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We study the existence of a boundary trace for minorized solutions of the equation
¢ u + K (x)e2u = 0 in the unit open ball B2 of R2 . We prove that this trace is an
outer regular Borel measure on @B2 , not necessarily a Radon measure. We give
su± cient conditions on Borel measures on @B2 so that they are the boundary trace
of a solution of the above equation. We also give boundary removability results in
terms of generalized Bessel capacities.

1. Introduction

If one identi­ es the hyperbolic space H2 with (B2; gH), where B2 = fx 2 R2 : jxj <
1g,

gH = 4g0=(1 jxj2) and (g0)i;j = ¯ i;j (1 6 i; j 6 2); (1.1)

the expression of the Gaussian curvature Ku of a metric gu = e2ug0 conformal to
the standard one in H2 is given by

Ku(x) = e 2u(x)¢u(x) (8x 2 B2); (1.2)

in which formula ¢u = @2
x1

u + @2
x2

u. Consequently, the problem of ­ nding a metric
in H2 conformal to the standard one, with prescribed Gaussian curvature K is
reduced to study the following nonlinear elliptic equation in B2:

¢u + K(x)e2u = 0: (1.3)

This equation has been studied for a long time and much is known about the
existence or non-existence of solutions (see, for example, [1,9,10,15] or [23]). Those
questions are deeply related to the sign of K.

In this article we investigate this equation under the completely di¬erent point
of view of describing all the possible boundary behaviour of the solutions of (1.3).
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This type of problems with di¬erent equations has ­ rst been introduced by Le
Gall [12,13] in the probabilistic framework of the two-dimensional superprocesses.
This leads to the following equation

¢u u2 = 0 (1.4)

in B2, and Marcus and V́eron [16,17] for the more general equation

¢u uq = 0 (1.5)

(q > 1) in the d-dimensional ball Bd. Concerning related problems much work has
also been done by Dynkin [6] and Dynkin and Kuznetzov [7] in the probabilistic
framework of the study of branching processes which lead to d-dimensional equa-
tions of type (1.5) in which 1 < q 6 2. The starting point of Marcus and V́eron’s
work [16,17, 19,20] is settled upon the existence of a boundary trace for any posi-
tive solution of (1.5) in Bd and the fact that this boundary trace is represented by
a positive, outer regular Borel measure on @Bd, not necessarily a Radon measure.
Moreover, they construct positive solutions of (1.5) with given boundary data in the
class of positive and (outer) regular Borel measures on @Bd, with no condition when
1 < q < (d+ 1)=(d 1), and some compatibility condition when q > (d+ 1)=(d 1).

The present work deals with the extension of some of Marcus and V́eron’s results
to the study of boundary trace for solutions of (1.3) in B2 which are bounded from
below by some constant. Let (r; ³ ) be the polar coordinates in R2nf0g, with S1

identi­ ed with @B2. In the ­ rst section no assumption on the sign of the curvature
function K is made. We prove that if K is continuous in B2, u is a solution in B2

non-negative near @B2 for the sake of simplicity, and ! + = fx 2 @B2 : K(x) > 0g
(respectively ! = fx 2 @B2 : K(x) < 0g), then the following situation occurs.

I. For any ³ 2 ! , either

(i) there exists a relatively open neighbourhood U of ³ such that, for every ± 2
C 1

0 (U )

lim
r ! 1

Z

U

u(r; ¼ ) ± ( ¼ ) d ¼ = `( ± ); (1.6)

where ` is a positive linear functional on C 1
0 (U ), or,

(ii) for every relatively open neighbourhood U of ³ , there holds

lim
r ! 1

Z

U

u(r; ¼ ) d ¼ = 1: (1.7)

II. For any ³ 2 ! + there exists a relatively open neighbourhood U of ³ such that
(1.6) holds for every ± 2 C 1

0 (U ), where ` is a positive linear functional on C 1
0 (U ).

If ³ 2 @B2, we shall say that ³ is regular with respect to u either if statement
(I(i)) holds or if ³ 2 ! + . The set of regular points is relatively open in @B2 and we
denote it by R. As in [12] or [16], there exists a positive Radon measure · on R
such that

lim
r ! 1

Z

R
u(r; ¼ ) ± ( ¼ ) d ¼ =

Z

R
± ( ¼ ) d · ( ¼ ) (1.8)
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for every ± 2 C 1
0 (R). The set of ³ 2 @B2 such that statement (I(ii)) holds, that

we denote S, is called the singular set of u and we have

@B2 = R [ S [ !0; (1.9)

where !0 = fx 2 @B2 : K(x) = 0g. We denote trj@B2 (u) = (S; !0; · ).
In the next section it is supposed that K is negative in B2 (and always continuous)

and therefore the boundary trace is described by the set S and the Radon measure ·
on R = @B2nS. It is known from Gmira and V́eron [8] that isolated boundary points
are removable singularities for (1.3), and therefore any too concentrated measures
cannot be the regular part of the boundary trace of a bounded from below solution
of (1.3) in B2. Let P be the Poisson kernel in B2, · a positive Radon measure on
S1 with Lebesgue decomposition

· = · R dH1 + · S ; (1.10)

where · R is the regular part with respect to the one-dimensional Hausdor¬ measure
dH1 and · S the singular part, and let P· S denote the Poisson potential of · S ; it is
de­ ned by

P · S (x) =

Z

@B2

P (x; y) d · S (y) (8x 2 B2): (1.11)

We say that · is admissible for (1.3) if there exists p 2 (1; 1] such that

(i) exp(2P · S ) 2 Lp=(p 1)(B2; (1 jxj) dx);

(ii) exp(2· R) 2 Lp 1(@B2):

)

(1.12)

With this condition the existence of a unique solution u of (1.3) in B2 with boundary
data · is proved. By a solution we mean a function u 2 L1(B2) such that Ke2u 2
L1(B2; (1 jxj) dx), which satis­ es

Z

B2

( u¢ ± K(x)e2u ± ) dx =

Z

@B2

@±

@n
d · ; (1.13)

for every ± in the space C1;1
0 (B2) of C1-functions in B2 which vanish on @B2 and

have uniformly Lipschitz gradient.
If R is a relatively open subset of @B2 and · a positive Radon measure on

R, we shall say that · is locally admissible if for every compact subset F of R the
restriction · jF of · to F is admissible. If · is locally admissible, Marcus and V́eron’s
method can be adapted to de­ ne a minimal solution u · of (1.3) in B2 whose regular
part of the boundary trace is · . Set S = @B2nR and denote by @ · S the singular part
of the boundary trace of u · . For " > 0 we de­ ne S" = f ³ 2 S1 : dist(³ ; S) 6 "g and
construct a solution uS" with boundary trace (S"; 0); when " goes to 0, the sequence
fuS" g decreases and converges to some solution u ¤

S of (1.3) with boundary trace
S ¤ » S. As in [17,19], we always have

S ¤ [ @ · S » S; (1.14)

and the reverse inclusion gives a necessary and su¯ cient condition in order (S; · )
be the boundary trace of a solution u of (1.3) in B2 with · locally admissible.
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The meaning of such a result is the following: locally the singular set S is either
intrinsically not removable, or it is created by the unboundedness of the measure
· . In general such a solution u is not uniquely determined from its boundary trace.

In the last section, we study under what conditions a subset of @B2 is removable
for the equation (1.3). We introduce an extended notion of Besov capacity that
we call the C0;1;ln -capacity, and we prove that if a set E » @B2 has zero C0;1;ln -
capacity, any solution of (1.3) in B2 which coincides on @B2nE with a continuous
function de­ ned in whole @B2 can be extended as a continuous function in ·B2

(and solution of the equation in B2 in the weak sense (1.13)). In particular, it is
worthwhile noticing that if a set E » @B2 has Hausdor¬ dimension ¯ < 1, it has
zero C0;1;ln -capacity.

The present paper is organized as follows: x 2 deals with the boundary trace; x 3
deals with the negative curvature case; x 4 deals with removable singularities.

2. The boundary trace

Throughout this section K is a H�older continuous function in the closure B2 of the
unit open ball B2 = fx 2 R2 : jxj < 1g of the plane. A solution of the equation

¢u + Ke2u = 0 (2.1)

in B2 is by de­ nition a C2(B2)-function which satis­ es (2.1) in B2. We denote
by E the class of the solutions of (2.1) which are bounded from below by some
negative constant. If u is an element of E , we call mu such a minorant. Consequently,
u mu = v is non-negative and satis­ es

¢v + Ke2mu e2v = 0 (2.2)

in B2. Let (r; ¼ ) be the polar coordinates in R2nf0g, we set

! + = fx 2 @B2 : K(x) > 0g;

! = fx 2 @B2 : K(x) < 0g;

!0 = fx 2 @B2 : K(x) = 0g:

9
>=

>;
(2.3)

If U is any open subset of S1, we call T the topology on C0(U ) of inductive limit,
the dual space of which being the space of Radon measures on U . The main result
is the following.

Theorem 2.1. Let u be an element of E, then the following dichotomy occurs.

I. For every ³ 2 ! , either

(i) there exists a relatively open neighbourhood U of ³ such that for every ± 2
C 1

0 (U )

lim
r ! 1

Z

U

u(r; ¼ ) ± ( ¼ ) d ¼ = `( ± ); (2.4)

where ` is a linear functional on C 1
0 (U ) continuous in the T -topology, or
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(ii) for every relatively open neighbourhood U of ³ , there holds

lim
r ! 1

Z

U

u(r; ¼ ) d ¼ = 1: (2.5)

II. For every ³ 2 ! + there exists a relatively open neighbourhood U of ³ such
that (2.4) holds for every ± 2 C 1

0 (U ), where ` is a linear functional on C 1
0 (U )

continuous in the T -topology.

The following result dealing with the properties of ! + is in fact a local version of
a classical result due to Doob [5] concerning the boundary trace of positive super-
harmonic functions (and in fact Doob’s theorem involves also an almost everywhere
convergence).

Lemma 2.2. Suppose u is an element of E and let ³ 2 ! + ; then the assertion II of
theorem 2.1 holds.

Proof. Let mu be a minorant and u mu = v. This function v is non-negative and
satis­ es (2.2). We set ~v(t; ¼ ) = v(r; ¼ ) with t = ln(1=r) 2 (0; 1), then

@2
t ~v + @2

¼ ~v = ~Ke 2te2~v (2.6)

in (0; 1)£S1, with Ku = Ke2 ~mu . Let U ³ be the connected component (an interval)
of ! + which contains ³ and U » ·U » U ³ be an open interval containing ³ . Since K
is continuous we have ~K(t; ¼ ) > 0 if (t; ¼ ) 2 [0; a] £ U for some a > 0. We denote
ã U the ­ rst eigenfunction of d2=d ¼ 2 in W 1;2

0 (U ) normalized by

0 6 ã U 6 max
U

ã U = 1 (2.7)

and ¶ U the corresponding eigenfunction. Integrating (2.6) on U yields

d2

dt2

Z

U

~v(t; ¼ )ã U d ¼ ¶ U

Z

U

~v(t; ¼ )ã U d ¼

=

Z

U

e 2t ~Kã U e2~v(t;¼ ) d ¼ +

µ
~v

dã U

d ¼

¶¼ = ³ +

¼ = ³

(2.8)

on (0; a] £ U = (0; a] £ ( ³ ; ³ + ), where ³ < ³ < ³ + are the two end-points of
U ; here we identify functions de­ ned on S1 with 2º -periodic functions. Therefore,
the right-hand side of (2.9) is non-positive; if we set X(t) =

R
U

(~vã U)(t; ¼ ) d ¼ , then
X > 0 and

d2X

dt2
¶ U X 6 0 (2.9)

holds on (0; a].

Step 1. We claim that limt ! 0 X(t) = ¤ U for some ¤ U > 0. If we set Y =

e 2t
p

¶ U X, then

d2Y

dt2
+ 2

p
¶ U

dY

dt
= e 2t

p
¶ U

d

dt

³
e2t

p
¶ U

dY

dt

´
6 0; (2.10)
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and the function t 7! e2t
p

¶ U Y 0(t) is decreasing on (0; a]. Consequently, it admits
some limit L > 1 at 0 and this limit is the same as the one of t 7! Y 0(t). If L is
­ nite, Y satis­ es the Cauchy criterion near 0, then Y admits a ­ nite limit ¤ U at 0
and the same holds for X. If L = 1, then

lim
t! 0

(X 0 2
p

¶ UX)(t) = 1 and lim
t ! 0

X 0(t) = 1:

As a consequence X is increasing near 0 and again it admits a ­ nite limit ¤ U at 0.

Step 2 (End of the proof). Let ± 2 C 1
0 (U³ ), ± > 0, then

d2

dt2

Z

U ³

~v(t; ¼ ) ± d ¼ +

Z

U ³

~v(t; ¼ )
d2 ±

d ¼ 2
d ¼ +

Z

U ³

e 2t ~K(t; ¼ )e2~v(t;¼ ) ± d ¼ = 0 (2.11)

for 0 < t 6 a. Integrating (2.11) twice yields

Z

U ³

~v(t; ¼ ) ± d ¼

Z

U ³

~v(a; ¼ ) ± d ¼ + (a t)

Z

U³

d~v

dt
(a; ¼ ) ± d ¼

+

Z a

t

(s t)

Z

U³

³
~v(s; ¼ )

d2 ±

d ¼ 2
+ e 2s ~K(s; ¼ )e2~v(s;¼ ) ±

´
d ¼ ds = 0: (2.12)

If U = supp :( ± ), one deduces from step 1 that
Z

U³

~v(t; ¼ ) ± ( ¼ ) d ¼

remains bounded independently of t and it is the same with
Z a

t

(s t)

Z

U ³

~v(s; ¼ )
d2 ±

d ¼ 2
( ¼ ) d ¼ ds:

Consequently,

S(t) =

Z a

t

(s t)

Z

U ³

e 2sj ~K(s; ¼ )je2~v ± ( ¼ ) d ¼ ds 6 M (2.13)

for some positive constant M . Therefore S(t) admits a ­ nite limit when t goes to
0 and

lim
t! 0

Z

U ³

~v(t; ¼ ) ± d ¼ =

Z

U ³

~v(a; ¼ ) ± d ¼ a

Z

U ³

d~v

dt
(a; ¼ ) ± d ¼

Z a

0

s

Z

U ³

³
~v(s; ¼ )

d2 ±

d ¼ 2
+ e 2s ~K(s; ¼ )e2~v(s;¼ ) ±

´
d ¼ ds

= ~̀( ± ); (2.14)

clearly the mapping ± 7! ~̀( ± ) de­ nes a positive linear functional on C 1
0 (U³ ). The

claim follows by setting ` = ~̀+ mu.

Lemma 2.3. Let U be a connected open subset of S1 and v a non-negative continu-
ous function on S1. Then there exists a constant C = C(U ) > 0 such that for every
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" > 0 and ¬ > 4, there exists M (") > 0 such that

Z

U

vã ¬ 2
U

³
dã U

d ¼

2́

d ¼ 6 "

Z

U

e2vã ¬
U d ¼ + CM (")

Z

U

ã ¬ 8=3
U

­­­­
dã U

d ¼

­­­­
2

d ¼ : (2.15)

Proof. Set ² 2 (0; 1) and n 2 N, n > 2. There holds

Z

U

vã ¬ 2
U

³
dã U

d ¼

2́

d ¼

=

Z

U

v² 1=nã ¬ =n
U

ã ¬ (1 1=n)
U ² 1=n

³
dã U

d ¼

2́

d ¼

6 ²

n

Z

U

vnã ¬
U d ¼ +

³
1

1

n

´
² 1=(n 1)

Z

U

ã ¬ 2n=(n 1)
U

³
dã U

d ¼

´2n=(n 1)

d ¼ :

(2.16)

Moreover, (1 1=n) ² 1=(n 1) 6 ² 1, ã ¬ 2n=(n 1)
U 6 ã ¬ 4

U = ã ­
U with ­ = ¬ 4

and

­­­­
dã U

d ¼

­­­­
2n=(n 1)

6 C

³
dã U

d ¼

2́

; with C = max

³
1;

®®®®
dã U

d ¼

®®®®
2

L1 (U)

´
: (2.17)

Consequently,

Z

U

vã ¬ 2
U

³
dã U

d ¼

2́

d ¼ 6 ²

n

Z

U

vnã ¬
U d ¼ +

C

²

Z

U

ã ­
U

³
dã U

d ¼

2́

d ¼ ; (2.18)

and

2n

(n 1)!

Z

U

vã ¬ 2
U

³
dã U

d ¼

2́

d ¼ 6 2n ²

n!

Z

U

vnã ¬
U d ¼ +

2nC

² (n 1)!

Z

U

ã ­
U

³
dã U

d ¼

2́

d ¼ :

(2.19)

By summing those inequalities from n = 2 to in­ nity, one obtains

(e2 1)

Z

U

vã ¬ 2
U

³
dã U

d ¼

2́

d ¼ 6 e2 ²

Z

U

e2vã ¬
U d ¼ +

C(e2 1)

²

Z

U

ã ­
U

³
dã U

d ¼

2́

d ¼ ;

(2.20)

which is the desired result with ² = "e2=(e2 1) and M(") = (1 e 2)" 1.

Lemma 2.4. Suppose u is an element of E , ³ 2 ! with connected component U³

in ! . If U is any relatively open connected subset of U ³ , with ³ 2 U » ·U » U³ ,
¬ > 8=3 and ã U is as in lemma 2.2, the following alternative holds: either

(i)

Z 1

0

Z

U

jKje2uã ¬
U (1 r) d ¼ dr = 1; (2.21)

https://doi.org/10.1017/S0308210500000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000299


534 M. Grillot and L. V¶eron

and in that case

lim
r ! 1

Z

U

(uã ¬
U )(r; ¼ ) d ¼ = 1; (2.22)

or

(ii)

Z 1

0

Z

U

jKje2uã ¬
U (1 r) d ¼ dr < 1; (2.23)

and in that case, for any function ± 2 C2(U ) satisfying

0 6 ± 6 kã ¬
U and

­­­­
d2 ±

d ¼ 2

­­­­6 kã ¬ 2
U in U (2.24)

for some k > 0, the following limit exists

lim
r ! 1

Z

U

u(r; ¼ ) ± ( ¼ ) d ¼ = `( ± ): (2.25)

If mU is a negative minorant of u the mapping ± 7! `( ± ) mU

R
U

± ( ¼ ) d ¼ is a positive
linear functional de¯ned on the set of functions ± 2 C2(U ) satisfying (2.24).

Proof. We de­ ne ~v(t; ¼ ) = v(r; ¼ ) = u(r; ¼ ) mu as in lemma 2.2, with r = e t,
Ku = Ke2 ~mu and a > 0 such that

¯ < ~K(t; ³ ) 6 1=¯ (8(t; ¼ ) 2 [0; a] £ ·U ) (2.26)

for some ¯ > 0. Then

d2

dt2

Z

U

~v(t; ¼ )ã ¬
U d ¼ +

Z

U

~v(t; ¼ )
d2ã ¬

U

d ¼ 2
d ¼ +

Z

U

e 2t ~K(t; ¼ )ã ¬
U e2~v(t;¼ ) d ¼ = 0:

(2.27)

For simplicity we set ã = ã U and ¶ = ¶ U . Since

Z

U

~v
d2ã ¬

d ¼ 2
d ¼ = ¬ ¶

Z

U

~vã ¬ d ¼ + ¬ ( ¬ 1)

Z

U

~vã ¬ 2

³
dã
d ¼

2́

d ¼ ;

equation (2.27) reads as

d2

dt2

Z

U

~v(t; ¼ )ã ¬ d ¼ + ¬ ( ¬ 1)

Z

U

~v(t; ¼ )ã ¬ 2

³
dã
d ¼

2́

d ¼

¬ ¶

Z

U

~v(t; ¼ )ã ¬ d ¼ +

Z

U

e 2t ~K(t; ¼ )ã ¬ e2~v(t;¼ ) d ¼ = 0: (2.28)

Case 1. Let us assume that (2.21) holds, then
Z a

0

t

Z

U

e2~vã ¬ d ¼ dt = 1: (2.29)
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It follows (2.26), (2.28) and lemma 2.3 that, for some " > 0,

d2

dt2

Z

U

~v(t; ¼ )ã ¬ d ¼ + ¬ ( ¬ 1)

³
"

Z

U

e2~v(t;¼ )ã ¬ d ¼ + CM (")

Z

U

ã ¬ 8=3

³
dã
d ¼

2́

d ¼

´

¬ ¶

Z

U

~v(t; ¼ )ã ¬ d ¼ > e 2a ¯

Z

U

ã ¬ ( ¼ )e2~v(t;¼ ) d ¼ > 0: (2.30)

Choosing ¬ ( ¬ 1)" = e 2a ¯ =2 one deduces

d2

dt2

Z

U

~vã ¬ (t; ¼ ) d ¼ > A

Z

U

e2~v(t;¼ )ã ¬ d ¼ B (2.31)

for some positive constants A and B, independent of t 2 (0; a]. Integrating (2.31)
twice and using (2.29) yields

lim
t ! 0

Z

U

~vã ¬ (t; ¼ ) d ¼ = 1; (2.32)

which is (2.22).

Case 2. Let us assume that (2.24) holds, then
Z a

0

t

Z

U

e2~vã ¬ d ¼ dt < 1 (2.33)

and

d2

dt2

Z

U

~v(t; ¼ )ã ¬ d ¼ ¬ ¶

Z

U

~v(t; ¼ )ã ¬ d ¼ 6 ¯ 1

Z

U

ã ¬ ( ¼ )e2~v(t;¼ ) d ¼ : (2.34)

Setting

­ 2 = ¬ ¶ ; X(t) =

Z

U

~v(t; ¼ )ã ¬
U d ¼ and F (t) = ¯ 1

Z

U

e2~v(t;¼ )ã ¬
U d ¼ ;

then X 00 ­ 2X 6 F on (0; a]. If Y (t) = e ­ tX(t), it satis­ es

d

dt

³
e2­ t dY

dt
(t)

´
6 e­ tF (t); (2.35)

which yields

dY

dt
(t) > e 2­ (t a) dY

dt
(a) e 2­ t

Z a

t

e­ sF (s) ds (2.36)

by integration. Consequently, the function ©

t 7! © (t) = e­ tX(t) +
e 2­ (t a)

2­
Y 0(a) +

Z a

t

e 2­ s

Z a

s

e­ ½ F ( ½ ) d ½ ds (2.37)

is non-decreasing. Since (2.33) implies
R a

0
e 2­ s

R a

s
e­ ½ F ( ½ ) d ½ ds < 1, one deduces

that

lim
t ! 0

X(t) = ¤ U = lim
t! 0

Z

U

~v(t; ¼ )ã ¬
U d ¼ = lim

r ! 1

Z

U

v(r; ¼ )ã ¬
U d ¼ ; (2.38)
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for some non-negative constant ¤ U . Let ± 2 C2(U ) be a non-negative function
satisfying the relations (2.24). Then, as in lemma 2.2,

Z

U

~v(t; ¼ ) ± d ¼

Z

U

~v(a; ¼ ) ± d ¼ + (a t)

Z

U

d~v

dt
(a; ¼ ) ± d ¼

=

Z a

t

(s t)

Z

U

³
~v(s; ¼ )

d2 ±

d ¼ 2
+ e 2s ~K(s; ¼ )e2~v(t;¼ ) ±

´
d ¼ ds: (2.39)

Since Z a

0

t~v(s; ¼ )

Z

U

­­­­
d2 ±

d ¼ 2
( ¼ )

­­­­d ¼ ds < 1;

lemma 2.3, (2.24) and (2.33) implies that the right-hand side of (2.39) admits a
limit when t goes to 0; consequently,

lim
t! 0

Z

U³

~v(t; ¼ ) ± ( ¼ ) d ¼ = ~̀( ± ); (2.40)

where ~̀ is a positive functional on the set of C2(U )-functions satisfying (2.24) and
the proof is completed.

The proof of theorem 2.1 is an immediate consequence of lemmas 2.2 and 2.4, as
in [18].

Remark 2.5. The result of theorem 2.1 still holds if the two-dimensional ball is
replaced by the d-dimensional one (d > 2). The only di¬erences are technical and
come from lemmas 2.2{2.4, in which the relatively open subset U needs to have a
smooth boundary. Moreover, equation (2.1) has to be written in spherical coordi-
nates (r; ¼ ) 2 (0; 1) £ Sd 1 as

@2
r u + (d 1)r 1@ru + r 2¢Sd 1 u + K(r; ¼ )e2u = 0 (2.41)

and the logarithm change of variable has to be replaced by the following one,

t = rd 2; ~v(t; ¼ ) = rd 2(u(r; ¼ ) mu); (2.42)

for some negative minorant mu. This leads to

t2@2
t ~v + (d 2) 2(¢Sd 1 ~v + t(d 2)=d ~K(t; ¼ )e2~v=t) = 0 (2.43)

in (0; a] £ Sd 1. Since lemma 2.3 is valid, the analysis of this equation is the same
as the one developed in [18].

Remark 2.6. In the statement of lemma 2.2, it is possible to replace the relatively
open subset U by the connected component U³ of ³ 2 ! + if it is assumed that
K(r; ¼ ) > 0 when (r; ¼ ) 2 [0; a] £ U³ for some a > 0. Moreover, if K(r; ¼ ) > 0 in
some (r; ¼ ) 2 [0; a]£ U (for some relatively open subset U on @B2), then lemma 2.2
and the part II of theorem 2.1 also hold.

Definition 2.7. If ³ 2 @B2, we shall say that ³ is regular with respect to u either
if statement I(i) holds or if ³ 2 ! + . The set of regular points is relatively open in
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@B2 and we denote it by R. As in [12] or [16], there exists a Radon measure · on
R such that

lim
r ! 1

Z

R
u(r; ¼ ) ± ( ¼ ) d ¼ =

Z

R
± ( ¼ ) d · ( ¼ ) (2.44)

for every ± 2 C 1
0 (R), and by density, this limit holds if ± 2 C0(R). The set of

³ 2 @B2 such that statement I(ii), that we denote S, is called the singular set of u
and we have

@B2 = R [ S [ !0; (2.45)

where !0 = fx 2 @B2 : K(x) = 0g. The triplet trj@B2 (u) = (S ; !0; · ) is by de­ nition
the boundary trace of u.

Remark 2.8. As in [18], expression (2.44) is equivalent to
Z

B2

( u¢¹ + Ke2u ¹ ) dx =

Z

@B2

@¹

@n
d · (2.46)

for any ¹ 2 C1;1
0 (B2 [ R), which is by de­ nition the space of C1(B2)-functions,

with compact support in B2 [ R and Lipschitz-continuous gradient.

3. The negative curvature case

At the beginning of this section we study the Dirichlet problem in a general regular
domain « for an equation of type (1.3) with a negative K = G and boundary
data belonging to some Lebesgue spaces. We ­ rst recall the following unpublished
result due to Brezis (see [8, Appendix] or [29] for a proof).

Lemma 3.1. Suppose « is a bounded regular domain in Rd, » (x) = dist(x; @« ), g
is a continuous, non-decreasing, real-valued function and f 2 L1(@« ). Then there
exists a unique w 2 L1( « ) with g(w) 2 L1( « ; » dx) with the property that

Z

«

( w¢± + g(w) ± ) dx =

Z

@«

f
@ ±

@n
dS (3.1)

for any ± 2 C1;1
0 ( ·« ). Moreover, if ( ~w; ~f) is another couple, the following estimate

holds

kw ~wkL1( « ) + k » (g(w) g( ~w))kL1( « ) 6 Ckf ~fkL1(@« ) (3.2)

and the mapping f 7! w is non-decreasing.

In the above monotonicity result the function g(r) can be replaced by g(x; r),
provided g 2 C( ·« £ R) is non-decreasing with respect to r, for ­ xed x. We begin
with the following estimates.

Proposition 3.2. Suppose « is a bounded and regular domain in Rd, G is a con-
tinuous and non-negative function in ·« , ã 1 is the ¯rst eigenfunction of ¢ in
W 1;2

0 ( « ) normalized by

0 6 ã 1 6 max
«

ã 1 = 1; (3.3)
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¶ 1 the corresponding eigenvalue, » (x) = dist(x; @ « ) and p 2 (1; 1). Then for any
f 2 L1(@« ) such that e2(p 1)f 2 L1(@« ), there exists a unique v 2 L1( « ) with
e2v 2 L1( « ; » dx), satisfying

Z

«

( v¢± + Ge2v ± ) dx =

Z

@«

f
@ ±

@n
dS (3.4)

for any ± 2 C1;1
0 ( ·« ), and the following estimate holds:

¶ 1

2(p 1)

Z

«

e2(p 1)vã 1 dx + 2(p 1)

Z

«

e2(p 1)v jrvj2ã 1 dx +

Z

«

e2pvGã 1 dx

6 1

2(p 1)

Z

@«

@ã 1

@n
e2(p 1)f dS: (3.5)

In particular,

kGe2vkLp( « ;» ) 6
³

C

p 1

´1=p

ke2fk1 1=p
Lp 1(@« )

; (3.6)

where C = C( « ) > 0.

Lemma 3.3. Suppose that f 2 L1(@« ) is such that

e2(p 1)f 2 L1(@« ) and inf ess
@«

f > 1;

then there exists a sequence ffng » C2(@« ) with the following property:

lim
n! 1

fn = f in L1(@« ); (3.7)

lim
n! 1

e2(p 1)fn = e2(p 1)f in L1(@« ); (3.8)

inf
n

inf
@«

fn > inf ess
@«

f: (3.9)

Proof. Set k = inf ess@« f . There exists a sequence fhng » C2(@« ) such that

hn > 0 on @« ; (3.10)

lim
n ! 1

hn = e2(p 1)f e2(p 1)k in L1(@« ): (3.11)

Setting

fn =
1

2(p 1)
ln(hn + e2(p 1)k);

then

e2(p 1)fn = hn + e2(p 1)k !
n! 1

e2(p 1)f in L1(@« ):

Moreover, fn > k for any n and

je2(p 1)fn e2(p 1)f j = 2(p 1)e2(p 1)( ³ fn + (1 ³ )f)jfn f j; ³ 2 (0; 1);

> 2(p 1)e2(p 1)kjfn f j: (3.12)
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Therefore

kf fnkL1(@« ) 6 e2(1 p)k

2(p 1)
ke2(p 1)f e2(p 1)fn kL1(@« ); (3.13)

which is (3.7).

Lemma 3.4. Suppose that « , G, p, ã 1 and ¶ 1 are as in proposition 3.2. Then for
any f 2 C2(@« ) there exists a unique v belonging to W 2;q( « ) for any 1 < q < 1,
such that

¢v + Ge2v = 0 in « ;

v = f on @« :

)

(3.14)

Moreover,

¶ 1

2(p 1)

Z

«

e2(p 1)vã 1 dx + 2(p 1)

Z

«

e2(p 1)v jrvj2ã 1 dx +

Z

«

e2pvGã 1 dx

=
1

2(p 1)

Z

@«

@ã 1

@n
e2(p 1)f dS: (3.15)

Proof. Existence and uniqueness follows from lemma 3.1. From the maximum prin-
ciple v is bounded from above by the Poisson potential Pf of f , and from below by
Pf G

Ge
2Pf , where G h denotes the Green potential of a function h in « . Therefore,

it is bounded and regularity follows from the elliptic equations theory. Multiplying
the equation by e2(p 1)vã 1, one obtains

Z

«

e2pvGã 1 dx +

Z

«

rv ¢ r(e2(p 1)vã 1) dx = 0: (3.16)

Since
Z

«

rv ¢r(e2(p 1)vã 1) dx = 2(p 1)

Z

«

jrvj2e2(p 1)vã 1 dx+

Z

«

e2(p 1)vrv ¢rã 1 dx

and
Z

«

e2(p 1)vrv ¢ rã 1 dx

=
1

2(p 1)

Z

«

r(e2(p 1)v) ¢ rã 1 dx

=
1

2(p 1)

Z

«

e2(p 1)v¢ã 1 dx +
1

2(p 1)

Z

@«

e2(p 1)v @ã 1

@n
dS

=
¶ 1

2(p 1)

Z

«

e2(p 1)vã 1 dx +
1

2(p 1)

Z

@«

e2(p 1)v @ã 1

@n
dS; (3.17)

equation (3.15) follows.

Proof of proposition 3.2. We set f = f + f and denote by v the solution of
Z

«

( v ¢ ± + Ge2v ± ) dx =

Z

@«

f
@ ±

@n
dS (8 ± 2 C1;1

0 ( ·« )) (3.18)
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and v the one of (3.4), both in the sense of lemma 3.1. Then v > v in « ; moreover,
V 6 v 6 0, where V is the solution of

¢V = kGkL1 in « ;

V = f on @« :

)

(3.19)

Suppose k > 1 and set f k = max(f; k). Then there exists a sequence ff k
ng »

C2(@« ) such that f k
n > k and

lim
n! 1

(kf k
n f kkL1(@« ) + ke2(p 1)fk

n e2(p 1)fk

kL1(@« )) = 0: (3.20)

If vn = vk
n is the solution of the problem

¢vn + Ge2vn = 0 in « ;

vn = f k
n on @« ;

)

(3.21)

then the following identity holds:

¶ 1

2(p 1)

Z

«

e2(p 1)vn ã 1 dx + 2(p 1)

Z

«

e2(p 1)vn jrvnj2ã 1 dx +

Z

«

e2pvn Gã 1 dx

=
1

2(p 1)

Z

@«

@ã 1

@n
e2(p 1)f k

n dS: (3.22)

Let vk be the limit of the vn when n goes to in­ nity, since

kvn vmkL1( « ) + k» G(e2vn e2vm )kL1( « ) 6 Ckf k
n f k

mkL1(@« ); (3.23)

one gets

¶ 1

2(p 1)

Z

«

e2(p 1)vk

ã 1 dx + 2(p 1)

Z

«

e2(p 1)vk

jrvkj2ã 1 dx +

Z

«

e2pvk

Gã 1 dx

6 1

2(p 1)

Z

@«

@ã 1

@n
e2(p 1)fk

dS (3.24)

from Fatou’s Lemma, and vk solves (3.4) with f replaced by f k. When k goes to
1, fvkg decreases and converges to the solution v of (3.4). Finally, v satis­ es

(3.5) from Fatou’s Lemma.

If « is a bounded regular domain of Rd we recall that (x; y) 7! P (x; y) is the
Poisson kernel de­ ned in « £ @« . If · any Radon measure on @« , the function

P· (x) =

Z

@«

P (x; y) d · (y) (8x 2 « ) (3.25)

is harmonic in « and has · as boundary trace.

Definition 3.5. Let · be a Radon measure on @« , with Lebesgue decomposition

· = · R dHd 1 + · S ; (3.26)
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where · R is the regular part with respect to the (d 1)-dimensional Hausdor¬
measure dHd 1 and · S the singular part. We say that · is admissible if there exists
p 2 (1; 1] such that

(i) exp(2P· S
) 2 Lp=(p 1)( « ; » dx);

(ii) exp(2 · R) 2 Lp 1(@« ):

)

(3.27)

We say that · is bounded from below if · + m dHd 1 is positive for some real
number m.

Theorem 3.6. Let « be as below and G be a continuous positive function de¯ned
in ·« . Then for any admissible, bounded from below Radon measure · on @« , there
exists a unique u 2 L1( « ) such that e2u 2 L1( « ; » dx) satisfying

Z

«

( u¢± + Ge2u ± ) dx =

Z

@«

@±

@n
d · (8 ± 2 C1;1

0 ( ·« )): (3.28)

Moreover, the mapping · 7! u is non-decreasing.

Proof. Uniqueness follows from monotonicity and [8, theorem 2.1, p. 282]. Without
any loss of generality it can be assumed that · is positive since we can always
replace · by · + m dHd 1, and it is the same with · R and · S . For existence we
shall distinguish according to whether p is ­ nite or not.

Case 1. p < 1. From lemma 3.3 there exists a sequence of functions ffng »
C2(@« ), fn > 0 such that

lim
n! 1

(ke2(p 1)fn e2(p 1) · R kL1(@« ) + kfn · RkL1(@« )) = 0: (3.29)

For k 2 N ¤ we de­ ne the non-decreasing function ek by ek(r) = min(e2r; e2k). Let
un;k be the solution of

¢un;k + Gek(un;k) = 0 in « ;

un;k = fn + · S on @« ;

)

(3.30)

in the weak sense, which means

Z

«

( un;k¢ ± + Gek(un;k) ± ) dx =

Z

@«

@±

@n
d · S

Z

@«

@±

@n
fn dS

(8 ± 2 C1;1
0 ( ·« )); (3.31)

the existence of un;k is a consequence of [8, theorem 2.1]. Denoting by vn;k the
solution of

¢vn;k + Gek(vn;k) = 0 in « ;

vn;k = fn on @« ;

)

(3.32)

and setting wn;k = vn;k + P· S , one has

¢wn;k + Gek(wn;k) > 0 (3.33)
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in the weak sense, since P· S
> 0. But un;k and wn;k coincide in the sense of measures

on @« . We deduce again from [8, lemma 2.2] that un;k 6 wn;k. Moreover, ª 6 un;k,
where ª is the solution of

¢ª + Ge2ª = 0 in « ;

ª = 0 on @« :

)

(3.34)

Since ek(r) increases with k the two sequences fun;kgk and fvn;kgk decrease and
converge respectively to un and vn. Clearly, vn is the classical solution of

¢vn + Ge2vn = 0 in « ;

vn = fn on @« :

)

(3.35)

In fact, for k > k0 large enough, ek(vn;k) = e2vn;k and vn;k = vn, since

vn;k(x) 6
Z

@«

P (x; y)fn(y) dy in « : (3.36)

Moreover, ek(un;k) ! e2un a.e. in « . We also have the following estimate:

0 6 ek(un;k) 6 ek(vn;k + P · S
) 6 e2(vn;k + P· S ) = e2vn;k e2P· S = e2vn e2P · S : (3.37)

But e2vn 2 Lp( « ; » dx) from lemma 3.4 and e2P· S 2 Lp=(p 1)( « ; » dx); therefore, it
follows from Lebesgue’s theorem that limk ! 1 Gek(un;k) = Ge2un in L1( « ; » dx).
Going to the limit in (3.31) yields

Z

«

( un¢ ± + Ge2un ± ) dx =

Z

@«

@±

@n
d · S

Z

@«

@±

@n
fn dS: (3.38)

Set k > 0 such that G(x) > k > 0 in ·« . From the Keller{Osserman-type estimate
of [27] and the maximum principle, it follows

ª (x) 6 vn(x) 6 ln(1=» (x)) + ln(4=k) (8x 2 « ) (3.39)

( ª is given by (3.34)). Moreover,

ª (x) 6 un(x) 6 P · S(x) + vn(x) and e2un(x) 6 e2P· S (x)e2vn(x) (3.40)

in « . Again from lemma 3.4, fe2vn g remains bounded in Lp( « ; » dx) independently
of n. From (3.39) and the elliptic equations local regularity theory there exist a
subsequence fvnt

g » fvng and a function v 2
T

16q<1 W 2;q
loc ( « ), with q 2 (1; 1)

as large as needed, such that

vnt
!

t ! 1
v in the C1

loc( « )-topology; (3.41)

e2vnt !
t! 1

e2v in the weak (Lp( « ; » dx); Lp=(p 1)( « ; » dx))-topology: (3.42)

Moreover, for every Borel subset ! » « there holds

Z

!

Ge2P· S e2vnt » dx 6
³Z

!

e2pvnt » dx

´1=p³Z

!

e2pP · S =(p 1) » dx

´1 1=p

max
«

G:

(3.43)
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Therefore, the sequence fe2P · S e2vnt g is equi-integrable for the measure » dx, in the
sense that

8" > 0; 9 ¯ > 0; 8! » « ; ! measurable;
Z

!

» dx < ¯ )
Z

!

e2P· S e2vnt » dx < ¯ : (3.44)

Estimate (3.39) implies that fvnt g is bounded in any Lq( « ) (1 < q < 1) and
therefore

vnt
!

t! 1
v

weakly in Lq( « ). Going to the limit in the weak formulation of equation (3.35) one
gets

Z

«

( v¢ ± + Ge2v ± ) dx =

Z

@«

@±

@n
d · S (8 ± 2 C1;1

0 ( ·« )): (3.45)

Because of the uniqueness of the solution v of (3.45) one can replace fvnt
g by the

full sequence fvng. From (3.39), (3.41) and the exponential estimate coming from
the admissibility assumption the sequence fung is bounded in Lq( « ), 1 < q < 1.
From (3.41) and (3.44) the sequence fe2un g is equi-integrable for the measure » dx
and therefore it is relatively compact in the weak (L1( « ; » dx); L 1 ( « ))-topology
(from the Dunford{Pettis weak compactness theorem). Consequently, there exist a
function u 2

T
16q<1 W 2;q

loc ( « ) and a subsequence funt
g » fung such that

unt
!

t! 1
u in the C1

loc( « )-topology and weakly in Lq( « );

e2unt !
t ! 1

e2u in weakly in L1( « ; » dx):

9
=

; (3.46)

Because of the relation

lim
t ! 1

³Z

@«

@±

@n
d · S +

Z

@«

@±

@n
fnt

dS

´
=

Z

@«

@±

@n
d · (8 ± 2 C1;1

0 ( ·« )) (3.47)

one deduces from (3.45) that (3.28) holds. Since u is unique funt
g can be replaced

by fung. Finally, the fact that the mapping · 7! u is increasing follows from the
construction and the uniqueness.

Case 2. p = 1. We ­ rst construct a solution uk of

¢uk + Gek(uk) = 0 in « ;

uk = · R + · S on @« ;

)

(3.48)

where ek is de­ ned as in case 1. If we set L = k · RkL1 , then

0 6 uk(x) 6 L + P · S (x) and ek(uk(x)) 6 e2Le2P· S (x) in « : (3.49)

Similarly to case 1, there exists a function u 2
T

16q<1 W 2;q
loc ( « ) and a subsequence

fukt g » fukg such that

ukt !
t ! 1

u in the C1
loc( « )-topology and weakly in Lq( « );

ek(ukt ) !
t! 1

e2u weakly in L1( « ; » dx):

9
=

; (3.50)
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Letting t go to in­ nity in
Z

«

( ukt ¢± + Gek(ukt ) ± ) dx =

Z

@«

@±

@n
d · ; (3.51)

where ± 2 C1;1
0 ( ·« ), one obtains (3.28).

In the remaining part of this section we assume that « = B2 » R2, we denote
by P the Poisson kernel in B2 and suppose that K is continuous and negative in
B2, where it satis­ es 0 < k 6 K(x) 6 k 1. From theorem 2.1 the boundary
trace of a minorized solution u of (1.3) in B2 (i.e. an element of the class E) is
characterized by the singular set S » @B2, which is a closed subset, and a bounded
from below Radon measure on the relatively open set R = @B2nS, and we denote
trj@B2 (u) = (S; · ). In the same way as in [18], one can de­ ne the trace in terms of
outer regular Borel measure on @B2: for every minorized regular Borel measure ~·
on @B2 we de­ ne the set of regular points R~· and the set of blow-up points S~· as
follows,

R~· = f¼ 2 @B2 : 9 a relatively open neighbourhood U of ¼ , s.t. ~· (U ) < 1g;

(3.52)

S~· = @B2nR~· ; (3.53)

and for any relatively open neighbourhood U of ¼ 2 S~· , ~· (U) = 1. Therefore,
· = ~· jR ~·

is a minorized Radon measure on R~· . Conversely, to each couple (S; · )
where S is a closed subset of @B2 and · minorized Radon measure on R = @B2nS,
we associate a regular and minorized Borel measure ~· by

~· (A) =

(
· (A) if A » R;

1 if A \ S 6= ;;
(3.54)

for every Borel subset A of @B2. It is proved in [18] that R~· = R, S~· = S and that
the correspondence (S; · ) $ ~· is one to one. With this result we denote

trj@B2 (u) = (S; · ) , Trj@B2 (u) = ~· : (3.55)

Definition 3.7. Let · be a Radon measure on a relatively open subset R » @B2.
We say that · is locally admissible if for any compact subset F » R the restriction
· jF of · to F de­ ned by

· jF (A) = · (A \ F ); for every Borel subset A » @B2 (3.56)

is admissible in the sense of de­ nition 3.5.
If S is a closed subset of @B2 and " > 0, we set

S" = fx 2 @B2 : dist(x; S)g < " =
[

! 2 S

D"(!); ·S" =
[

! 2 S

·D"(!); (3.57)

where D"(!) is the open geodesic disc on @B2 with centre ! and radius " (in fact,
it is just an interval on the circle @B2). We also set R = @B2nS and R" = @B2n ·S".
The following result follows from [23, theorem 7.2] (see [2,28] for related uniqueness
results).
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Proposition 3.8. Suppose K is continuous and negative in B2. Then there exists
one and only one function © which satis¯es

¢ © + Ke2© = 0 in B2;

lim
jxj! 1

© (x) = 1:

9
=

; (3.58)

This © is the maximal solution of (1.3) in the sense that it dominates any other
solution. When K is constant and equal to k, then

© k(x) = ln

³
4

k(1 jxj2)

´
: (3.59)

For " > 0 and n 2 N ¤ , we denote un;S" the solution of

¢un;S" + Ke2un; S " = 0 in B2;

un;S" = nÀ S" on @B2:

)

(3.60)

Lemma 3.9. The sequence fun;S" g is increasing and converges to a solution uS" of
(1.3) the boundary trace of which is ( ·S"; 0).

Proof. The monotonicity of the sequence follows from the maximum principle. In
order to prove that the zero boundary condition is maintained on R", we pick an
x0 on R" and a positive » 0 such that dist(x0; S") > » 0. Clearly, un;S" is dominated
in B2 \ B» 0 (x0) by the maximum solution of the equation (1.3), where K(x) is re-
placed by k = minB2 ( K) (k is positive by assumption), and this maximal solution
is

x 7! ln

³
2 » 0p

k( » 2
0 jx x0j2)

´
: (3.61)

Consequently, un;S" remains locally uniformly bounded near R". By the elliptic
equations regularity theory, the boundary conditions on R" remain and un;S" con-
verges to a solution uS" with boundary trace ( ·S"; 0). In fact, uS" satis­ es

lim
r ! 1

uS" (r; ¼ )

ln(1=(1 r2))
= 1 (3.62)

uniformly on compact subsets of S". This precise estimate follows by scaling tech-
niques as in [23, theorem 7.2] or local comparison techniques as in [3]. When " goes
to 0, fuS"

g decreases to a solution u¤
S of (1.3) with boundary trace (S ¤ ; 0).

Proposition 3.10. There always holds S ¤ ³ S, and u ¤
S is the maximal solution

of (1.3) among all the solutions in the class E with boundary trace (S ¤ ; 0).

Proof. The fact that S ¤ ³ S is proved as in [18, theorem 3.5], but for the sake of
self-containedness, we give an outline of a direct argument. If there exists some ³ 2
S ¤ nS , then dist(³ ; S) = ½ > 0 and ³ =2 ·S" for 0 < " < ½ ; therefore, limr ! 1 uS" = 0,
uniformly when dist(¼ ; ³ ) 6 ( ½ ")=3. Since fuS" g" decreases with ", ³ is not a
singular point of the boundary trace of u¤

S .
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If ~u 2 E has boundary trace (S ¤ ; 0), then

lim
r ! 1

Z

R ¤
u(r; ¼ ) ± ( ¼ ) d ¼ = 0 (3.63)

for any ± 2 C2
0(R ¤ ), where R ¤ = @B2nS ¤ .

Step 1. We claim that ~u + (r; ¼ ) converges to 0 when r goes to 1, locally uniformly
in R ¤ . For any closed subset F or R ¤ , there holds

Z 1

0

Z

F

e2~u(1 r) d ¼ dr < 1: (3.64)

Consequently, for any ® > 0 there exists a connected open subset G of @B2 such
that G » ·G » F » R ¤ , with dist(G; S ¤ ) < ® and

Z 1

1=2

j~uj(r; ¼ j) dr < 1 (j = 1; 2); (3.65)

since @G = f¼ 1; ¼ 2g. Therefore, ~u 6 U in the truncated cone CG = f(r; ¼ ) 2
(1=2; 1) £ Gg, where U is the solution of

¢U = 0 in CG;

U = ~u+ on @`CG [ @bCG;

U = 0 on @ ¾ CG;

9
>=

>;
(3.66)

with @`CG = [1=2; 1] £ @G, @bCG = f1=2g £ G and @ ¾ CG = f1g £ G expressed in
the (r; ¼ )-variables. Since U (x) goes to 0 locally uniformly in G when jxj goes to
1, the same property holds for the positive part of ~u, and this is also true on any
compact subset of R ¤ .

Step 2. Let ª be the solution of

¢ª + Ke2ª = 0 in B2;

ª = 0 on @B2:

)

(3.67)

Since ª is negative in B2, it minorizes any solution of (1.3) with non-negative
measure boundary data. Let v1 and v2 be two such solutions, then we claim that
’ = v1 + v2 2 ª is a supersolution of (1.3). Actually,

¢’ = K(e2v1 + e2v2 2e2 ª ): (3.68)

If we de­ ne ­ (x; y) = e2x + 2y 4ª e2x e2y +2e2 ª for (x; y) 2 [ ª ; 1)£ [ ª ; 1), then

@x­ (x; y) = 2e2x+ 2y 4 ª 2e2x = 2e2x(e2y 4 ª 1): (3.69)

But 2y 4 ª > 0 since y > ª and ª 6 0. Therefore,

­ (x; y) > ­ ( ª ; y) = e2y 2 ª e2y e2ª : (3.70)

Since @y­ ( ª ; y) = 2(e2y 2ª e2y) = 2e2y(e 2ª 1) > 0, one deduces also that

­ ( ª ; y) > ­ ( ª ; ª ) = 1: (3.71)

Consequently, e2’ > e2x + e2y 2e2ª and ’ is a supersolution.
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Step 3. Construction of a dominating solution. Let " > 0, ¯ > 0, and let ² 2 (0; 1)
be such that

~u + (r; ¼ ) 6 ¯ (8(r; ¼ ) 2 [1 ² ; 1) £ R") (3.72)

(see step 1). We denote v ² ;" = v ¯
² ;" the solution of

¢v ² ;" + Ke2v ² ;" = 0 in B2
1 ² = fx : jxj < 1 ² g;

v ² ;"(1 ² ; ¼ ) = ¯ if ¼ 2 R";

v ² ;"(1 ² ; ¼ ) = 1 if ¼ 2 ·S";

9
>=

>;
(3.73)

such a solution being obtained by an increasing scheme of approximate solutions
as in lemma 3.9. Clearly, v ² ;" > ~u in B2

1 ² . If we denote v1
² ;" (respectively, v2

² ;") the
solution of (1.3) in B2

1 ² with boundary data ¯ À R " (respectively, 1 on ·S" and 0
on R"), then v1

² ;" + v2
² ;" 2 ª is a supersolution of (1.3) which dominates v ² ;". As

for the function v2
² ;", it is bounded from above by the function,

x 7! V ² ;"(x) = V"(x=(1 ² )) ln(1 ² ); (3.74)

where V" is obtained from lemma 3.4 with K replaced by k = maxB2 K. As for
V ² ;", it satis­ es the same equation as V", with in­ nite boundary value if ¼ 2 S" and
some positive one if ¼ 2 R". When ² goes to 0, v ² ;" converges to a solution v ¯

" of
(1.3) which blows-up on S" and takes the value ¯ on R". Letting ¯ go to 0 implies
that ¯ 7! v ¯

" decreases to some v" which dominates ~u and has boundary trace ( ·S"; 0)
(clearly, v" is bounded from below by ª ).

Step 4. End of the proof. We claim that

uS" 0 6 v" 6 uS" 0 0 (0 < "0 < " < "00): (3.75)

The above three functions satisfy the blow-up estimate (3.62) locally uniformly in
the interior of their respective singular boundary set. For ½ > 0 the function

x 7! V ½ (x) = (1 + ½ )v"(x) + ½ k ª kL1 (3.76)

is a supersolution of (1.3) in B2. Since x 7! (uS" 0 (x) V ½ (x)) + has compact support
one gets uS" 0 6 V ½ . The inequality uS" 0 6 v" is derived by letting ½ go to 0. The
left-hand side of (3.75) is proved in the same way. If we take "0 = "=2, "00 = 2" and
let " go to 0, then v" ! uS¤ and uS¤ > ~u in B2.

In the following, we extend to the exponential case the result [19, lemma 3.3].

Proposition 3.11. Let R be a relatively open subset of @B2 and · a non-negative
locally admissible Radon measure on R. Then there exists a minimal solution u · of
(1.3) in B2 with trace · on R among the solutions u which satisfy limr ! 1 u (r; ¼ ) =
0 uniformly for ¼ 2 S1.

Proof. Step 1. Construction of u· . For " > 0 we denote u · " the solution of (1.3)
with · " = · jR "

, the existence of which follows from theorem 3.6 as well as the
monotonicity of the correspondence " 7! u · " . Since

ª (x) 6 u· " (x) 6 ln(1=(1 jxj)) + ln(4=k); (3.77)
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where ª is given by (3.67), limr ! 1 u · "
(r; ¼ ) = 0 holds uniformly for ¼ 2 S1. But

Z

B2

( u· "
¢± Ke2u · " ± ) dx =

Z

@B2

@±

@n
d · " ( ± 2 C1;1

0 ( ·B2)): (3.78)

Moreover, u · " converges monotonically to some !. Therefore, restricting ± to be
non-negative and have compact support in B2 [R and letting " go to 0, one deduces
from the monotone convergence theorem that

Z

B2

( !¢ ± Ke2! ± ) dx =

Z

@B2

@±

@n
d · (3.79)

holds. It follows from remark 2.8 that ! has boundary trace · on R; we shall write
! = u · .

Step 2. u · is minimal. Let u be another solution of (1.3) with boundary trace ·
on R and such that limr ! 1 u (r; ¼ ) = 0 uniformly on S1, then u > ª . For " > 0,
w = u u · " has zero boundary trace on R" in the sense of measures and

Z 1

0

Z

R "

(e2u + e2u· " )(1 r)r d ¼ dr < 1: (3.80)

Consequently, w solves

¢w = f (3.81)

in CR "
= fx = (r; ¼ ) : 1=2 < r < 1; ¼ 2 R"g, for some f 2 L1(CR "

; (1 jxj) dx). By
the same analysis as the one of step 1 of proposition 3.10 and the regularity theory
of elliptic equations in L1, one obtains

lim
r ! 1

Z

R "

ju u · " j(r; ¼ ) d ¼ = 0 (3.82)

(it can always be assumed that u is integrable on @R" £ (1=2; 1) by using Fubini’s
theorem and theorem 2.1). Consequently,

lim
r ! 1

Z

S1

(u · " u) + (r; ¼ ) d ¼ = 0:

Since

d2

dr2

Z

S1

(u · " u) + (r; ¼ ) d ¼ +
1

r

d

dr

Z

S1

(u· " u) + (r; ¼ ) d ¼ > 0 (3.83)

holds in the sense of distributions on (0; 1), it follows from the maximum principle
that

R
S1 (u · " u) + (¢; ¼ ) d ¼ ² 0, and u · " 6 u. Using step 1, one ends the proof by

letting " go to 0.

Let @ · S denote the singular part of the boundary trace on u · , then @ · S » S.
The following result which expresses under what condition a couple (S; · ) is a trace
is the analogous of a previous result of Marcus and V́eron [19, theorem 3.5] dealing
with the d-dimensional equation (1.5) in the case q > (d + 1)=(d 1).
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Theorem 3.12. Let S be a closed subset of @B2 and · a locally admissible positive
Radon measure on R = @B2nS. Then there exists a solution u of (1.3) in B2 with
boundary trace (S; · ) if and only if

S = @ · S [ S ¤ : (3.84)

Proof. Step 1. The condition is su¯ cient. Assume that S = @ · S[S ¤ ; for " > 0 and
n 2 N ¤ let u · " and un;S" be the functions constructed in (3.60) and proposition 3.11,
and un;" the solution of (1.3) with boundary trace (;; nÀ S" + · "), where · " = · jR "

.
From theorem 3.6 and step 2 of proposition 3.10, there holds

max(u · " ; un;S" ) 6 un;" 6 u · " + un;S" 2 ª : (3.85)

When n goes to in­ nity un;" increases and converges to a solution u" of (1.3) and

max(u· " ; uS" ) 6 u" 6 u · " + uS" 2 ª : (3.86)

It follows that u" has boundary trace (S"; · "). When " decreases to 0, the two
terms max(u · " ; uS" ) and u · " + uS" 2 ª converge respectively to max(u· ; u ¤

S) and
u · + u¤

S 2 ª . Up to some subsequence f"ng with limit 0, fu · "n
g converges in the

C1
loc(B2)-topology to some solution u of (1.3) which satis­ es

max(u· ; u ¤
S) 6 u 6 u · + u ¤

S 2 ª : (3.87)

But this relation implies that the singular set of the boundary trace of u is @ · S [S ¤ .
It follows from (3.87) and theorem 2.1 that trj@B2 (u) = (S; · ).

Step 2. The condition is necessary. Let ~u be a solution of (1.3) such that trj@B2 (~u) =
(S ; · ), in the class E0 of functions u which satisfy limr ! 1 ku (r; ¢)kL1 (S1) = 0. Then
we construct a solution U of (1.3) such that

~u 6 U 6 u · + u¤
S 2ª (3.88)

in the following way: for "; ¯ > 0, set

’"( ¼ ) =

(
u · " (1 ¯ ; ¼ ) if ¼ 2 R";

© (1 ¯ ; ¼ ) if ¼ 2 S";
(3.89)

where © is the maximal solution de­ ned in proposition 3.2, and denote Ū ;" and
W ¯ ;" the solutions of (1.3) in B2

1 ¯ with respective boundary data ’" and (~u(1
¯ ; ¢) ’"(¢)) + . From step 2 of proposition 3.10, Ū ;" + W ¯ ;" 2ª is a supersolution
of (1.3) and it dominates ~u on @B2

1 ¯ provided ¯ is chosen small enough. Therefore

~u 6 U ¯ ;" + W ¯ ;" 2 ª (3.90)

in B2
1 ¯ . Moreover, W ¯ ;" 6 Y ¯ ;", which is the solution of (1.3) in B2

1 ¯ with boundary
data

!"( ¼ ) =

(
~u(1 ¯ ; ¼ ) if ¼ 2 R";

0 if ¼ 2 S":
(3.91)

As for the function U ¯ ;" it is dominated by u· " + uS" 2 ª . When ¯ goes to 0, U ¯ ;"

converges to a solution U" of (1.3) in B2 with boundary trace (S"; · "). The function
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(~u(1 ¯ ; ¢) ’"(¢)) + , which is the boundary data of W ¯ ;", vanishes on S" and is equal
to ~u(1 ¯ ; ¢) ’"(¢) on R" since u · " 6 ~u; therefore, it converges to 0 in the weak
sense of measures on S1 as ¯ ! 0. If we set W ¯ ;"(x) = W ¯

¯ ;"(x=(1 ¯ )) ln(1 ¯ ),
then

¢W ¯
¯ ;" + K((1 ¯ )x)e2W ¯

¯ ;" = 0 in B2;

W ¯
¯ ;" = (~u(1 ¯ ; ¢) ’"(¢)) + ln(1 ¯ ) on @B2:

)

(3.92)

Recalling that ª 1 and ¶ 1 are de­ ned in proposition 3.2, one gets
Z

B2

( ¶ 1W ¯
¯ ;" + K((1 ¯ )x)e2W ¯

¯ ;" ) ª 1 dx =

Z

@B2

@ª 1

@n
W ¯

¯ ;" d ¼ : (3.93)

But W ¯
¯ ;"j@B2 converges to 0 with ¯ and similarly does the right-hand side of (3.93);

consequently, the same holds with W ¯
¯ ;" and W ¯ ;", and (3.90) yields

~u 6 U" 2 ª 6 uS" + u · " 4 ª ; (3.94)

and ­ nally ~u 6 u ¤
S + u · 4 ª . This implies that S ³ S ¤ [ @ · S. At the end, if u

only belongs to the class E with trj@B2 (u) = (S; · ), then u` = u + ` has boundary
trace (S ; · + ` d ¼ ) and belongs to E0 for some `. Obviously, @ · + ` d H1 S = @ · S, and
(3.84) follows from the previous case.

As in [19] it is not true that a given admissible (in the sense of theorem 3.6)
boundary trace (S; · ) characterizes in a unique way a solution u of (1.3) such that
trj@B2 (u) = (S ; · ). Actually, we have the following result.

Proposition 3.13. There exist in¯nitely many solutions of equation (1.3) in B2

with boundary trace (@B2; 0) = (S1; 0).

Proof. In the proof we borrow some of the ideas of [19, x 5]. Let fangn 2 N be a dense
subset in @B2 and f"ngn2 N a sequence of positive numbers to be speci­ ed later on.
We denote Sn = fx 2 @B2 : jx anj 6 "ng for n 2 N and vn the minimal solution
(obtained by an increasing scheme) of

¢vn + K(e2vn 1) = 0 (3.95)

in B2 which satis­ es

(i) lim
r ! 1

vn(r; ¼ )= ln(1=(1 r2)) = 1 if ¼ 2 Sn;

(ii) lim
r ! 1

vn(r; ¼ ) = 0 if ¼ 2 S1nSn:

9
=

; (3.96)

The construction and the asymptotics of vn are obtained as in [3] and [23, x 7].
Moreover, vn > 0. Since isolated points on @B2 are removable singularity for equa-
tion of type (1.3){(3.95) (see [8]), lim"n ! 0 vn = 0, uniformly on compact subset of
B2 (because K(x) > k > 0 this convergence does not depend on the position of
the point an). Since ea + b 1 > ea 1 + eb 1 for any non-negative real numbers a
and b, Vn =

Pn
j = 0 vj is a supersolution of (3.95). We choose the sequence f"ngn2 N

such that
1X

j = 0

vj(0) < 1: (3.97)
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From Harnack inequality
P 1

j = 0 vj(x) < 1 holds uniformly when x remains in a
compact subset of B2. If we denote by Un the minimal solution of (3.95) which
satis­ es

(i) lim
r ! 1

Un(r; ¼ )= ln(1=(1 r2)) = 1 if ¼ 2 § n =

n[

j = 0

Sj ;

(ii) lim
r ! 1

Un(r; ¼ ) = 0 if ¼ 2 S1n § n;

9
>>=

>>;
(3.98)

then

max
06j6n

vj 6 Un 6 Vn: (3.99)

When n goes to in­ nity the sequence fUng increases and converges to a solution U
of (3.95) with the property that

max
j>0

vj 6 U 6
1X

j = 0

vj : (3.100)

Clearly, U is a non-negative supersolution of (1.3). Let H be the solution of

¢H = K in « ;

H = 0 on @« :

)

(3.101)

The function H is positive and, if W = U H , then

¢W = ¢U + ¢H = K(eU 1) + K > KeU H = KeW : (3.102)

Moreover, U and W satisfy the same boundary conditions; henceforth it is classical
that there exists a solution u of (1.3) such that U H 6 u 6 U . This implies that
trj@B2 (u) = (@B2; 0). Since

P 1
j = 0 vj(0) can be made as small as needed one can

construct in­ nitely many such solutions u.

Remark 3.14. By adapting the construction of [19, proposition 5.2], it is possible
to prove that for any " > 0 there exists a solution u" of (1.3) with trj@B2 (u") =
(@B2; 0) and a Borel subset E" » @B2 with meas(E") < " such that

lim
r ! 1

u"(r; ¼ ) = 0 for almost all ¼ 2 @B2nE":

Remark 3.15. Since uniqueness of a solution of (1.3) with a given trace is not
true, we believe that a ­ ner notion should be appropriate to describe the trace.
A particular interesting problem would be to prove uniqueness under the mere
assumption that the metric gu = e2ug0 is complete, which actually reads

Length( ® ) =

Z 1

0

vuut
2X

i;j = 1

(gu( ® ))ij( _® i; _® j) dt =

Z 1

0

eu( ® (t)) dt = 1 (3.103)

for any geodesic ® 2 C 1 ([0; 1]; ·B2) with ® ([0; 1)) » B2 and ® (1) 2 @B2. Some
results in this direction can be found in [23, x 7].
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4. Removable singularities

In this section it is still assumed that the curvature function K is continuous and
negative in B2, and set G = K, with 0 < k 6 G(x) < k 1. In order to describe the
removability results, we introduce an extended Bessel capacity framework [4, 21].
We ­ rst recall some basic facts about fractional Sobolev{Besov spaces on S1.

Definition 4.1. Let 0 < ¬ 6 1 and 1 6 p 6 1. Then

(i) if 0 < ¬ < 1, f belongs to B ¬ ;p
p (S1) = W ¬ ;p(S1) if f 2 Lp(S1) and if the

norm below is ­ nite

kfkB
¬ ;p
p (S1) = kfkLp(S1) +

³Z 2 º

0

t (1+ ¬ p)kf(t + :) f (¢)kp
Lp(S1) dt

´1=p

;

(4.1)

(ii) if ¬ = 1, f belongs to B1;p
p (S1) if f 2 Lp(S1) and if the norm below is ­ nite

kfkB
¬ ;p
p (S1) = kfkLp(S1) +

³Z 2º

0

t (1+ p)kf(t + ¢) + f(¢ t) 2f (¢)kp
Lp(S1) dt

´1=p

:

(4.2)

In both expressions we make the usual modi­ cation when p = 1.

The space Bk + ¬
p (S1), k 2 N ¤ , 0 < ¬ 6 1 is de­ ned as the space of functions f

belonging to W k;p(S1) such that f (k) 2 B ¬ ;p
p (S1). If f belongs to L1(S1), we recall

that Pf is the Poisson potential of f in B2. If one writes

Pf (r; ¼ ) = Pt(f )( ¼ ) (t = ln(1=r); ¼ 2 S1); (4.3)

the problem

@2
t Pt(f ) + @2

¼ Pt(f) = 0 in (0; 1) £ S1;

P0(f )(¢) = f(¢); P(f) 2 L 1 (0; 1; L1(S1))

)

(4.4)

is equivalent to

@tPt(f ) + ( @2
¼ )1=2Pt(f) = 0 in (0; 1) £ S1; P0(f )(¢) = f(¢): (4.5)

If ¬ and k are as above, it is known that the space B ¬ + k;p
p (S1) can be expressed by

B ¬ + k;p
p (S1) =

»
f 2 Lp(S1) :

Z 1

0

(tk + 1 ¬ k@k
t Pt(f )kLp )p dt

t

¼
< 1; (4.6)

with equivalent norms [25,26]

kfk
B

¬ +k;p
p (S1)

º kfkLp(S1) +

³Z 1

0

(tk + 1 ¬ k@k
t Pt(f )kLp)p dt

t

´1=p

; (4.7)

and

kfk
B

¬ +k;p
p (S1)

º kfkLp(S1) +

³Z 1

0

(tk + 1 ¬ k@k
¼ Pt(f )kLp )p dt

t

´1=p

: (4.8)
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We turn now to the de­ nition of the Sobolev{Besov capacity C ¯ ;p.

Definition 4.2. Suppose ¯ > 0 and 1 6 p 6 1.

(i) If K » S1 is compact,

C ¯ ;p(K) = inffkfk
B

¯ ;p
p (S1) : f 2 C 1

0 (S1); f > 0; f > 1 in a neighbourhood of Kg:

(4.9)

(ii) If G » S1 is open,

C ¯ ;p(G) = supfC ¯ ;p(K) : K » G; K compactg: (4.10)

(iii) If E » S1,

C ¯ ;p(E) = inffC ¯ ;p(G) : G ¼ E; G openg: (4.11)

Accordingly, we de­ ne the class B ¬ ;p
ln (0 6 ¬ 6 1, 1 6 p 6 1) on S1 by

B ¬ ;p
ln (S1) =

»
f 2 Lp(S1) :

Z 1

0

(t1 ¬ k@tPt(f )kLp(S1) ln(1 + t 1))p dt

t

¼
< 1;

(4.12)

with the norm

kfkB
¬ ;p
ln (S1) = kfkLp(S1) +

³Z 1

0

(t1 ¬ k@tPt(f )kLp(S1) ln(1 + t 1))p dt

t

´1=p

(4.13)

and the corresponding extended capacity C ¬ ;p;ln .

Definition 4.3. Suppose 0 6 ¬ 6 1 and 1 6 p 6 1.

(i) If K » S1 is compact,

C ¬ ;p;ln (K) = inffkfkB
¬ ;p
ln (S1) :

f 2 C 1
0 (S1); f > 0; f > 1 in a neighbourhood of Kg: (4.14)

(ii) If G » S1 is open,

C¬ ;p;ln (G) = supfC ¬ ;p;ln (K) : K » G; K compactg: (4.15)

(iii) If E » S1,

C ¬ ;p;ln (E) = inffC ¬ ;p;ln (G) : G ¼ E; G openg: (4.16)

The following properties of this capacities are easy to verify with the help of
H�older and Sobolev inequalities.

Proposition 4.4. Let E » S1 = @B2. Then for any 1 6 p 6 1, and 0 6 ¬ 6 1

(i) C ¬ ;p(E) 6 M ( ¬ ; p)C ¬ ;p;ln (E) ( ¬ > 0),
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(ii) C ¬ ;p;ln (E) 6 M( ¬ ; ­ ; p)C­ ;p(E) (80 6 ¬ < ­ 6 1).

(iii) C­ ;p=(1 p( ¬ ­ ))(E) 6 M ( ¬ ; ­ ; p)C ¬ ;p(E) (8( ¬ ; ­ ) : ( ¬ p 1) + < ­ 6 ¬ < 1).

Lemma 4.5. Suppose f 2 L 1 (S1), f > 0, then the following estimate holds:

j@rPf (r; ¼ )j 6 4

1 r
kf(r; ¢)kL1 (S1) (8(r; ¼ ) 2 (0; 1) £ S1): (4.17)

Proof. From Poisson’s representation formula

Pf (r; ¼ ) =
1

2 º

Z 2 º

0

1 r2

1 + r2 2r cos(³ ¼ )
f ( ³ ) d ³ ; (4.18)

one gets

@rPf (r; ¼ ) =
1

º

Z 2º

0

r

1 + r2 2r cos( ³ ¼ )
f ( ³ ) d ³

1

º

Z 2º

0

(1 r2)(r cos(³ ¼ ))

(1 + r2 2r cos(³ ¼ ))2
f ( ³ ) d ³ : (4.19)

By a straightforward computation,

(1 r)jr cos ’j 6 1 + r2 2r cos ’ (8(r; ’) 2 [0; 1] £ [0; 2 º ]); (4.20)

from which it is derived that

4Pf (r; ¼ ) 6 (1 r)@rPf (r; ¼ ) 6 2Pf (r; ¼ ): (4.21)

This implies the claim since maxx 2 R jPf (t; ¢)j 6 maxx 2 R jf (¢)j.

We turn now to the key estimate for solutions of (1.3) with a possible singularity
on the boundary with zero C0;1;ln -capacity.

Proposition 4.6. Let E » S1 = @B2 be a compact subset such that C0;1;ln (E) = 0
and u an element of E such that u = 0 on @B2nE. Then

Z

B2

e2u(x)(1 jxj) dx < M (4.22)

for some positive constant M depending on G and the lower bound of u in B2.

Proof. We recall that ã 1 denotes the ­ rst eigenfunction of ¢ in W 1;2
0 (B2) normal-

ized by maxB2 ã 1 = 1 and ¶ 1 is the corresponding eigenvalue. Let ² 2 C 1
0 (@B2)

with 0 6 ² 6 1 such that ² ( ¼ ) = 1 in a neighbourhood E ² of E; we set ± (x) =
± (r; ¼ ) = ((1 P² )ã 1)(r; ¼ ), take x 7! ± j(x) = ± (x=j) (0 < j < 1) as a test function
and get

Z

jxj<j

( u¢ ± j + Ge2u ± j) dx =

Z

jxj = j

u
@± j

@n
d ¼ : (4.23)

Step 1. We claim that
Z

B2

( u¢ ± + Ge2u ± ) dx = 0: (4.24)
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From assumption u(x) > ` for some ` 2 R; moreover,

@± j

@r
(x) =

1

j

@ ±

@r

³
x

j

´
=

1

j

³
@ã 1

@r
(1 P ² ) ã 1

@P²

@r

´³
x

j

´
;

with x = (r; ¼ ) and x=j = (r=j; ¼ ). But ã 1 vanishes on @B2, therefore

­­­­
@± j

@n
(x)

­­­­6 C1

j
(1 P ² )(j; ¼ ) for jxj = j: (4.25)

On the other hand

`À E² ( ¼ ) CE ² (1 j)(1 À E² ( ¼ ))

6 u(r; ¼ )

6 C0(ln(1=(1 j)) + ln(4=k)) À E² ( ¼ ) + CE² (1 j)(1 À E² ( ¼ ))

for jxj = j because u vanishes on @B2nE, which contains @B2nE² (and the positive
constant CE ² depends on ² ). This, together with (4.25) implies

lim
j ! 1

Z

jxj = j

u
@± j

@n
d ¼ = 0: (4.26)

Moreover,

¢ ± j(x) = j 2¢ ± (x=j)

= j 2((1 P ² )¢ã 1 + ã 1¢(1 P² ) + 2rã 1 ¢ r(1 P² ))(x=j);

= j 2( ¶ 1ã 1(1 P² ) 2rã 1 ¢ rP ² )(x=j); (4.27)

and j¢ ± j(x)j 6 C3. Since u is integrable in B2, it is the same with u¢ ± . Conse-
quently, e2u ± 2 L1(B2) and (4.24) follows by letting j go to 1 in (4.23).

Step 2. We claim that estimate (4.22) holds. Since C0;1;ln (E) = 0, there exists a
sequence f² ng » B0;1

ln (S1) such that 0 6 ² n 6 1, ² n = 1 in a neighbourhood of E
and

lim
n ! 1

k ² nkB
0;1
ln

= 0: (4.28)

Since u > `, it can be assumed be that u is non-negative by replacing G by Ge2`.
Taking ² = ² n in the construction of ± one gets from (4.24) and Young’s inequality

Z

B2

Ge2u ± dx 6
Z

B2

uj¢± j dx

6 1
2
k

Z

B2

e2u ± dx +
1

2

Z

B2

j¢± j(ln j¢ ± j ln ± ln k) dx: (4.29)
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Therefore,

k

Z

B2

e2u ± dx 6
Z

B2

j¢ ± j(ln j¢± j ln ± ln k) dx

6 L

Z

B2

j¢ ± j ln

³³
j¢± j

±
+ 1

´
±

´
dx

6 L

Z

B2

j¢ ± j ln

³
j¢ ± j

±
+ 1

´
dx (4.30)

for some L = L(k) > 1. Since ± = ã 1(1 P² ),

j¢ ± j = j ¶ 1ã 1(1 P ² ) 2rã 1 ¢ rP ² j 6 ¶ 1 + 2jrã 1 ¢ rP ² j; (4.31)­­­­
¢±

±

­­­­= j ¶ 1 2ã 1
1 (1 P ² ) 1rã 1 ¢ rP ² j 6 ¶ 1 + 2ã 1

1 (1 P ² ) 1jrã 1 ¢ rP ² j;

(4.32)

and one has to estimate

A =

Z

B2

( ¶ 1 + 2jrã 1 ¢ rP² j) ln(1 + ¶ 1 + 2ã 1
1 (1 P² ) 1jrã 1 ¢ rP ² j) dx: (4.33)

But c(1 r) 6 (1 P² ) 6 1, c(1 r) 6 ã 1 6 1, j@rã 1j 6 c and jrã 1 ¢ rP² j =
j@rã 1 ¢ @rP ² j 6 cj@rP ² j for some c > 0 independent of ² . Then by using (4.3),

A 6 C

Z 1

0

Z

S1

(j@rP ² j + 1) ln(1 + c 1(1 r) 2j@rP ² j) d ¼ dr

6 C

Z 1

0

Z

S1

(j@tPt( ² )j + 1) ln(1 + c 1(1 e t) 2etj@tPt( ² )j)e t d ¼ dt

= A0 + A00; (4.34)

where

A0 = C

Z 1

0

Z

S1

(j@tPt( ² )j + 1) ln(1 + c 1(1 e t) 2etj@tPt( ² )j)e t d ¼ dt

6 C

Z 1

0

Z

S1

(j@tPt( ² )j + 1) ln(1 + ec 1t 2j@tPt( ² )j) d ¼ dt = ~A0; (4.35)

and

A00 = C

Z 1

1

Z

S1

(j@tPt( ² )j + 1) ln(1 + c 1(1 e t) 2etj@tPt( ² )j)e t d ¼ dt

6 C

Z 1

1

Z

S1

(j@tPt( ² )j + 1) ln(1 + c 1etj@tPt( ² )j)e t d ¼ dt = ~A00: (4.36)

From lemma 4.5

j@tPt( ² )(t; ¼ )j 6 C 0t 1k ² kL1 (S1) = C 0t 1; (4.37)

therefore,

~A00 6 C0C

Z 1

1

Z

S1

(t 1 + 1) ln(1 + c 1Cett 1)e t d ¼ dt = C3: (4.38)
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Using again lemma 4.5

~A0 6 C

Z 1

0

Z

S1

(j@tPt( ² )j + 1) ln(1 + C0c 1et 3) d ¼ dt

6 C

Z 1

0

ln(1 + C 0c 1et 3) dt + C

Z 1

0

Z

S1

j@tPt( ² )j ln(1 + t 1) d ¼ dt

6 C

Z 1

0

ln(1 + C 0c 1et 3) dt + Ck ² kB
0;1
ln (S1): (4.39)

Replacing ² by ² n and letting n go to in­ nity implies that limn! 1 ± n = ã 1. One
concludes that (4.22) holds from (4.28), (4.38) and (4.39).

Theorem 4.7. Let E » S1 = @B2 be a closed subset such that C0;1;ln (E) = 0 and
u a solution of (1.3) in B2, which is bounded from below and coincides on @B2nE
with ’ 2 C(@B2). Then u can be extended to B2 as a continuous function.

Proof. Let v 2 C(B2) be the solution of

¢v = 0 in B2;

v = ’ on @B2;

)

(4.40)

and ~u = u v. Then

¢~u = ~Ge2~u (4.41)

with ~G = Ge2v , and ~u vanishes on @B2nE. From proposition 4.6,
Z

B2

e2~u(1 jxj) dx 6 ~M;

where ~M depends on ’ but not on ~u. Moreover, trj@B2 (~u) = (;; · ), where · 2
M + (@B2) and supp :( · ) » E. We take ¹ = ¹ n = (1 P ² )ã 1 for test function where
² = ² n satis­ es (4.28), and get as above, in the same way as in proposition 4.6,

Z

B2

( ~u¢¹ + ~Ge2~u ¹ ) dx =

Z

@B2

³
(1 P ² )

@ã 1

@n
ã 1

@P²

@n

´
d · = 0 (4.42)

since 1 P ² = 0 in a neighbourhood of the support of · . Therefore,
Z

B2

( ~u(1 P² )¢ã 1 + ~Ge2~u ¹ ) dx =

Z

B2

( ¶ 1 ~u(1 P ² )ã 1 + ~Ge2~u ¹ ) dx

= 2

Z

B2

~urP ² ¢ rã 1 dx (4.43)

and, as in (4.29),
­­­­
Z

B2

~urP ² ¢ rã 1 dx

­­­­6 C

Z

B2

~uj@rP ² j dx

6 1
2
C"

Z

B2

e2~u(1 jxj)

+ 1
2
C

Z

B2

j@rP² j(ln j@rP² j ln(1 jxj) ln ") dx (4.44)
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(" > 0). From step 2 of proposition 4.6

lim
n! 1

Z

B2

j@rP ² n j(ln j@rP² n j ln(1 jxj) ln ") dx = 0; (4.45)

therefore,

lim sup
n ! 1

­­­­
Z

B2

~urP ² n
¢ r ¹ dx

­­­­6 1
2
"

Z

B2

e2~u(1 jxj) dx; (4.46)

and ­ nally
Z

B2

( ¶ 1~uã 1 + ~Ge2~uã 1) dx = 0: (4.47)

Let ~ª be the solution of

¢ ~ª = ~Ge2 ~ª in B2;

~ª = 0 on @B2:

)

(4.48)

Clearly, ~ª is continuous in B2 and
Z

B2

( ¶ 1
~ª ã 1 + ~Ge2 ~ª ã 1) dx = 0: (4.49)

Because the mapping · 7! ~u (with trj@B2 (~u) = (;; · )) is monotone and · is non-
negative, we have ~ª 6 ~u in B2. This together with (4.47) and (4.49) and the fact,
that for any x in B2, the mapping r 7! ¶ 1r + ~G(x)e2r is increasing implies that
~ª = ~u.

Remark 4.8. The relation between capacities and Hausdor¬ dimension asserts
that if a set E » @B2 is such that

H dim(E) = ¯ = sup

»
s > 0

¿
lim
"! 0

³
inf

E»[ i2I B(xi ;ri)

X

i 2 I

rs
i : 0 < ri 6 "

´
> 0

¼
< 1;

then C";1(E) = 0 for " 2 (0; 1 ¯ ), and consequently C0;1;ln (E) = 0 from proposi-
tion 4.4.

Definition 4.9. We shall say that a Borel subset E » @B2 is removable if any
solution u 2 E of (1.3) in B2 which is locally uniformly continuous on ·B2nE can
be extended to ·B2 as a continuous function.

From theorem 4.7 any closed subset E of @B2 with C0;1;ln (E) = 0 is removable.
With this result, we obtain the following consequence.

Corollary 4.10. Let S » @B2 be a closed removable set and · a locally admissible
non-negative Radon measure on R = @B2nS. Then there exists a unique solution
u of (1.3) in B2 such that limr ! 1 ku (r; ¢)kL1 (S1) = 0 and trj@B2 (u) = (S; · ).

Proof. We recall that ª is the solution of

¢ª + Ke2ª = 0 in B2;

ª = 0 on @B2:

)

(4.50)
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It follows from proposition 3.11, the proof of step 2 of theorem 3.6 and the fact that
u ¤

S = ª (since S ¤ = ;) that any solution u of (1.3) with limr ! 1 ku (r; ¢)kL1 (S1) = 0
with trj@B2 (u) = (S; · ) satis­ es

ª 6 u · 6 u 6 u· 4 ª ; (4.51)

where u· is the minimal solution constructed in proposition 3.11 (we recall that
ª is negative in B2). Therefore, for any " > 0, u · + " is a supersolution which
dominates u near @B2. Letting " go to zero yields u = u · .

Remark 4.11. Most of the results which are presented here are extendible to the
d-dimensional case of equation (1.3) in Bd, with the help of some of the techniques
introduced in [19] (see also remark 2.5).

References

1 P. Avilµes and R. McOwen. Conformal deformations to constant negative curvature on
noncompact Riemannian manifolds. J. Di® . Geom. 27 (1988), 225{239.

2 C. Bandle and M. Marcus. Large solutions of semilinear elliptic equations: existence, unique-
ness and asymptotic behavior. J. Analyt. Math. 58 (1992), 9{24.

3 C. Bandle and M. Marcus. Asymptotic behavior of solutions and their derivative for semi-
linear elliptic problems with blow-up on the boundary. Ann. Inst. H. Poincar¶e Analyse
Non Lin¶eare 12 (1995), 155{171.

4 P. Baras and M. Pierre. Singularit¶es ¶eliminables pour des ¶equations semilin¶eaires. Ann.
Inst. Fourier, Grenoble 34 (1984), 185{206.

5 J. Doob. Classical potential theory and its probabilistic counterpart (Springer, 1984).

6 E. B. Dynkin. A probabilistic approach to one class of nonlinear di® erential equations.
Prob. Theory Relat. Fields 89 (1991), 89{115.

7 E. B. Dynkin and S. E. Kuznetsov. Superdi® usion and removable singularities for quasilin-
ear P.D.E. Commun. Pure Appl. Math. 49 (1995), 125{176.

8 A. Gmira and L. V¶eron. Boundary singularities of solutions of some nonlinear elliptic equa-
tions. Duke Math. J. 64 (1991), 271{324.

9 J. L. Kazdan. Prescribing the curvature on a Riemannian manifold. CBMS Regional Con-
ference Series in Mathematics, vol. 57 (Washington, DC: Conference Board on Mathematics
and Science, 1985).

10 J. L. Kazdan and F. M. Warner. Scalar curvature and conformal deformation of Riemannian
structure. J. Di® . Geom. 10 (1975), 113{134.

11 J. B. Keller. On solutions of ¢ u = f (u). Commun. Pure Appl. Math. 10 (1957), 503{510.

12 J. F. Le Gall. Les solutions positives de ¢ u = u2 dans le disque unit¶e. C. R. Acad. Sci.
Paris (Ser. I) 317, (1993) 873{878.

13 J. F. Le Gall. The Brownian snake and solutions of ¢ u = u2 in a domain. Prob. Theory
Rel. Fields 102 (1995), 393{432.

14 J. F. Le Gall. A probabilistic approach to the trace at the boundary for solutions of a
semilinear parabolic partial di® erential equation. J. Appl. Math. Stoch. Analysis 9 (1996),
399{414.

15 J. M. Lee and T. H. Parker. The Yamabe problem. Bull. Am. Math. Soc. 17 (1987), 37{96.

16 M. Marcus and L. V¶eron. Trace au bord des solutions positives d’ ¶equations elliptiques
non-lin¶eaires. C. R. Acad. Sci. Paris (Ser. I) 321 (1995), 179{184.

17 M. Marcus and L. V¶eron. Trace au bord des solutions positives d’ ¶equations elliptiques et
paraboliques non-lin¶eaires. C. R. Acad. Sci. Paris (Ser. I) 323 (1996), 603{609.

18 M. Marcus and L. V¶eron. The boundary trace of positive solutions of semilinear elliptic
equations. I. The subcritical case. Arch. Ration. Mech. Analysis 144 (1998), 201{231.

19 M. Marcus and L. V¶eron. The boundary trace of positive solutions of semilinear elliptic
equations: the supercritical case. J. Math. Pure Appl. 77 (1998), 481{524.

20 M. Marcus and L. V¶eron. Initial trace of positive solutions of some nonlinear parabolic
equations. Commun. PDE 24 (1999), 1445{1499.

https://doi.org/10.1017/S0308210500000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000299


560 M. Grillot and L. V¶eron

21 N. G. Meyers. A theory of capacities for potential of functions in Lebesgue classes. Math.
Scand. 26 (1970), 255{292.

22 R. Osserman. On the inequality ¢ u > f(u). Paci¯c J. Math. 7 (1957), 1641{1647.

23 A. Ratto, M. Rigoli and L. V¶eron. Scalar curvature and conformal deformation of hyperbolic
space. J. Funct. Analysis 121 (1994), 15{77.

24 Y. C. Sheu. Removable singularities for solutions of some nonlinear di® erential equations.
Duke Math. J. 74 (1994), 701{711.

25 E. Stein. Singular integrals and di® erentiability properties of functions (Princeton Univer-
sity Press, 1970).

26 H. Treibel. Interpolation theory, function spaces, di® erential operators (North-Holland,
1978).

27 J. L. Vazquez and L. V¶eron. Singularities of elliptic equations with an exponential nonlin-
earity. Math. Ann. 269 (1984), 119{135.

28 L. V¶eron. Semilinear elliptic equations with uniform blow-up on the boundary. J. Analyse
Math. 59 (1992), 231{250.

29 L. V¶eron. Singularities of solutions of second order quasilinear equations. Pitman Research
Notes in Mathematics, no. 353 (Addison Wesley Longman Inc., 1996).

(Issued 26 May 2000 )

https://doi.org/10.1017/S0308210500000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000299

