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We study the existence of a boundary trace for minorized solutions of the equation
Au + K (z)e*™ = 0 in the unit open ball B? of R2. We prove that this trace is an
outer regular Borel measure on dB2, not necessarily a Radon measure. We give
sufficient conditions on Borel measures on dB? so that they are the boundary trace
of a solution of the above equation. We also give boundary removability results in
terms of generalized Bessel capacities.

1. Introduction

If one identifies the hyperbolic space H? with (B?, gy ), where B2 = {z € R? : |z| <

1},
gr =4go/(1—|z[*) and (go)i; = 6 (1<i,j<2), (1.1)

the expression of the Gaussian curvature K, of a metric g, = e?*“gy conformal to
the standard one in H? is given by

Ky(z) = —e 2@ Au(z)  (Vz € B?), (1.2)

in which formula Au = 92 u+ 97 u. Consequently, the problem of finding a metric
in H? conformal to the standard one, with prescribed Gaussian curvature K is
reduced to study the following nonlinear elliptic equation in B2:

Au+ K(z)e* = 0. (1.3)

This equation has been studied for a long time and much is known about the
existence or non-existence of solutions (see, for example, [1,9,10,15] or [23]). Those
questions are deeply related to the sign of K.

In this article we investigate this equation under the completely different point
of view of describing all the possible boundary behaviour of the solutions of (1.3).
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This type of problems with different equations has first been introduced by Le
Gall [12,13] in the probabilistic framework of the two-dimensional superprocesses.
This leads to the following equation

Au—u? =0 (1.4)
in B2, and Marcus and Véron [16,17] for the more general equation
Au—ul=0 (1.5)

(¢ > 1) in the d-dimensional ball B¢. Concerning related problems much work has
also been done by Dynkin [6] and Dynkin and Kuznetzov [7] in the probabilistic
framework of the study of branching processes which lead to d-dimensional equa-
tions of type (1.5) in which 1 < ¢ < 2. The starting point of Marcus and Véron’s
work [16,17,19,20] is settled upon the existence of a boundary trace for any posi-
tive solution of (1.5) in B% and the fact that this boundary trace is represented by
a positive, outer regular Borel measure on dB?, not necessarily a Radon measure.
Moreover, they construct positive solutions of (1.5) with given boundary data in the
class of positive and (outer) regular Borel measures on B¢, with no condition when
1 <q<(d+1)/(d—1), and some compatibility condition when ¢ > (d+1)/(d—1).
The present work deals with the extension of some of Marcus and Véron’s results
to the study of boundary trace for solutions of (1.3) in B? which are bounded from
below by some constant. Let (r,6) be the polar coordinates in R2\{0}, with S!
identified with B2. In the first section no assumption on the sign of the curvature
function K is made. We prove that if K is continuous in B2, u is a solution in B?
non-negative near B2 for the sake of simplicity, and w™ = {x € 9B? : K(x) > 0}
(respectively w™ = {x € dB? : K(z) < 0}), then the following situation occurs.

I. For any 0 € w™, either

(i) there exists a relatively open neighbourhood U of 0 such that, for every ¢ €
G5 (U)

11*1?11 u(r,o)((o) do = £((), (1.6)
U

where £ is a positive linear functional on C§°(U), or,

(ii) for every relatively open neighbourhood U of 6, there holds

lim | wu(r,o)do = oo. (1.7)
r—1 U

II. For any 0 € w' there exists a relatively open neighbourhood U of 0 such that
(1.6) holds for every ¢ € C§°(U), where € is a positive linear functional on C§°(U).

If & € 0B?, we shall say that 6 is regular with respect to u either if statement
(I(i)) holds or if # € w™. The set of reqular points is relatively open in 9B? and we
denote it by R. As in [12] or [16], there exists a positive Radon measure p on R
such that

lim | u
r—1Jr

(r.0)C(0) do = fR<<a> dpu(o) (18)
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for every ¢ € C§°(R). The set of §# € dB? such that statement (I(ii)) holds, that
we denote S, is called the singular set of u and we have

OB* =RUSUW, (1.9)

where w? = {z € 9B? : K(x) = 0}. We denote trjpp2(u) = (S,w", n).

In the next section it is supposed that K is negative in B2 (and always continuous)
and therefore the boundary trace is described by the set S and the Radon measure p
on R = dB2\S. It is known from Gmira and Véron [8] that isolated boundary points
are removable singularities for (1.3), and therefore any too concentrated measures
cannot be the regular part of the boundary trace of a bounded from below solution
of (1.3) in B?. Let P be the Poisson kernel in B2, y a positive Radon measure on
S! with Lebesgue decomposition

p=prdH" + ps, (1.10)

where pg is the regular part with respect to the one-dimensional Hausdorff measure
dH! and pg the singular part, and let P, denote the Poisson potential of yusg; it is
defined by

Pul@) = [ Pla)dust) (v € B). (1.11)

We say that p is admissible for (1.3) if there exists p € (1, 00] such that

i ex p/(p—1) (B2 — |z x
() exp(2P..) € LY@V (B2, (1 ||>d>,} (1.12)

(ii) exp(2ur) € LP~1(0B?).

With this condition the existence of a unique solution u of (1.3) in B? with boundary
data y is proved. By a solution we mean a function u € L'(B?) such that Ke*" €
LY(B2?,(1 — |z|) dz), which satisfies

o
—uA¢ = K (2)e?*¢)dz = — — dp, 1.13
[ usc-g@egaw—— [ La (113)

for every ¢ in the space Cy'' (B2) of C'-functions in B2 which vanish on B2 and
have uniformly Lipschitz gradient.

If R is a relatively open subset of dB? and p a positive Radon measure on
R, we shall say that p is locally admissible if for every compact subset F' of R the
restriction ) p of p to F' is admissible. If 41 is locally admissible, Marcus and Véron’s
method can be adapted to define a minimal solution u,, of (1.3) in B? whose regular
part of the boundary trace is p. Set S = 9B?\R and denote by 9,,S the singular part
of the boundary trace of u,. For € > 0 we define S, = {# € S* : dist(f,S) < e} and
construct a solution us, with boundary trace (S, 0); when e goes to 0, the sequence
{us.} decreases and converges to some solution u% of (1.3) with boundary trace
S* C S. As in [17,19], we always have

S*U8,S C S, (1.14)

and the reverse inclusion gives a necessary and sufficient condition in order (S, u)
be the boundary trace of a solution u of (1.3) in B? with p locally admissible.
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The meaning of such a result is the following: locally the singular set S is either
intrinsically not removable, or it is created by the unboundedness of the measure
. In general such a solution u is not uniquely determined from its boundary trace.

In the last section, we study under what conditions a subset of B2 is removable
for the equation (1.3). We introduce an extended notion of Besov capacity that
we call the Cj 1 1n-capacity, and we prove that if a set £ C OB? has zero Co.1,In-
capacity, any solution of (1.3) in B? which coincides on B2\ E with a continuous
function defined in whole 9B? can be extended as a continuous function in B2
(and solution of the equation in B? in the weak sense (1.13)). In particular, it is
worthwhile noticing that if a set £ C 9B? has Hausdorff dimension § < 1, it has
zero Cy 1 1n-capacity.

The present paper is organized as follows: § 2 deals with the boundary trace; §3
deals with the negative curvature case; § 4 deals with removable singularities.

2. The boundary trace

Throughout this section K is a Holder continuous function in the closure B2 of the
unit open ball B2 = {z € R? : |z| < 1} of the plane. A solution of the equation

Au+ Ke** =0 (2.1)

in B? is by definition a C?(B?)-function which satisfies (2.1) in B2. We denote
by £ the class of the solutions of (2.1) which are bounded from below by some
negative constant. If u is an element of £, we call m,, such a minorant. Consequently,
u — M, = v is non-negative and satisfies

Av + Ke*™e? = () (2.2)
in B2. Let (r,0) be the polar coordinates in R?\{0}, we set

wh ={z€9B?: K(z) > 0},
w- ={x€dB*: K(z) <0}, (2.3)
W ={z €0B?: K(x) =0}.

If U is any open subset of S, we call 7 the topology on Co(U) of inductive limit,
the dual space of which being the space of Radon measures on U. The main result
is the following.

THEOREM 2.1. Let u be an element of £, then the following dichotomy occurs.

1. For every 0 € w™, either

(i) there exists a relatively open neighbourhood U of 8 such that for every ¢ €
Coe(U)

lim | wu(r,o0)¢(0)do =£(¢), (2.4)

r—1 U
where £ is a linear functional on C§°(U) continuous in the T -topology, or
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(ii) for every relatively open neighbourhood U of 6, there holds

lim | wu(r,o)do = oco. (2.5)
r—1 U

I1I. For every 8 € w™ there emists a relatively open neighbourhood U of 6 such
that (2.4) holds for every ¢ € C§°(U), where € is a linear functional on C§°(U)
continuous in the T -topology.

The following result dealing with the properties of w™ is in fact a local version of
a classical result due to Doob [5] concerning the boundary trace of positive super-
harmonic functions (and in fact Doob’s theorem involves also an almost everywhere
convergence).

LEMMA 2.2. Suppose u is an element of € and let § € w™; then the assertion II of
theorem 2.1 holds.

Proof. Let m, be a minorant and v —m, = v. This function v is non-negative and
satisfies (2.2). We set 9(t,0) = v(r,0) with t = In(1/r) € (0,00), then

20 + 820 = —Ke 2te? (2.6)

in (0,00) x S1, with K,, = Ke?™. Let Uy be the connected component (an interval)
of wt which contains § and U C U C Uy be an open interval containing 6. Since K
is continuous we have K (t,0) > 0 if (t,0) € [0,a] x U for some a > 0. We denote
¥y the first eigenfunction of d2/do? in W, **(U) normalized by

O<WU<H1§1XI/]U:1 (27)
and Ay the corresponding eigenfunction. Integrating (2.6) on U yields

d2

FTe] o(t, o)Wy do— Ay / (t, o)y do
U

U

dVy T_W

_ /;] e 2 Ky 1029 g 1 [UE (2.8)

o=6"
on (0,a] x U = (0,a] x (§7,01), where 6~ < 6 < 61 are the two end-points of
U; here we identify functions defined on S!' with 27-periodic functions. Therefore,
the right-hand side of (2.9) is non-positive; if we set X (t) = [, (0¥ ¢)(t,0) do, then
X 20 and

d2X

5~ X <0 (2.9)

holds on (0, al.
STEP 1. We claim that lim; .o X(t) = Ay for some Ay > 0. If we set ¥ =
e™2VAU X then

2
d_Y 2\ d_Y — e—2tmi(62tmd_y) <0, (2_10)

et ar dt dt
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and the function ¢ — thmY’(t) is decreasing on (0, a]. Consequently, it admits
some limit L > —oo at 0 and this limit is the same as the one of t — Y'(¢). If L is
finite, Y satisfies the Cauchy criterion near 0, then Y admits a finite limit Ay at 0
and the same holds for X. If L = oo, then

1%in(l)(X’ —2VAuX)(t) =00 and 1%in(l)X’(t) = oo.
As a consequence X is increasing near 0 and again it admits a finite limit Ay at 0.
STEP 2 (End of the proof). Let ¢ € C§°(Up), ¢ = 0, then

d2
— (t,o)Cdo + /
dt? Jy,

2 ~ ~
o(t,0)— d% > do + f 1K (t,0)e?®®)¢do =0 (2.11)
Ug d UB

for 0 < t < a. Integrating (2.11) twice yields

/ o(t, U)(da—/ 5(a,U)§dU+(a—t)/ dv(a o)(do
Us Us v, dt
a 2< B B
+/ (s — t)/ (v(s o)—3 te 2SK(S,U)eQ”(S*")C) dods=0. (2.12)
t Ug d
If U = supp .(¢), one deduces from step 1 that

/(;g (t,0)¢(0) do

remains bounded independently of ¢ and it is the same with

fta(s‘t) Lgﬁ(sva)%(a)dads.

Consequently,
S(t) = / (s — t)/ e 2|K(s,0)|e?"¢(0)dods < M (2.13)
t Us

for some positive constant M. Therefore S(t) admits a finite limit when ¢ goes to
0 and

lim (t,o)Cdo —/ o(a, U){da—a/ i:(a, o)¢do
Ua

t—0 Uy
/ / ( (s,0)— Jre 25}2(5,0’)626(5’0)4‘) do ds
Uy

(2.14)

clearly the mapping ¢ — K(Q defines a positive linear functional on C§°(Up). The
claim follows by setting £ = £ + my,. O

LEMMA 2.3. Let U be a connected open subset of S* and v a non-negative continu-
ous function on S'. Then there exists a constant C = C(U) > 0 such that for every
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e >0 and a > 4, there exists M(e) > 0 such that

d d
f o) o (I/JU) do < f e do + CM (e fwag/‘% Vol do.  (2.15)
U do
Proof. Set n € (0,1) and n € N, n > 2. There holds
d
[ ()
[y a(1=1/n) dyu\
_ 1/nqy @/ny, a(l=1/n) —1/n d
fU”" Po¥o (da)”
2n/(n—1)
U 1 _1/<n_1>/ a—2n/<n—1>(d¢U)
<= - = — .
< H/UU wUda+(1 n)n UUJU o do
(2.16)
Moreover, (1 —1/n)p= /=0 <=t y~ /(=) cpea—d _y B with B =a—4
 ( /m)n U U
and
2n/(n—1) 2
‘dw—U <C(dw—U), with C = max( “ Wyl ) (2.17)
dO’ dO’ L°°(U)
Consequently,
/UWQ_Q(—dWU)2d0<Q/vnwadUJrg/ wﬁ(—dWU)QdU (2.18)
v U do Sy v nJy U\ do ’ '
and
on _2 dwU)2 2y 2nC / 5(dwU)2
o do < — Y & q, _— — ) do.
(n—l)!/r;va (da 7S UU Vo UJrn(n—l)! UwU do 7
(2.19)

By summing those inequalities from n = 2 to infinity, one obtains
d 21 UTAY
e _1/ 1/] ( WU) <e277/ e2vw5dU+M/wg(ﬁ) dO',
U n U do
(2.20)
which is the desired result with 7 = ge?/(e* — 1) and M(g) = (1 —e ?)e™ L. O

LEMMA 2.4. Suppose u is an element of £, 0 € w™ with connected component Uy
in w— . If U is any relatively open connected subset of Uy, with 8 € U C U C Uy,
a>8/3 and Yy is as in lemma 2.2, the following alternative holds: either

(i)
flf |K|e*y &(1 — r)dodr = oo, (2.21)
0 U
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and in that case

lini (wy ) (r,o)do = oo, (2.22)
r— U
or
(ii)
1
/ / |K|e*y &(1 —r)dodr < oo, (2.23)
0o JU
and in that case, for any function ¢ € C*(U) satisfying
« d2< a—2 .
0SSRV and |—| <KV inU (2.24)
do?
for some k > 0, the following limit exists
lini u(r,o)((o)do = £(C). (2.25)
r—1Jy
If my is a negative minorant of u the mapping ¢ — £(¢)—my fU )do is a positive

linear functional defined on the set of functions ¢ € C*(U) satzsfymg (2.24).

Proof. We define o(t,0) = v(r,0) = u(r,0) —m, as in lemma 2.2, with r = ™%,

K, = Ke*™ and a > 0 such that
§<—K(t,0)<1/6  (Y(t,o)€0,a] x U)
for some 6 > 0. Then

d2 21/] &

For simplicity we set ¥ =¥ and A = Ay. Since

2y«
/;Jﬁ%da——a)\/;]ﬁwo‘dUJra(a—l)/;]Wo‘ 2(31(/;) do,

equation (2.27) reads as

: 2
%/{;ﬁ(t,a)wada+a(a—1)/(‘]5(t’a)wa—2(%) do

- a)\/ o(t, o)y *do +/ T HK(t, o)) “e® ) do = 0.
U U

Case 1. Let us assume that (2.21) holds, then

/ / e dodt =
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It follows (2.26), (2.28) and lemma 2.3 that, for some £ > 0,

d_2/ ~(t )wad + ( _1)( /e2ﬁ(t,a)wad +CM()/¢Q_8/3(%)2C1)
dt2 UU , O o ol g u o g u do’ o

- a)\/ o(t, o) > do > e_2“6/ P (0)e?* ) de > 0. (2.30)
U U
Choosing a(a — 1)e = 722§ /2 one deduces

d2 ~
7 | Woto)do> A/ ety do — B (2.31)
U U

for some positive constants A and B, independent of ¢ € (0, a]. Integrating (2.31)
twice and using (2.29) yields

lim | o9 (¢, 0)do = oo, (2.32)

t—0 U
which is (2.22).
Case 2. Let us assume that (2.24) holds, then

/ / P dodt < 0o (2.33)

and
d? -
_2/ o(t,0))* do — a)\/ o(t,0))*do < 5—1f P(0)ePED Ao, (2.34)
de? Jy U U
Setting
Br=a) X(t)= / o(t, o) do and F(t) = 5_1/ 2"ty & g
U U

then X” — 32X < F on (0,a]. If Y (t) = e P X (t), it satisfies

d dy
= (e2ﬁt5(t)) < eﬁtp(t), (2.35)
which yields
dy dy ‘
St > 2 )~ [ o) ds (2.36)
dt dt t

by integration. Consequently, the function @
e—28(t—a)
20

is non-decreasing. Since (2.33) implies [ e72%% [* 7 F(7) dr ds < 0o, one deduces
that

ts d(t) = PLX(t) + Y'(a) + /“‘ e~ 2hs /‘“ PTF(T)drds (2.37)

lim X (t) = Ay = lim [ 9(t,0)¥do=1lim | v(r,o)¥{ do, (2.38)

t—0 t—0 U r—1 U
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for some non-negative constant Ay. Let ¢ € C?(U) be a non-negative function
satisfying the relations (2.24). Then, as in lemma 2.2,

/;Jﬁ(t,a)g“da—/(;ﬁ(a,a)CdUJr(a—t)/ i;(a o)¢do
d*¢

- _fta(s —1) fU(U(S o) 5 te 25R(s,a)e%<t’“><) dods. (2.39)

tvsa
/‘daQ

lemma 2.3, (2.24) and (2.33) implies that the right-hand side of (2.39) admits a
limit when t goes to 0; consequently,

Since

dods < o0,

lim [ 4(t 0)¢(0)do = (), (2.40)

t—0 Us

where / is a positive functional on the set of C2(U)-functions satisfying (2.24) and
the proof is completed. O

The proof of theorem 2.1 is an immediate consequence of lemmas 2.2 and 2.4, as
n [18].

REMARK 2.5. The result of theorem 2.1 still holds if the two-dimensional ball is
replaced by the d-dimensional one (d > 2). The only differences are technical and
come from lemmas 2.2-2.4, in which the relatively open subset U needs to have a
smooth boundary. Moreover, equation (2.1) has to be written in spherical coordi-
nates (r,0) € (0,1) x S9! as

2u+ (d—1)r 1o+ r2Aga—ru+ K(r,0)e*" =0 (2.41)
and the logarithm change of variable has to be replaced by the following one,
t=ri2, o(t, o) = r72(u(r, o) — my), (2.42)
for some negative minorant m,,. This leads to
12020 + (d — 2) "2 (Aga10 + t9D/UK (£ 0)e?/t) = 0 (2.43)

n (0,a] x S%1. Since lemma 2.3 is valid, the analysis of this equation is the same
as the one developed in [18].

REMARK 2.6. In the statement of lemma 2.2, it is possible to replace the relatively
open subset U by the connected component Uy of § € w™ if it is assumed that
K(r,o) > 0 when (r,0) € [0,a] x Up for some a > 0. Moreover, if K(r,0) > 0 in
some (r,0) € [0,a] x U (for some relatively open subset U on dB?), then lemma 2.2
and the part II of theorem 2.1 also hold.

DEFINITION 2.7. If § € B2, we shall say that 0 is regular with respect to u either
if statement I(i) holds or if § € w™. The set of reqular points is relatively open in
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0B? and we denote it by R. As in [12] or [16], there exists a Radon measure y on
R such that

lim u
r—1 R

(ro)e)do = | ¢(o)du(o) (244

for every ¢ € C§°(R), and by density, this limit holds if ¢ € Cy(R). The set of
0 € B? such that statement I(ii), that we denote S, is called the singular set of u
and we have

OB* =RUSUW, (2.45)

where w? = {z € 9B?: K (z) = 0}. The triplet trjgp>(u) = (S,w", p) is by definition
the boundary trace of u.

REMARK 2.8. As in [18], expression (2.44) is equivalent to
2u 85

(—ulA¢ + Ke**¢)dx = — —du (2.46)

B? 5B2 on

for any ¢ € Cy'(B? UR), which is by definition the space of C'(B2)-functions,
with compact support in B2 U R and Lipschitz-continuous gradient.

3. The negative curvature case

At the beginning of this section we study the Dirichlet problem in a general regular
domain {2 for an equation of type (1.3) with a negative K = —G and boundary
data belonging to some Lebesgue spaces. We first recall the following unpublished
result due to Brezis (see [8, Appendix] or [29] for a proof).

LEMMA 3.1. Suppose £2 is a bounded regular domain in R?, p(x) = dist(x,012), g
is a continuous, non-decreasing, real-valued function and f € L*(082). Then there
exists a unique w € L' () with g(w) € L' (2, pdx) with the property that

/ (—wA¢ + g(w)¢)dx = — f% ds (3.1)
0 a0 n

for any ¢ € C&’l(f)). Moreover, if (W, f) is another couple, the following estimate
holds

lw =@z () + lp(g(w) — g(@))llLr () < ClIf = f||L1(6Q) (3.2)
and the mapping f — w is non-decreasing.

In the above monotonicity result the function g(r) can be replaced by g(z,r),
provided g € C(£2 x R) is non-decreasing with respect to r, for fixed . We begin
with the following estimates.

PROPOSITION 3.2. Suppose 2 is a bounded and regular domain in R?, G is a con-
tinuous and non-negative function in 2, Y1 is the first eigenfunction of —A in

Wy 2 (£2) normalized by

Oéwlémgxwlzl, (33)

https://doi.org/10.1017/50308210500000299 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000299

538 M. Grillot and L. Véron

A1 the corresponding eigenvalue, p(z) = dist(z,082) and p € (1,00). Then for any
f € LY(9RQ) such that *P~DI € LY(90), there exists a unique v € L'(2) with
e?? € LY(2,pdx), satisfying

f (—vA¢ + Ge**¢)dx = — f% ds (3.4)
0 N on

for any ¢ € C&’l(f)), and the following estimate holds:

L/‘ 62(p—1)v¢1dx+2(p_1)/
2

e2(p_1)”|Vv|21/11dx+/ UGy | da
2(p—1) Q 2

-1 A 2(p—1)f
7 E—— —e ds. (3.5
2(p—=1) Jon On (3:5)

<

In particular,

C

1/p
16 @ < (=55) 1 (36)

where C' = C(£2) > 0.
LEMMA 3.3. Suppose that f € L'(082) is such that

2= 1)f ¢ Ll(aﬁ) and inggssf > —00,

then there exists a sequence {fn} C C2(092) with the following property:

lim f, = f in L*(012), (3.7)

lim 2P~Vf — 21 4y [1(002), (3.8)
.

1%f1nf fn = 1ng§ssf (3.9)

Proof. Set k = inf esspp f. There exists a sequence {h,} C C%(92) such that

hn >0 on 82, (3.10)
lim h, = 2®P™Vf —2~Vk iy 11(90). (3.11)
Setting
1
= ———In(h,, + 2P7DF)
then
2PV — 2=k 2=0F gy LY(602).
Moreover, f,, = k for any n and
2P _ 2= 1| = 2(p — 1)62(p—1)(9fn+(1—9)f)|fn - fl, ¢ (0,1),
> 2(p — 1) VR f, — £. (3.12)
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Therefore

20T 15 _ 20101
If = fallzr o) < m”e POl =T 100, (3.13)

which is (3.7). |

LEMMA 3.4. Suppose that 2, G, p, V1 and A1 are as in proposition 3.2. Then for
any f € C2(092) there exists a unique v belonging to W29(82) for any 1 < q < oo,
such that

(3.14)

—Av+Ge* =0 in 02,
v=Ff ondQ.

Moreover,

A
—1f AP Dvy dg 4 2(p — 1)f e2(p_1)”|Vv|21/11dx+/ PGy | dx
2(p—1) Jgo Q Q

_ oL [ 9
2(p—1) Jogu On

Proof. Existence and uniqueness follows from lemma 3.1. From the maximum prin-
ciple v is bounded from above by the Poisson potential Py of f, and from below by
Py =G 2r, where G, denotes the Green potential of a function h in 2. Therefore,
it is bounded and regularity follows from the elliptic equations theory. Multiplying
the equation by e2(?~Dv) one obtains

P48, (3.15)

f APGY dz + | Vo V(2PVU ) dr = 0. (3.16)
2 2

Since
Vo V(2P ) dz = Q(p—l)/ |Vv|2e2(p_1)”1/11dx+/ 2P~ vy . VY | da
2 2 2

and

f GO EA VAT VAT
2

1
- V (e2(p—1v VY dz
2p=1)Jg ( ) !
—1

_ 1 1OV
=——— | 2PTUYAY da+ —f v g
2(p—1) /;z ' 2(p—1) Jae on

M1 / 2(p-1) 1 / 2(p-1)0 W1
=—"1 [ e yde + ——— | 2T hv2lgg, 3.17
20-1) Jo ' 20 —1) Joa on (3.17)
equation (3.15) follows. O

Proof of proposition 3.2. We set f = f* — f~ and denote by v_ the solution of

f (=v—AC + Ge**=()dz = f_% ds  (Y¢ecy'(2) (3.18)
o} on

o8
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and v the one of (3.4), both in the sense of lemma 3.1. Then v > v_ in {2; moreover,
V_ < w_ <0, where V_ is the solution of

Vo =—f_ ondn. (3.19)

—AV. =~ |Gz~ in 2, }
Suppose k > —oo and set f¥ = max(f,k). Then there exists a sequence {f*} C
C?(012) such that f¥ > k and

k
n

. . _ k
JLH;O(Hfff = FEllr o) + [P~ DIn — 2= 1y o)) = 0. (3.20)

If v, = v is the solution of the problem

(3.21)

—Av, + Ge** =0 in 12,
vp = f* on R,

then the following identity holds:

A
—1/ e2(p_1)v”1/11dx+2(p—1)/
N

2P~V |y, 129 da + f PGy dz
2(p—1) Q

2
-1 N1 o

_— P=DF2 48, (3.22
2(p—1) Jyn On (3.22)

Let v* be the limit of the v,, when n goes to infinity, since

[on = vmllL1@) + [pG(e®™ = e ™)L < CIIfy = Fallio0), (3.23)
one gets
A
—1f 2=V dy 1 2(p — 1)f e2<P—1>v’“|vvk|2w1dx+f 2" Gy | da
20—1) Jg Q Q

< _ -1 %62(
2(p—1) Joo On
from Fatou’s Lemma, and v* solves (3.4) with f replaced by f*. When k goes to

—o0, {v*} decreases and converges to the solution v of (3.4). Finally, v satisfies
(3.5) from Fatou’s Lemma. O

r=D* 48 (3.24)

If 2 is a bounded regular domain of R? we recall that (z,y) — P(z,y) is the
Poisson kernel defined in 2 x 942. If 4 any Radon measure on 042, the function

R@=[ Pepa  (aco) (3.25)

is harmonic in {2 and has p as boundary trace.
DEFINITION 3.5. Let p be a Radon measure on 9f2, with Lebesgue decomposition

p=prdH™" + ps, (3.26)

https://doi.org/10.1017/50308210500000299 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000299

Boundary trace of the Gaussian curvature equation 541
where pg is the regular part with respect to the (d — 1)-dimensional Hausdorff
measure dH%"1 and pug the singular part. We say that p is admissible if there exists
p € (1, 00] such that

i ex p/(p—1) x
() ep(2Pu) € L0702, pd >,} (327)

(ii) exp(2ur) € LP~H(00).

We say that p is bounded from below if u + mdH! is positive for some real
number m.

THEOREM 3.6. Let £2 be as below and G be a continuous positive function defined
in 2. Then for any admissible, bounded from below Radon measure jn on 082, there
exists a unique u € L*(§2) such that e** € LY (2, pdx) satisfying

X 4,

(V¢ € ¢yt (2)). (3.28)
a0 On

f (—uAl + Ge*"¢)dz = —
2

Moreover, the mapping p — wu is non-decreasing.

Proof. Uniqueness follows from monotonicity and [8, theorem 2.1, p. 282]. Without
any loss of generality it can be assumed that p is positive since we can always
replace p by g +mdH? !, and it is the same with ur and pg. For existence we
shall distinguish according to whether p is finite or not.

Case 1. p < oo. From lemma 3.3 there exists a sequence of functions {f,} C
C?(902), fn = 0 such that

lim (|[e?®~Dm — 2P Dmr || 1y oo+ || fr = vl 22 002)) = O (3.29)

n— oo

For k € N* we define the non-decreasing function ey by ex(r) = min(e?”,e?*). Let
Up, i be the solution of

—Aun,k =+ Gek(un,k) =0 in _Q, } (330)

un,k:fn+ﬂs on aQa

in the weak sense, which means

¢ ¢
Sdus— | = fad
a0n 811 Hs an 8nf 5

(V¢ € Cyt(R2));  (3.31)

/Q(_un’kAC + Gek(un,k)g“) dSL‘ = —

the existence of u,,j is a consequence of [8, theorem 2.1]. Denoting by v, ; the
solution of

—Avy i+ Geg(vp ) =0 in £2,
* (one) (3.32)
Un,k = fn on 8(),
and setting wy x = U,k + Pug, one has
—Awy i + Geg(wn ) 20 (3.33)

https://doi.org/10.1017/50308210500000299 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000299

542 M. Grillot and L. Véron

in the weak sense, since P,; > 0. But u,, ;, and w,, j, coincide in the sense of measures
on 9f2. We deduce again from [8, lemma 2.2] that u, j < wy k. Moreover, ¥ < uy i,
where ¥ is the solution of

(3.34)

—AV+Ge? =0 in 2,
¥ =0 on 0f2.

Since ey (r) increases with k the two sequences {uy r}r and {v, i }x decrease and
converge respectively to u,, and v, . Clearly, v, is the classical solution of

—Av, + Ge*" =0 in 2,
(3.35)
vy = fn on 02.
In fact, for k > ko large enough, e (v, ) = €?*** and v, = v, since
onse) < [ Play)faly)dy in o (3.30
o9

Moreover, ey (u, ) — €?“" a.e. in 2. We also have the following estimate:
0 < ep(tng) < ex(vn + Pug) < 20nstPus) = o20nre2Pus — o20ne2Pus - (3.37)

But e?*" € LP(£2, pdx) from lemma 3.4 and *Frs € LP/(P=1) (2, pdzx); therefore, it
follows from Lebesgue’s theorem that limy_, o Geg(un k) = Ge**» in L*(2, pdz).
Going to the limit in (3.31) yields

9¢

/ (—unAC + Ge?" () dr = — —dus — / %fn ds. (3.38)
n an On an On

Set k > 0 such that G(z) = k > 0 in 2. From the Keller-Osserman-type estimate
of [27] and the maximum principle, it follows
U(x) < vp(z) <In(l/p(x)) + 1n(4/k) (Vz € ) (3.39)
(¥ is given by (3.34)). Moreover,
U (x) < un(x) < Pug(z) +vp(z) and  e2un(®) L o2Pus (@20 (@) (3.40)

in £2. Again from lemma 3.4, {e?*" } remains bounded in LP ({2, pdx) independently
of n. From (3.39) and the elliptic equations local regularity theory there exist a
subsequence {v,, } C {v,} and a function v € (), W24(2), with ¢ € (1,00)
as large as needed, such that

Un, TV in the CL._(£2)-topology, (3.41)
e?n — ¥ in the weak (LP(£2, pdx), LP/ P~V (82, pdx))-topology.  (3.42)

t—o0

Moreover, for every Borel subset w C {2 there holds

1/p 1=1/p
/ Ge*Prsene pdx < (/ er“”tpdx) (/ erP“S/(p_l)pdx) mng.

(3.43)
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2Pus o

Therefore, the sequence {e 2vni 1 is equi-integrable for the measure pdz, in the

sense that
Ve >0, 30>0, VwC{2, wmeasurable,

/pdx <6 = /eQP“SeQU”tpdx < 4. (3.44)

Estimate (3.39) implies that {v,,} is bounded in any L(£2) (1 < ¢ < o0) and
therefore

—_
t—o0

U,
weakly in L7(£2). Going to the limit in the weak formulation of equation (3.35) one
gets

f (=vA¢ 4 Ge?¥¢)dx = — % dpus (V¢ e Cypt(2)). (3.45)

o) a0 On

Because of the uniqueness of the solution v of (3.45) one can replace {v,, } by the
full sequence {v,}. From (3.39), (3.41) and the exponential estimate coming from
the admissibility assumption the sequence {u,} is bounded in L(£2), 1 < g < cc.
From (3.41) and (3.44) the sequence {e*“"} is equi-integrable for the measure pdx
and therefore it is relatively compact in the weak (L'($2, pdx), L>°(£2))-topology
(from the Dunford—Pettis weak compactness theorem). Consequently, there exist a
function u € (¢, oo W29(2) and a subsequence {u,,} C {u,} such that

loc

u,, —— u in the C}_(§2)-topology and weakly in L%(2),
e ) . (3.46)
e~tne e “ in weakly in L' (§2, pdzx).
Because of the relation
0 0 0 _
lim ( % dps + —Cfm dS) = % dp (V¢ eyl () (3.47)
t—oo\ Jon on 90 on 90N on

one deduces from (3.45) that (3.28) holds. Since u is unique {u,, } can be replaced
by {u,}. Finally, the fact that the mapping p — u is increasing follows from the
construction and the uniqueness.

Case 2. p = co. We first construct a solution uy of

—Auy + Geg(ug) =0 in 2,
k ko (uk) (3.48)
up = pr + ps  on 082,
where ey, is defined as in case 1. If we set L = ||ur||z~, then
0 < up(z) <L+ Pug(z) and ep(ug(z)) < e?Fe*frs(z) in 0. (3.49)

Similarly to case 1, there exists a function u € ﬂ1<q<oo Wlicq(()) and a subsequence
{ug,} C {uy} such that

Uk, T U in the CL..(£2)-topology and weakly in L9(£2),

, ) (3.50)
er(uk, ) e “ weakly in L" ({2, pdx).
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Letting ¢t go to infinity in

/ (—up, AC + Geg(ug,)¢) do = — % dg, (3.51)
[0 o0 On

where ¢ € Cy''(£2), one obtains (3.28). O

In the remaining part of this section we assume that 2 = B? C R?, we denote
by P the Poisson kernel in B? and suppose that K is continuous and negative in
B2, where it satisfies 0 < k¥ < —K(z) < k7. From theorem 2.1 the boundary
trace of a minorized solution u of (1.3) in B? (i.e. an element of the class &) is
characterized by the singular set S C 9B2, which is a closed subset, and a bounded
from below Radon measure on the relatively open set R = 0B?\S, and we denote
trjppz(u) = (S, ). In the same way as in [18], one can define the trace in terms of
outer regular Borel measure on OB?: for every minorized regular Borel measure [
on B?% we define the set of regular points R; and the set of blow-up points S as
follows,

R = {0 € 9B* : 3 a relatively open neighbourhood U of o, s.t. i(U) < oo},

(3.52)

S; = 0B*\R;, (3.53)
and for any relatively open neighbourhood U of o € S;, i(U) = oo. Therefore,
# = fir, is a minorized Radon measure on R;. Conversely, to each couple (S, )

where S is a closed subset of 9B? and y minorized Radon measure on R = dB%\S,
we associate a regular and minorized Borel measure i by

u(A) if ACR,

A =1 ifANS 0,

(3.54)

for every Borel subset A of 9B2. It is proved in [18] that Rz = R, Sz = S and that
the correspondence (S, i) < fi is one to one. With this result we denote
trigp2 (u) = (S, p) & Trjpp2(u) = fi. (3.55)

DEFINITION 3.7. Let 1 be a Radon measure on a relatively open subset R C dB2.
We say that u is locally admissible if for any compact subset F' C R the restriction
pr of pto F' defined by

wr(A) = pu(ANF), for every Borel subset A C 9B> (3.56)

is admissible in the sense of definition 3.5.
If S is a closed subset of 9B2 and ¢ > 0, we set

S.={redB? dist(z,S)}y <e = | D:(w), S.=|JD:(w), (357
weS weS

where D.(w) is the open geodesic disc on dB? with centre w and radius ¢ (in fact,
it is just an interval on the circle B?). We also set R = dB2?\S and R. = dB?\S..
The following result follows from [23, theorem 7.2] (see [2,28] for related uniqueness
results).

https://doi.org/10.1017/50308210500000299 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000299

Boundary trace of the Gaussian curvature equation 545

PROPOSITION 3.8. Suppose K is continuous and negative in B2. Then there exists
one and only one function @ which satisfies

AP+ Ke?? =0 in B2,
lim @(z) = oo.

|z|—1

(3.58)

This @ is the mazimal solution of (1.8) in the sense that it dominates any other
solution. When K is constant and equal to —k, then

By(w) = m(m). (3.59)

For e >0 and n € N*, we denote u, s, the solution of

Auy s, + Ke*unse = (0 in B?,
(3.60)

Up,5. = NXS. ON oB2.

LEMMA 3.9. The sequence {u,.s.} is increasing and converges to a solution us, of
(1.8) the boundary trace of which is (Se,0).

Proof. The monotonicity of the sequence follows from the maximum principle. In
order to prove that the zero boundary condition is maintained on R., we pick an
xo on R and a positive pg such that dist(zg,Se) > po. Clearly, u, s, is dominated
in B2 N By, (z0) by the maximum solution of the equation (1.3), where K () is re-
placed by k = mingz(—K) (k is positive by assumption), and this maximal solution
is

len(\/E(p% —QIP:(;—on?))' (3.61)

Consequently, u, s. remains locally uniformly bounded near R.. By the elliptic
equations regularity theory, the boundary conditions on R. remain and uy, s, con-
verges to a solution us. with boundary trace (S, 0). In fact, us. satisfies

lim uss (T, U)

M /=) (362)

uniformly on compact subsets of S.. This precise estimate follows by scaling tech-
niques as in [23, theorem 7.2] or local comparison techniques as in [3]. When € goes
to 0, {us.} decreases to a solution u§ of (1.3) with boundary trace (S*,0). O

PROPOSITION 3.10. There always holds S* C S, and u¥% is the mazimal solution
of (1.3) among all the solutions in the class € with boundary trace (S*,0).

Proof. The fact that S* C S is proved as in [18, theorem 3.5], but for the sake of
self-containedness, we give an outline of a direct argument. If there exists some 6 €
S*\S, then dist(6,S) =7 >0 and 0 ¢ S, for 0 < ¢ < 7; therefore, lim, .; us, = 0,
uniformly when dist(c,0) < (7 —¢€)/3. Since {us, }e decreases with ¢, 6 is not a
singular point of the boundary trace of ujs.
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If u € £ has boundary trace (S*,0), then

lim u(r,o)¢{(c)do =0 (3.63)

r—1Jp«
for any ¢ € C2(R*), where R* = 0B*\S*.

STEP 1. We claim that @™ (r, o) converges to 0 when r goes to 1, locally uniformly
in R*. For any closed subset F' or R*, there holds

f f i1 —r)dodr < co. (3.64)

Consequently, for any v > 0 there exists a connected open subset G of 0B? such
that G C G C F C R*, with dist(G,S*) <~ and

1
/ |a|(r,0;) dr < oo (j=1,2), (3.65)
1/2

since 0G = {o1,02}. Therefore, & < U in the truncated cone Cg¢ = {(r,0) €
(1/2,1) x G}, where U is the solution of
—AU =0 in Cg,
U=4a" ondCqcU o Ca, (3.66)
U 0 on 8UCG,
with 9,Cq = [1/2,1] X G, 9,Ce = {1/2} x G and 8,,Cc = {1} x G expressed in
the (r,o)-variables. Since U(z) goes to 0 locally uniformly in G when |z| goes to

1, the same property holds for the positive part of @, and this is also true on any
compact subset of R*.

STEP 2. Let ¥ be the solution of

AU+ Ke? =0 in B2,
¥ =0 ondB> (3.67)

Since ¥ is negative in B?, it minorizes any solution of (1.3) with non-negative
measure boundary data. Let v; and vy be two such solutions, then we claim that
© = vy + vy — 2¥ is a supersolution of (1.3). Actually,

Ap = —K (2" + 22 —2¢27). (3.68)
If we define 3(z,y) = e?*+2v=4 — o2 — 2V 4 26 for (z,y) € [¥, 00) X [¥, 00), then
Duf(x,y) = 2027 T2V _ 9027 — 927 (2y—4V _ 1), (3.69)
But 2y — 4% > 0 since y > ¥ and ¥ < 0. Therefore,
Blz,y) 2 B(W,y) = e* ™2 = — e, (3.70)
Since 0, B(¥,y) = 2(e*¥ ¥ — e?¥) = 2e?(e”?¥ — 1) > 0, one deduces also that
BW,y) = B, ¥) = 1. (3.71)

Consequently, e2% > e?* 4 ¢2¥ — 2¢2¥ and ¢ is a supersolution.
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STEP 3. Coustruction of a dominating solution. Let ¢ > 0, 6 > 0, and let n € (0, 1)
be such that

at(r,o) <6 (V(r,o) € [1—1n,1) x R.) (3.72)
(see step 1). We denote v, . = 0375 the solution of

Ao + Ke2e =0 in B, = {a:[o] <11},
Upe(l=n,0)=¢ ifoeR,, (3.73)
vpe(l=n,0) =00 ifo €S,

such a solution being obtained by an increasing scheme of approximate solutions
as in lemma 3.9. Clearly, v, . > @ in Bi_,. If we denote v, _ (respectively, v7 _) the
solution of (1.3) in B%_n with boundary data dxgr. (respectively, co on S, and 0
on R.), then vy . +v7 . — 2V is a supersolution of (1.3) which dominates v, .. As

for the function 71}376, it is bounded from above by the function,
z = Vye(r) =Ve(z/(1=n)) —In(1 —n), (3.74)

where V. is obtained from lemma 3.4 with K replaced by —k = maxp2 K. As for
Vi.e, it satisfies the same equation as V, with infinite boundary value if ¢ € S, and
some positive one if ¢ € R.. When n goes to 0, v, converges to a solution v of
(1.3) which blows-up on S. and takes the value § on R.. Letting § go to 0 implies
that § — v? decreases to some v. which dominates % and has boundary trace (S, 0)
(clearly, v. is bounded from below by ¥).

STEP 4. End of the proof. We claim that
us, < v < Us_, (0<e <e<ée). (3.75)

The above three functions satisfy the blow-up estimate (3.62) locally uniformly in
the interior of their respective singular boundary set. For 7 > 0 the function

z—= V()= 1+ 7)ve(z) + 7T || L= (3.76)

is a supersolution of (1.3) in B2. Since = — (us_, (z)—V " (z))" has compact support
one gets us_, < V7. The inequality us_, < v. is derived by letting 7 go to 0. The
left-hand side of (3.75) is proved in the same way. If we take e’ = ¢/2, " = 2¢ and
let € go to 0, then v, — ug- and ug~ > @ in B2. O

In the following, we extend to the exponential case the result [19, lemma 3.3].

PROPOSITION 3.11. Let R be a relatively open subset of 0B% and i a non-negative
locally admissible Radon measure on R. Then there exists a minimal solution u, of
(1.8) in B% with trace u on R among the solutions u which satisfy lim,_; u™(r,0) =
0 uniformly for o € S*.

Proof. STEP 1. Construction of u,. For ¢ > 0 we denote u,_ the solution of (1.3)
with pe = pr., the existence of which follows from theorem 3.6 as well as the
monotonicity of the correspondence € — u,,. Since

U(z) <uy, () <In(1/(1—|z|)) + In(4/k), (3.77)
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where ¥ is given by (3.67), lim, 1 u, (r,0) = 0 holds uniformly for o € Sl But

/ (—u. AC — Ke=(¢) dz = — f Lape ek B).  (373)
B2 o

B2 8n

Moreover, u,. converges monotonically to some w. Therefore, restricting ¢ to be
non-negative and have compact support in B2UR and letting € go to 0, one deduces
from the monotone convergence theorem that

CoAC— KOy dr = — | &
/;32( wA( — Ke*“()da = /,;Bzand

holds. It follows from remark 2.8 that w has boundary trace p on R; we shall write
W= uy,.

(3.79)

STEP 2. u, is minimal. Let u be another solution of (1.3) with boundary trace p
on R and such that lim,_.; u~(r,0) = 0 uniformly on S!, then u > ¥. For € > 0,
w = u — u,, has zero boundary trace on R, in the sense of measures and

1
/ / (e* + e?"w<)(1 —r)rdodr < oco. (3.80)
0 e

Consequently, w solves
—Aw=f (3.81)

inCr. ={r=(r,0):1/2<r<1,0 € R.}, for some f € L}(Cr_,(1—|z|)dz). By
the same analysis as the one of step 1 of proposition 3.10 and the regularity theory
of elliptic equations in L', one obtains

(ryo)do =0 (3.82)

lim lu— .
r— R.
(it can always be assumed that u is integrable on OR. x (1/2,1) by using Fubini’s
theorem and theorem 2.1). Consequently,

lim [ (uu. —u)t(r,0)do=0.
r—1 S1

Since

d? 1d

/.. (uy, —u)t(r,o)do + Pl (uy, —u)T(r,o)do =0 (3.83)
holds in the sense of distributions on (0, 1), it follows from the maximum principle
that f31 (up. —u)t(-,0)do =0, and u,_ < u. Using step 1, one ends the proof by
letting € go to 0. O

Let 0,8 denote the singular part of the boundary trace on u,, then 9,8 C S.
The following result which expresses under what condition a couple (S, i) is a trace
is the analogous of a previous result of Marcus and Véron [19, theorem 3.5] dealing
with the d-dimensional equation (1.5) in the case ¢ = (d +1)/(d —1).
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THEOREM 3.12. Let S be a closed subset of 0B? and p a locally admissible positive
Radon measure on R = OB*\S. Then there exists a solution u of (1.8) in B? with
boundary trace (S, u) if and only if

S=0,8U8" (3.84)

Proof. STEP 1. The condition is sufficient. Assume that S = 9,5US*; for € > 0 and
n € N* let u,,_ and u,, s_ be the functions constructed in (3.60) and proposition 3.11,
and u, . the solution of (1.3) with boundary trace (0, nxs, + pic), where pe = pg._ .
From theorem 3.6 and step 2 of proposition 3.10, there holds

max(Upy,, Un,s.) K Une K Uy, + Un,s. — 20. (3.85)
When n goes to infinity wu, . increases and converges to a solution u. of (1.3) and
max(uy,,us.) < Us < Uy, + us, — 20. (3.86)

It follows that u. has boundary trace (S.,p.). When € decreases to 0, the two
terms max(uy, ,us,) and u,, + us. — 2% converge respectively to max(u,,u%) and
uy, + us — 2%. Up to some subsequence {&,} with limit 0, {u,, } converges in the
CL .(B?%)-topology to some solution u of (1.3) which satisfies

max(u,,us) < u < uy, + ug — 20. (3.87)

But this relation implies that the singular set of the boundary trace of v is §,SUS*.
It follows from (3.87) and theorem 2.1 that trjpgz(u) = (S, ).

STEP 2. The condition is necessary. Let @ be a solution of (1.3) such that trsp= (@) =
(S, 1), in the class & of functions u which satisfy lim, 1 [[u™ (7, )| Lo (1) = 0. Then
we construct a solution U of (1.3) such that

e U<y, +us—2¥ (3.88)
in the following way: for €, > 0, set

Uy (1 —10,0) if o0 € R,
(o) = 3.89
?e(0) d(1—-46,0) ifoe &, (3.89)

where @ is the maximal solution defined in proposition 3.2, and denote Us;. and
Wi, the solutions of (1.3) in B?_s with respective boundary data ¢. and (a(1 —
8,-) — e (+))". From step 2 of proposition 3.10, Us . + Ws . — 2¥ is a supersolution
of (1.3) and it dominates @ on dB7_; provided § is chosen small enough. Therefore

i < Use + Wse —20 (3.90)

in B?_;. Moreover, Ws . < Y5, which is the solution of (1.3) in B?_; with boundary
data

(o) u(l—=96,0) if o0 € Re, (3.91)
we(o) = .
0 ifoes,.

As for the function Uy, it is dominated by w,_ + us. —2¥. When ¢ goes to 0, U;.
converges to a solution U, of (1.3) in B? with boundary trace (S, z1c). The function
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(a(1=46,-)—pe(-))", which is the boundary data of Wj ., vanishes on S, and is equal
to @(1—19,-) — () on R, since u,._ < 4; therefore, it converges to 0 in the weak
sense of measures on St as § — 0. If we set W;.(z) = Wge(x/(l —9)) —In(1 =9),
then

AWS . + K((1 = 6)z)e™os =0 in B?, o)
Wie = (a(1 = 6,) = ¢e())" =In(1 =) on B> '
Recalling that ¥; and A; are defined in proposition 3.2, one gets
ov
/ ()\1W(§SE + K((1- 6)x)e2W§E)% dx = / —1W56 do. (3.93)
B2 ’ oB2 on

But W5 clop2 converges to 0 with § and similarly does the right-hand side of (3.93);
consequently, the same holds with W56 and W; ., and (3.90) yields

i <U. =20 < us, +u,, — 47, (3.94)

and finally @ < u§ + u, —4¥. This implies that S € §* U J,,S. At the end, if u
only belongs to the class & with trjppz(u) = (S, 1), then u’ = u + ¢ has boundary
trace (S, p + £do) and belongs to & for some £. Obviously, 9,1 ¢qm S = 0,8, and
(3.84) follows from the previous case. O

As in [19] it is not true that a given admissible (in the sense of theorem 3.6)
boundary trace (S, u) characterizes in a unique way a solution u of (1.3) such that
trjppz(u) = (S, p). Actually, we have the following result.

PROPOSITION 3.13. There exist infinitely many solutions of equation (1.3) in B?
with boundary trace (9B?,0) = (S,0).

Proof. In the proof we borrow some of the ideas of [19, §5]. Let {a,, } nen be a dense
subset in dB? and {e, } e a sequence of positive numbers to be specified later on.
We denote S,, = {z € dB? : |v — a,,| < &,} for n € N and v,, the minimal solution
(obtained by an increasing scheme) of

Av, + K(e* —1) =0 (3.95)
in B? which satisfies

(i) lini vn(r,0)/In(1/(1=7r?) =1 if o € Sy,

3.96
(ii) lim1 vp(r,o) =0 if o € ST\ S,,. (3.96)

The construction and the asymptotics of v,, are obtained as in [3] and [23, §7].
Moreover, v, = 0. Since isolated points on 9B? are removable singularity for equa-
tion of type (1.3)—(3.95) (see [8]), lim., g v,, = 0, uniformly on compact subset of

2 (because —K (z) = k > 0 this convergence does not depend on the position of
the point a,,). Since e**® —1 > e® — 1 4 e” — 1 for any non-negative real numbers a
and b, V,, = Z?:o vj is a supersolution of (3.95). We choose the sequence {e,, }nen
such that

fjvj(o) < 0. (3.97)
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From Harnack inequality Z;’io vj(x) < oo holds uniformly when z remains in a
compact subset of B?. If we denote by U, the minimal solution of (3.95) which
satisfies

() lmUu(ro)/In(t/(1=r*) =1 ifoe€ L, = U s,
3=0 (3.98)

(ii) lim Uy (r,0) =0 if o € SN\ X,
then

max v; < U, < V. (3.99)
0<j<n

When n goes to infinity the sequence {U,} increases and converges to a solution U
of (3.95) with the property that

<UL - 1
r]n;g(v] U Z(:) v; (3.100)
]:

Clearly, U is a non-negative supersolution of (1.3). Let H be the solution of

—AH=—-K in (, (3.101)
H=0 ondf. '
The function H is positive and, if W = U — H, then
—AW =AU +AH=K(EY —1)+ K > KV = KeW, (3.102)

Moreover, U and W satisfy the same boundary conditions; henceforth it is classical
that there exists a solution u of (1.3) such that U — H < u < U. This implies that
trjppz(u) = (9B?,0). Since }_77,v;(0) can be made as small as needed one can
construct infinitely many such solutions w. O

REMARK 3.14. By adapting the construction of [19, proposition 5.2], it is possible
to prove that for any ¢ > 0 there exists a solution u. of (1.3) with trjgp2(u.) =
(0B2,0) and a Borel subset E. C 9B? with meas(E.) < ¢ such that

lini uc(r,o) =0 for almost all o € 9B?\E..

REMARK 3.15. Since uniqueness of a solution of (1.3) with a given trace is not
true, we believe that a finer notion should be appropriate to describe the trace.
A particular interesting problem would be to prove uniqueness under the mere
assumption that the metric g, = e?“gg is complete, which actually reads

1 2 1
2 (gu()ig (i) dt = f W dt =o0  (3.103)
0

ij=1

Length(y) = /

0

for any geodesic v € C*°([0,1], B?) with v([0,1)) C B? and (1) € B2 Some
results in this direction can be found in [23, §7].
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4. Removable singularities

In this section it is still assumed that the curvature function K is continuous and
negative in B2, and set G = —K, with 0 < k < G(x) < k™. In order to describe the
removability results, we introduce an extended Bessel capacity framework [4,21].
We first recall some basic facts about fractional Sobolev-Besov spaces on S*.

DEFINITION 4.1. Let 0 < @« <1 and 1 < p < oo. Then
(i) if 0 < a < 1, f belongs to ByP(S') = W*P(SY) if f € LP(S') and if the
norm below is finite
27 1/p
Il = Iflzmcsny + (O PUAGE+) = FOuenyae)
(4.1)

(ii) if o =1, f belongs to By?(S') if f € LP(S) and if the norm below is finite

21 1/p
g5y = Wl + ([ 00PN+ + 760 = 27Oyt
0
(4.2)
In both expressions we make the usual modification when p = oo.

The space BS*Q(Sl), ke N* 0 < a <1 is defined as the space of functions f
belonging to W#P?(S') such that () € B&?(S'). If f belongs to L'(S'), we recall
that Py is the Poisson potential of f in B“. If one writes

Pi(r,o) = Pu(f)(o) (t=1In(1/r), o€Sh), (4.3)
the problem
OFP(f) + 92Py(f) =0 in (0,00) x S, } (44
Po(f)() = f(), P(f) € L=(0,00, L (S"))
is equivalent to

OP(f) + (—02)2Py(f) =0 in (0,00) x S*,  Po(f)(-) = f(). (4.5)

If @ and k are as above, it is known that the space Bg*k*p(Sl) can be expressed by

! _ dt
gy = s e [ @ lerd] <o @0
with equivalent norms [25,26]
L kti—a Ak e\
Flgsrcon, = Il + ([ @ ipnlorE) 7, an
and
! k+1— k dt Y/
s con, = s + ([ @iy E) . s
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We turn now to the definition of the Sobolev-Besov capacity Cs .
DEFINITION 4.2. Suppose 6 > 0 and 1 < p < oo.

(i) If K C S!is compact,

Csp(K) = inf{||f||Bi,p(S1) cfeCP(SY), f=0, f>1in aneighbourhood of K}.

(4.9)
(ii) If G C St is open,
Cs5,(G) = sup{Cs,(K) : K C G, K compact}. (4.10)
(iii) If E C ST,
Cs,(E) = inf{C;s,(G) : G > E,G open}. (4.11)

Accordingly, we define the class B{” (0 < a<1,1<p<o0)onS! by

! dt
Byt = {re s [ @ 10P Dl w0+ <o
0
(4.12)

with the norm

! ar\'?
I fllBzr sty = [ flle sty + (/O 0P ()]l e (s1) In(1 +t_1))p7) (4.13)
and the corresponding extended capacity Cq p 1n-
DEFINITION 4.3. Suppose 0 < a <1 and 1 < p < oo.
(i) If K C S!is compact,
Copn(K) = nf{[|fllprs) :
feCcse(SY), f=0, f>1in aneighbourhood of K}. (4.14)
(ii) If G C St is open,
Capin(G) =sup{Cqpm(K) : K C G, K compact}. (4.15)
(iii) If E C S,
Capin(E) =inf{Cq pin(G) : G D E,G open}. (4.16)

The following properties of this capacities are easy to verify with the help of
Holder and Sobolev inequalities.

PROPOSITION 4.4. Let E C S' = 0B2. Then for any 1 <p< oo, and 0 < a <1

(i) Cap(E) < M(a,p)Capin(E) (a>0),
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(i) Copn(E) < M(a,3,p)Cs,(E) (V0O<a<fB<1).

(i) oy 1-pias (E) < M(a,8,p)Cap(E) ((0,8) : (a=p1)s < f << 1).
LEMMA 4.5. Suppose f € L*°(SY), f >0, then the following estimate holds:

4

10:Py(r,0)| < 7= If(r Ml (sry  (V(r,0) € (0,1) x ). (4.17)

Proof. From Poisson’s representation formula
1 [ 1—r2
P = — 0)de 4.1
5(r,0) 271'/(; 1+r2—2rcos(9—a)f( ) do, (4.18)
one gets
0, P; )——lfzﬂ r £(6)d6
(AR o 1+4+72—=2rcos(f—o)

1 (2" (1=72)(r —cos(f — 0))
B ;/(‘) (1472 —2rcos(f —0))2 f(0)dg. (4.19)

By a straightforward computation,
(1=7r)|r —cosp| <1472 —=2rcosyp (V(r, @) € [0,1] x [0, 27]), (4.20)
from which it is derived that
—4Pf(r,0) < (1 = r)0,Ps(r,0) < 2P¢(r,0). (4.21)
This implies the claim since max,egr |Py(t, )| < maxger [f(+)]. O

We turn now to the key estimate for solutions of (1.3) with a possible singularity
on the boundary with zero Cy ; 1,-capacity.

PROPOSITION 4.6. Let E C S = 0B? be a compact subset such that Co11n(E) =0
and u an element of € such that u =0 on 0B*\E. Then

f U@ (1 —|z)dz < M (4.22)
B2

for some positive constant M depending on G and the lower bound of u in B2.

Proof. We recall that ¥ | denotes the first eigenfunction of —A in W, ?(B?) normal-
ized by maxg: 91 = 1 and )\; is the corresponding eigenvalue. Let n € C§°(0B?)
with 0 < n < 1 such that (o) = 1 in a neighbourhood E, of E; we set ((z) =
C(r,o) = ((1=Py)V1)(r,0), take x — (;(z) = ((x/j) (0 < j < 1) as a test function
and get

% do.

U (4.23)

lz|<g

lzl=7

STEP 1. We claim that

f (—uA¢ + Ge*¢)dz = 0. (4.24)
B2
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From assumption u(z) > ¢ for some ¢ € R; moreover,

o¢; 19¢( x 1(0v, 0P, T
w=35(5) = 3(Fra-m-r 52)(5)

with z = (r,0) and x/j = (r/j,0). But ¥ vanishes on dB?, therefore

Gy

< THL=P)(Go0) for fa] = (4.25)

X

on

On the other hand

xg,(0) = Cp,(1 = 5)(1 = xz,(0))

for || = j because u vanishes on 9B?\ E, which contains 9B\ E,, (and the positive
constant Cg, depends on 7). This, together with (4.25) implies

¢
u o d

lim

| o =0. (4.26)
j—1

lz=7

Moreover,

AG(x) = j7A(/])
=571 = P)AV 1+ V1AL = Py) +299 1 - V(1 = P)) (/).
= 2 (=MV (1 = P)) = 2V¥, - VP,)(z/]), (4.27)

and |A¢;(z)| < Cs. Since u is integrable in B?, it is the same with uA(. Conse-
quently, e?“¢ € L'(B?) and (4.24) follows by letting j go to 1 in (4.23).

STEP 2. We claim that estimate (4.22) holds. Since Cp 1,1n(F) = 0, there exists a
sequence {n,} C B'(S') such that 0 < 5, < 1,7, = 1 in a neighbourhood of E
and

Jim |, || go.r = 0. (4.28)

Since u > £, it can be assumed be that u is non-negative by replacing G' by Ge?.
Taking n = 7, in the construction of ¢ one gets from (4.24) and Young’s inequality

Ge?“¢dx < /

u|AC| dx
B2

B2

< %k/ e*“¢dx + %/ IAC|(In|A¢| —In¢ —Ink)dz.  (4.29)
B? B?
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Therefore,
k/ e?vCdx é/ |AC|(In|A¢| — In¢ — Ink) dx
B2 B2
< L/ |A<|ln((w + 1)() dx
B2 ¢
< L/ |AC| ln(M + 1) dx (4.30)
B? ¢
for some L = L(k) > 1. Since { =¥ 1(1 — P,),
A== AV1(1 = Py) —2VV 1 - VP <A + 2V - VP, (4.31)
A _ _ - -
‘TC :l_)‘1_2w11(1_Pn) IVI/J1~VP,7| < )‘1+2w11(1_Pn) 1|VWI'VP77|’
(4.32)
and one has to estimate
A= M +2/VY VP In(l+ XA +297 (1= P,) " VY, - VP,|)dz. (4.33)

B2
But ¢(1=7r) < (1=P)) <1, c(l=7r)<¥; <1,1[0,¥1] <cand|VY, VP =
|0;¥1 - OrPp| < |0, P,| for some ¢ > 0 independent of 1. Then by using (4.3),

1
AéC/ / (|0-Py) + 1) In(1 + ¢ (1 = 7)2|0,.P,|) do dr
0 Jst

< C’/ / (10:Pe(m)| + D In(1 + ¢~ 11 — e ) 72! |0y Py (n)])e™" do dt
0o Jst
= A’ + A”, (434)

where
A= 0/01 /S1(|3t7’t(77)| + 1) In(1 4 ¢ (1 — )20, P,(n)|)e " do dt
< 0/01 /S1(|8t77t(77)| + 1) In(1 +ec™ %9, Pe(n)]) do dt = A, (4.35)
and
A" = 0/100 /S1(|3t7’t(77)| + 1) In(1 4 ¢~ 11 — e~ "2e!0, P, (n)|)e " do dt
< Cfloo Ll(latpt(n)u )In(1 + ¢ ' |9, Pu(n) e dodt = A”.  (4.36)

From lemma 4.5
0P (n)(t,0)] < C't 7 Inll e 51y = C't 7 (4.37)

therefore,

A" < C’C/ f P+ 1) In(1 + 0t e do dt = Cs. (4.38)
1 St
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Using again lemma 4.5
1
A < Cf f (10:Pe(n)] + 1) In(1 + C'c et ™) do dt
0o Jst
1 1
< C/ In(1+C'c tet™?)dt + C/ / 0Py ()| In(1 + ¢~ 1) do dt
0 0o Jst

1
< C/ In(1+ C’ctet™3)dt + Clinll go1 g1y (4.39)
0 .

Replacing i by 7, and letting n go to infinity implies that lim, o ¢, = ¥1. One
concludes that (4.22) holds from (4.28), (4.38) and (4.39). O

THEOREM 4.7. Let E C S* = 9B? be a closed subset such that Cp 1 1,(E) =0 and
u a solution of (1.8) in B?, which is bounded from below and coincides on OB*\E
with ¢ € C(0B?%). Then u can be extended to B2 as a continuous function.

Proof. Let v € C(B2) be the solution of

Av =0 in B?
5 (4.40)
v=¢ ondB~,
and ¢ = u — v. Then
Al = Ge* (4.41)

with G = Ge??, and @ vanishes on B2\ E. From proposition 4.6,
/ e®4(1 — |z|) dz < M,
B2

where M depends on ¢ but not on @ Moreover, trjgp2 (@) = (0, ), where p €
M+(9B?) and supp .(u) C E. We take £ = &, = (1 — P,)¥; for test function where
1 = n, satisfies (4.28), and get as above, in the same way as in proposition 4.6,

fB (—uAg+ Ge?i¢) dx = f

((1—13”)%—1/11%) dp=0  (4.42)
o5B2 877,

on
since 1 — P, = 0 in a neighbourhood of the support of p. Therefore,

f (—a(1 = P,)AY; + Ge*"¢) dx = f (Ma(l = P)Y + Ge? ) dx
32 B2

= 2/ avVP, Vi, dz (4.43)
B2

and, as in (4.29),

/2ﬂVPn-Vw1dx
B

<C/ a|0y Py,| dz

B2

<1 201 _
205/;326 (1—|z))

+ %C/;Bz |0y Pp|(In 0, Py| — In(1 — |z]) —Ine) da (4.44)
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(e > 0). From step 2 of proposition 4.6

lim |0y Py, |(In 0, Py, | = In(1 — |z]) —Ine) dz = 0, (4.45)
n—oo J p2
therefore,
lim sup / aVP,, -Vidz| < %5/ e?(1 — |z|) dx, (4.46)
n—oo B2 B2
and finally
f (May + Ge?™ ) de = 0. (4.47)
B2

Let ¥ be the solution of

AV = Ge??  in B?
cobe men (4.48)
¥ =0 ondB>.
Clearly, ¥ is continuous in B2 and
f APV 1 + G2y 1) da = 0. (4.49)
B2

Because the mapping p +— @ (with trjgpz (@) = (0, 4)) is monotone and p is non-
negative, we have ¥ < @ in B?. This together with (4.47) and (4.49) and the fact,
that for any = in B?, the mapping r — A7 + G(x)e*” is increasing implies that

¥ =q. |

REMARK 4.8. The relation between capacities and Hausdorff dimension asserts
that if a set 2 C OB? is such that

H —dim(F) =6 = su S>O/lim( inf rf:0<r¢<€)>0}<1,
( ) p{ e—=0\ ECUic1 B(wi,ri) ;

then C. 1(E) = 0 for € € (0,1 — J), and consequently Cj 1 1,(F) = 0 from proposi-
tion 4.4.

DEFINITION 4.9. We shall say that a Borel subset £ C 0B? is removable if any
solution u € & of (1.3) in B? which is locally uniformly continuous on B*\E can
be extended to B? as a continuous function.

From theorem 4.7 any closed subset E of 9B? with Cp 1,1n(E) = 0 is removable.
With this result, we obtain the following consequence.

COROLLARY 4.10. LetS C B2 be a closed removable set and u a locally admissible

non-negative Radon measure on R = O0B*\S. Then there exists a unique solution
u of (1.3) in B* such that lim, 1 [[u™(r,-)|| = (s1) = 0 and trjgp>(u) = (S, p).

Proof. We recall that ¥ is the solution of

AU+ Ke? =0 in B2,
o (4.50)

U =0 ondB2
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It follows from proposition 3.11, the proof of step 2 of theorem 3.6 and the fact that
ug = ¥ (since S* = ) that any solution u of (1.3) with lim, _; [lu™(r,-)|[ L (s1) = 0
with trjgpz(u) = (S, i) satisfies

¥ <u, <u <y, —49, (4.51)

where wu,, is the minimal solution constructed in proposition 3.11 (we recall that
¥ is negative in B?). Therefore, for any ¢ > 0, u, + € is a supersolution which
dominates u near dB2. Letting ¢ go to zero yields u = u,,. O

REMARK 4.11. Most of the results which are presented here are extendible to the
d-dimensional case of equation (1.3) in BY, with the help of some of the techniques
introduced in [19] (see also remark 2.5).
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