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Wilms’ tumour (WT; nephroblastoma), a kidney neoplasm, is one of the most
frequently occurring solid tumours of childhood. It arises from the developing
kidney by genetic and epigenetic changes that lead to the abnormal proliferation
of renal stem cells (metanephric blastema). WT serves as a paradigm for
understanding the relationship between loss of developmental control and gain
of tumourigenic potential. In particular, loss of function of tumour suppressor
genes has been implicated in the development of WT, and the Wilms’ tumour
suppressor gene WT1 (at chromosome 11p13) was the second tumour
suppressor gene to be cloned, after the retinoblastoma gene RB-1. WT1 plays
an essential role in kidney development, but is mutated in only approximately
20% of WTs, which suggests that further lesions and genetic loci are involved
in Wilms’ tumourigenesis. Other chromosomal regions associated with WT
include 7p, 11p15, 16q and 17q. Although many of these loci probably contain
tumour suppressor genes, imprinted genes (genes showing expression of
only one parental allele) and oncogenes have also been implicated in WT.
Some loci have been shown to be associated with particular clinical outcomes,
suggesting that they might be used to determine prognosis, and especially to
identify poor prognostic subgroups that can be targeted for aggressive and/or
novel therapies.

Wilms’ tumour (WT) is an embryonal renal
neoplasm (Fig. 1) and is one of the commonest
solid tumours of childhood, affecting ~1 in 10 000
children (rates vary slightly between different
racial groups), typically between the ages of 2
and 4 years. It has a high cure rate (~85%), which

has been achieved using a combination of surgery,
chemotherapy and radiotherapy. However, 15%
of affected children still die from their disease,
and present therapies can have serious short- and
long-term side effects. No strong environmental
factors have been implicated in WT development,
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but there are several predisposing syndromes
that confer a greatly increased risk of developing
WT, indicating a major role for genetic factors in
Wilms’ tumourigenesis (Ref. 1). This review
briefly describes the biology of WT and then
discusses recent work on the genetic and
epigenetic changes underlying this disease.

Biology of WT
WT arises from the developing kidney. The
definitive mammalian kidney, the metanephros,
develops by an inductive interaction between the
ureteric bud (which goes on to form the collecting
duct system) and the metanephric blastema
(which goes on to form the nephrons and
connective tissue) (Fig. 2) (Ref. 2). The blastema
is induced to differentiate to form both epithelial
components (which will give rise to nephrons)
and stromal components (which make up the
connective tissue) in the kidney (Fig. 2), with
cells that are not induced to differentiate
undergoing programmed cell death (apoptosis)
(Ref. 3). Kidney development is complete by 36
weeks of gestation in humans. WT is presumed
to arise because of the failure of the metanephric

blastema to undergo its normal developmental
pathway. However, differentiation potential is
often partly maintained in WTs, and is manifested
as the classical ‘triphasic histology’ (Fig. 3b), in
which nests of blastema are seen together with
areas of epithelial tubules and stroma (Ref. 4).
Other histological variants of WT occur in which
one cell type predominates [e.g. blastemal-
predominant (Fig. 3c) and stromal-predominant
(Fig. 3d) variants].

WT is thought to develop via a premalignant
stage, the ‘nephrogenic rest’, in which areas of
undifferentiated blastema persist after 36 weeks
gestation (Ref. 5). Rests are seen in less than 1%
of routine autopsies of infants, but are found
adjacent to ~30% of sporadic WTs and more
frequently in predisposing syndromes (see
below). The majority of nephrogenic rests regress,
but some undergo malignant transformation,
grow in size and might ultimately go on to form
a WT (Fig. 2d) (Ref. 5).

Current therapies for WT
Treatment of WT usually involves removal of
the whole affected kidney, comprising both the
tumour and the attached remaining normal
kidney (complete nephrectomy – see Fig. 1).
The patient then receives adjuvant cytotoxic
chemotherapy, and sometimes also radiotherapy.
The exact treatment protocol depends on
prognostic factors such as extent of spread of the
tumour (stage) and whether the tumour has a
potentially aggressive phenotype as judged by its
histology (e.g. anaplasia – see Fig. 3e) (Ref. 1).

Genetics of WT
Studies of patients who have syndromes that
predispose to WT have been pivotal in identifying
genetic factors involved in WT development.
Patients with these syndromes tend to develop
multiple tumours, either as tumours in both
kidneys (bilateral disease) or as multiple tumours
in one kidney (multifocal disease, as shown in
Fig. 1). These tumours occur at an earlier age of
onset than in sporadic (non-predisposed) cases,
which normally present with a single tumour
at a later age. The cases of genetic predisposition
led Knudson to extend his ‘two-hit’ model of
retinoblastoma to include WT, suggesting that
two rate-limiting steps were essential for WT
development (Ref. 6). Another aspect of the model
was a prediction of large numbers of inherited
cases of WT. Although this prediction turned out
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Gross pathology of Wilms' tumour

Figure 1. Gross pathology of Wilms’ tumour. A
cut section of a Wilms’ tumour showing remaining
normal kidney, a large tumour (Tumour 1) and a
smaller additional tumour (Tumour 2). This was
taken from a patient with the predisposing WAGR
syndrome [in which a high risk of Wilm’s tumour
is associated with aniridia (lack of the iris),
genitourinary abnormalities and mental retardation],
and is an example of multifocal disease. Image by
kind permission of Professor Jem Berry (Department
of Paediatric Pathology, University of Bristol, UK)
(fig001kbb).
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Figure 2. Kidney development and Wilms’ tumourigenesis. (a) Development of the definitive mammalian
kidney begins with the ureteric bud (which develops into the ureter and collecting ducts) moving into the
metanephric blastema. (b) In a two-way inductive interaction, the blastema induces the ureteric bud to branch,
and the bud induces the blastema to condense around it and begin to differentiate. (c) The metanephric
blastema cells are normally induced to differentiate into epithelial cells (which go on to form the mature nephrons)
or stromal cells (which make up the connective tissue). Those cells that are not induced to differentiate undergo
apoptosis (programmed cell death). (d) In Wilms’ tumour development, some blastema cells persist to form a
‘nephrogenic rest’. Most rests become dormant or regress but others proliferate to form hyperplastic rests. It is
thought that any type of rest can then undergo a genetic or epigenetic change to become a neoplastic rest,
which can proliferate further to produce a benign lesion (adenomatous rest) or a malignant Wilms’ tumour. The
diagrams in parts ‘c’ and ‘d’ are based on data in Ref. 5 (fig002kbb).
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to be wrong, the two-hit model introduced the
idea of recessive cancer genes, which need to have
both alleles inactivated for tumourigenesis to
occur (Fig. 4a). Such genes are termed tumour
suppressor genes, and loss of function of these
genes has been shown to be a major factor in WT
development.

One of the most important predisposing
syndromes is WAGR (~1% of WT cases), in which
a high risk of WT is associated with aniridia
(lack of the iris), genitourinary abnormalities
and mental retardation. There are three other
major syndromes that predispose to WT. First, in
Denys–Drash syndrome (DDS; ~0.5% of WTs),
patients have severe genitourinary abnormalities,
leading to inevitable kidney failure, coupled
with a very high risk of WT. Second, Beckwith–
Wiedemann syndrome (BWS; about 1% of WTs)
results in a fetal overgrowth that predisposes
to several paediatric malignancies, including
WT. Third, there is a dominantly inherited form
of WT (1–2% of WT cases) that usually occurs
without associated congenital abnormalities
(Ref. 1).

WT genes
The discovery of cytogenetic abnormalities in
syndromes predisposing to WT [e.g. 11p13
deletions in the WAGR syndrome (Ref. 7), and
11p15 partial trisomy and translocations in
BWS (Ref. 8); see below] has been critical for the
identification of WT genes. Studies of allele loss
[which is described as loss of heterozygosity
(LOH); Fig. 4] in sporadic tumours, linkage
analysis in inherited tumours, and functional
studies of tumour suppression have together
identified several additional genetic loci as being
involved in WT development. Thus, WT is
genetically complex, with multiple genes involved
in familial and sporadic forms (Refs 9, 10).

WT1 (chromosome 11p13)
The existence of a tumour suppressor gene on
chromosome 11 was suggested by the finding of
11p13 deletions in the WAGR syndrome (Ref. 7)
and 11p LOH in sporadic WTs (Fig. 4) (Refs 11,
12, 13, 14). The gene was simultaneously isolated
by several groups using positional cloning
methods in 1990 (Refs 15, 16, 17).

WT1 gene structure
The WT1 gene is ~50 kb long (Refs 15, 16, 17) and
encodes multiple 52–56 kDa protein isoforms

Figure 3. Histopathology of normal fetal kidney
and Wilms’ tumour. (a) In normal fetal kidney at
16 weeks gestation, undifferentiated metanephric
blastema cells (B) are confined to the edge of the
kidney. They have been induced by the ureteric bud
to differentiate to form epithelial cells (E) which go
on to be part of the mature glomeruli (G). Some
blastema cells are thought to differentiate into
stromal cells (S). (b) In most Wilms’ tumours, this
pattern of differentiation is partly maintained to
give the so-called ‘triphasic histology’ in which areas
of blastema (B), epithelia (E) and stroma (S) can all
be observed. Variants of the typical Wilms’ tumour
histology occur in which one cell type predominates,
such as (c) blastema and (d) stroma. The tumour in
(d) carries a WT1 (Wilms’ tumour suppressor gene)
mutation. (e) A few Wilms’ tumour cases show
abnormal morphological features in the nuclei
termed ‘anaplasia’. Like some other anaplastic
Wilms’ tumours, the tumour shown here carries a
p53 mutation (fig003kbb).
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Figure 4. Loss of heterozygosity (LOH) in Wilms’ tumour. (a) An explanation of the mechanism of allele
loss. Two ‘hits’ (mutations) that inactivate both alleles of a tumour suppressor gene on the short arm of
chromosome 11 are needed for Wilms’ tumour to develop. Gross genetic changes affecting this part of
chromosome 11 can be monitored by examining a polymorphic marker (‘A’ in this figure) that lies close to the
tumour suppressor gene. The first hit is usually a point mutation or small deletion, shown as a cross on the
paternal chromosome. This does not affect the integrity of the chromosome, so both alleles of the polymorphic
marker (conventionally named A1 and A2) are retained. The second hit often involves a large-scale chromosomal
event, such as loss of a chromosome arm – in this case the loss of the short arm of the maternal chromosome.
This leads to the loss of A2, which is detected as the loss of a band on the Southern blot of tumour DNA – see
panel ‘b’. Note that in Wilms’ tumour it is always the allele on the maternal chromosome 11 that is lost. This
reflects the presence of imprinted genes on this part of chromosome 11 (see text). (b) Southern blot of DNA
extracted from the normal tissue and tumour of a patient with Wilms’ tumour, and from the blood of the patient’s
father and mother. The DNA was cut with a restriction enzyme and probed with a radioactive DNA sequence
that detects a polymorphism on the short arm of chromosome 11. This polymorphism has two possible alleles:
A1 and A2. The patient’s tumour shows loss of A2 compared with normal tissue. It can be seen that this was the
allele that the patient inherited from the mother, indicating that it is the maternal allele that is lost in Wilms’
tumour. [The father was heterozygous for this polymorphism (A1A2), whereas the mother was homozygous
(A2A2)] (fig004kbb).
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generated via alternative mRNA splicing
(Ref. 18), RNA editing (Ref. 19) and non-AUG
translational initiation (Ref. 20). The proteins have
a proline- and glutamine-rich N-terminal domain
and a DNA/RNA-binding C-terminal domain
containing four zinc finger motifs that are similar
to those found in the EGR (early growth response)
family of transcription factors (Refs 15, 16, 17).
One alternative splice inserts 17 amino acids in
the N-terminal domain; another inserts three
amino acids (KTS) between zinc fingers 3 and 4
(Ref. 18) (Fig. 5a). The WT1 isoforms lacking
KTS appear to function predominantly as
transcription factors (Ref. 21), whereas the
isoforms containing KTS associate with splicing
complexes in the nucleus and might be involved
in RNA metabolism (Refs 22, 23).

Transcriptional regulation by WT1 proteins
WT1 proteins can bind to a GC-rich EGR-like

DNA sequence (Ref. 24), as well as to a longer
CT-rich sequence (Ref. 25). A large number of
genes have been proposed as targets of WT1
transcriptional regulation, on the basis that their
GC-rich promoters bind WT1 and are regulated
by WT1 in transfection assays [e.g. the gene for
insulin-like growth factor 2 (IGF2) (Ref. 26), and
see genes listed in Ref. 22]. However, in only a
very few cases do the endogenous genes show
altered expression in cells when levels of WT1
are modulated (Ref. 27). Array techniques and
other methods are now being used to attempt to
define bona fide targets of the WT1 transcription
factor, and some of the most recent studies suggest
that genes encoding amphiregulin (a member
of the epidermal growth factor family) (Ref. 28)
and Bcl-2 (an anti-apoptosis protein) (Ref. 29)
are regulated by WT1. The activity of WT1 is
modulated by protein–protein interactions,
including self-association (Ref. 30), and binding

Figure 5. Structure of WT1 (Wilms’ tumour suppressor gene) and the proteins it encodes. (a) The proteins
encoded by WT1 have a proline- and glutamine-rich transregulatory domain at the N-terminal end and four
zinc fingers in a C-terminal DNA/RNA-binding domain. There are two alternative splices (shown by purple
triangles): one inserts 17 amino acids in the transregulatory domain and the other inserts three amino acids
(KTS) between the third and fourth zinc fingers. (b) WT1 produces overlapping sense and antisense RNAs,
with the antisense promoter located in intron 1. Spliced regions of the RNAs are shown as dotted lines
(fig005kbb).
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to the tumour suppressor p53 (Ref. 31) and to the
transcriptional repressor PAR-4 (Ref. 32).

Biological effects of WT1
Investigation of the biological effects of WT1
expression is hampered by the lack of good cell-
culture systems. Nonetheless, it has been shown
that, in certain cells, WT1 can induce cell-cycle
arrest and apoptosis (Ref. 33), although in one
system it inhibited p53-mediated apoptosis
(Ref. 34). Expression of WT1 in another cell type
induced an epithelial phenotype, consistent with
its apparent role in vivo (see below) (Ref. 35).

Expression of WT1
WT1 is normally expressed in the developing
genitourinary system. Levels are low in the
induced metanephric mesenchyme, increase as
the cells undergo epithelial differentiation, and
attenuate as they mature (Ref. 36). In wt1-
knockout mice, the loss of function of WT1 leads
to massive apoptosis in the metanephric blastema
and consequent failure of kidney development,
demonstrating an essential role for WT1 in
nephrogenesis (Ref. 37).

Mutations in WT1
In humans, deletion of one allele of WT1
causes genitourinary abnormalities in the WAGR
syndrome, whereas heterozygous germline
missense mutations lead to the more severe
defects observed in DDS, probably because of a
dominant-negative effect of the mutant protein
(Ref. 38). Of sporadic WTs, only about 20% have
a WT1 mutation (Ref. 39). In these tumours,
WT1 appears to act as a classic loss-of-function
tumour suppressor gene (Ref. 39). WT1 mutation
represents an early event (Ref. 40), because
mutations have also been found in ‘nephrogenic
rests’, which are premalignant precursors of WT
(Refs 41, 42).

Control of WT1 expression
Although mutations in WT1 underlie a significant
fraction of WTs, significant quantitative changes
in WT1 expression might also play a role in
tumourigenesis. Possible factors controlling
expression levels of this gene include an
autoregulatable 5' promoter (Refs 43, 44), 5'
and 3' enhancer elements (Ref. 45), a silencer
in intron 3 (Ref. 46), other long-range-acting
sequences (Ref. 47), and antisense RNAs (see
below).

The WT1 promoter is a TATA-less GC-rich
promoter that is autorepressed by WT1 in
transfection assays (Refs 43, 44). Initially, it was
proposed that this promoter was bidirectional,
such that another gene, termed WIT-1, was
transcribed in a similar temporal and spatial
pattern to WT1, but in the opposite direction
(Ref. 17). The putative WIT-1 transcript contained
no large open reading frames, and was therefore
proposed to function as an RNA (Ref. 17). Longer
transcripts have subsequently been isolated;
these contain the WIT-1 sequences, but are much
larger, continuing back into WT1, where they
overlap with exon 1 and are thus partly antisense
WT1 transcripts (Refs 48, 49). An antisense WT1
promoter located in intron 1 has been identified,
which is transactivated by WT1 (Ref. 50) and is
regulated by epigenetic modifications (see below)
(Ref. 51). It therefore appears that the WIT-1 gene
is in fact part of long antisense RNA(s) that
originate from a promoter in intron 1 (Fig. 5b).
These transcripts affect levels of WT1 protein
when overexpressed in cultured cells, suggesting
a role for them in the control of WT1 expression
(Ref. 52).

Other loci
To date, WT1 is the only cloned WT gene. Since it
is mutated in only 20% of tumours, other loci have
been investigated to attempt to account for the
development of the remainder of WT cases.

Chromosome 11p15
LOH at 11p occurs in 40–50% of WTs (Ref. 4), and,
in some of these, the loss is limited to the 11p15
region (Refs 53, 54), implicating a further tumour
suppressor gene, WT2, on 11p. In addition, the
gene(s) associated with the WT-predisposing
disease BWS map to 11p15 (Ref. 55). 11p15
contains a cluster of imprinted genes that have
been shown to be involved in WT both by LOH
and by epigenetic changes (see below) (Ref. 56).

Chromosomes 16q and 1p
Chromosome 16q LOH occurs in about 20% of
WTs and is associated with a poor prognosis.
1p LOH occurs less often and the evidence for
prognostic significance is marginal (Ref. 57). LOH
at 16q does not normally occur in nephrogenic
rests, implying that it is a relatively late event in
Wilms’ tumourigenesis (Ref. 42). These results
suggest additional WT suppressor genes at 16q
and 1p, but neither has yet been identified.
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Chromosome 11q
LOH at 11q has been reported in over 30% of WTs
(Ref. 58), implicating another putative tumour
suppressor gene on chromosome 11.

Chromosome 7p
This locus was implicated in WT by
investigations of a patient with WT who also had
an unusual set of congenital abnormalities and a
constitutional balanced translocation (in which
parts of chromosomes are swapped around, with
no visible loss of genetic material) between
chromosomes 1 and 7: t(1;7)(q42;p15) (Ref. 59).
Subsequent LOH studies suggested that there is
a tumour suppressor gene on 7p that is involved
in at least 10% of WTs (Refs 60, 61, 62).

Inherited WT
In rare cases, WT is inherited as an autosomal
dominant trait and linkage has been reported in
these families to chromosomes 17q (Ref. 63) and
19q (Ref. 64). Interestingly, LOH studies suggest
that the 17q gene is not a tumour suppressor gene
(Ref. 65), although it is not yet cloned.

p53
Mutations in the p53 tumour suppressor gene are
frequently associated with adult-onset tumours
of the colon, lung, brain and breast. They also
occur in WTs, but very rarely, where they are
associated with an anaplastic histology (Fig. 3e)
and poor prognosis (Refs 66, 67). p53 mutations
might be associated with advanced disease in WT
(Ref. 66).

Other genetic abnormalities
Mutations in the gene encoding β-catenin
have recently been reported in 15% of WTs,
implicating the Wnt signalling pathway in Wilms’
tumourigenesis (Ref. 68). Wnt-4 is a secreted
glycoprotein that functions as an autoinducer of
mesenchymal to epithelial transition in normal
nephron development, and activation of β-
catenin-mediated transcription is the nuclear
end-point of this pathway (Ref. 68). Thus,
deregulation of this process appears to be
involved in WT development.

High telomerase reverse transcriptase (hTERT)
mRNA levels have been detected in WT, and high
levels appear to correlate with tumour recurrence
(Ref. 69). Indeed, high telomerase enzyme activity
(which maintains chromosome ends) is known to
be an unfavourable prognostic factor in several

malignancies (Ref. 69). Interestingly, WT1 has
been shown to repress hTERT expression in some
cells (Ref. 70), although the presence of WT1
mutations has not so far been implicated in
tumour recurrence.

Epigenetics
The genetic loci listed above are involved in
WT via classical mutational and cytogenetic
mechanisms. However, it has recently become
apparent that epigenetic changes, particularly
alterations in DNA methylation, also occur on
chromosome 11, both at 11p13 and at 11p15. These
changes mainly involve imprinted genes.

Imprinted genes
Imprinted genes are those that have an epigenetic
mark applied during gametogenesis, resulting in
the expression of only one parental allele
(monoallelic expression) (Ref. 71). Only a minority
of genes are imprinted, but many play important
roles in development and carcinogenesis (Ref.
72). Imprinting is controlled by epigenetic
modification, with DNA methylation acting as
an essential epigenetic signal (Ref. 73). In
imprinted genes there is differential methylation
of one parental allele at specific sites [known as
differentially methylated regions (DMRs)], which
correlates with expression or non-expression of
that allele, depending on the mechanisms of
transcriptional control in that particular gene
(Ref. 74).

Epigenetic changes at 11p15
Involvement of imprinted genes in WT was first
indicated by the discovery that LOH at 11p
almost always involved the loss of the maternal
allele (Fig. 4) (Refs 75, 76, 77, 78). This could be
driven by the necessity either to lose a maternally
expressed growth inhibitory gene or to retain
a paternally expressed growth factor (Ref. 79). A
cluster of imprinted genes has now been
described at 11p15, containing both the paternally
expressed growth factor IGF2, and the maternally
expressed growth-inhibitory genes H19 and
CDKNIC (p57KIP-2) (Ref. 56).

WTs that lacked 11p15 LOH revealed
consistent biallelic expression of IGF2, which has
been termed ‘relaxation’ or ‘loss’ of imprinting
(Refs 80, 81). Biallelic IGF2 expression is normally
accompanied both by loss of expression of the
tightly linked H19 gene and by hypermethylation
of a 5' DMR on the normally unmethylated
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maternal allele (Refs 82, 83). Methylation of the
DMR 5' of H19 inactivates a chromatin boundary,
allowing access of IGF2 to a common set of
enhancers, which leads to IGF2 expression from
that allele (Refs 84, 85). H19-independent control
of IGF2 expression has also been suggested by
the discovery of an antisense RNA from IGF2
that is overexpressed in WT (Ref. 86); however,
the function of IGF2 antisense RNA is unclear at
present. These results suggest that LOH at 11p15
(which usually involves duplication of the
retained paternal copy of chromosome 11p15)
and relaxation of imprinting both lead to the
overexpression of a growth-promoting gene
(IGF2) and the loss of expression of growth-
inhibitory genes (H19 and CDKNIC). Such
aberrant expression of growth-promoting
and growth-inhibitory genes could give fetal
kidney cells a growth advantage, resulting in
tumourigenesis. Epigenetic lesions in H19 are
detectable in normal kidney tissue adjacent to
WTs, and in premalignant lesions (nephrogenic
rests). This suggests that imprinting changes are
a relatively early event in tumourigenesis (Refs
82, 87, 88).

Altered imprinting of the 11p15 region is
also involved in the fetal overgrowth syndrome
BWS, where patients exhibit organomegaly and
increased risk of childhood cancer, especially WT
(Ref. 55). Familial cases of BWS map to 11p15,
and some sporadic cases have chromosomal
abnormalities involving the same region.
Parent-of-origin effects are seen in each of the
genetic abnormalities associated with BWS:
preferential maternal transmission of inherited
BWS and, in sporadic cases, paternal uniparental
disomy (i.e. both copies of 11p15 are derived from
the father’s chromosomes), paternally derived
chromosome duplications, and maternally
derived chromosome translocations (Ref. 55).
These data have all implicated imprinting defects
in BWS. Furthermore, constitutional relaxation of
imprinting of IGF2 has been found in several BWS
patients (Ref. 89). The precise molecular lesions
causing BWS are complex, and involve two DMRs
at 11p15, centred around H19 (Refs 84, 85) and
KvLQT1 (Refs 90, 91). Chromosomal isodisomy,
duplications, translocations and imprinting
defects affecting 11p15 can all lead to increased
IGF2 expression, which presumably leads to the
increased growth in certain fetal tissues that is
seen in BWS. However, some familial cases have
inactivating germline mutations in CDKNIC, a

gene encoding an inhibitor of cyclin-dependent
kinases (Ref. 55). Loss of function of this gene
would deregulate cell-cycle control, which might
cause the overgrowth observed in certain fetal
tissues in BWS. The exact relationship between
changes in IGF2 expression in some patients
and CDKNIC expression in others is not yet
explained, but clearly this demonstrates genetic
heterogeneity in BWS.

Epigenetic changes at 11p13
The human WT1 antisense promoter region, on
chromosome 11p13, was shown to be aberrantly
hypermethylated in some cases of breast cancer
(Ref. 92), suggesting that epigenetic control of
this region might play an important role in
some cancers. Recently, it was demonstrated
that the antisense regulatory region was a
DMR: the maternal allele was methylated
and the paternal allele was unmethylated in
normal kidney (Ref. 51). Consistent with this,
WT1 antisense RNA is imprinted in normal
kidney, with only the paternal allele being
expressed (Ref. 51). In WTs with no LOH, two
hypomethylated alleles were observed instead of
one methylated and one unmethylated allele, and
both alleles were expressed, demonstrating
relaxation of imprinting. By contrast, non-Wilms’
renal tumours did not exhibit hypomethylation
of both alleles, but exhibited a degree of
hypermethylation, indicating that tumour-specific
epigenetic variations occur at the WT1 locus
(Ref. 51).

Outstanding research questions:
the molecular pathogenesis of WT

Analysis of WT1 mutations in WTs, together
with the data discussed above, indicate that
multiple loci are involved in WT development.
This is in marked contrast to retinoblastoma,
which involves just one rate-limiting genetic
alteration: inactivation of the retinoblastoma
gene RB-1 (Ref. 93). The early age of onset of
WT shows that there are likely to be few rate-
limiting genetic steps, in contrast to the multiple
steps required for the development of adult
tumours. Thus, many of the loci implicated in
WT development are probably alternative loci,
and inactivation of any one might be sufficient
to initiate tumourigenesis, with further genetic
and epigenetic changes being involved in
tumour progression. Identifying subsets of WTs
containing specific genetic or epigenetic changes
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and correlating these with biological properties
is one obvious avenue of research to pursue. Thus
far, only a few such correlations have been
proposed, such as the presence of WT1 mutations
in stromal-predominant WTs (Fig. 3d) (Ref. 94),
and the presence of p53 mutations in anaplastic
WTs (Fig. 3e) (Refs 44, 67).

The sequence of genetic events in Wilms’
tumourigenesis has begun to be unravelled by
studying the alterations present in premalignant
nephrogenic rests. For instance, genetic and
epigenetic changes at 11p (LOH, WT1 mutation,
loss of imprinting) are found in nephrogenic
rests, whereas LOH at 16q is not (Refs 41, 42,
86, 87). This implies that genetic and epigenetic
events at 11p are initiating events in WT
development, whereas 16q alterations are
involved in later progression to a more aggressive
phenotype. This is consistent with 16q LOH being
associated with a poor prognosis in WT (Ref. 57).
Similarly, p53 mutation is associated with a poor
prognosis and might therefore be predicted to be
a late event (Ref. 66).

The various genes implicated in WT
development could be involved in separate
pathways (e.g. control of proliferation versus
differentiation or apoptosis). Alternatively, they
could all be inter-related, for example as targets
for WT1, or as controllers of WT1 expression,
or as proteins that interact with the WT1
protein. For 16q and WT1, some indication of
which of these theories applies comes from the
data on tumour progression. Thus, the 16q loci/
genes are unlikely to be part of the same
pathway as WT1, because they are involved at
different stages of tumourigenesis. Recent data on
β-catenin mutations have shown that they are
frequently associated with WT1 mutations in WTs
(Ref. 95), suggesting that WT1 and β-catenin
mutations affect two different biochemical
pathways.

The only way to be certain about the
biochemical pathways these genes are involved
in is to study their biological functions. This
means that to gain a full understanding of WT
development we must accomplish the following
objectives: (1) clone all the genes involved; (2)
determine how frequently they are mutated in
WTs and at what progression stage; and (3) find
out their biological and biochemical functions.
With the near completion of the human genome
project, the first two objectives should be
attainable in the next few years. The third objective

is much more difficult, and it is instructive to
consider that although WT1 was cloned ten years
ago, there is still controversy as to its essential
biochemical function.

Knockout and transgenic mice will be very
useful for studying the biology of WT genes but,
for many studies, cell culture systems would be
advantageous. In contrast to our advanced
knowledge of WT genetics, we know little or
nothing about the cell biology of WT. The only
true WT cell lines in existence are derived from
anaplastic tumours (an aggressive WT subtype)
that represent a tiny fraction of WTs (Ref. 96,
and K. Brown, unpublished). Thus, it has not
even been possible to test the tumour suppressor
activity of WT1 in a cell line containing a WT1
mutation. It is therefore essential not only to
isolate the critical WT genes, but also to develop
systems with which to study the biological role
of WT genes in normal nephrogenesis and how
this is altered in WT development.

Conclusions and future prospects
It is now clear that WT development involves
several, probably alternative, genetic pathways,
but there is still an incomplete picture as to the
identity of most of these genes, or the mechanisms
by which they are controlled. However, the recent
advances in human molecular genetics should
soon enable a complete description of molecular
defects in individual WTs. This should allow the
stratification of WTs into good and poor prognosis
groups, so that treatment can be targeted more
effectively. It is especially important to be able to
identify those patients who appear to have a
good prognosis by conventional criteria, but who
relapse and die when treated by what seemed the
most appropriate regimen at the time of diagnosis.

The ultimate aim of all this work must be to
develop effective, specific therapies that avoid the
harmful side effects of present-day treatments. In
view of the existing high cure rate for WT, any
novel therapies will have to be demonstrably
superior in all respects. A detailed knowledge of
the molecular pathogenesis of WT is essential if
we are to identify the biochemical targets for new
methods of treatment.
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Further reading, resources and contacts

The American Cancer Society’s Wilms’ Tumor Resource Center provides information for patients and their
families.

http://www3.cancer.org/cancerinfo/load_cont.asp?ct=46

The Atlas of Genetics and Cytogenetics in Oncology and Haematology has searchable indices of genes,
chromosomes and cancers.

http://www.infobiogen.fr/services/chromcancer/

CancerWEB provides information on many cancers, including Wilms’ tumour, for patients, health care
professionals and researchers.

http://www.graylab.ac.uk/cancerweb.html

The Children’s Cancer Web includes information on Wilms’ tumour and links to other resources.

http://www.cancerindex.org/ccw/guide2w.htm

The Genetics of Cancer website has general interest sections as well as detailed discussion of inherited
cancers, with case studies.

http://www.cancergenetics.org/

The Genomic Imprinting Website provides information for researchers and students, including reviews and
commentaries, and reports of conferences.

http://www.geneimprint.com/

The Kidney Development Database describes genes involved in kidney development.

http://golgi.ana.ed.ac.uk/kidhome.html

The Lancet supplement on cancer (Vol. 351, Supplement 2) contains several interesting articles on modern
cancer research.

http://www.thelancet.com

OncoLink has disease-specific pages and links for many types of cancer, aimed at patients and their
families, health care professionals and the general public.

http://oncolink.upenn.edu/cancernet/

The Pediatric Oncology Resource Center includes information on Wilms’ tumour, provided by parents of
children with cancer.

http://www.acor.org/ped-onc

The Universal Mutation Database includes the WT1 mutation database.

http://www.umd.necker.fr/
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Features associated with this article

Figures
Figure 1. Gross pathology of Wilms’ tumour (fig001kbb).
Figure 2. Kidney development and Wilms’ tumourigenesis (fig002fbb).
Figure 3. Histopathology of normal fetal kidney and Wilms’ tumour (fig003kbb).
Figure 4. Loss of heterozygosity (LOH) in Wilms’ tumour (fig004kbb).
Figure 5. Structure of WT1 (Wilms’ tumour suppressor gene) and the proteins it encodes (fig005kbb).
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