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This paper presents a numerical investigation of oscillatory flow around a circular
cylinder that is placed in proximity to a plane boundary that is parallel to the cylinder
axis. The onset and development of the Honji instability are studied over a range of
Stokes numbers (β) and gap-to-diameter ratios (e/D) at a fixed Keulegan–Carpenter
number (KC=2). Four flow regimes are identified in the (e/D, β)-plane: (I) featureless
two-dimensional flow, (II) stable Honji vortex, (III) unstable Honji vortex and (IV)
chaotic flow. As e/D increases from −0.5 (embedment) to 1, the critical Stokes
number βcr for the onset of the Honji instability follows two side-by-side convex
functions, peaking at the connection point of e/D = 0.125 and reaching troughs
at e/D = 0 and 0.375. The Honji instability is always initiated on the gap side
of the cylinder surface for 0.375 6 e/D 6 2 and occurs only on the top side for
−0.5 6 e/D< 0.125. The location for the initiation of the Honji instability switches
from the gap side to the top side of the cylinder surface for 0.125 < e/D < 0.375.
No Honji instability is observed at e/D= 0.125, where the flow three-dimensionality
is developed through a different flow mechanism. Consistently, the three-dimensional
kinetic energy of the flow, which represents a measure of the strength of flow
three-dimensionality, varies with e/D in a trend opposite to that of βcr. Three physical
mechanisms are identified as being responsible for the observed variation trend of βcr

with e/D and for various flow phenomena, which are the blockage effect induced by
the geometry setting, the existence of the Stokes layer on the plane boundary and the
favourable pressure gradient in the flow direction over the gap between the cylinder
and the plane surface.

Key words: absolute/convective instability, boundary layer structure

1. Introduction

The Honji instability, which is a three-dimensional (3-D) flow instability found in
sinusoidally oscillatory flows around a stationary circular cylinder, was first reported

† Email address for correspondence: liang.cheng@uwa.edu.au
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by Honji (1981) and subsequently extensively investigated theoretically (e.g. Hall
1984), experimentally (e.g. Sarpkaya 2002) and numerically (e.g. An, Cheng & Zhao
2011). This instability was classified as a regime B flow by Tatsuno & Bearman
(1990), who systematically investigated the flow features induced by an oscillating
circular cylinder through a visualisation technique and classified a total of six distinct
flow regimes. These flow regimes cover a range of Keulegan–Carpenter numbers
(KC) and Stokes numbers (β, or alternatively, the Reynolds number, Re), which are
defined as

KC=UmT/D, Re=UmD/ν, β = Re/KC, (1.1a−c)

where Um and T are the amplitude and period of the oscillation velocity, respectively;
D is the cylinder diameter; and ν is the kinematic viscosity of the fluid.

The Honji instability arises at relatively low KC and β, and it gives rise to a
series of mushroom-like flow structures that are evenly and periodically distributed
along the cylinder surface in the spanwise direction, resulting from the detachment
of the boundary layer from the surface of the cylinder and subsequent roll up of the
boundary layer during each oscillation period. The Honji instability was found to be
a centrifugal-type instability that is induced by the curvature of the boundary layer
(Hall 1984; Sarpkaya 2002). The onset of the Honji instability is associated with the
transition from a featureless two-dimensional (2-D) flow in regime A∗ to a 3-D flow
in regime B, according to the nomenclature from Tatsuno & Bearman (1990).

Honji (1981) revealed that along any cross-sectional plane, the flow breaks the
reflection symmetry with respect to the axis of flow oscillation due to the spanwise
arrangement of mushroom vortices. The spanwise wavelength λ of the Honji vortex
structure was found to be dependent on both β and KC. Hall (1984) conducted an
asymptotic analysis under the assumption of β � 1 and small KC and proposed a
formula for the onset of the Honji instability in the KC-β space to estimate the
threshold KC and λ values (denoted as KCh and λh, respectively), which was named
the ‘Hall line’ by Sarpkaya (2002). Sarpkaya (2002) observed that the Hall line is only
relevant for persistent and fully developed coherent 3-D structures; however, below
the Hall line, the flow is not absolutely stable against 3-D instabilities. Sarpkaya
(2002) proposed an empirical formula to estimate the critical parameters, KCs and
λs, for a 3-D instability, which is referred to as the ‘Sarpkaya line’ in the present
study. Sarpkaya (2006) summarised the development process of 3-D flows as (I) no
3-D structures identifiable by flow visualisation for KC<KCs; (II) the quasi-coherent
structure (QCS), which represents a 3-D flow structure formed under weaker instability
than that required by Honji vortices for KCs <KC<KCh; (III) the mushroom-shaped
structures at KC ≈ KCh; (IV) QCS again with further increase in KC for KC > KCh;
and (V) transition to chaotic motions and turbulence for large KC values.

Elston, Blackburn & Sheridan (2006) conducted a Floquet stability analysis of the
flow within the range of KC 6 10 and β 6 100. The predicted marginal stability curve
for the Honji instability is in good agreement with the regime boundary reported
by Tatsuno & Bearman (1990) between regime A∗ and regime B. The critical KC
obtained from the Floquet stability analysis generally agrees with the ‘Hall line’ in the
vicinity of the upper limit of the Stokes number (β ≈ 100). The predicted spanwise
wavelength lies between the values given by Hall (1984) and Sarpkaya (2002). By
examining the nonlinear properties of the bifurcation from regime A∗ to B, Elston
et al. (2006) showed that the bifurcation is supercritical in the investigated range of β.

An et al. (2011) numerically studied the generation and subsequent development of
the Honji vortex over 100 6 β 6 600 and proposed that the spanwise wavelength of
the Honji vortex is less dependent on β and more sensitive to KC (λ/D∼ 0.22KC7/4)
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FIGURE 1. Schematic diagram of a circular cylinder placed close to a plane boundary. The
oscillatory flow is aligned with the x-axis, which is parallel to the plane and perpendicular
to the axis of the cylinder (defined as the z-axis). Lx, Ly and Lz represent the dimensions
of the computational domain in the x-,y- and z-directions, respectively.

based on the numerical results and previous experimental observations (Honji 1981;
Tatsuno & Bearman 1990; Bearman & Mackwood 1992; Sarpkaya 2002). The
interactions between adjacent vortices are characterised by the merging of adjacent
vortices and the generation of new ones. Yang et al. (2014) further outlined the three
phases of the development of the Honji instability as (I) featureless two-dimensional
flow, (II) evenly distributed and stable vortex pairs and (III) transient merging and
axial shifting of vortex pairs. In addition, the effect of oblique incoming flow with
regard to the axis of the cylinder was examined by Yang et al. (2014), and it was
found that the Honji instability is suppressed when the oblique angle is greater than
a critical value.

For a cylinder near a plane boundary, as shown in figure 1, a third dimensionless
parameter, namely, the gap ratio e/D, becomes relevant, where e denotes the distance
between the plane boundary and the lower surface of the cylinder. For a partially
embedded cylinder, e/D has a negative value. Previous work on a cylinder near a
plane boundary has mainly focused on the drag (CD) and inertia (CM) coefficients
acting on the cylinder (Sarpkaya 1976). It is understood that the force coefficients are
dependent on e/D. The in-line force per unit length in the form of Morison’s equation
may be written as

Fx =
1
2
ρDCD|U|U +

1
4
πρD2CM

dU
dt
, (1.2)

where Fx is the force in the direction of the oscillatory flow, ρ is the density of the
fluid and U(t) = Um sin(2πt/T) is the velocity of the ambient flow. In addition, the
transverse lift coefficient (CL) is defined as

Fy =
1
2ρDCLU2

m, (1.3)

where Fy is the force perpendicular to the oscillatory flow. CD and CM are determined
with the least squares method.

Xiong et al. (2018) recently investigated the oscillatory flow regimes and the onset
of 2-D instabilities for a circular cylinder near a plane boundary at low-to-intermediate
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KC numbers for Re 6 300 and e/D = 0.25, 0.5, 1 and 2. However, there has been
no published study on the influence of a plane boundary on the development of
the Honji instability. It is expected that the development of the Honji instability
and the corresponding 3-D flow structures (including the spanwise wavelength) will
be influenced by the existence of a plane wall and the oscillatory boundary layer
developed on the plane. This expectation forms the motivation for this study. To
limit the number of influencing factors, the present investigation is conducted at a
fixed KC of 2 over a range of e/D (−0.5∼ 2) and β (up to 250). The remainder of
this paper is organised as follows: the methodology and numerical model validation
are introduced in § 2, the numerical results are discussed in § 3 and conclusions are
drawn in § 4.

2. Methodology
The problem set-up and the computational domain are illustrated in figure 1, which

is similar to that employed in Xiong et al. (2018). The free-stream oscillates along
the x-direction parallel to the plane boundary, perpendicular to the cylinder axis. As
shown, the size of the computational domain is represented as Lx × Ly × Lz.

The open source code Nektar++ (Cantwell et al. 2015), which is based on a Fourier
spectral/hp element method, is employed for the Floquet linear stability analysis and
direct numerical simulation (DNS) in the present study. Although Nektar++ is well
documented in the literature (e.g. Bolis 2013; Rocco 2014), it is briefly introduced
below for the convenience of readers who are not necessarily familiar with the
numerical approach.

The fluid motion is described by the incompressible Navier–Stokes (N–S) equations,
expressed in a dimensionless form as

∂u
∂t
=−(u · ∇)u−∇p+ Re−1

∇
2u, (2.1)

∇ · u= 0, (2.2)

where u is the velocity vector and p is the pressure. The velocity components are
referred to as u, v and w in the x-, y- and z-directions, respectively. The velocity
components have been normalised by the free-stream velocity amplitude Um, and the
axes are normalised by the cylinder diameter D.

The Fourier spectral/hp element method embedded in Nektar++ consists of a
spectral/hp element method to discretise the problem spatially in the (x, y)-plane and
a Fourier expansion in the z-direction to reveal the full 3-D features of the flow (Bolis
2013). In the (x, y)-plane, the total resolution is determined by the distribution of
h-type elements and the interpolate order Np of Lagrange polynomials for the p-type
refinement. The 3-D velocity vector and pressure are expressed in the following
forms:

u(x, y, z, t)=
N−1∑
m=0

um(x, y, t)ei(2πmD/Lz)z, (2.3)

p(x, y, z, t)=
N−1∑
m=0

p̂m(x, y, t)ei(2πmD/Lz)z, (2.4)

where each component of Fourier mode um is a complex number (real and imaginary
parts) at a specific Fourier mode index m (= 0, . . . ,N − 1), spanwise wavenumber
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k = 2πmD/Lz or spanwise wavelength λ/D = 2π/k = Lz/(mD). Thus, N is the total
number of Fourier modes, and 2N represents the spanwise resolution. Hence, only a
2-D mesh is required for this quasi-3-D approach, and it degenerates to 2-D DNS for
N = 1.

The Floquet linear stability analysis is also performed on the same mesh to
investigate the 3-D instability. This method has been widely used to investigate
hydrodynamic instabilities (Barkley & Henderson 1996; Elston et al. 2006). For this
reason, this analysis is only described briefly below. The linearised continuity and
N–S equations for flow perturbation, u′, can be written as

∂u′

∂t
=−U · ∇u′ − u′ · ∇U−∇p′ + Re−1

∇
2u′, (2.5)

∇ · u′ = 0. (2.6)

Floquet stability analysis examines the evolution of infinitesimal perturbations
according to these linearised equations based on a T-periodic base flow U, which
was obtained through the aforementioned 2-D DNS. In the present study, the duration
of base simulations is extended to 200 flow periods when the base flow is fully
developed with a relative difference of lift and inline force less than 0.1 % between
two successive flow periods. The solution of the perturbation equations is simplified
as ũ(x, y, z, t) exp(σT), where ũ(x, y, z, t) holds T-periodicity and σ is the Floquet
exponent. The Floquet multiplier µ= exp(σT) is used to identify the instability of the
flow. Instability occurs when the Floquet multiplier leaves the unit circle, i.e. |µ|> 1
(perturbation increases exponentially), while stability is signalled when the multiplier
is inside the unit circle, i.e. |µ|< 1 (perturbation decays exponentially).

A further simplification on the perturbation is made through a Fourier integral for
both velocity and pressure (the expression for pressure is omitted for simplicity):

ũ(x, y, z, t)=
∫
∞

−∞

ũ(x, y, k, t)eikz dk. (2.7)

Note that the spanwise wavenumber k corresponds to the wavelength λ of the
perturbation as λ/D = 2π/k. Because modes with different k do not couple, the
Floquet multiplier for each k can be obtained individually via a subspace iteration
method. The iteration is performed on a Krylov subspace of 16 dimensions (referring
to Rocco 2014), initialised from a random starting vector. Zero homogeneous velocity
and high-order pressure boundary conditions are applied on all boundaries (Elston
et al. 2006). The leading eigenvalue and eigenmode are obtained by applying the
above operation on a range of k.

The boundary conditions for a 2-D base flow or 3-D DNS are specified as follows.
The free-stream velocity is specified at the top boundary as U(t) = Um sin(2πt/T).
Zero Dirichlet velocity boundary conditions are applied on the cylinder surface
and the plane boundary (unless otherwise specified). As in Elston et al. (2006), a
high-order Neumann pressure boundary condition (Blackburn & Henderson 1999) is
adopted on the 2-D domain boundaries, with one degree of freedom fixed at zero
to avoid the singular pressure-Poisson problem (Bolis 2013). Periodic conditions
are naturally imposed on the two lateral boundaries for the quasi-3-D approach.
As for the choice of the inlet and outlet boundary conditions, different options are
available. For example, Shen & Chan (2013) adopted the Dirichlet velocity boundary
condition at the inlet and the Neumann velocity boundary condition at the outlet.
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FIGURE 2. (a) A typical 2-D structured h-type mesh at e/D = 0.5, with (b) a close-up
view of the hp-type mesh near the cylinder at the Lagrange interpolate order Np=8, where
the nodal points of the spectral elements are determined from the zeros of the Gauss–
Lobatto–Legendre polynomials (Karniadakis & Sherwin 2013).

Scandura, Armenio & Foti (2009) employed a periodic boundary condition in the
streamwise direction. An, Cheng & Zhao (2010) adopted the Dirichlet velocity
boundary condition with streamwise velocity component U(y) sin(2πt/T) and zero
transverse velocity on both inlet and outlet boundaries, where U(y) was specified
in their equation (1). Xiong et al. (2018) demonstrated that the choice of inlet and
outlet boundary conditions have little influence on the numerical results as long as
the inlet and outlet boundaries are located sufficiently far away from the cylinder
location. In the present study, the velocity boundary condition on the inlet and outlet
is specified as u= (us(y, t), 0, 0) for DNS, where the streamwise velocity component
us(y, t) is obtained from the classical Stokes flow solution:

us(y, t)=U(t)− e−ηsU(t) sin(2πt/KC− ηs), ηs =
√

πβ(y+D/2+ e). (2.8a,b)

Because the perturbed flow U + u′ was recommended to satisfy the same boundary
conditions as the base flow U (Barkley & Henderson 1996), the zero homogeneous
boundary condition is applied for Floquet stability analysis in the present study, which
is similar to that employed in Elston et al. (2006).

The computational domain size is chosen based on an independent study by
Scandura et al. (2009), where a domain size of up to Lx× Ly= 46D× 23D was used
for a flow with KC=10. A relatively conservative choice of Lx×Ly=60D× (30D+ e)
is employed for the present case with KC = 2. The h-type mesh is plotted with
refinement on the surface of the cylinder and plane boundary. Consequently, 16
h-type boundary elements are specified on the circumference of the cylinder, and
the radial density of the mesh decreases with increasing distance from the cylinder
surface and plane boundary. This leads to the number of h-type elements ranging
from 1627 to 2841 for different e/D values.

A careful mesh sensitivity study was performed to investigate the convergence of
interpolate order (Np), which is detailed in § A.1. According to the results, Np = 8
is employed for all simulations. For this mesh, a total of 129 azimuthal points are
evenly distributed on the circumference of the cylinder, and the distance between
the first layer of grid points away from the no-slip boundaries (cylinder surface and
plane boundary) is approximately 0.1δ, where δ is the boundary layer thickness and is
estimated by δ/D= 0.75π(πβ)−1/2 (Carstensen, Sumer & Fredsøe 2010). An example
of the 2-D mesh chosen for e/D= 0.5 is presented in figure 2, including the h-type
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øx = ± 0.1 øy = ± 0.5 øz = ± 0.5
Y Z

X

FIGURE 3. (Colour online) Vortex iso-surfaces around an isolated cylinder for
(KC, β)= (2, 200) at t/T = 100.
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FIGURE 4. Comparison of the predicted critical KC number (a) and wavelength (b) for
the Honji instability of an isolated cylinder with results published in the literature. Hall
(1984) line: KCh = 5.788β−1/4(1 + 0.205β−1/4), λh/D = 6.95β−1/2; Sarpkaya (2002) line:
KCs = 12.5β−2/5, λs/D= 22β−3/5.

mesh on the left and the hp-refinement near the cylinder on the right. The spanwise
length Lz= 5.6D and spanwise resolution 2N= 64 are also determined from the mesh
sensitivity study presented in appendix A.

3. Results and discussion
3.1. Wall-free case

The Honji instability developed around an isolated circular cylinder at KC = 2 and
β = 200 is visualised through the iso-surface of vorticity components in figure 3 to
further validate the model and to facilitate the following discussion on the influence
of the plane boundary proximity. The streamwise vorticity ωx reveals the presence of
8 pairs of rib-like vortices that are evenly distributed on the surface of the cylinder,
where the cylinder has a spanwise length of 5.6D. This observation is consistent with
the distributions of ωy and ωz, as well as with those reported by An et al. (2011).

Figure 4 presents a comparison of the present critical KC number and wavelength
for the onset of the Honji instability and those reported in the literature for an isolated
cylinder. Through Floquet stability analysis, the predicted marginal curves on KCcr and
λcr/D and the most unstable mode of the 3-D instability at KC= 2.58 and β = 80, as
shown in figure 5, agree well with those reported by Elston et al. (2006). The present
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Y

Z

X

(a) (b)

FIGURE 5. (Colour online) Comparison of instantaneous iso-surfaces of x-vorticity of the
critical 3-D instability for an isolated cylinder at (KC, β, k)= (2.58, 80, 5.88) between (a)
Elston et al. (2006) and (b) the present study. The arrow indicates the direction of flow
oscillation.

results also largely agree with the experimental data of Tatsuno & Bearman (1990).
This finding demonstrates that the numerical model is capable of accurately predicting
the Honji instability. Specifically, the marginal stability for the wall-free case at KC=
2 is observed at βcr∞ = 140 and λcr∞/D= 0.72.

Note that a relatively clear difference exists between the experimental data (Tatsuno
& Bearman 1990) and the results of Hall (1984). This difference is possibly because
the Hall line was obtained assuming that β � 1, which is not the case for the
parameter space shown in figure 4. The difference between the experimental data
(Tatsuno & Bearman 1990) and the results of Sarpkaya (2002) is likely because the
weak 3-D QCS was considered in the Sarpkaya line.

3.2. Marginal curve for Honji instability
The influence of the plane boundary on the initiation of the Honji instability
is first investigated by quantifying the variation in the marginal stability with
e/D through Floquet stability analysis at KC = 2 and eleven gap ratios, i.e.
e/D = −0.5, −0.25, −0.125, 0.03125, 0.0625, 0.125, 0.25, 0.375, 0.5, 1 and 2. The
variations in the marginal stability (βcr) and critical spanwise wavelength (λcr/D) with
e/D are summarised in figure 6. As expected, both βcr and λcr/D asymptote towards
their counterparts for an isolated cylinder at large gap ratios (e.g. e/D = 2) due to
the weak influence of the plane boundary. It is also clear that the variations in βcr
and λcr/D with e/D have opposite trends.

As the cylinder is moved towards the wall, the marginal stability exhibits a few
distinctive features. First, as e/D is reduced from 2 to 0.375, βcr decreases from 134
at e/D = 2 to 100 at e/D = 0.375, which suggests an enhancement in the marginal
Honji instability with the reduction of e/D in that range. With a further decrease of
e/D from 0.375 to 0.125, βcr increases and reaches a peak value of approximately 205,
which is considerably higher than 140 for an isolated cylinder. This result suggests
weakening of the marginal Honji instability with the reduction of e/D for 0.125 <
e/D < 0.375. The enhancement and weakening of the marginal Honji instability are
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FIGURE 6. Critical Stokes number βcr (a) and the corresponding spanwise wavelength
λcr/D (b) as a function of gap ratios for the onset of the Honji instability at KC = 2
(solid lines). The thick dashed line represents the extrapolation based on the data points
at e/D= 0.125. The horizontal dotted line denotes the value for an isolated cylinder, and
vertical dotted lines running through e/D= 0 and 0.125 are provided for reference.
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FIGURE 7. (Colour online) Comparison of instantaneous vorticity contours based on 2-D
DNS at e/D= 0.125. (a) β = 160, (b) β = 200 and (c) β = 210. Two instants are given
at t/T = 150 (top) and 150.5 (bottom).

again observed for 0.03125 6 e/D < 0.125 and e/D < 0, respectively. Note that the
βcr ≈ 205 at e/D= 0.125 is actually obtained using DNS rather than through Floquet
stability analysis. This is because the breaking of two-dimensional symmetry (spatio-
temporal) occurs at a smaller β than that for the three-dimensional instability, which
makes the Floquet stability analysis invalid at e/D = 0.125. The breaking of 2-D
symmetry at e/D = 0.125 is illustrated in figure 7 for β = 200 and 210, while the
flow with β = 160 possesses spatio-temporal symmetry. It will be shown later that the
βcr ≈ 205 at e/D= 0.125 is due to a different three-dimensional instability from the
Honji instability.

The flow mechanisms responsible for the variation trend of the marginal stability
curve with e/D in figure 6 are explained below.

(i) The enhancement of the marginal Honji instability for e/D > 0.375 (up to 2)
is primarily attributed to the local blockage effect, where the geometry setting of the
plane boundary and the cylinder introduces an asymmetric distribution of fluid flow
about the x-axis and enhances the flow through the gap. The increased peak flow
velocity (in both the horizontal and vertical components) on the gap side is shown
in figure 8, which leads to the occurrence of the marginal Honji vortices on the gap
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FIGURE 8. (Colour online) Comparison of profiles of peak velocity components against
y/D for different gap ratios at β = 150 from 2-D base flow U: (a) at the gap side and
(b) at the top free-stream side. They are sampled along the line at x= 0 during one cycle
of oscillation (thus, the peak velocities do not necessarily occur at the same time instant).

side of the cylinder surface first. This is evidenced by the 3-D flow structures shown
in figure 9(a,b) for the critical 3-D instability, where the Honji vortices appear on both
the top and bottom sides of the cylinder surface for an isolated cylinder but are only
present on the gap side for e/D= 1.

(ii) The weakening of the marginal Honji instability for 0.125 6 e/D < 0.375 is
associated with the transition of the onset of the marginal instability from the gap
side to the top side of the cylinder surface (figure 9c), which is referred to as side
swapping hereafter. This side swapping is mainly caused by two flow mechanisms.
One is the reduction in the curvature of the flow trajectory through the gap, as
evidenced in figure 8(a), where a substantial reduction in |Vmax| is observed as e/D
is reduced from 0.375 to 0.125. It is believed that the magnitude of |Vmax| correlates
positively with the curvature of the flow trajectory. Since the Honji instability is
a centrifugal-type instability, a reduction in the curvature of the flow trajectory is
thought to stabilise the flow. The other reason is associated with the increase in the
favourable pressure gradient through the gap, where a favourable pressure gradient in
the flow direction is known to increase the flow stability by hydrodynamic stability
theories (Reed, Saric & Arnal 1996). To support this, a period-averaged pressure
gradient over the gap at β = 140 is quantified in figure 10. A substantial increase
in the favourable pressure gradient (from A to B) over the gap section of the plane
boundary is observed as e/D is reduced from 0.375 to 0.125. The combination
of the two mechanisms suppresses the occurrence of the Honji instability on the
gap side of the cylinder surface, leading to the side swapping and the increase in
βcr with decreasing e/D. The side swapping phenomenon is illustrated through the
instantaneous kinetic energy of the leading eigenmode in figure 11, where the location
of the marginal instability is indicated by the location of the maximum kinetic energy
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(e/D, β, k) = (0.25, 150, 8.5) (e/D, β, k) = (-0.5, 190, 10)

(e/D, β, k) = (∞, 140, 8.5) (e/D, β, k) = (1, 130, 8)(a) (b)

(c) (d)

X
Z

Y

FIGURE 9. (Colour online) Comparison of instantaneous x-vorticity iso-surfaces of the
critical 3-D instability for (a) e/D =∞, (b) 1, (c) 0.25 and (d) −0.5. Three spanwise
repetitions are illustrated at the instant of t0 = 0.
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FIGURE 10. Variation of pressure drop between sampling points A and B as a function
of gap ratio at β = 140.

of the leading eigenmode. It is observed that the marginal instability appears on
the gap side at e/D > 0.375 and on the top side at e/D 6 0.25 (except the case at
e/D≈ 0.125).

(iii) The enhancement in the marginal flow instability at 0.03125 6 e/D< 0.125 is
attributed to the increase in the peak flow (horizontal) velocity on the top side of the
cylinder as e/D is reduced, as evidenced in figure 8(b), while the weakening of the
marginal Honji instability for e/D< 0 is caused by the decrease in the peak horizontal
velocity on the top side as the embedment depth is increased.

In figure 11, the effect of e/D on the Honji instability is further examined by
contours of z-vorticity of the base flow and kinetic energy of the leading eigenmode,
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e/D = ∞

øz

1
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0.03125

-0.5

Base flow
Kinetic contour of eigenmode

t0 = 0 +1/4T +1/2T +3/4T
(a)
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FIGURE 11. (Colour online) Contours of ωz of the base flow and instantaneous
kinetic energy of the leading eigenmode at (a) (e/D, β, λ/D) = (∞, 140, 0.739), (b)
(1, 130, 0.785), (c) (0.375, 105, 1.047), (d) (0.25, 150, 0.739), (e) (0.03125, 80, 0.967)
and ( f ) (−0.5, 190, 0.628). No colour legend is given for kinetic energy because the
eigenmodes are normalised by setting the value of integration over the domain equal to 1,
but a dark colour still corresponds to higher energy and light colour corresponds to lower
energy.

which is defined by

Ek(t)=
1
2

∫
Ω

‖ûk‖
2 dΩ. (3.1)

For the isolated cylinder, the 3-D instability is symmetric and appears in the near-
cylinder region (figure 11a). At e/D= 1 and 0.375, the kinetic energy of the leading
eigenmodes is mainly concentrated on the gap side (figure 11b and c), suggesting that
the instability is initiated from the gap side, in agreement with the blockage effect as
identified above. In contrast, the large kinetic energy of the leading eigenmode for
e/D = 0.25 and 0.03125 is mainly distributed over the top side of the cylinder and
in turn suggests the location for the initiation of the instability. Note that the leading
eigenmodes on the top side of the cylinder at e/D = 0.25 (figure 11d) are similar
to half of those of an isolated cylinder (figure 11a), whereas the kinetic energy at
the gap side almost completely disappears. The leading eigenmodes at e/D6 0.03125
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FIGURE 12. (Colour online) Regime map in (e/D, β)-plane at KC = 2 based on the
formation of Honji vortices on the top and gap sides of the cylinder. The status on the
top or gap side of the cylinder is detected by probe lines at (x, y) = (0, ±0.51D), and
each is represented by a half-marker in the legend. The solid line was reproduced from
the marginal curve in figure 6 for comparison, while the dashed marginal line is estimated
from the 3-D DNS results. The arrows and sequence numbers denote that the parameters
are discussed specifically in §§ 3.3.1–3.3.4, respectively.

only appear on the top side (figure 11e and f ), and the weak vorticity contour on the
bottom side is consistent with the low flow velocity as shown in figure 8.

Recalling the critical wavelength λcr/D of the marginal Honji instability in
figure 6(b), it is believed that the physical mechanisms responsible for the trend
are the same as those identified above. For example, the increasing trend of λcr/D
for 0.375 6 e/D 6 2.0 is induced by the velocity increase of the gap flow. The local
velocity increase leads to an increase in the value of effective KC(= UmT/D). As
reported by An et al. (2011), λ/D is directly dependent on KC as λ/D∼ 0.2(KC)7/4.
A quantitative estimate of the increase in λcr/D at e/D = 0.375 (figure 6b) is thus
made based on the peak gap velocity shown in figure 8 and the formula proposed
by An et al. (2011). The peak velocity ratio (which equals the KC ratio as shown
in (1.1a–c)) of e/D= 0.375 to e/D= 2.0 is approximately 1.28, and this leads to an
increase ratio of λcr/D at 1.55. The actual increase ratio is approximately 1.42 from
the stability analysis in figure 6(b). Although such an estimate is only indicative, it
illustrates one of the causes behind the change in λcr/D with e/D. In general, the
change in λcr/D with e/D corresponds well to the variation trend of peak velocities
either through the gap or on the top side of the cylinder.

3.3. Three-dimensional flow structures and regime classification
A set of DNSs is also conducted at KC= 2 and β = 75∼ 250 for all gap ratios listed
earlier to further examine the flow structures and the physical mechanisms that are
responsible for the observed effects of e/D on the Honji instability.

Four distinctive flow regimes on the (e/D, β)-plane are observed and classified (I,
II, III and IV) in figure 12. These regimes are as follows:

(I) featureless two-dimensional flow, where there is no Honji vortex structure;
(II) stable Honji vortex, where the classical Honji instability appears with a distinctive

and stable spanwise length;
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(III) unstable Honji vortex, where neighbouring Honji vortices merge and generate
new ones; and

(IV) chaotic flow, which is characterised by significant turbulent flows.

Due to the influence of the plane boundary, the flow regimes on the gap and
top sides of the cylinder are generally not the same, depending on e/D and β. To
distinguish this interesting flow feature, each marker used to represent a flow regime
in figure 12 consists of a top part and a bottom part, indicating the flow regime on the
top and bottom parts of the cylinder. Note that the boundary that separates regimes (I)
and (II) agrees very well with the marginal stability curve derived from the Floquet
stability analysis. Compared to that of an isolated cylinder, the Honji instability is
suppressed at approximately e/D= 0.125, but it is enhanced at intermediate gap ratios
(e/D> 0.375), where it occurs at smaller β values. For e/D6 0.03125, a stable Honji
vortex structure only occurs on the top side of the cylinder. In addition, regime (III)
appears only for intermediate gap ratios with β between 200 and 250. Chaotic 3-D
structures occur at e/D= 0.125 and 0.25 at β = 250.

The influence of the plane boundary and β on Honji flow structures is further
investigated in the following four sections at fixed β = 150 (§ 3.3.1) and 250 (§ 3.3.2),
as well as at constant e/D= 0.125 (§ 3.3.3) and 0.375 (§ 3.3.4), as indicated by the
arrows in figure 12.

3.3.1. β = 150
The influence of the plane boundary on the Honji vortex structure is first examined

at β = 150. Figure 13 illustrates typical 3-D flow visualisations at eight representative
gap ratios. The vortical flow structure is visualised by employing the instantaneous
iso-surfaces of x-vorticity and Q (Hussain 1986), which is a criterion for distinguishing
an eddy from the plane shear layer. The eddy is defined in the region by the positive
second invariant, Q of ∇u, with an additional condition that the pressure is lower than
the ambient value. The second invariant Q is defined as

Q= 1
2(‖Ω‖

2
+ ‖S‖2), (3.2)

where S and Ω are the symmetric and antisymmetric components of ∇u, respectively.
Figure 13 visually shows that stable Honji vortex pairs appear on the top side of

the cylinder surface for −0.5 < e/D < 0.125 and on both the top and gap sides of
the cylinder for e/D> 0.25, except for e/D=−0.5 and 0.125, where no Honji vortex
pairs are captured. It is observed that the Honji vortex structure at e/D= 2 is similar
to that of an isolated cylinder (figure 13a), while at e/D=−0.25 (figure 13g), it is
similar to half of the structure on an isolated cylinder, suggesting that the flow around
a partially embedded cylinder shares a similar mechanism for transitioning to three
dimensions with an isolated cylinder.

Apart from the obvious Honji vortex structures, spanwise vortex tubes are also
observed at e/D= 0.25∼ 0.5 in figure 13(b–d). The mechanisms for the formation of
spanwise vortex tubes are likely due to the roll up of the shear layers of the cylinder
and over the plane boundary. The vortex tubes are largely two-dimensional and
attached to the cylinder surface or the plane boundary with weak three-dimensionality
at β=150. It will be shown later that these spanwise vortex tubes will have significant
influences on the formation of Honji vortex structures at small gap ratios (e.g.
e/D< 0.5).

The flow characteristics at β = 150 are further quantified in figure 14 by the
peak velocity components in all three directions, denoted by umax, vmax and wmax,
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FIGURE 13. (Colour online) Comparison of iso-surfaces of Q = 0.25 (yellow) and
x-vorticity ωx =±0.5 (translucent in red and blue) at β = 150 at phase t0 = 0.

respectively, along x = 0, which is a 3-D version of figure 8. There is no obvious
difference between the 2-D and 3-D velocity profiles of |umax|, but the 3-D results
of |vmax| are generally larger than their 2-D counterparts due to the upward rolling
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FIGURE 14. (Colour online) Comparison of profiles of peak velocity components against
y/D for different gap ratios at β=150: (a) at the gap side and (b) at the top side. Velocity
components are sampled along the line at x= 0 during one cycle of oscillation.

flow structures, including the Honji vortex. At the gap side (y<−0.5), umax shows a
monotonic increase with the decrease of e/D until e/D = 0.125 and then a sudden
decrease to e/D = 0.03125. The |wmax| and |vmax| all increase with decreasing e/D
for e/D > 0.375 and reach the maximum values at e/D = 0.375. A further decrease
of e/D for e/D< 0.375 leads to sharp decreases in |wmax| and |vmax|. The spanwise
velocity component |wmax| vanishes at e/D 6 0.125, marking the disappearance of
three-dimensional flow. Similarly, the Honji instability is of a centrifugal type in
nature, and a large curvature of the flow trajectory (which positively correlates with
the magnitude of |vmax|) corresponds to a strong Honji vortex structure. Thus, umax,
vmax and wmax all reach the maximum at e/D = 0.03125 on the top side of the
cylinder.

The influence of the wall proximity on Honji vortex structures can also be quantified
by examining the spectra of the w-velocity by performing a fast Fourier transform
(FFT) on velocity signals sampled at the top and bottom probe lines at x = 0 and
y=±0.51D in figure 15(a,b). For simplicity, the Fourier mode index m= kLz/(2πD)
is referred to as normalised wavenumber hereafter to facilitate the discussion. Here,
the spectrum represents the strength of the 3-D flow structures as a function of m.
A spectrum range of 46m6 20 is selected, mainly because the spectrum amplitudes
outside this range are trivial (except at m = 0, which corresponds to the 2-D flow
component if applicable). The influence of the wall proximity on Honji structures
is clearly observed. As e/D is reduced from 2.0 to 0.375, the amplitudes of |wm|

spectra increase noticeably on the gap side (correspondingly, the Honji structure is
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FIGURE 15. (Colour online) (a,b) Comparison of characteristic normalised wavenumber
m by w-velocity obtained along two probe lines, where the fast Fourier transform (FFT)
results are averaged after t/T = 20; (c) the spectrum square root of mean modal kinetic
energy; (d) the phase variation of square root of overall 3-D (k 6= 0) kinetic energy during
one cycle obtained by phase averaging; (e) comparison of mean overall kinetic energy; and
( f ) effective wavelength. All the results are at β = 150.

enhanced) and decrease slightly on the top side (the Honji structure is weakened).
This is also supported by the generally larger peak amplitudes of |wm| spectra on the
gap side than their counterparts on the top side. Specifically, figure 15(a) shows that
the leading normalised wavenumber m (i.e. the dominant spectrum peak) on the top
side decreases from m = 8 at e/D = 2 to m = 7 at e/D = 0.5 and 0.375, while the
leading m on the gap side decreases from m = 8 at e/D = 2 to m = 7 at e/D =
0.5 and m = 6 at e/D = 0.375. As e/D is further reduced from e/D = 0.375 to
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0.125, the Honji instability is significantly weakened on both sides of the cylinder and
disappears completely at e/D= 0.125, where the 3-D components all vanish and the
flow becomes two-dimensional. This is consistent with the prediction by the Floquet
stability analysis (figures 6 and 11d). When e/D is further reduced to 0.03125 and
e/D < 0, the Honji structure returns to the top side of the cylinder with m = 7 at
e/D= 0.03125 and m= 8 at e/D=−0.25. The sharp peak at e/D= 0.03125 on the
top side of the cylinder suggests a well-defined Honji vortex structure.

The spanwise wavenumber is also investigated by examining the spectrum of the
modal kinetic energy (Em), which represents the kinetic energy of Fourier mode ûm,
as defined similarly to that of the eigenmode in (3.1). Figure 15(c) and (d) show the
spectrum of the total kinetic energy Em and phase variation of the total 3-D kinetic
energy E3-D(t0/T)=

∑N−1
m=1 Em(t0/T), where the phase t0/T is defined as t0/T = (t−

nT)/T and n is number of cycles for free-stream oscillation, and the total kinetic
energy is the summation of Em from m = 1 to N − 1. The value of E3−D(t0/T) is
phase averaged from t/T = 20 and for at least 80 cycles. The modal kinetic energy√

Em in figure 15(c) represents the overall feature of the velocity field, as illustrated
in figure 15(a) and (b). The 3-D energy is the highest at e/D= 0.03125, where the
Honji instability reappears on the top side of the cylinder, and the second, third and
fourth highest cases are at e/D= 0.375, 0.5 and 2.0, respectively. Consistent with (a),
the 3-D energy at e/D = 0.25 is almost identical to that at e/D = 2.0, and the 3-D
components all vanish at e/D= 0.125. The phase variation of the 3-D energy is also
affected by the proximity of the wall. It peaks at a phase around t0/T = 0 (or 0.5)
when the flow accelerates (or decelerates) for cases at e/D= 0.5 and 0.375; however,
it peaks at t0/T= 0.25 (or 0.75) when the free-stream velocity amplitude is the largest
for cases at e/D= 0.03125 and −0.25.

The square root of the mean 3-D kinetic energy of the flow (
√

E3-D) is quantified
by removing the 2-D component (m= 0), which reflects the effective strength of the

Honji instability. Figure 15(e) presents the variation in
√

E3-D with e/D, which has
an opposite trend to that of βcr shown in figure 6(a). This result is expected because
the enhancement of the Honji instability corresponds to an increase in the overall
3-D kinetic energy, and vice versa. The effective wavelength is shown in figure 15( f ),
which is obtained by the weighted average of the modal kinetic energy as

λe = Lz/me, me =

∑
mEm∑
Em

. (3.3a,b)

As shown in figure 15( f ), the variation of effective wavelength λe/D with e/D follows
the same trend as that of λcr/D in figure 6(b).

3.3.2. β = 250
The flow structures at β = 250 are in general similar to those at β = 150, except

around 0< e/D<0.5, where the influence of the plane boundary leads to complex 3-D
structures, including unstable Honji vortices and chaotic separated vortices at β = 250.
Figure 16 illustrates the development of three-dimensionality at β = 250 by the spatio-
temporal contours of w-velocity for selected e/D, which are sampled along two probe
lines located at x= 0 and y=±0.51D in the spanwise direction and at a phase t0/T =
0.25 of each oscillation cycle. Each pair of dark and light colour stripes represents a
pair of Honji vortices. It is observed that Honji vortex structures are temporally stable
at e/D = 1, similar to that of the isolated cylinder. The Honji vortex structures are
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FIGURE 16. Temporal and spatial evolution of the w-velocity component sampled at
t0/T = 0.25 along lines of (x, y) = (0, 0.51D) (a–f ) and (0, −0.51D) (g–l) for the case
with β = 250 at different gap ratios.

temporally unstable at the top sampling line at e/D= 0.375, featuring the coalescence
of neighbouring vortices and the emergence of new vortices, which is similar to those
shown in figure 14 of An et al. (2011). Apparent high-frequency variations in contours
on the gap side at e/D= 0.125 and 0.25 indicate strong instabilities. No regular Honji
structures are observed on the top part of the cylinder at e/D= 0.125, although the
flow is clearly three-dimensional and is considered to be chaotic flow here. At e/D=
0.03125, the stripes on the top side indicate stable and regular Honji vortices. The
strength and the number of strips at the top and gap sides of the cylinder are not
equal, which will be detailed later.
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FIGURE 17. (Colour online) Iso-surfaces of Q-criterion, Q = 0.25, at β = 250 at t0 = 0
for different gap ratios.

The 3-D flow structures are shown by translucent iso-surfaces of Q = 0.25 in
figure 17. For all selected cases, the Honji vortex structures on the top side of the
cylinder are similar, except for the case at e/D = 0.125, where coherent structures
almost completely disappear and are replaced by small 3-D flow structures. At
e/D = 1, the Honji vortex on the gap side is almost identical to that on the top
side, but the difference becomes more obvious with decreasing e/D. The attached
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FIGURE 18. (Colour online) Comparison of characteristic normalised wavenumber m of
w-velocity component (a) and (b), and (c) spectrum and (d) phase variation of square root
of kinetic energy at fixed β = 250 and different gap ratios, which are the counterparts of
figure 15(a–d).

vortex tubes observed at β = 250 are not clearly visible and are believed to evolve
into highly twisted 3-D flow structures, as shown in figure 17(b–d). The gap vortex
shedding is believed to be responsible for these irregular 3-D flow structures. Notably,
the Honji vortex structures and the irregular 3-D structures co-exist at e/D= 0.25 and
0.375. As e/D is reduced to 0.125, the Honji vortices completely disappear, where it
is characterised by the flow structures with a variety of length scales.

The results obtained from the spectrum analysis at β = 250 are presented in
figure 18. The overall features at β = 250 are similar to those at β = 150, except
for the case at e/D = 0.125. The largest peak amplitude of the spectrum of the
w-velocity component along two probe lines is observed on the bottom side at
e/D= 0.25. Although the overall 3-D energy at e/D= 0.125 is the largest in (c), the
energy of the wm spectrum is relatively evenly distributed across k in (a, b), which
suggests a different mechanism for the transition to 3-D at e/D = 0.125. A more
detailed discussion on this situation is presented in § 3.3.4.

3.3.3. e/D= 0.375
The influence of β on the Honji instability is detailed at e/D = 0.375, where

the three-dimensionality is enhanced by the wall proximity. Figure 19 examines the
variation in x-vorticity with increasing β. At β = 125, the Honji vortex pairs are
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FIGURE 19. (Colour online) Vorticity iso-surfaces (a–d) and contour 0.05 6ωx 6 0.05 at
x = 0 (e–h) with e/D = 0.375 at t/T = 100. (a,e) β = 125, ωx = ±0.05; (b, f ) β = 150,
ωx =±0.1; (c,g) β = 200, ωx =±0.2; and (d,h) β = 250, ωx =±0.5.

stronger and longer at the gap side than those at the top side, in agreement with
the Floquet stability analysis (figure 11c). At β = 150, the sizes of the six vortex
pairs are not strictly the same, although they still possess a temporal periodicity. At
β = 200, the vortex structures at the gap side are no longer perfectly aligned in
parallel with the axis of flow oscillation and become more twisted at β = 250 due to
the influence of fine-scale 3-D structures induced by gap vortex shedding, as shown
in figure 17(b).

Correspondingly, the variations in the spectra of w-velocity and kinetic energy Em as
a function of β are shown in figure 20. It is observed that the leading wavenumber at
the top side, the peak amplitude on both sides and the overall kinetic energy increase
monotonically with β, suggesting a reduction in the spanwise wavelength and increase
in strength of the Honji vortex structure with increasing β. The increase in the leading
wavenumber observed on the top side of the cylinder is consistent with the finding by
Sarpkaya (2002) that λ/D∼ 22β−3/5. This can be visually observed from the vorticity
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FIGURE 20. (Colour online) Comparison of characteristic wavenumber k by w-velocity
(a) and (b), and (c) spectrum and (d) phase variation of square root of kinetic energy at
fixed e/D= 0.375 but different β, which are counterparts of figure 18.

iso-surfaces shown in figure 19. Notably, the wavenumber at the gap side remains the
same for β 6 200 but experiences an obvious increase as β is increased from 200 to
250 (figure 20b and c). This can also be observed visually from figure 19. In addition,
the spectra at the gap side have considerably sharper peaks than those at the top side.
These sharp spectrum peaks suggest an enhancement in the Honji instability on the
gap side, which is consistent with the variation trend of βcr observed in figure 6. The
obvious increase in the wavenumber at β = 250 on the gap side is attributed to the
emerging fine-scale 3-D structures as discussed above.

3.3.4. e/D= 0.125
Special attention is given to the cases with e/D = 0.125 for the suppression of

the Honji instability at β < 200 and an abrupt transition to a chaotic 3-D flow at
β=250. The instantaneous flow fields at different β values are shown in figure 21. As
shown, transverse vortex shedding occurs at β = 200, and asymmetric vortex shedding
occurs at β = 210, which are similar to the 2-D results shown in figure 7 except
that asymmetric horizontal gap vortex shedding was observed towards the negative
side of the x-axis in figure 7(c) but towards the positive side in figure 21(b), which
is thought to be due to numerical bifurcation. The vortex tubes are slightly tilted
at β 6 210, suggesting a weak three-dimensionality. The flows at β = 230 and 250
are also asymmetric, while the upward angle of oblique vortex street increases with
increasing β.
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FIGURE 22. (Colour online) The instantaneous iso-surfaces of Q-criterion Q= 0.25 along
with the translucent iso-surfaces of x-vorticity ωx =±0.4 at e/D= 0.125 and β = 230.

The physical mechanism responsible for the flow transition to three-dimensionality
at e/D= 0.125 appears to be different from the Honji instability. The vortex tubes on
the top side of the cylinder are clearly tilted at β = 230, as shown in figure 22. The
wavelength of the 3-D flow is considerably larger than that of the Honji instability
since only two pairs of vortices are identified by the x-vorticity contours on the
top side of the cylinder. In addition, the Honji instability was supposed to emerge
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FIGURE 23. (Colour online) Comparison of iso-surfaces of Q-criterion Q= 0.25 at t0= 0
at e/D= 0.125 and β= 250 with slip plane boundary condition (SPB). The supplementary
ωz vorticity contours −1 6ωz 6 1 are plotted on z= 0.

circumferentially along the cylinder rather than stretching along the longitudinal
direction. It is also observed that small-scale vortex structures appear on the gap side.
The breakdown of the tilted vortex tubes at high β values leads to a chaotic (and
even turbulent) flow in this case. It is believed that the Stokes layer over the plane
boundary is mainly responsible for the formation and development of the spanwise
vortex tubes. To confirm this, an additional DNS is performed by replacing the no-slip
boundary condition (NSPB) with a slip boundary condition (SPB: ∂u/∂y= 0, v = 0)
on the plane boundary for the case with e/D= 0.125 and β = 250, and the simulation
result is shown in figure 23. As shown, the flow remains 2-D without noticeable 3-D
structures in the absence of the plane boundary layer flow. This result demonstrates
that the Stokes layer over the plane boundary is the primary factor responsible for
the formation of spanwise vortex tubes.

4. Conclusions

The influence of a plane boundary on the Honji instability (Honji 1981) around
a circular cylinder is investigated at KC = 2 by varying the relative position of the
cylinder and a plane boundary (gap ratio, e/D) through both Floquet stability analysis
and DNSs. The conclusions are summarised as follows:

(i) The critical Stokes number βcr for the onset of the Honji instability gradually
decreases with decreasing gap ratio until e/D= 0.375; then, it initially increases
and then sharply decreases between 0.03125 6 e/D < 0.375 while peaking
at e/D = 0.125, where the flow transitions to three-dimensionality through a
different flow mechanism from the Honji instability. As the cylinder is embedded
in the plane boundary, βcr increases again with increasing embedment depth
(e/D < 0). The blockage effect, which is formed by the geometry setting and
characterised by an enhanced gap flow, is identified as the physical mechanism
responsible for the observed variation trend of βcr for e/D> 0.375. The increase
in βcr with e/D observed between 0.125< e/D< 0.375 is accompanied by a side
swapping of the location where the marginal Honji stability is initiated (from the
top to the gap side of the cylinder surface). The flow mechanisms responsible
for the side swapping are twofold: (a) reduction in the curvature of the flow
trajectory around the gap side of the cylinder and (b) the significant increase in a
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favourable pressure gradient in the flow direction over the gap. Both mechanisms
enhance the stability of the flow through the gap. Although the peak velocity
increase on the top side of the cylinder is mainly responsible for the decrease
in βcr with e/D for 0.03125 6 e/D < 0.125, the reduction in flow curvature is
mainly responsible for the increase in βcr with increasing embedment ratio for
e/D< 0.

(ii) The wavelength of the critical Honji instability is also modulated by the
proximity of the plane boundary. The variation in the marginal wavelength
with gap ratio is almost in the opposite trend to that of the critical Stokes
number because the wavelength of the Honji instability increases with increasing
ambient flow velocity and the critical Stokes number decreases with that.

(iii) Under the influence of the plane boundary, the flow is classified into four regimes
with respect to three-dimensionality on the top and bottom sides of the cylinder
from the DNS results, which are (I) featureless two-dimensional flow, (II) stable
Honji vortex flow, (III) unstable Honji vortex flow and (IV) chaotic flow. The
results of 3-D DNS on the critical Stokes number and wavelength for the onset
of the Honji instability are consistent with the findings from the Floquet stability
analysis.

(iv) At a constant β, the variation in three-dimensional kinetic energy of the flow with
e/D follows the opposite trend to that of βcr with e/D. As the cylinder is moved
towards the plane boundary, the 3-D kinetic energy increases for the ranges of
e/D > 0.375 & 0< e/D< 0.125 and decreases for the ranges of 0.125< e/D<
0.375 & e/D < 0. The variation trend of the effective wavelength of the Honji
vortex structure with e/D is the same as that of the three-dimensional kinetic
energy. The flow mechanisms responsible for these variation trends (of the kinetic
energy and effective wavelength of the Honji vortex structure) are the same as
those mentioned in the first conclusion above.

Acknowledgements
The authors would like to acknowledge the support from the National Key R&D

Program of China (Project ID: 2016YFE0200100). The first author would like to
express sincere thanks to the University of Western Australia for the SIRF Scholarship
provided to support this study. The fourth author would like to acknowledge the
support by Australian Research Council through DECRA Schemes (DE150100428).
All authors would like to acknowledge the support from the Pawsey Supercomputing
Centre with funding from the Australian Government and the Government of Western
Australia.

Appendix A. Model validation
The influence of the value of the interpolate order Np and the selections of spanwise

length and resolution on the computational results are examined and reported below.

A.1. Convergence of p-type refinement
The convergence of p-type refinement is investigated by estimating the variation in the
residuals of momentum (εm) and continuity (εc) equations with Np,

εm =

∥∥∥∥∂ũ
∂t
+ (ũ · ∇)ũ+∇p̃− Re−1

∇
2ũ
∥∥∥∥ , (A 1)
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FIGURE 24. The residual of momentum and continuity equation at different interpolate
order Np for (e/D,KC, β)= (0.5, 2, 250) at t/T = 100.25.

Np (total points) 4 (2123× 42) 6 (2123× 62) 8 (2123× 82) 10 (2123× 102)

Peak CI 11.1584 11.2387 11.2295 11.2307
CD 1.3331 1.3979 1.3558 1.351
CM 2.2487 2.2594 2.2612 2.2607
r.m.s. CL 0.1623 0.1915 0.1957 0.1949

TABLE 1. Np-convergence results for a circular cylinder at (e/D, KC, β) = (0.5, 2, 250),
including the peak of in-line coefficients (CI), drag and inertia coefficients (CD and CM)
and the root-mean-square (r.m.s.) of the lift coefficients (CL).

εc = |∇ · ũ|, (A 2)

where ũ and ∇p̃ are the numerical results. The above residuals are further normalised
in the following manner:

ε∗m =

∫
Ω

εm dΩ∫
Ω

‖ũ− (U(t), 0)‖ dΩ
, ε∗c =

∫
Ω

εc dΩ∫
Ω

‖ũ− (U(t), 0)‖ dΩ
, (A 3a,b)

where ũ− (U(t),0) denotes the non-trivial flow field induced by two viscous boundary
layers. An example of the variations in ε∗m and ε∗c with Np are presented in figure 24.
As shown, both ε∗m and ε∗c decay exponentially with increasing Np. This result
suggests that the residual errors decrease very quickly with increasing Np. Figure 24
reflects the advantage of the spectral/hp element method in terms of the convergence
performance; that is, the numerical method converges rapidly and can obtain a very
accurate solution with a relatively small node number.

The convergence of force coefficients with increasing Np is illustrated in table 1 for
a case (e/D= 0.5 and β = 250) with the maximum Stokes number (thus, the smallest
thickness of Stokes boundary layer) covered in this study. As shown, all CD, CM, the
peak value of CL and the root-mean-square (r.m.s.) of CL become less sensitive to Np

for Np > 6. The maximum difference between the results obtained with Np = 10 and
Np = 8 is less than 0.5 %.
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FIGURE 25. (Colour online) The instantaneous lift force coefficient CL at (e/D,KC, β)=
(0.125, 2, 250) at different interpolate orders Np.
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FIGURE 26. (Colour online) The velocity profiles of u and v along x= 0 at the instant
t/T = 100.25 for (e/D,KC, β)= (0.125, 2, 250) at different interpolate orders Np.

The influence of Np on the instantaneous lift coefficient and velocity profiles at
e/D= 0.125 and β = 250 are further examined in figures 25 and 26, respectively. The
results shown in both figures are consistent with the results shown in table 1, i.e. the
influence of Np on the numerical results becomes negligible for lift coefficient and
velocity profiles at Np > 6.

The Np-convergence of Floquet multipliers at e/D = 0.25 and β = 150 is
demonstrated in figure 27. The maximum relative difference of results between
Np = 6 and 8 is about 0.2 % while that between Np = 8 and 10 is less than 0.01 %.

Based on these results, Np = 8 is employed in both the DNS and Floquet stability
analysis performed in the present study, considering both accuracy and efficiency.

A.2. Spanwise selections
Finally, the sensitivity of the numerical results to the choice of Lz and 2N is also
investigated. For both the isolated cylinder and e/D = 0.5 at KC = 2 and β = 200,
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FIGURE 27. The comparison of Floquet multipliers for e/D = 0.25 and β = 150 at
different interpolate orders Np.

Research Method e/D (KC, β) Lz/D z/D(2N) CD CM

Bearman et al. (1985) Exp. ∞
(2.06, 196) — — 2.17
(2.16, 196) 1.45 —

Justesen (1991) Num., 2-D ∞ (2, 196) 1.08 2.14
An et al. (2011) Num., 3-D ∞ (2, 200) 4 0.22 (18) 1.32 2.23
Suthon & Dalton (2012) Num., 3-D ∞ (2, 196) 2.05 0.0427 (48) 1.2627 2.1385
Test 1 Num., 3-D ∞ (2, 200) 2.8 0.0875(32) 1.2223 2.1327
Test 2 Num., 3-D ∞ (2, 200) 5.6 0.0875(64) 1.2356 2.1331
Test 3 Num., 3-D ∞ (2, 200) 5.6 0.0438(128) 1.2349 2.1384
Test 4 Num., 3-D ∞ (2, 200) 8 0.0875(128) 1.2391 2.1326
Test 5 Num., 3-D 0.5 (2, 200) 5.6 0.175(32) 1.5033 2.2813
Test 6 Num., 3-D 0.5 (2, 200) 5.6 0.0875(64) 1.5375 2.2766
Test 7 Num., 3-D 0.5 (2, 200) 5.6 0.0438(128) 1.5328 2.2783

TABLE 2. Comparison of the results for the inertia and drag coefficients with previous
experimental and numerical studies. Tests 1–4 are for isolated cylinder and 5–7 are for
e/D= 0.5. Exp., experimental; Num., numerical.

seven test cases were conducted as presented in table 2, covering three spanwise
lengths, along with three types of spanwise resolution. The corresponding results on
force coefficients are listed, where CD and CM for the isolated cylinder are generally
consistent with the available published results. For the isolated cylinder, the maximum
relative difference between the drag (or inertia) coefficient obtained by using Lz=2.8D
and 2N = 32 (the shortest and coarsest case) and Lz = 8.0D and 2N = 128 (the
longest and finest case) is smaller than 0.5 %. Therefore, only one spanwise length
(Lz = 5.6D) was checked against three resolutions for the cylinder close to the wall
and demonstrates that the number of 2N has an insignificant influence on the forces.
Furthermore, a comparison of the spectrum of the wavenumber of Honji structures is
presented in figure 28 between the results of spanwise resolution 2N = 64 and 128
at (e/D, KC, β)= (0.25, 2, 250). The amplitudes of the first, second and third peaks
of the spectrum at the top and bottom sides all agree well between the results with
2N = 64 and 128, respectively. In addition, the velocity profiles are also examined
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FIGURE 28. Comparison of characteristic normalised wavenumber m of w-velocity
component for spanwise resolution at (e/D,KC, β)= (0.25, 2, 250) and Lz/D= 5.6.

for these simulations, although the results are not detailed here. The outcome on the
velocity profiles is consistent with the results shown in table 2. This result justifies
the choice of Lz = 5.6D and 2N = 64 in this study.
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