)).
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Figure 11: he doubly-truncated orthoschemes Û i(αn
k ), 1 ≤ i ≤ n.

Figure 12: he doubly-truncated orthoschemes V̂i(αn
k ), 1 ≤ i ≤ n − 1.

3.5 Dissecting Ideal Rectified Regular Simplices and Orthoplexes

With the above preparations, we can formulate andprove our ûrstmain result as stated
in heorem 1.1. Denote by δ i k ∈ {0, 1} the Kronecker-Delta function deûned for ele-
ments i , k in an index set I.

heorem 3.6 Let n ≥ 3 and 1 ≤ k ≤ n − 2 be integers. For a regular polyhedron
P ⊂ En with Schlä�i symbol {p1 , . . . , pn−1}, the ideal k-rectiûed regular n-polyhedron
P̂ = rkP ⊂ Hn admits the following dissections.

(i) If P is a simplex Sre g with p1 = ⋅ ⋅ ⋅ = pn−1 = 3, then rkSre g admits for 0 ≤ i ≤ n a
dissection into i!(n + 1 − i)! of (2 − δ0i)-truncated orthoschemes isometric to Û i(αn

k ),
and each of these splits into (

n+1
i ) simply-truncated orthoschemes isometric to Û0(αn

k ),

where αn
k = arccos

√
n−k

2(n−k−1) .
(ii) If P is an orthoplex Ore g with p1 = ⋅ ⋅ ⋅ = pn−2 = 3 and pn−1 = 4, then rkOre g

admits for 0 ≤ i ≤ n−1 a dissection into 2n i!(n− i)! of (2−δ0i)-truncated orthoschemes
isometric to V̂i(αn

k ), and each of these splits into (
n
i) simply-truncated orthoschemes

isometric to V̂0(αn
k ), where αn

k = arccos
1

√
n−k−1

.

Proof We follow roughly the strategy of Debrunner’s proof of heorem 3.1 and re-
capitulate the most important ingredients.

Ad (i): Suppose that P =∶ ⟨v0 , . . . , vn⟩ is a Euclidean regular simplex with center bn

andwith vertices v0 , . . . , vn so that P̂ = rkSre g ⊂ Hn . We interpretHn in the projective
model Kn . Since k ≥ 1, each vertex v i , 0 ≤ i ≤ n, of P is outside of the quadricQn ,1 and
therefore pole of its polar hyperplane represented by the hyperbolic hyperplane E i ,
say. In order to describe the dissections of P, we adopt Debrunner’s elegant notation
as follows. Let [i , k] ∶= {i , i + 1, . . . , k − 1, k} for integers 0 ≤ i ≤ k ≤ n. For a set
I ⊂ [0, n], denote by FI the face of P with vertices v i , i ∈ I, and let F∅ ∶= ∅ and
F[0,n] ∶= P. Each FI is a regular simplex with (bary-)center b(FI) =∶ BI . In particular,
for 0 ≤ i ≤ n, one has B{i} = B[i , i] = v i , as well as B[0,n] = bn . he Euclidean
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n-simplex U0 ∶= ⟨B[0,n] . . . B[n ,n]⟩ is a characteristic simplex of P and fundamental
domain for the action of Sym(P) ≅ Sn+1. herefore, P dissects into (n + 1)! isometric
copies of U0. Furthermore, U0 is an orthoscheme whose vertex ûgure at B[0,n] = bn
is a spherical (n − 1)-orthoscheme of type An−1. Among the vertices of U0 not in Kn ,
we see that B[l ,n] , . . . , B[n ,n] are ultra-ideal points precisely for l = n − k + 1, . . . , n,
while the vertex B[n−k ,n] is an ideal point on ∂Kn .

Next, consider the Euclidean n-simplices

(3.2) U i ∶= ⟨B[0,0] . . . B[0, i−1]B[i ,n] . . . B[n ,n]⟩, 0 ≤ i ≤ n.

Each simplex U i arises from the following construction. For 0 ≤ i ≤ n, consider the
partition of [0, n] by I = [0, i − 1] and J = [i , n]. Dissect both, the regular simplex
(i − 1)-face FI into its i! characteristic simplices σ(RI) =∶ Rσ

I (σ ∈ S i), and the regular
simplex (n + 1 − i)-face FJ into its (n + 1 − i)! characteristic simplices τ(RJ) =∶ Rτ

I
(τ ∈ Sn+1−i). Since P = Sre g is the join FI ○ FJ , P splits into i!(n + 1 − i)! simplices
Rσ

I ○R
τ
I , which are permuted by the elements of Sn+1 that stabilise FI (and FJ). One of

these simplices is U i for a suitable ordering of the vertices. By heorem 3.1, we know
that each U i is an orthoscheme admitting a dissection into (

n+1
i ) copies of U0.

Let us pass to the k-rectiûed polyhedron P̂ associated with P = Sre g . he hyper-
bolic polar hyperplanes E0 , . . . , En associated with the ultra-ideal vertices v0 , . . . , vn
induce a (simple or double) truncation of U i (0 ≤ i ≤ n) as given by (3.2) and its iso-
metric copies in the decomposition of P as described above, making a bridge to the
polyhedra Û i = Û i(αn

k ). Indeed, we will show that

Û i = P̂ ∩U i for 0 ≤ i ≤ n,

which will ûnish the proof of (i). We consider the following two cases.
(a) Let i = 0, and consider the characteristic simplex U0 = ⟨B[0,n] . . . B[n ,n]⟩

with vertex B[n ,n] = vn of P that is simply-truncated by E0. he hyperplane E0 meets
the ideal vertex B[n−k ,n] of U0 at inûnity, and the vertex B[0,n], being the in-center of
P = Sre g , is of type An−1. For 0 ≤ l ≤ n, denote by Hn−l the hyperplane bounding U0,
which is opposite to B[l ,n], and writeHn+1 ∶= E0. By Property (iii),Hn+1 is orthogonal
to the hyperplanes H0 , . . . ,Hn−1, while ∡(H j ,H j+1) = π

3 for 1 ≤ j ≤ n − 1. Since
B[n−k ,n] is ideal, we get ∡(H0 ,H1) = αn

k as above. Furthermore, by Lemma 3.4 and
its proof, ∡(Hn ,Hn+1) = γn

k according to (3.1). Hence, the truncated orthoscheme
U0 ∩ P̂ coincides with the polyhedron Û0(αn

k ) given by Figure 10.
Notice that the dihedral angle 2α formed by two facets of P = Sre g is identical to

the dihedral angle formed by the corresponding pair of (truncated) facets of P̂, and
this angle is therefore equal to 2αn

k . Hence, the orthoscheme U0 can be described by
the graph Σ(U0) = Σn(αn

k ,
π
3 ) according to Figure 2. Furthermore, the orthoschemes

U i(α) arising in the dissection of P = Sre g according to Debrunner’s heorem 3.1(i)
are given by U i(αn

k ) for 0 ≤ i ≤ n (see Figure 8).
(b) Let i > 0. It remains to show that the polyhedra U i ∩ P̂, where U i = U i(αn

k ),
coincide with the polyhedra Û i(αn

k ) as given by Figure 11. To this end, observe that
each of the orthoschemes U i , i > 0, shares the vertices B[0,0] = v0 and B[n ,n] = vn
with P = Sre g (see (3.2)). Both vertices of the U i are truncated by the hyperbolic
polar hyperplanes Hn+1 = E0 and Hn+2 ∶= En of P. Fix such a U i , and denote
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by e l , 0 ≤ l ≤ n + 2, the unit normal space-like vector with H l = e⊥l directed out-
wards of U i . It follows that e0 , . . . , en+2 (indices modulo n + 3) form a Napier cycle
N of type 3 (see Section 2.2). For 1 ≤ l ≤ n, the weights c l = ⟨e l−1 , e l ⟩n ,1 are given
by − cosω l where ω l ∈ {αn

k , 2α
n
k ,

π
3 } denote the angular weights of the orthoscheme

U i = U i(αn
k ) according to Figure 8. he remaining weights cn+1 , cn+2 , c0 of the cy-

cle N are given by the formulas (2.4). his proves that the hyperplanes H0 , . . . ,Hn+2

boundingU i ∩ P̂ are described by the cyclic graph of Figure 11, and that, ûnally,U i ∩ P̂
coincides with Û i(αn

k ).

Ad (ii): he proof is similar to (i). Let us describe the dissection procedure of an ideal
hyperbolic k-rectiûed regular orthoplex rkOre g and the respective appearance of the
polyhedra V̂i(αn

k ) as claimed. Consider a Euclidean regular n-orthoplexOre g , and de-
note by v i , v−i the n pairs of vertices of Ore g such that the segments ⟨v iv−i⟩, 1 ≤ i ≤ n,
meet orthogonally in their common midpoint (and in-center) z. he n symmetry
hyperplanes generated by all vertices except one pair induce a dissection of the poly-
hedron Ore g into 2n simplices, all isometric to S ∶= ⟨zv1 . . . vn⟩. he facet ⟨v1 . . . vn⟩

of Ore g (and of S) is a regular (n − 1)-simplex whose faces ⟨v1 . . . v i⟩ and ⟨v i+1 . . . vn⟩

can be dissected barycentrically into i! and (n − i)! characteristic orthoschemes R
and R′, respectively. Form the join Vi ∶= R ○ ⟨z⟩ ○ R′ for 1 ≤ i ≤ n, and denote
by BI the barycenter of the face FI with vertices v i , i ∈ I, of Ore g , as above. In
this picture, for i = 0, the polyhedron Ore g is cut into its 2nn! characteristic or-
thoschemes all isometric toV0 = ⟨zB[1,n] . . . B[n ,n]⟩ ⊂ S, and for 1 ≤ i ≤ n, the simplex
Vi = ⟨B[1,n] . . . B[1, i]zB[i+1,n] . . . B[n ,n]⟩ is one of the 2n i!(n − i)! pairwise isometric
simplices dissecting Ore g . Again, it can be shown that each such simplex is an or-
thoscheme. For details, see [4, pp. 150–151]. As in the proof of (i), one easily veriûes
that the truncated orthoschemes V̂i(αn

k ) = rkOre g ∩Vi provide the decomposition of
rkOre g as claimed. ∎

As a ûrst application of heorem 3.6, let us consider the ideal birectiûed regular
orthoplex r2Ore g in hyperbolic 7-space. We can prove the following result.

Corollary 3.7 he volume of the ideal birectiûed regular orthoplex r2Ore g ⊂ H7 is
given by

vol7(r2Ore g) =
153
16

√
3L(4,−3) ≃ 27.3241,

where L(s,D) = ∑r≥1(
D
r )r

−s is the Dirichlet L-series deûned by the Kronecker symbol
( Dr ).

Proof By Remark 3.5, the ideal birectiûed regular orthoplex r2Ore g has dihedral
angles 2α7

2 =
2π
3 , 2γ

7
2 =

π
3 and

π
2 , and part (ii) of the above theorem implies that r2Ore g

can be cut into 277! = 645, 120 polyhedra isometric to the (truncated) characteristic
simplex V̂0 = [3, 4, 35 , 6] with Coxeter graph given as follows.
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In [7, Section 2.2], we showed that the (arithmetic) hyperbolic Coxeter group Γ0 with
graph Σ(V̂0) is commensurable to the Coxeter group Γ1 with graph

by identifying Γ1 as a subgroup of index 3 in the group Γ0. he group Γ1 itself is the
(maximal) re�ection subgroup of the group of units of the quadratic form f 73 whose
covolume has been determined by Ratcliòe and Tschantz (see Remark 2.7). More
precisely, according to [24, Table 1], one has that

covol5(Γ1) =
51
√

3
215 ⋅ 5 ⋅ 7

L(4,−3) ≃ 7.240232999 ⋅ 10−5 .

As a consequence, vol7(r2Ore g)=
277!
3 ⋅ 51

√
3

215 ⋅5⋅7L(4,−3)=
153
16

√
3L(4,−3) as asserted. ∎

4 Quaternionic (pseudo-)modular Groups and their Covolumes

In the sequel, we interpret the orientation-preserving isometries of hyperbolic 4- and
5-spaces by means of certain quaternionic 2 × 2 matrices. In this way, and follow-
ing Johnson [11], we can relate the quaternionic (pseudo)-modular groups to certain
arithmetic hyperbolic Coxeter groups. By combining our previous results and apply-
ing them to the ideal birectiûed 6-cell, we will be able to prove our secondmain result
about the covolume of the hybrid modular group as given by heorem 4.1.

4.1 Quaternionic 2 × 2 Matrices and Hyperbolic Isometries

Consider hyperbolic n-space in the upper half space U n = En−1 ×R+. In this model,
the group Isom+(U n) of orientation preserving or direct hyperbolic isometries is iso-
morphic to the group M+(U n) of direct Möbius transformations of En , which leave
U n invariant. By Poincaré extension, the latter group is isomorphic to the group of
direct Möbius transformations of the extended ground space Ên−1 = En−1 ∪ {∞}. As
in the classical case of Isom+(U 2) ≅ PSL(2,R), the group Isom+(U n+1), n ≥ 1, can
be identiûed with a projective group of 2 × 2 matrices according to Vahlen, Maass,
and Ahlfors (see [1, 2]). To this end, interpret the real vector space Rn as the set of
Cliòord vectors x = x0 + x1 i1 + ⋅ ⋅ ⋅ + xn−1 in−1 ∈ Cn of the Cliòord algebra Cn , which
is the associative real algebra generated by n − 1 elements i1 , . . . , in−1 subject to the
relations ik i l = −i l ik (k /= l) and i2k = −1. A typical element a ∈ Cn can written
in the form a = ∑I aI I, aI ∈ R, where I runs through all products ik1 ⋅ ⋅ ⋅ ikr with
0 ≤ k1 < ⋅ ⋅ ⋅ < kr < n, where we include the empty product in the form ik0 = i0 ∶= 1.
We call S(a) ∶= a0 the scalar part of a. Accordingly, Cn is a real vector space of di-
mension 2n−1 that can be equipped with a Euclidean norm deûned by ∣a∣2 = ∑I a2

I . In
particular, C1 = R, C2 = C and C3 = H.

On Cn , there are three important involutions. he mapping a ↦ a∗ is deûned
by sending each I = ik1 ⋅ ⋅ ⋅ ikr to I∗ ∶= ikr ⋅ ⋅ ⋅ ik1 , while a ↦ a′ is given by replacing
each factor ik by −ik . he conjugation a ↦ a is the composition a ∶= a′∗. Obviously,
Cliòord vectors x ∈ Cn satisfy x = x∗, and a non-zero Cliòord vector x is invertible
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with inverse x−1 = x′/∣x∣2. he non-zero Cliòord vectors form a multiplicative group,
which is termed the Cliòord group Gn . A Cliòord matrix is an element of the set

SL(2,Cn) ∶=

{T = (
a b
c d) ∣ a, b, c, d ∈ Gn ∪ {0}; ab∗ , cd∗ , c∗a, d∗b ∈ Rn ; ad∗ − bc∗ = 1}.

he quantity ad∗ − bc∗ is called the pseudo-determinant of T and is such that the set
SL(2,Cn) becomes a group undermatrixmultiplication (see [1, p. 221]). Its associated
projective group

PSL(2,Cn) = SL(2,Cn)/{λI2∣λ ∈ R∗
}

acts bijectively on Ên by fractional linear transformations T(x) = (ax+b)(cx+d)−1 ,
T(0) = bd−1 , T(∞) = ac−1, and this action appropriately extended to Ên+1 preserves
U n+1. As a consequence, the group PSL(2,Cn) is isomorphic to Isom+(U n+1).

In particular, in the quaternionic case, we have that PSL(2,H) ≅ Isom+(U4) (for
some geometric properties of its discrete subgroups, see [19]). here is anothermatrix
group over the quaternions closely related to hyperbolic isometries. FollowingWilker
[28], consider a 2× 2 matrix M with coeõcients in the quaternion algebraH given by

M = (
a b
c d) , a, b, c, d ∈ H.

Since quaternions can be interpreted by means of complex 2 × 2 matrices, M can be
identiûed with a blockmatrixM ∈ Mat(4,C)whose (ordinary) determinant is a non-
negative real number that can be written according to

detM = ∣ad∣2 + ∣bc∣2 − 2S(acdb) = ∣ad − aca−1b∣2 for a /= 0.

Based on this, the Dieudonné determinant of M is deûned by

∆ = ∆(M) ∶=+

√

∣ad∣2 + ∣bc∣2 − 2S(acdb) = ∣ad − aca−1b∣,

and ∆ satisûes all required properties of a determinant function. Moreover, the set

S∆L(2,H) = {T = (
a b
c d) ∈ Mat(2,H)∣∆(T) = 1},

is a group whose elements act on Ĥ by fractional linear transformations. Finally, it
can be shown that the projective analogue

PS∆L(2,H) = S∆L(2,H)/{±I2}

is isomorphic to the group Isom+(U 5) (for some geometric properties of its discrete
subgroups, see [20]).

4.2 Basic Systems of Quaternionic Integers

Consider the normed real associative algebra H of quaternions q = q0 + q1 i + q2 j +
q3k ∈ H where i = i1, j = i2, and k = i j, as usual. he norm N(q) and the trace T(q)
of q are given by

N(q) = q2
0 + q2

1 + q2
2 + q2

3 , T(q) = 2S(q) = 2q0 ,
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which appear naturally in the quadratic equation

(4.1) q2
− T(q)q + N(q) = 0.

Quaternions of norm 1 are called units and form a group that is isomorphic to the
special unitary group SU(2). According to Johnson–Weiss [13], [11, Chapter 15], a
basic system of elements in H is a set S such that

(a) each element in S is a (quadratic) algebraic integer;
(b) S is a subring of H; the elements of norm 1 in S form a subgroup of the group

of unit quaternions;
(c) in the real vector spaceH, the elements of S are the points of a four-dimensional

lattice spanned by the units.

By means of (4.1), condition (a) holds for a quaternion q if S(q) = q0 ∈ Z ∪ 1
2Z and

N(q) ∈ Z. By [13, heorem 4.1], there are precisely three basic systems of integral
quaternions which can be described—brie�y—as follows.

he ûrst basic system is the ring H am = Z[i , j] whose four units 1, i , j, and k = i j
span the lattice ofHamilton integers. he ringH am can be regarded as a quaternionic
analogue of the ring of Gaussian integers Z[i].

he second basic system is the ring Hur= Z[u, v] of Hurwitz integers where the
quaternions u, v are deûned by u = 1

2 −
1
2 i −

1
2 j + 1

2 k and v =
1
2 +

1
2 i −

1
2 j + 1

2 k. One
veriûes that each Hurwitz integer is an integral combination of 1, u, v ,w where u, v ,w
satisfy the relations

u − u2
= v − v2

= w −w2
= uvw = 1.

he ring Hur has 24 units consisting of the 8 Hamilton units ±1,±i ,± j,±k together
with the 16 units of the form± 1

2 ±
1
2 i ±

1
2 j ± 1

2 k. he ringHur containsH am as a sub-
ring and can be viewed as a quaternionic analogue of the ring Z[ω],ω = − 1

2 +
1
2

√
3i ,

of Eisenstein integers since (uv)−1 = ω.
he third basic system is the ring H yb = Z[ω, j] of hybrid integers where ω =

− 1
2 +

1
2

√
3i and j satisfy the relations

ω + ω2
= j2 = (ωj)2

= (ω2 j)2
= −1.

here are 12 hybrid units, given by 1,ω,ω2 , j,ωj,ω2 j and their negatives.

4.3 Covolumes of Some Quaternionic (Pseudo-)modular Groups

Consider the group PSL(2,H) ≅ Isom+(U4) represented by quaternionic Clif-
ford matrices and restrict the coeõcient ring from H to one of the basic systems
S of quadratic integers in H as described in Section 4.2. Each of the three groups
PSL(2, S) is a particularly nice arithmetic discrete group of direct isometries acting
on hyperbolic 4-space with ûnite covolume. In [13] (see also [11, Section 15.2]), John-
son andWeiss studied various properties of PSL(2, S), which they call a quaternionic
pseudo-modular group (and denote it there by PS∗L2(S) referring to the underlying
unit pseudo-determinant of Ahlfors). hey show that each group PSL(2, S) can be
identiûed with a ûnite index subgroup of a certain hyperbolic Coxeter group, and the
identiûcation is made explicit in terms of suitable generators.

488

https://doi.org/10.4153/S0008414X20000036 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000036


Ideal Uniform Polyhedra and Covolumes of Higher Dimensional Modular Groups

In this way, the Hamilton pseudo-modular group PSL(2,H am) = PSL(2,Z[i , j])
turns out to be isomorphic to an index 12 subgroup of the hyperbolic Coxeter simplex
group [3, 4, 3, 4] (see [13, p. 173]). By the Reduction Formula (2.5) of Section 2.4, the
volume of the Coxeter orthoscheme [3, 4, 3, 4] can be computed to be π2/864 so that
the following result holds:

covol4(PSL(2,H am)) =
π2

72
.

We refer to [21] for further and more algebraic, arithmetic, and geometric details
about the group PSL(2,Z[i , j]).

heHurwitz pseudo-modular group PSL(2,Hur) = PSL(2,Z[u, v]) can be iden-
tiûed with a semidirect product of PSL(2,H am) with a cyclic group of order 3 gen-
erated by an element transforming Hamilton integers into Hurwitz integers (see [21,
p. 751] and [13, p. 174]). As a consequence, one obtains that

covol4(PSL(2,Hur)) =
π2

24
.

he hybrid pseudo-modular group PSL(2,H yb) = PSL(2,Z[ω, j]) is isomorphic to
a certain index 4 subgroup of the Coxeter pyramid group [6, 3, 3, 3,∞] of covolume
π2/540 (see Section 2.4), which in turn relates to the symmetry group of the ideal
rectiûed 5-cell r1Sre g(

π
3 ) (see Example 2.2). It follows that

covol4(PSL(2,H yb)) =
π2

135
.

Let us pass to the case of higher modular groups in PS∆L(2,H) ≅ Isom+(U 5). In
particular, themodular groups PS∆L(2,H am) and PS∆L(2,Hur) are arithmetic dis-
crete groups of ûnite covolume that are intimately related to one another. In fact, by
work of Johnson andWeiss [13, Section 7] (see also [11, Section 15.3]), it is known that
the Hamilton modular group PS∆L(2,H am) is isomorphic to a certain subgroup of
index 12 in the Coxeter simplex group [3, 4, 3, 3, 4]. Furthermore, the Hurwitz mod-
ular group PS∆L(2,Hur) is closely related to the Coxeter simplex group [3, 4, 3, 3, 3]
and contains the group PS∆L(2,H am) as a subgroup of index 30 (see [13, Section 9]
and [11, Section 15.4]). By means of our volume expression (2.10) for [3, 4, 3, 3, 4], we
are able to derive the following results:

covol5 (PS∆L(2,H am)) =
7

384
ζ(3),(4.2)

covol5 (PS∆L(2,Hur)) =
7

11, 520
ζ(3).

4.4 The Ideal Birectified 6-cell and the Covolume of the Hybrid Modular Group
PS∆L(2,H yb)

Much less has been known about the hybrid modular group PS∆L(2,H yb) ⊂
Isom+(U 5) with coeõcient ring Z[ω, j], ω = 1

2 (−1 + i
√

3). Recently, in [10] and
[11, Section 15.5], Johnson analysed the group S∆L(2,H yb) in detail and determined
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the generators as follows:

A = (
0 1
−1 0) , B = (

1 0
1 1) , M = (

1 0
0 ω) , N = (

1 0
0 j) .

Note that A2 = −I and that M3 = N4 = I. his analysis enabled him to relate the group
PS∆L(2,H yb) to the hyperbolic Coxeter prism group [6, 3, 3, 3, 3, 6]. Based on this
work, we are able to prove the following result (see heorem 1.2).

heorem 4.1 For the hybrid modular group PS∆L(2,H yb) = PS∆L(2,Z[ω, j]),

covol5(PS∆L(2,H yb)) =
13
180

ζ(3).

Proof By [11, Section 15.5], the group PS∆L(2,H yb) = PS∆L(2,Z[ω, j]) is
isomorphic to the semidirect product of a certain commutator subgroup of
index 8 in [6, 3, 3, 3, 3, 6] and the cyclic group of order 4 generated by the
element N ∈ S∆L(2,Z[ω, j]) above. his implies that covol5(PS∆L(2,H yb)) = 32 ⋅
covol5([6, 3, 3, 3, 3, 6]). It remains to show that covol5([6, 3, 3, 3, 3, 6]) = 13

5,760 ζ(3) as
already announced in Remark 2.6.

he Coxeter polyhedron [6, 3, 3, 3, 3, 6] is associated with the ideal birectiûed reg-
ular 6-cell r2Sre g ⊂ H5 of dihedral angles π

3 and
π
2 . In fact, it is the truncated char-

acteristic orthoscheme Û0 of the regular 6-cell of dihedral angle π
3 with ultra-ideal

vertices all of whose triangles are replaced by an ideal point (see Section 3.2). Con-
sider the truncated orthoschemes Û0 and Û i with graphs andweights given according
to Figures 10 and 11 (see also Lemma 3.4 and formula (2.4)). In fact, the distinguished
weights for Û0 are α52 = π

6 = γ52 in view of (3.1). By heorem 3.6(i), the polyhe-
dron r2Sre g admits a dissection into 6! simply-truncated orthoschemes Û0 isometric
to [6, 3, 3, 3, 3, 6] and, by taking i = 3, a dissection into (3!)2 doubly-truncated or-
thoschemes Û3. Each of the polyhedra Û3 can be dissected into (

6
3) copies of Û0.

hese dissection relations provide the volume identity

vol5([6, 3, 3, 3, 3, 6]) = vol5(Û0) =
1
20

vol5(Û3).

Finally, it remains to identify the polyhedron Û3, as given by the graph in Figure 11
for i = 3, with the Coxeter polyhedron [(3, 6)[4]] of the cyclic graph Ω( π

3 ) whose
volume is given by 13

288 ζ(3) according to Proposition 2.8 and (2.13). his can be done
in two ways.

he cyclic graph of Û3 has symbol [(3, 6, 3, 6, 3, c35 , c
3
6 , c

3
0)] where the squares of

the ingredients c3l , l = 5, 6, 0, are computable by formula (2.4). Without computation,
the values c35 , c

3
6 , c

3
0 can be determined directly by using the Napier cycle property (see

Section 2.2) that the deletion of two non-adjacent nodes among 0, . . . , 7, represent-
ing vectors of the Napier cycle N, deûnes two Lorentz-orthogonal subspaces of E5,1.
Hence, the deletion of the nodes 2, 6 and 3, 7, respectively, yields c30 = c35 = −cos π

6 ,
while the deletion of the pair 0, 4 shows that c35 = −cos

π
3 . In fact, all corresponding

subgraphs (a�er deletion) are products of Euclidean type [3, 6] × [3, 6]. As a conse-
quence, the polyhedron Û3 is isometric to [(3, 6)[4]], and the assertion follows. ∎
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Remark 4.2 In [7], it was shown that the (arithmetic) Coxeter groups with Coxeter
symbols [3, 4, 3, 3, 4] and [6, 3, 3, 3, 3, 6] are incommensurable. Although the quo-
tient of their covolumes is a rational number by (4.2) andheorem4.1, there is no (ori-
entable) hyperbolic 5-manifold covering both, the modular Hamilton (or Hurwitz)
orbifoldH5/PS∆L(2,H am) and the modular hybrid orbifoldH5/PS∆L(2,H yb).
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