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Abstract. Mathematicians prove theorems in a semi-formal setting, providing what we’ll call
informal proofs. There are various philosophical reasons not to reduce informal provability to for-
mal provability within some appropriate axiomatic theory (Leitgeb, 2009; Marfori, 2010; Tanswell,
2015), but the main worry is that we seem committed to all instances of the so-called reflection
schema: B(ϕ) → ϕ (where B stands for the informal provability predicate). Yet, adding all its
instances to any theory for which Löb’s theorem for B holds leads to inconsistency.

Currently existing approaches (Shapiro, 1985; Horsten, 1996, 1998) to formalizing the properties
of informal provability avoid contradiction at a rather high price. They either drop one of the Hilbert-
Bernays conditions for the provability predicate, or use a provability operator that cannot consistently
be treated as a predicate.

Inspired by (Kripke, 1975), we investigate the strategy which changes the underlying logic and
treats informal provability as a partial notion. We use non-deterministic matrices to develop a three-
valued logic of informal provability, which avoids some of the above mentioned problems.

§1. Formal vs informal provability. In common mathematical practice mathematical
claims are justified or proven in an informal way. Informal proofs are not stated in a proper
formal language, but rather in a mixture of a native language expanded with mathematical
notation. They abide by a different canon of rigour than formal proofs. From the per-
spective of fully formalized proofs, in informal proofs some inference steps seem to be
missing. It is not even clear what counts as an axiom and some simple facts are said to be
justified merely on the basis of mathematical insight (or intuition). Yet, the existence of an
informal proof of a mathematical statement is a very good reason to take the claim to be
true (or established). Provability in the above sense will be called informal provability.

On the other hand, there exist formal proofs, given in a fully formalized axiomatic theory
by means of a fully specified formal proof system. Formal provability in this sense is
always relative to some axiomatic theory.

The relation between formal and informal provability is often explained by the so-
called standard view. The proponents of this view argue that any informal proof is at
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least in principle reducible to a proper proof in an appropriate axiomatic system (usually,
ZFC). On this view, informal proofs are just sloppy, incomplete versions of formal
proofs.

Yet, there are reasons to think that there is at least a conceptual difference between
these notions. Some philosophers (Horsten, 2002; Leitgeb, 2009; Marfori, 2010) argue
against the standard view. According to them, the standard view does not fully explain
why informal proofs are quite good at convincing mathematicians, whereas formal ones
are not. They also point out that the role of axioms and definitions is quite different
in both kinds of proofs and that there is no clear procedure for converting an informal
proof into a formal one or for associating informal proofs with their formal counterparts
(Tanswell, 2015).

For us, the most important argument for the difference between formal and informal
provability lies in general principles valid for informal provability. There is an agreement
that principles of formal provability are satisfied for informal provability. Yet, those prin-
ciples are not enough, they do not express the reliability of informal proofs. The additional
principle, which is thought to be sound for informal provability is reflection schema.
It roughly says that any informally provable sentence is also true.

Unfortunately, the language of any arithmetical theory T containing Peano arithmetic,
cannot contain a formula for which the combination described above holds. We will
elaborate on this in §7.

Current theories of informal provability (Horsten, 2002) have to face the cost of adding
all the instances of the reflection schema for a new informal provability predicate. It is
quite high: some other principles which intuitively hold for informal provability (such as
some of Hilbert-Bernays derivability conditions) have to go.

Another strategy of constructing a theory of informal provability is to pay a different
price for adding all the instances of the reflection schema for informal provability. In
such systems, provability can only be treated as an operator, but, under the threat of
inconsistency, not as a predicate (Shapiro, 1985).

By the end of the article the reader will notice that in the system we present all the
instances of reflection for informal provability can be added, while (some variants of) other
intuitive principles are preserved. Our current goal is only to discuss the propositional level
of the inferential machinery, so showing that our strategy can be consistently extrapolated
to informal provability predicate lies beyond the scope of this article. However, it will
become clear that the reasons which blocked the move to the predicate level for other
systems are not going to constitute a similar obstacle in the case at hand.

We would like to suggest an unexplored strategy out of these difficulties, which stems
from the intuitions that some of the solutions proposed in Kripke’s theory of truth can be
used to approach provability.

Instead of dropping or restricting Hilbert-Bernays conditions we will change the un-
derlying logic. Most notably, our goal is to explore the option of treating mathematical
provability as a partial notion—after all, there is an intuitive division of mathematical
claims into provable, refutable and undecidable.

In the standard Kripke construction we rely on the Strong Kleene logic to deal with
the partial truth predicate. But Kleene logic is not appropriate for modelling informal
provability. It seems that informal provability has not truth-functional nature. Generally
it is not always the case that disjunctions of two independent sentences of a given theory
are independent of that theory.

We’ll limit our attention to the arithmetical setting since it is at the same time quite
simple to handle and expressive enough. The logic developed in this article is propositional
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and it still needs to be further developed to the full first-order version. Yet, some properties
of informal provability can be studied in the propositional setting, and doing so seems like
a good place to start, especially as it will turn out on page 7 that the propositional level is
where most of the action is.

§2. The non-deterministic strategy. Let L be a propositional language (understood
as the set of all well-formed formulas) constructed from propositional variables
W = {p1, p2, . . . } and Boolean connectives (¬,∧,∨,→,≡) in the standard manner. We
will use Greek letters ϕ,ψ, . . . as meta-variables for formulas. The language that results
from extending the set of Boolean connectives with one unary operator B will be denoted
LB. We will use B to express provability within the object language.

By an assignment we mean any function v : W �→ V al, where V al is a set of values.
By an evaluation ev built over an assignment v we will mean a function assigning values to
all well-formed formulas (ev : L �→ V al) agreeing with v on W (propositional variables),
and satisfying some additional constraints determined by a given logic.

In the case of standard classical propositional logic, evaluations are unambiguously
determined by assignments. For each assignment there is exactly one evaluation extending
it.

It is possible to construct sensible logics for which this uniqueness fails. One nice ex-
ample is the propositional variant of paraconsistent logic CLuN (Batens & Clercq, 2004).1

The standard semantics of CLuN is similar to the semantics of classical propositional logic
with one difference: the truth conditions for negation are different.

Both for classical logic and for CLuN we have V al = {0, 1}. In classical propositional
logic ev (¬ϕ) = 1 iff ev (ϕ) = 0. In CLuN this equivalence is weakened to an implication:
if ev (ϕ) = 0, then ev (¬ϕ) = 1. (Clauses for the rest of connectives are the same as in
classical propositional logic.) In other words, CLuN allows for gluts for negation: both ϕ
and ¬ϕ can be true in one and the same evaluation.

The standard semantics of CLuN has another interesting feature. It is non-deterministic:
assignments of values to propositional variables do not uniquely determine evaluations of
all formulas. One and the same assignment might be extended in different ways to different
evaluations, as long as they obey classical clauses for connectives other than negation and
the implication above for negation. For instance, if v(p) = 1, there is one evaluation e1

v

such that e1
v (¬p) = 0 and there is another one e2

v such that e2
v (¬p) = 1.

§3. Non-deterministic matrices for provability. We apply a similar trick to develop
a non-deterministic semantics for a logic which would help us model the notion of informal
provability.

The logic will be three-valued: we take the set of values V al = {0, n, 1}. The intended
interpretation of the values is as follows. 1 stands for (informally) provable, 0 represents
(informal) refutability and n stands for being neither (informally) provable, nor
(informally) refutable. This is the synchronic interpretation, on which whether something
is informally provable or refutable doesn’t depend on the stage of the development of
mathematics or on anyone’s state of knowledge.

1 A general framework for non-deterministic logics can be found in (Avron & Zamanski, 2011).
Particular systems discussed there have, however, quite different motivation from ours, and quite
different matrices.
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We will develop a logic with provability values. One might think that this approach is
strictly speaking antirealist (because the values aren’t interpreted in terms of what happens
in the “external world” but rather in terms of the properties of the system), but we are not
deeply committed to this way of thinking about it. One can be a truth-value realist or an
ontological realist while using our logic to reason about provability and at the same time
being aware that provability and truth are quite different.

Perhaps, one can think of these values diachronically by assuming that what is infor-
mally provable changes through time as new proofs are developed. In this sense, 1 would
stand rather for being informally proven, 0 for being informally refuted and n for being
neither. While we conjecture that this interpretation should abide by the same intuitively
valid inferential principles, due to the limited scope of this article we have to postpone a
proper discussion of this reading aside.

Recall that LB is the propositional language with provability operator B. We now move
to specifying the semantics for connectives of LB by means of non-deterministic matrices.
Let’s start with negation:
• ev (ϕ) = 1 iff ev (¬ϕ) = 0.
• ev (ϕ) = 0 iff ev (¬ϕ) = 1.
• ev (ϕ) = n iff ev (¬ϕ) = n.

A given formula is informally provable iff its negation is informally refutable. A given
formula is informally refutable iff its negation is informally provable. A formula is unde-
termined iff its negation is.

For disjunction we introduce non-deterministic clauses. The equivalence

ev (ϕ ∨ ψ) = 1 iff ev (ϕ) = 1 or ev (ψ) = 1

is weakened to one direction only:

If ev (ϕ) = 1 or ev (ψ) = 1 then ev (ϕ ∨ ψ) = 1.

The full set of clauses for disjunction is:

• If ev (ϕ) = 1 or ev (ψ) = 1, then ev (ϕ ∨ ψ) = 1.
• ev (ϕ ∨ ψ) = 0 iff ev (ϕ) = ev (ψ) = 0.
• If ev (ϕ) = 0, ev (ψ) = n, then ev (ϕ ∨ ψ) = n.
• If ev (ϕ) = n, ev (ψ) = 0, then ev (ϕ ∨ ψ) = n.
• If ev (ϕ) = n, ev (ψ) = n, then ev (ϕ ∨ ψ) = n or ev (ϕ ∨ ψ) = 1.

The intention behind the introduction of nondeterminism is this. We want to allow for
the possibility of there being informally (absolutely) undecidable mathematical sentences
(without saying that there are any). Yet, even for such sentences (if there are any), some
disjunctions built from them might be informally undecidable, while some others will be
informally provable. Say ϕ and ψ are informally undecidable (and therefore, so is ¬ϕ).
Then, while we might think that ϕ ∨ ψ is informally undecidable, we might be inclined to
think that ϕ ∨ ¬ϕ is informally provable despite ϕ not being decidable.

For instance, you might be inclined to think that Continuum Hypothesis (C H ) is infor-
mally undecidable, while C H ∨ ¬C H is still informally provable, being a logical truth.
This however, clearly doesn’t mean that C H∨C H is provable, and so not every disjunction
of undecidable sentences is decided.

Conjunction ϕ ∧ ψ is taken to have the same matrix as ¬(¬ϕ ∨ ¬ψ), and so:

• If ev (ϕ) = 0 or ev (ψ) = 0 then ev (ϕ ∧ ψ) = 0.
• ev (ϕ ∧ ψ) = 1 iff ev (ϕ) = ev (ψ) = 1.
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• If ev (ϕ) = 1, ev (ψ) = n then ev (ϕ ∧ ψ) = n.
• If ev (ϕ) = n, ev (ψ) = 1 then ev (ϕ ∧ ψ) = n.
• If ev (ϕ) = n, ev (ψ) = n then ev (ϕ ∧ ψ) = n or ev (ϕ ∧ ψ) = 0.

The idea for the indeterministic case for conjunction is following. For some informally
undecidable sentences we may be able to prove that they are mutually contradictory, which
makes their conjunction informally refutable. For some others it may be impossible, and
so their conjunction remains informally undecidable.2

Implication is taken to have the same matrix as (¬ϕ ∨ ψ), and so:3

• If ev (ϕ) = 0 then ev (ϕ → ψ) = 1.
• ev (ϕ → ψ) = 0 iff ev (ϕ) = 1 and ev (ψ) = 0.
• If ev (ϕ) = n, ev (ψ) = n then ev (ϕ → ψ) = n or ev (ϕ → ψ) = 1.
• If ev (ϕ) = n, ev (ψ) = 1 then ev (ϕ → ψ) = 1.
• If ev (ϕ) = n, ev (ψ) = 0 then ev (ϕ → ψ) = n.
• If ev (ϕ) = 1, ev (ψ) = n then ev (ϕ → ψ) = n.
• If ev (ϕ) = 1, ev (ψ) = 1 then ev (ϕ → ψ) = 1.

Equivalence has the same matrix as ((ϕ → ψ) ∧ (ψ → ϕ)), and therefore:

• ev (ϕ ≡ ψ) = 1 if ev (ϕ) = ev (ψ) = 1 or ev (ϕ) = ev (ψ) = 0.
• ev (ϕ ≡ ψ) = 0 if (ev (ϕ) = 1 and ev (ψ) = 0) or (ev (ϕ) = 0 and ev (ψ) = 1).
• ev (ϕ ≡ ψ) = n if exactly one of ψ , ϕ has value n.

While this doesn’t need to be stated and follows from the above, notice that if ev (ϕ) =
ev (ψ) = n then ev (ϕ ≡ ψ) is either 0, n, 1.

The intended reading of Bϕ is ‘ϕ is informally provable.’ The matrix for B is non-
deterministic:

• ev (Bϕ) = 1 iff ev (ϕ) = 1.
• If ev (Bϕ) = 0, then ev (ϕ) = 0 or ev (ϕ) = n.
• If ev (Bϕ) = n, then ev (ϕ) = n.

The intuition behind these conditions is the following.
If a formula is informally provable (ev (ϕ) = 1), then giving its own proof is also

a proof of its provability (ev (Bϕ) = 1), and the other way around. If a formula is
informally refutable ev (ϕ) = 0, then giving its own refutation is also a refutation
of its provability (ev (Bϕ) = 0). If a formula is informally undecidable (ev (ϕ) = n),
then one of two things may happen. First, it may be the case that the undecidability
of that formula is informally provable, and so its informal provability is refutable
(ev (Bϕ) = 0). Second, it may be the case that its absolute informal undecidability is not
informally provable, and so its absolute informal provability is informally undecidable
(ev (Bϕ) = n).

2 Notice that just because ϕ ∧ ψ has the same truth table as ¬(¬ϕ ∨ ¬ψ), it doesn’t follow that
the substitution of expressions of this form preserves the value under an interpretation. This will
fail due to indeterminacy. (The substitutability will be regained once we move from BAT logic to
CABAT logic.)

3 There are other ways to introduce implication in many-valued contexts, but given how, as it will
turn out, the behavior of implication deserves additional attention, we postpone the discussion of
various ways it can or cannot be introduced to another paper.
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All these conditions are captured by the following tables:

¬ ϕ

0 1
n n
1 0

∨ 0 n 1
0 0 n 1
n n n/1 1
1 1 1 1

∧ 0 n 1
0 0 0 0
n 0 0/n n
1 0 n 1

→ 0 n 1
0 1 1 1
n n n/1 1
1 0 n 1

≡ 0 n 1
0 1 n 0
n n 0/n/1 n
1 0 n 1

B ϕ

1 1
n/0 n
0 0

Because we interpret value 1 as Being an Absolute Theorem (BAT), we call the logic
thus obtained BAT-logic and we’ll use the bat symbol � to denote its consequence
relation, which we define as follows.

A BAT-assignment v is a function from propositional variables W to {0, n, 1}. A BAT-
evaluation over an assignment v is a function which assigns values to all formulas of LB,
agrees with v on W and obeys the constraints we gave for the connectives. Notice that
due to non-deterministic clauses, one and the same assignment might underlie multiple
evaluation functions.

By ��ϕ, where � is a set of formulas, we will mean that any BAT-evaluation which
assigns 1 to all formulas in � assigns 1 to formula ϕ. We say that ϕ is a BAT-tautology iff
∅�ϕ. We say that ϕ is a BAT-countertautology iff ∅�¬ϕ.

§4. Properties of BAT. First, note:

THEOREM 4.1. BAT-logic has neither tautologies nor counter-tautologies.

Proof. Because n is contagious, it is easy to see by induction on formula complexity
that for the assignment v which assigns n to all propositional variables and for any formula
ϕ there will be a way of extending v to ev such that ev (ϕ) will be n. �

THEOREM 4.2. Let � ⊆ L and ϕ ∈ L, then for any set of formulas � and any formula ϕ
if �� ϕ then � |� ϕ, where |� is the classical consequence relation (we’ll use |� in this
sense throughout the article).

Proof. By contraposition suppose that � �|� ϕ. Then there is an evaluation over an
assignment v such that ev (ψ) = 1 for all ψ ∈ � and ev (ϕ) = 0. It is easy to see that
ev is also a BAT-evaluation. For the assignment v is classical (it is into { 0,1 }) and BAT-
evaluations behave in the same manner as classical evaluations over classical assignments.
Hence, there is at least one BAT-assignment which makes all formulas of � true and ϕ
false, which means that it is not the case that �� ϕ (that is, ������| ϕ). �

Quite expectedly, classical consequence is strictly stronger than BAT- consequence:

THEOREM 4.3. There are some � ⊆ L and ϕ ∈ L such that � |� ϕ but ������| ϕ.

Proof. For instance, ¬(ϕ ∧ ψ)�����| ¬ϕ ∨ ¬ψ . Take any evaluation for which ev (ϕ) =
n = ev (ψ), ev (ϕ ∧ ψ) = 0, ev (¬ϕ ∨ ¬ψ) = n. �

The following table illustrates the assessment of some standard classically valid infer-
ence patterns in BAT.
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Premises Conclusion � ?

ϕ ¬¬ϕ Yes
¬¬ϕ ϕ Yes
¬(ϕ ∧ ψ) ¬ϕ ∨ ¬ψ No
¬ϕ ∨ ¬ψ ¬(ϕ ∧ ψ) No
¬(ϕ ∨ ψ) ¬ϕ ∧ ¬ψ Yes
¬ϕ ∧ ¬ψ ¬(ϕ ∨ ψ) Yes
ϕ ∧ ψ ψ ∧ ϕ Yes
ϕ ∨ ψ ψ ∨ ϕ No
ϕ → ψ ¬ψ → ¬ϕ No
ϕ ∧ ψ ϕ ∨ ψ Yes
ϕ ψ → ϕ Yes

ϕ ∧ (ψ ∨ χ) (ϕ ∨ ψ) ∧ (ϕ ∨ χ) No
ϕ ∨ (ψ ∧ χ) (ϕ ∧ ψ) ∨ (ϕ ∧ χ) No

(ϕ ∨ ψ) ∧ (ϕ ∨ χ) ϕ ∧ (ψ ∨ χ) No
(ϕ ∧ ψ) ∨ (ϕ ∧ χ) ϕ ∨ (ψ ∧ χ) No
ϕ → ψ,ψ → χ ϕ → χ No

¬ψ ¬(ϕ ∧ (ϕ → ψ)) No
ϕ ¬[(ϕ → ψ) ∧ ¬ψ] No

ϕ ∨ ψ,¬ϕ ψ Yes
ϕ → ψ,¬ψ ¬ϕ Yes
¬ψ ∧ (ϕ → ψ) ¬ϕ Yes
ϕ ∧ (ϕ → ψ) ψ Yes
ϕ, (ϕ → ψ) ψ Yes
ϕ → ψ (ϕ ∧ λ)→ ψ No
ϕ → ψ ϕ → (ψ ∨ λ) No

ϕ ∧ (ψ ∧ χ) (ϕ ∧ ψ) ∧ χ Yes
ϕ ∨ (ψ ∨ χ) (ϕ ∨ ψ) ∨ χ No
(ϕ ∧ ψ) ∧ χ ϕ ∧ (ψ ∧ χ) Yes
(ϕ ∨ ψ) ∨ χ ϕ ∨ (ψ ∨ χ) No

Notice that Modus Ponens works in both formulations, while its contraposed form fails.
Similarly, Modus Tollens works in both forms, while its contraposed form fails. This
entails:

THEOREM 4.4. It is not generally the case that if ϕ�ψ then ¬ψ�¬ϕ.

Observe that disjunction is neither commutative nor associative. Take the assignment v
where all propositional variables have value n and consider two formulas: ϕ = p ∨ q and
ψ = q ∨ p. As far as ϕ and ψ are concerned, there are four possible ways to extend this
assignment:

e1
v (ϕ) = n = e1

v (ψ),

e2
v (ϕ) = 1, e2

v (ψ) = n,

e3
v (ϕ) = n, e3

v (ψ) = 1,

e4
v (ϕ) = 1 = e4

v (ψ).
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BAT logic is too weak to eliminate extensions (e1
v , e2

v , e3
v ), in which ϕ and ψ obtain differ-

ent values, and which show that neither ϕ�ψ , nor ψ� ϕ. Thus, it needs to be strength-
ened.

§5. Strengthening BAT. Usually, to obtain a stronger logic from a logic with non-
deterministic semantics we have to limit the range of available possible extensions of given
assignments.4 We would like to propose our own solution to this problem in terms of either
enriching one logic by another one or by additional closure condition.

DEFINITION 5.1. Let L be a logic. We say that a BAT-evaluation e belongs to the L-filtered
set of BAT-evaluations just in case the following conditions hold:

1. For any two formulas ϕ,ψ , if |�L ϕ ≡ ψ then e(ϕ) = e(ψ),

2. For any L-tautology ϕ, e(ϕ) = 1,

3. For any L-countertautology ϕ, e(ϕ) = 0.

We will focus on the case where L is classical logic (L=CL), and we simply use |� to
denote the classical consequence relation. By ��C L ϕ we will mean that for any evalua-
tion e in the CL-filtered set of BAT-evaluations if e(ψ) = 1 for all ψ ∈ � then e(ϕ) = 1.
The resulting logic is called CLBAT.

We may be also inclined to strengthen BAT-logic in a different manner. A quite intu-
itive way to go is to close BAT-logic under classical consequence. It can be done by the
following condition:

DEFINITION 5.2 (Closure condition). An extension of BAT (in LB) satisfies the closure
condition just in case for all LB-formulas ϕ1, ϕ2, . . . , ϕk, ψ such that

ϕ1, ϕ2, . . . , ϕk |� ψ,
where |� is the classical consequence relation for LB, for any BAT-evaluation ev , if
ev (Bϕi ) = 1 for any 0 < i ≤ k, then ev (Bψ) = 1.

The result of closing BAT-logic under the closure condition will be called CABAT logic
and its consequence relation will be denoted by �C .

It turned out that the above conditions are equivalent, and so are the resulting logics:

THEOREM 5.3. ��C ϕ iff ��C L ϕ.

Proof. We will show that the set of CL-filtered BAT-evaluations respects the closure
condition and that the set of evaluations for which the closure condition holds is exactly
the set of CL-filtered BAT-evaluations.
⇒: Let � = {ϕ1 . . . ϕn} and ϕ be such that � |� ϕ. We have to show that for any

CLBAT- evaluation e, if e(Bϕ1) = e(Bϕ2) = . . . = e(Bϕn) = 1 then e(Bϕ) = 1. Assume
the antecedent. By the deduction theorem for classical propositional logic we know that
|�∧i=n

i=1 ϕi → ϕ. By the assumption and the definition of CLBAT-evaluation, e(
∧i=n

i=1 ϕi →
ϕ) = 1. Since any CLBAT-evaluation which assigns 1 to all conjuncts has to assign 1 to
the whole conjunction, we have e(

∧i=n
i=1 ϕi ) = 1. By the matrix for implication it follows

that e(ϕ) = 1. By the matrix of B, we have e(Bϕ) = 1.

4 The most common way to strengthen a non-deterministic logic is to use the level-evaluation
method (Coniglio, Fariñas del Cerro, & Peron, 2015) Due to simplicity, we prefer our method.
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⇐: To show that any CABAT-evaluation e is also a CLBAT-evaluation, since both sets
are subsets of BAT-evaluation, we only need to check that CABAT-evaluations respect the
filtration conditions.

We will start with the third condition. Let ϕ be a formula in LB. First, suppose that for
any classical evaluation e, e(ϕ) = 0. It follows that for any classical evaluation e(¬ϕ) = 0,
so |� ¬ϕ. We have to show that ϕ has value 0 in any CABAT-evaluation. By the closure
condition �C B¬ϕ. By the matrix for B, �C ¬ϕ. So any CABAT-evaluation assigns 0 to
formula ϕ.

Next, consider the second condition. Let ϕ be a formula in LB. First, suppose that for
any classical evaluation e, e(ϕ) = 1. We have to show that ϕ has value 1 in any CABAT-
evaluation. By the closure condition �C Bϕ. By the matrix for B, �C ϕ. So any CABAT-
evaluation assigns 1 to formula ϕ.

Finally, consider the first condition. Suppose now that for any classical evaluation
e(ϕ) = e(ψ). In other words, |� ϕ ≡ ψ . By the deduction theorem, ϕ |� ψ , ψ |� ϕ,
¬ψ |� ¬ϕ and ¬ϕ |� ¬ψ . We want to show that for any CABAT-evaluation ec, ec(ϕ) =
ec(ψ). By the closure condition, Bϕ�C Bψ , Bψ�C Bϕ, B¬ψ�C B¬ϕ and B¬ϕ�C B¬ψ .
Thus, by the matrix for B we have ϕ�C ψ , ψ�C ϕ, ¬ϕ�C ¬ψ and ¬ψ�C ¬ϕ.

We will consider three cases: ec(ϕ) = 1, ec(ϕ) = 0 and ec(ϕ) = n. We will start with the
first case. It follows from ϕ�C ψ that ec(ψ) = 1, thus by the matrix for B, ec(Bψ) = 1.

For the second case if ec(ϕ) = 0, then ec(¬ϕ) = 1, thus ec(¬ψ) = 1, so ec(ψ) = 0,
which implies by the matrix for B. that ec(Bψ) = 1.

In the third case note that if ec(ϕ) = n then ec(ψ) = n because otherwise by analogous
argument to the ones above from ec(ψ) �= n we would have that ec(ϕ) is either 1 or 0,
which contradicts the assumption. �

Given that both CABAT and its internal logic are closed under classical consequence,
all the worries about syntactic sensitivity that applied to BAT disappear.

§6. Properties of CABAT. Quite trivially, CABAT is strictly stronger than BAT. The
first interesting thing to see is that the deduction theorem is not generally valid in
CABAT:

THEOREM 6.1. If �C ϕ → ψ then ϕ�C ψ but it is not always the case that ϕ�C ψ
implies �C ϕ → ψ .

In CABAT implications are stronger than the corresponding consequence relation, sim-
ply because the consequence relation informs us only about those evaluations in which
all the premises have value 1. For instance, the consequence relation ϕ�C ψ does not
determine the value of implication ϕ → ψ when both ψ and ϕ have value n. On the other
hand, �C ϕ → ψ uniquely determines the value of the implication under the previous
assignment.

Lack of the deduction theorem makes the difference when we look at inference pat-
terns with provability operator. Usually, principles for provability are valid in CABAT
as consequence relations whereas their implicational formulations may be invalid. We
are not terribly worried about that, since given our reading ϕ�C ψ means that if ϕ is
informally provable then ϕ is and this is the phrase we intended to formalize. On the other
hand, �C ϕ → ψ says if ϕ is informally provable, then so is ψ and if the antecedent
is undecidable then the consequent is either provable or independent, which is a stronger
claim than ϕ�C ψ .
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Now we will take a look at some schemas involving provability predicate. Intuitively,
informal provability commutes with conjunction but not with disjunction. The fact that
either ϕ or ψ is informally provable does not imply that we can prove either the first or
the second disjunct. Of course, the consequence relation in the opposite direction (Bϕ ∨
Bψ�C B(ϕ ∨ ψ)) should hold.

Provided our reading of the consequence relation, Bϕ�C ϕ may be seen as a certain
version of the reflection schema, which is definitely a sound principle for informal prov-
ability.

The fact that a certain statement is informally provable is itself an evidence for the
informal provability of the provability of that statement. Thus, iterative principles allow-
ing to either add or subtract the B operator from the beginning of a formula are also
natural.

The table below summarizes which inference patterns are valid in CABAT and whether
the principle, according to us, is intuitive or not:

Principle Valid? Intuitive?
(Bϕ ∧ Bψ)�C B(ϕ ∧ ψ) Yes Yes
B(ϕ ∧ ψ)�C (Bϕ ∧ Bψ) Yes Yes
B(ϕ ∨ ψ)�C (Bϕ ∨ Bψ) No No
(Bϕ ∨ Bψ)�C B(ϕ ∨ ψ) No ?

ϕ�C Bϕ Yes Yes
Bϕ�C ϕ Yes Yes

Bϕ�C ¬B¬ϕ Yes Yes
Bϕ�C BBϕ Yes Yes
BBϕ�C Bϕ Yes Yes

B(ϕ → ψ)�C (Bϕ → Bψ) No ?
B(ϕ → ψ),Bϕ�C Bψ Yes Yes
B(ϕ ∧ ¬ϕ)�C B(ψ) Yes Yes

Bϕ ∨ B¬ϕ No No
Bϕ ∨ ¬Bϕ Yes Yes

¬Bϕ�C B(¬ϕ) No No
B(¬Bϕ)�C B(¬ϕ) No No

B(¬B¬ϕ)�C ¬B(¬Bϕ) No No

One thing that might seem worrying is that

(Bϕ ∨ Bψ)�����| C B(ϕ ∨ ψ).
After all, if ϕ is informally provable, shouldn’t ϕ ∨ ψ also be informally provable? This
worry, however, stems from the fact that the provability of a disjunction in CABAT says
something weaker than that one of its disjuncts is provable—after all, ϕ ∨ ¬ϕ is going to
be informally provable without either ϕ or ¬ϕ being informally provable. So, we submit,
the intuition should be rather captured by requiring that the following should hold:

Bϕ�C B(ϕ ∨ ψ) and

Bψ�C B(ϕ ∨ ψ)
and indeed, they do.

Another worry might be that the following assymetry between at least prima facie close
cousins can be observed:
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B(ϕ → ψ)�����| C (Bϕ → Bψ), (Fake K)

B(ϕ → ψ),Bϕ�C Bψ. (Real K)

The answer is, however, that putting Bϕ → Bψ on the right-hand side of �C doesn’t
adequately capture the intuition that if ϕ is informally provable, then so isψ . For Bϕ → Bψ
actually contains more information than that. If ϕ is informally provable, then so is ψ tells
us only what happens when ϕ (and so, Bϕ) is informally provable, while the provablity of
Bϕ → Bψ puts further constraints on what happens if ϕ is not informally provable (for
instance, that if it is undecidable, ψ cannot be refutable). It’s (Real K) and not (Fake K)
that properly captures the underlying intuition.

§7. CABAT and provability. Now, let’s see the difference between using �C and
its provability operator on the one hand, and using Peano Arithmetic and its standard
provability predicate (or the modal logic of provability GL and its provability operator,
for that matter) on the other.

Quite crucially, we may want to see which principles that hold for standard formal
provability predicates hold for operator B as well.

First, recall Hilbert-Bernays conditions for PA:

PA � ϕ ⇒ PA � Bew(�ϕ�), (HB1)

PA � Bew(�ϕ → ψ�)→ (Bew(�ϕ�)→ Bew(�ψ�)), (HB2)

PA � Bew(�ϕ�)→ Bew(�Bew(�ϕ�)�). (HB3)

In the arithmetical setting standard Hilbert-Bernays conditions allow one to prove Löb’s
theorem:

THEOREM 7.1. If PA � Bew(�ϕ�)→ ϕ then PA � ϕ.

Since we’ll want to make a point about how the standard proofs of the theorems that
we’ll discuss proceed, we’ll go over them quickly.

Proof. Suppose PA � Bew(�ϕ�)→ ϕ. By the diagonal lemma there is a formula such
that PA � λ ≡ (Bew(�λ�)→ ϕ). Now, arguing inside Peano Arithmetic we get:

λ→ (Bew(�λ�)→ ϕ), (1)

Bew(�λ→ (Bew(�λ�)→ ϕ)�), (2)

Bew(�λ�)→ (Bew(�Bew(�λ�)�)→ Bew(�ϕ�)), (3)

Bew(�λ�)→ Bew(�Bew(�λ�)�), (4)

Bew(�λ�)→ Bew(�ϕ�), (5)

Bew(�λ�)→ ϕ, (6)

λ, (7)

Bew(�λ�), (8)

ϕ. (9)
�

(2) is obtained by neccesitation. Next, we use the second Hilbert-Bernay’s condition to
distribute provability over implication twice to obtain (3). Line (4) is the third Hilbert-
Bernays condition thanks to which we obtain (5) from (3). By the assumption that
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PA � Bew(�ϕ�) → ϕ we obtain (6). Applying detachment to the sentence generated
by the diagonal lemma we get (7). Then by necessitation and modus ponens, we obtain the
last two lines.

Löb’s theorem is not an intuitively sound principle for informal provability. There is
no reason to suppose that only those instances of the reflection schema hold for which
ϕ is already a theorem. The intuitions are rather clear that all instances of reflection are
plausible.

In the arithmetical setting we get Löb’s theorem as a side-effect of the diagonal lemma.
It is not something that we would like to postulate as an interesting and independently
motivated principle. Rather, it is an unwanted surprising consequence. It is also one of
the reasons why we cannot consistently put all together instances of the reflection schema
together with HB conditions in the classical setting.

In CABAT we have certain versions of HB conditions:

ϕ�C Bϕ, (HB1′)
B(ϕ → ψ),Bϕ�C Bψ, (HB2′)

Bϕ�C BBϕ. (HB3′)

The first condition in CABAT is a bit stronger, since it is not restricted only to
theorems. The condition starts to be intuitive as soon as you recall you interpretation of
ϕ�C ψ , which says that if ϕ is informally provable then so is ψ . Some may be worried
that the above formulation of HB1, in some sense, allows to go from premises which are
true (and may not be theorems) to premises which are theorems. But as we explained,
according to our reading formulas on the left hand side of �C are not true but infor-
mally provable. So the principle allows only to go from informally provable premises to
informally provable premises having informal provability expressed in the object
language.

One interesting question is whether the above conditions are enough to prove Löb’s
theorem. The key observation, in the standard proof, is that once the premises, including the
one produced by an application of the diagonal lemma, are listed, the theorem follows by
classical propositional logic. So it seems that the issue can be handled at the propositional
level.

The natural way to go about the translation is this. We translate both Bew and � as B. It
is a standard practice to translate them using a single symbol (see Boolos, 1993).

Slightly more challenging is the question how to translate implications from the
language of PA. The straightforward approach is to translate them as material implications
in LB.

But we think it will not do justice to the original theorem. The deduction theorem
does not hold for CABAT. Implications are stronger claims than consequence claims
and are much harder to prove. Thus, whenever possible, we will translate ϕ → ψ in
the conclusions as ϕ�C ψ . We leave implications in the premises, especially within the
scope of B. But this is not a cheap way for us to avoid an undesired consequence:
by leaving material implications in the premises we make them as strong as
we can.

As for sentences produced by the application of Diagonal Lemma we will build them to
the assumptions.
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FACT 7.2 (Löb’s theorem failure). B(Bϕ → ϕ),B(λ → (Bλ → ϕ)),B(B(λ → ϕ) →
λ)�����| C Bϕ.

Proof. Just take an assignment v(ϕ) = v(λ) = n and extend it to an evaluation where for
each implication if it is possible to choose n, it should be chosen. It is easily verifiable that
all the premises have value 1, and yet the conclusion has value n, while all the constraints
on valuations remain satisfied. �

Why doesn’t the standard argument work? Suppose ev gives value 1 to all the premises.
Since ev (B(λ→ (Bλ→ ϕ))) = 1, it follows that ev (Bλ→ (BBλ→ Bϕ)) = 1. Now, in
the standard proof we use the fact that ev (Bϕ → BBϕ) = 1, but we cannot do that here,
since in general the previous formula is not a CABAT-tautology.

In other words, it is not the case that only those instances of the reflection schema are
provable for which ϕ is already a theorem. The lack of Löb’s theorem is rather promising
since it leaves open the possibility for adding all the instances of the reflection schema
consistently.

We will take a quick look at two other theorems related to provability and the reflection
schema.

As we already stated: there is a problem with the reflection schema in the standard
setting. It is impossible to add all instances of the schema and at the same time have all
Hilbert-Bernays conditions. This is shown by the Montague’s paradox:

THEOREM 7.3. Peano Arithmetic, if consistent, cannot contain (or be consistently
extended to contain) a (possibly complex) predicate for which all Hilbert-Bernays
conditions and all instances of the reflection schema hold.

Proof. Suppose that there is such a predicate, call it P . We will use natural deduction
system. Argue inside the theory:

1. λ ≡ P(�¬λ�) Diagonal lemma
1.1 λ Hypothesis
1.2 P(�¬λ�) equivalence elimination: 1,1.1
1.3 ¬λ modus ponens and reflection schema: 1.2
2. ¬λ reductio ad absurdum: 1.1→ 1.3
3. P(�¬λ�) HB 1
4. ¬P(�¬λ�) 1, 2
5. contradiction 3, 4. �

To rephrase the above theorem, it is impossible, given Hilbert-Bernays conditions, to
extend the theory with the inverse of the implication corresponding to the necessitation
rule. The same goes for the implication directly corresponding to the necessitation
rule:

THEOREM 7.4. Peano Arithmetic, if consistent, cannot contain (or be consistently ex-
tended to contain) a (possibly complex) predicate for which all Hilbert-Bernays conditions
and all instances of ϕ → P(�ϕ�) (Provabilitation) hold and is closed under the co-
necessitation rule: if P(�ϕ�) then ϕ.

Proof. Suppose that there is such a predicate, call it P . We will use natural deduction
system. Argue inside the theory:
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1. ¬P(�κ�) ≡ κ the diagonal lemma
1.1 κ conditional assumption
1.2 ¬P(�κ�) equiv elimination: 1, 1.1
1.3 κ → P(�κ�) instance of provabilitation for κ
1.4 ¬κ MTT: 1.3, 1.2
2. ¬κ conditional assumption discharge: 1.1← 1.4
3. P(�κ�) equiv elimination: 1,2
4 κ co-necessitation: 3
5. contradiction 2,4.

�
The moral is that the price for all Hilbert-Bernays conditions together with all instances

of the reflection schema on the one hand, or all instances of to provabilitation one the other
(assuming co-necessitation) is too high in the standard setting.

FACT 7.5 (Montague). B(Bλ→ λ),B(B(¬λ)→ λ),B(λ→ B(¬λ))�����| C λ ∧ ¬λ.
Proof. We can omit the initial B on the left side, since all evaluations which assign 1 to

a formula Bϕ also assign 1 to ϕ.
Suppose ev (λ) = 1. Then from ev (λ → B(¬λ)) = 1 = ev (λ) by modus ponens,

ev (B¬λ) = 1. Thus, ev (¬λ) = 1, contradiction.
Suppose ev (λ) = n. Then it is possible to extend this assignment so that all the premises

have value 1, and the conclusion has value n or 0. �
In other words, our provability conditions can be consistently extended with the reflec-

tion schema. So in a sense CABAT provability conditions are more appropriate for informal
provability.

What is also interesting is the fact that the dual paradox in which we add provabilitation
instead of reflection still works.

FACT 7.6 (Dual Montague). The following consequence still holds:
B(λ→ ¬Bλ),B(¬B(λ)→ λ),B(λ→ Bλ),B(¬λ→ B¬λ)�C λ ∧ ¬λ.

Proof. Similarly we can omit all occurrences of B, in all formulas of the form Bϕ. Let
ev be an evaluation under which all the premises have value 1. Then, since ev (λ→ Bλ) =
1 = ev (λ→ ¬Bλ), it follows that ev (¬λ) = 1. Note that ev (¬Bλ→ λ) implies, by modus
tollens, ev (¬¬Bλ) = 1. Thus, ev (Bλ) = 1 = ev (λ). Contradiction. �

This is also a signal that our initial intuition behind CABAT is not completely insane:
with CABAT in the background it is possible to add all the instances of the reflection
schema, but not all the instances of provabilitation (which is less intuitive for informal
provability).

Even if we add reflection for both λ and ¬λ, where λ states the provability of its own
negation, CABAT proves that λ is informally undecidable.

FACT 7.7 (Reflection and provability). The following consequence holds:
B(Bλ→ λ),B(B¬λ→ ¬λ),B(B(¬λ)→ λ),B(λ→ B(¬λ))�C ¬B¬λ ∧ ¬Bλ.

Proof. As usual we omit the left-hand side B. Take any evaluation for which ev (ϕ) = 1
for all ϕ which are premises. The instance of the reflection schema ev (B¬λ→ ¬λ) com-
bined with B¬λ→ λ gives ev (¬B¬λ) = 1. This implies ev (¬λ) = 1, thus ev (¬Bλ) = 1.
In other words every evaluation ev which gives 1 to all the premises also gives 1 to
¬B¬λ ∧ ¬Bλ. �
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That’s for a sentence which says that its own negation is informally provable. Another
interesting pet worth playing with is what we’ll call informal Gödel sentence: a sentence
which says of itself that it is not informally provable. The first thing to observe is that its
formalization over CABAT doesn’t lead to contradiction:

FACT 7.8 (Informal Gödel sentence). γ → ¬Bγ,¬Bγ → γ�����| C γ ∧ ¬γ .

Proof. Because of the closure condition, �C B(¬(γ ∧ ¬γ )), and so �C ¬(γ ∧ ¬γ )
and ev (γ ∧ ¬γ ) has to be 0, independently of what ev (γ ) is, in particular it is possible
that ev (γ ) = n. So now the only thing that we need to check is if it’s possible that all
the premises have value 1. Indeed, if ev (γ ) = n, there is no problem with assuming
that ev assigns 1 to both premises. After all, they are just implications whose at least
one argument has value n, and such implications can be assigned value 1 (see the matrix
for→). �

However, as soon as we add either provabilitation or reflection contradiction follows:

FACT 7.9 (Informal Gödel with provabilitation). The following holds:

γ → Bγ, γ → ¬Bγ,¬Bγ → γ�C γ ∧ ¬γ.
Proof. Again, the proof proceeds by showing that no evaluation can assing 1 to all

the premises. For contradiction, suppose ev is an evaluation which assigns 1 to all the
premises. By the fact that ev (γ → Bγ ) = ev (γ → ¬Bγ ) = 1, we have ev (γ ) = 0.
Then, ev (¬γ ) = 1. Apply modus tollens to the third premise, we have ev (¬Bγ ) = 0 and
ev (Bγ ) = ev (γ ) = 1, which is a contradiction. �

The above fact isn’t too worrying, because provabilitation doesn’t seem too plausible for
informal provability to start with. Here’s a more interesting case.

FACT 7.10 (Informal Gödel with reflection). The following holds in CABAT:

Bγ → γ,B¬γ → ¬γ,Bγ → ¬γ,¬γ → Bγ�C γ ∧ ¬γ.
Proof. By the argument used in the previous proof, γ ∧ ¬γ will always have value

0. So the only way of showing that the consequence holds is to prove that the premises
cannot all have value one. For contradiction, assume ev is an evaluation which assigns 1
to all the premises. Then, by the transitivity of implication in CABAT (guaranteed by the
closure condition) we have ev (¬γ → γ ) = 1 By closure condition, ev (¬γ → γ ) =
ev (¬¬γ ∨ γ ) = ev (γ ∨ γ ) = ev (γ ) = 1. Thus ev (Bγ ) = 1 and by modus ponens applied
to the third premise ev (¬γ ) = 1, which is a contradiction. �

One might be worried that the last fact gives rise to a paradox in the vein of (Priest, 1987;
Beall, 1999), where the argument is put forward to the effect that informal mathematics is
inconsistent, because one can take the sentence:

(γ ) γ is not informally provable.

and both the assumption that γ is informally provable, and that it isn’t informally provable
lead to contradiction.

Paradoxical arguments in natural language aside, notice that given that CABAT con-
sequence relation is defined in terms of informal provability preservation, Fact 7.10 is to
be read: if the formulae on the left-hand side of �C are informally provable, then so is
the formula on the right-hand side. So, assuming reflection is informally provable, for the
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paradox to arise we actually have to assume not only that the following is true:

γ ≡ ¬Bγ, (γ ′)

but also that it is provable in informal mathematics. This, however, is a stronger assumption
that standard paradoxical arguments failed to establish: whether writing down (γ ) consti-
tutes an informal mathematical proof of (γ ′) is far from obvious and deserves a separate
discussion. These and related fascinating issues, however, lie beyond the scope of this
article.

§8. Conclusions. Once we intuitively divide mathematical claims into provable,
refutable and independent, the question arises as to how these three classes interact with
Boolean connectives. This interaction is not straightforward, because facts about whether
certain claims are provable, refutable, or independent do not unambiguously determine the
status of their Boolean combinations.

This obstacle, however, is not fatal. Once we move to indeterministic semantics, the
basic constraints on how provability, refutability and independence behave with respect to
Boolean connectives can be explicated by a formal system: BAT. The constraints captured
by BAT matrices are a bit too basic, though. They don’t give justice to the fact that informal
mathematical provability is closed under classical consequence. Adding this requirement
to BAT results in a stronger system, CABAT, which is studied in the remainder of the
article.

CABAT, in contrast with BAT, doesn’t fall prey to syntactic sensitivity. CABAT also
validates many intuitively plausible and invalidates many intuitively implausible inference
patterns for informal provability. Among the invalidated ones, we have Löb’s theorem,
which when applied to informal provability seems to be making the unintuitive claim
that reflection holds only for those statements which are already informally provable.
The failure of Löb’s theorem makes all the instances of reflection schema consistent with
CABAT.
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