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Abstract

We give a partial answer to a question attributed to Chris Miller on algebraic values of certain
transcendental functions of order less than one. We obtain C(log H)η bounds for the number of algebraic
points of height at most H on certain subsets of the graphs of such functions. The constant C and exponent
η depend on data associated with the functions and can be effectively computed from them.
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1. Introduction
We investigate the asymptotic density (in terms of height) of algebraic values of
bounded height and degree on graphs of transcendental functions. Given bounds H
and d for the height and degree respectively, a trivial upper bound for this density takes
the form C(d)H2d and follows immediately from quantitative versions of Northcott’s
theorem. As such, polylogarithmic bounds in H are considered very good and are
often nontrivial to prove.

We begin by recalling the definition of the absolute multiplicative height of an
algebraic number, which is the height notion used throughout the paper. Then, in
order to place our main result in context, we briefly discuss some related results.

Let P(z) ∈ C[z] be a polynomial with complex coefficients. Writing P(z) as

P(z) = a
n∏

j=1

(z − α j),

the Mahler measureM(P) of the polynomial P is the quantity

M(P) = |a|
n∏

j=1

max{1, |α j|}.
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If α an algebraic number of degree d, the logarithmic height of α, h(α), is defined as

h(α) =
logM(α)

d
,

whereM(α) is the Mahler measure of the minimal polynomial of α over Z.
The absolute multiplicative height of α, H(α), is defined as

H(α) = exp
{ logM(α)

d

}
=M(α)1/d.

If α and β are algebraic numbers, we use the notation H(α, β) to represent the quantity

max{H(α),H(β)}.

1.1. Some known results. This area of research can be traced back to the seminal
paper of Bombieri and Pila [2], wherein they established the celebrated Bombieri–Pila
theorem for counting lattice points on graphs of real analytic functions.

Given a set Γ ⊂ R2 and a positive number t ≥ 1, the homothetic dilation of Γ by t,
denoted by tΓ, is the set

tΓ := {(tx1, tx2) : (x1, x2) ∈ Γ}.

In [2], Bombieri and Pila considered, among several other variants, the following
question. Let f : [0, 1]→ R be an analytic function and denote by X f ⊂ R

2 the graph
of f . Given t ≥ 1, how does the quantity |tX f ∩ Z

2| depend on t? For a transcendental
function f , they proved the following theorem.

Theorem 1.1 (Bombieri and Pila [2, Theorem 1]). Let f be a real analytic function on
a closed and bounded interval I and suppose that f is not algebraic. Let X f be the
graph of f and let ε > 0. Then there is a constant c( f , ε) such that

|tX f ∩ Z
2| ≤ c( f , ε)tε

for all t ≥ 1.

In [7], Pila extended and refined some of the results from [2]. In particular, he
obtained the following refinement (counting rational points) of Theorem 1.1.

Theorem 1.2 (Pila [7]). Let f be a transcendental real analytic function on a closed
and bounded interval I. Let X f be the graph of f and let ε > 0. Then there is a constant
c( f , ε) such that, for any positive integer H, the number of rational points of height at
most H on X f is at most c( f , ε)Hε .

An example in [2] shows that this is the best possible bound in general. However,
for certain special cases, such as those arising from additional hypotheses on f , or
when f is some concrete function, it is sometimes possible to improve the bound
to one of the form c(log H)η for some c, η > 0. For example, in [6], Masser proved
the following result for the number of rational points on the graph of the Riemann
ζ-function restricted to the interval (2, 3).
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Theorem 1.3 (Masser [6]). Let ζ be the restriction of the Riemann ζ-function to the
interval (2,3). There is an effective constant c > 0 such that, for all H ≥ ee, the number
of rational points of height at most H on the graph of ζ is at most

c
( log H
log log H

)2
.

In [1], adapting Masser’s method, Besson studied the density of algebraic points
of bounded degree and height on the graph of the Γ-function restricted to the interval
[n − 1, n]. He obtained the following result.

Theorem 1.4 (Besson [1]). There exists an effective constant c > 0 such that, for
integers d ≥ 1, H ≥ 3 and n ≥ 2, the number of algebraic points of degree at most d
and height at most H on the graph of the Γ-function restricted to the interval [n − 1, n]
is at most

c(n2 log n)
( (d2 log H)2

log(d log H)

)
.

In [9], assuming only that f is complex analytic and transcendental, Surroca
achieved the rather exciting bound of Cd3(log H)2 for the number of algebraic points
of degree at most d and height at most H on the restriction to a compact subset of the
graph of f . However, the bound is valid only for infinitely many H.

Theorem 1.5 (Surroca [9]). Let 0 < r < R and suppose f is a transcendental function
complex analytic on a neighbourhood of B(0,R). Then, for any integer d ≥ 1, there
exist a real number C > 0 and infinitely many real numbers H ≥ 1 such that the number
of algebraic points of degree at most d and height at most H, with argument belonging
to B(0, r), is at most Cd3(log H)2.

The constant C effectively depends on r,R and f . It is also shown that the theorem
cannot be improved any further. That is, one cannot replace the ‘infinitely many real
H ≥ 1’ in the conclusion of the theorem with ‘for all sufficiently large H’.

Recall that the order and lower order of an entire function f are respectively

ρ = lim sup
r→∞

log log M(r, f )
log r

and λ = lim inf
r→∞

log log M(r, f )
log r

.

Remark 1.6. If ρ is finite, then ρ is the infimum of the set of all α such that M(r, f ) ≤ erα

for sufficiently large r and λ is the supremum of the set of all β such that erβ ≤ M(r, f )
for sufficiently large r.

In [4], motivated by the earlier work of Masser in [6], Boxall and Jones studied the
density of algebraic points of bounded height and degree on graphs of entire functions
of finite order ρ and positive lower order λ restricted to compact subsets of C. They
gave a bound of the form C(log H)η, where the constant C and the exponent η are
effective and η depends only on ρ and λ.
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Theorem 1.7 (Boxall and Jones [4]). Let f be a nonconstant entire function of order ρ
and lower order λ. Suppose 0 < λ ≤ ρ <∞ and let d ≥ 1 and r > 0. There is a constant
C > 0 such that, for all H > e, there are at most C(log H)η(λ,ρ) complex numbers z such
that |z| ≤ r, [Q(z, f (z)) : Q] ≤ d and H(z, f (z)) ≤ H.

The Boxall–Jones theorem immediately prompts two questions towards possible
generalisations or improvements. On the one hand, one can ask if the same type of
bound holds for meromorphic functions. Using Nevanlinna theory, we explore this
theme in a paper currently in preparation. On the other hand, one can ask when the
region to which f was initially restricted can be enlarged. In fact, more generally, for
which functions can one drop the restriction to compact sets and count (possibly) all
points of bounded height and degree on the graph of f ? In this paper, we explore the
second theme for a specific class of entire functions of order less than one, following
a question asked by Chris Miller and brought to our attention by Jones.

In this connection and at the expense of gaining an extra log H factor, Boxall
and Jones [3] unified and extended the results from [6] and [1] and obtained a
C(log H)3(log log H)3 bound for the number of all rational points (x, f (x)) of height
at most H with x > 0 on the graphs of entire functions satisfying a general growth
condition and a decay condition along the positive ray. The functions to which
their result applies include the Riemann ζ-function (derived by counting points on
f (z) := (z − 1)(ζ(z) − 1)) and the Γ-function (by counting points on f (z) := 1/Γ(z)).

1.2. A proposition of Masser. A crucial part of our proof strategy involves
‘converting’ the question of counting algebraic points on the graph of the function
f to that of counting (or finding an upper bound for) the number of zeros of a related
function g, say, which is considerably easier to handle via analytic methods. This
requires the construction (or existence) of a certain nonzero auxiliary polynomial
P(X,Y) ∈ Z[X,Y] such that P(z, f (z)) = 0 whenever

(z, f (z)) ∈ Q
2
, deg(z, f (z)) ≤ d and H(z, f (z)) ≤ H.

We use the auxiliary polynomial constructed by Masser in [6, Proposition 2], which
we give below. The ‘moreover’ part in the conclusion of the lemma does not appear
in the original proposition as given by Masser, but it can be deduced easily from his
proof of the proposition, as observed by Boxall and Jones in [4].

Lemma 1.8 (Masser [6, Proposition 2]). Let d ≥ 1 and T ≥
√

8d be positive integers and
A, Z, M and H positive real numbers with H ≥ 1. Let f1, f2 be functions analytic on
an open neighbourhood of B(0, 2Z), with max{| f1(z)|, | f2(z)|} ≤ M on this set. Suppose
Z ⊂ C is finite and the following conditions are satisfied for all z,w ∈ Z:

• |z| ≤ Z ,
• |w − z| ≤ 1/A ,
• [Q( f1(z), f2(z)) : Q] ≤ d,
• H( f1(z), f2(z)) ≤ H.
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Then there is a nonzero polynomial P(X, Y) of total degree at most T such that
P( f1(z), f2(z)) = 0 for all z ∈ Z provided

(AZ)T > (4T )96d2/T (M + 1)16dH48d2
.

Moreover, if |Z| ≥ T 2/8d, then P(X,Y) can be chosen such that all the coefficients are
integers each with absolute value at most

21/d(T + 1)2HT .

Remark 1.9. When using this lemma, we will take f1(z) = z and f2(z) = f (z).

2. Preliminaries and auxiliary lemmas

2.1. The function f and a brief discussion of the strategy. Let 1 ≤ z1 ≤ z2 ≤ · · · be
an increasing and unbounded sequence of positive real numbers with

∑∞
n=1 1/zn < ∞.

Then the infinite product

f (z) :=
∞∏

n=1

(
1 −

z
zn

)
(2.1)

necessarily defines an entire function of order ρ where 0 ≤ ρ < 1.
Chris Miller asked for the density of algebraic points of height at most H and degree

at most d on graphs of functions defined in this way. For these functions, the lower
order λ coincides with the order ρ. Hence when the order of f is positive, the Boxall–
Jones theorem applies for restrictions of f to sets of the form B(0, r) for r > 0. The
bound one gets is of the form C(log H)η, where C = C(r, f , d, ρ) and η = η(ρ).

However, as we will see shortly, functions of this form enjoy certain asymptotic
approximations that give a more explicit and finer measure of growth than the one
provided by just having positive lower order and finite order. Unfortunately, these
approximations only hold outside certain subsets of the graphs. In any case, taking
advantage of such explicit growth characterisations, for appropriate subsets of the
graphs, one can find the density of all the algebraic points of bounded height and
degree.

The strategy to do this utilises a rather simple but crucial observation. Given an
algebraic number z of height at most H and degree at most d, the modulus |z| is bounded
above by a function of H and d. Therefore, to count the algebraic points of bounded
height and degree on a function f , we can restrict our attention to those (algebraic)
arguments z for which | f (z)| is not too large to have height at most H or degree at most
d. This is where an explicit lower approximation of f becomes crucial because it gives
a handle on the growth of | f |.

The remainder of this section is devoted to making the contents of the previous two
paragraphs explicit.
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2.2. Lemmas. For 0 < φ < π/2, define the sector S φ = {z ∈ C : −φ ≤ arg z ≤ φ}. Let
the sequence {zk}

∞
k=1 ⊂ S φ be such that 1 ≤ z1 ≤ z2 ≤ · · · and

∑∞
k=1 1/|zk|

p < ∞, where
p is a nonnegative integer. In [5, Example 1, pages 66–69], Goldberg and Ostrowski
approximate the function

g(z) :=
∞∏

k=1

E
( z
zk
, p

)
,

where p is a nonnegative integer and

E(z, p) :=

(1 − z), if p = 0,
(1 − z) exp(z + z2/2 + · · · + zp/p), otherwise,

is the pth Weierstrass elementary factor. They obtain an asymptotic inequality
approximating log g(z) in terms of the function |z|ρ and certain explicit coefficients,
where z ∈ C \ S φ and p ≤ ρ ≤ p + 1. The asymptotic inequality we need is a
specialisation of this result to the case where p = 0. We give the specific details in
the next lemma.

Let {zn}
∞
n=1 be the sequence of zeros of f defined in (2.1) and denote by n(r) the

number of zn with modulus less than r. Let

µ := lim
r→∞

n(r)
rρ

,

where ρ ∈ (0, 1) is the order of f .

Lemma 2.1 [5, Corollary of Example 1, page 66]. Let 0 < ε < 1 and suppose f , µ, ρ
and φ are as defined previously. Assume 0 < µ <∞. Then there exists r1(ε) such that,
for all z ∈ C with |z| > r1(ε) and φ < arg z < 2π − φ,∣∣∣∣∣log f (z) −

µπ

sin πρ
e−iπρzρ

∣∣∣∣∣ ≤ εD|z|ρ csc
φ

2
, (2.2)

where D = 6 + 3µπ csc(πρ).

From Lemma 2.1, it follows that∣∣∣∣∣<(
log f (z) −

µπ

sin πρ
e−iπρzρ

)∣∣∣∣∣ ≤ εD|z|ρ csc
φ

2
.

More explicitly, writing z = reiθ, with r > r1(ε) and φ < θ < 2π − φ, we deduce from
(2.2) that ∣∣∣∣∣log | f (reiθ)| −

µπ

sin πρ
cos ρ(θ − π)rρ

∣∣∣∣∣ ≤ εDrρ csc
φ

2
. (2.3)

Remark 2.2. By Remark 1.6 and the above inequality, λ = ρ, where λ is the lower
order of f .
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For ρ ∈ (0, 1
2 ], we have ρ(θ − π) ∈ (− 1

2π,
1
2π), so sin 1

2θ = cos 1
2 (θ − π) ≤ cosρ(θ − π).

Therefore, from (2.3),

| f (reiθ)| ≥ eC(φ,ρ)rρ where C(φ, ρ) =
µπ sin 1

2φ

sin πρ
− εD csc

φ

2
.

Given φ, we can choose ε, say,

ε = min
{µπ sin2 1

2φ

4D sin πρ
,

1
2

}
.

In this case,

C(φ, ρ) >
µπ sin 1

2φ

2 sin πρ
> 0.

The next lemma gives bounds in terms of H and d of the modulus of an algebraic
number of height at most H and degree at most d. It is essentially a version of
Liouville’s inequality for the absolute multiplicative height (see [10, page 82]).

Lemma 2.3. Let α be a nonzero algebraic number of degree at most d and height at
most H. Then

1
(2H)d ≤ |α| ≤ (2H)d.

We use the above lemma, assuming that z and f (z) are algebraic, to prove the
following result.

Lemma 2.4. Let d ≥ 1 and H ≥ ee. Let z = reiθ ∈ C be algebraic such that deg(z) ≤ d
and H(z) ≤ H. Define the constant K(φ, ρ, d) by

K(φ, ρ, d) =

(2(d + 1)
C(φ, ρ)

)1/ρ
.

If r ≥ K(φ, ρ, d)(log H)1/ρ = RH , then eC(φ,ρ)rρ ≥ (2H)d+1. For r ≥ max{r1(ε),RH}, we
therefore have the chain of inequalities

| f (reiθ)| ≥ eC(φ,ρ)rρ ≥ (2H)d+1.

By Lemma 2.3, if f (z) is algebraic, then either H( f (z)) > H or deg( f (z)) > d.

Proof. We note that eC(φ,ρ)rρ ≥ (2H)d+1 if

C(φ, ρ)rρ ≥ (d + 1) log(2H).

The above inequality follows if

C(φ, ρ)rρ ≥ 2(d + 1) log H

and this is true if

r ≥ K(φ, ρ, d)(log H)1/ρ.

Recalling that | f (reiθ)| ≥ eC(φ,ρ)rρ when r ≥ r(ε), we obtain the desired chain of
inequalities when r ≥ max{r1(ε),RH}, �
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The next lemma gives a quantitative way of covering the zeros of a polynomial P(z)
with a collection of disks outside of which |P(z)| > 1.

Lemma 2.5 (Boutroux–Cartan [8, Theorem 12.5.7]). Let P(z) ∈ C[z] be a monic
polynomial with degree n ≥ 1. Then |P(z)| > 1 for all complex z outside a collection of
at most n disks the sum of whose radii is 2e.

In the following lemma, the function n(r, 1/ f ) represents the number of zeros of f
in B(0, r). This is a standard Nevanlinna-theoretic notation.

Lemma 2.6 (A corollary of Jensen’s formula). Let G be a nonconstant entire function
such that G(0) , 0. Let 0 < r < R <∞. Then

n
(
r,

1
G

)
≤

1
log R/r

log
( M(R,G)
|G(0)|

)
.

3. Main result

We can now state and prove our main result. Since f is an entire function of positive
lower order and finite order, our argument is an adaptation of that of Boxall and Jones
in [4].

Theorem 3.1. Let f (z) =
∏∞

n=1(1 − z/zn), where 1 ≤ z1 ≤ z2 ≤ · · · and
∑∞

n=1 1/zn <∞.
Suppose the order ρ of f is such that 0 < ρ ≤ 1

2 . Let 0 < φ < 1
2π. Let d, α, β, γ satisfy

d ≥ 1, α = 1 + ρ, β = ρ/2 and γ = (2α + ρ)/βρ. Then there is a constant C > 0 such
that, for all H > e, there are at most C(log H)2α(γ+1)/ρ numbers z ∈ C \ S φ such that
[Q(z, f (z)) : Q] ≤ d and H(z, f (z)) ≤ H.

Proof. Let H > ee. Throughout our proof, the height bound H is assumed to be
sufficiently large. We shall denote by C a positive constant independent of H. The
constant C may not be the same at each occurrence. Let |P| denote the modulus of the
coefficient of the polynomial P with largest absolute value.

We would first like to obtain a nonzero polynomial P(X, Y) ∈ Z[X, Y] of degree
at most T = C(log H)2α/ρ such that |P| ≤ 21/d(T + 1)2HT and P(z, f (z)) = 0 whenever
[Q(z, f (z)) : Q] ≤ d and H(z, f (z)) ≤ H and z < S φ. To this end, let

A =
1

2RH
, Z = C(log H)1/ρ, T = C(log H)2α/ρ and M = e(2Z)α .

Then max{|z|, | f (z)|} ≤ M for all z ∈ B(0, 2Z). Furthermore,

log(AZ)T = C(log H)2α/ρ > C
( log log H
(log H)2α/ρ

)
+ C(log H)α/ρ + C log H.

Therefore

(AZ)T > (4T )96d2/T (M + 1)16dH48d2
.

We note that the bound we are trying to prove is worse than C(log H)4α/ρ. We can thus
assume that there are at least T 2/8d complex numbers such that [Q(z, f (z)) : Q] ≤ d
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and H(z, f (z)) ≤ H. The hypotheses of Lemma 1.8 are thus satisfied and therefore
there is a polynomial P(X,Y) satisfying all our requirements.

In light of Lemma 2.4, our choice of A and Z further ensures that the algebraic
arguments of height at most H and degree at most d to which we restrict our attention
are all the ‘admissible’ arguments—that is, those whose image (if it is algebraic) will
also be of height at most H and degree at most d.

Let G(z) = P(z, f (z)). We would like to bound the number of zeros of G in B(0,RH).
To do this, first let k be the highest power of Y in P(X, Y). We can assume k ≥ 1. Let
P̃(X, Y) = YkP(X, 1/Y), R(X) = P̃(X, 0) and Q(X, Y) = P̃(X, Y) − R(X). We note that
R(X) is not identically zero. Let Q̃(X,Y) = Q(X,Y)/Y . The highest power of X in Q̃ is
at most T and |Q̃| ≤ |P| ≤ 21/d(T + 1)2HT . Finally, Q̃ has at most (T + 1)2 terms.

Now we would like to find some wi ∈ C such that |G(wi)| = |P(wi, f (wi))| ≥ 1.
To this end, we first find some sufficiently large radius r such that if |z| ≥ r then
|Q(z, 1/ f (z))| ≤ 1

2 . Let z = reiθ ∈ C be such that | f (z)| = M(r, f ) ≥ 1. Then∣∣∣∣∣Q̃(
z,

1
f (z)

)∣∣∣∣∣ ≤ 21/d(T + 1)4HT rT .

Therefore ∣∣∣∣∣Q(
z,

1
f (z)

)∣∣∣∣∣ ≤ 1
2

provided

21/d(T + 1)4HT rT ≤ 1
2 M(r, f ).

We note that (for a large enough C), if

r ≥ C(log H)(2α+ρ)/βρ,

then

21/d(T + 1)4HT rT ≤ 1
2 erβ

and (since β < ρ = λ) by Remark 1.6,

erβ ≤ M(r, f ).

Thus ∣∣∣∣∣Q(
z,

1
f (z)

)∣∣∣∣∣ ≤ 1
2

when r ≥ C(log H)(2α+ρ)/βρ.

Note that the degree of R(X) is also at most T . For i = 1, . . . , [T ] + 14, say, let ri
be the ith integer after C(log H)γ, where γ := (2α + ρ)/βρ. Let wi be such that |wi| = ri
and | f (wi)| = M(ri, f ). By Lemma 2.5, there will be at least one i such that |R(wi)| > 1.
For such i, ∣∣∣∣∣P̃(

wi,
1

f (wi)

)∣∣∣∣∣ ≥ 1
2
.
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Again by Remark 1.6,

|G(wi)| = |P(wi, f (wi))| =
∣∣∣∣∣ f (wi)kP̃

(
wi,

1
f (wi)

)∣∣∣∣∣ ≥ 1
2

ekri
β

,

and therefore

|G(wi)| ≥ 1.

Recall that RH is of the form C(log H)1/ρ, while on the other hand,

ri ≤ C(log H)γ + T + 14.

So, B(0,RH) ⊂ B(wi, s), where s = C(log H)γ.
By the maximum modulus principle and Lemma 1.8,

n
(
RH ,

1
G

)
≤

1
log 2

log
( M(3s,G)
|G(wi)|

)
≤

log M(3s,G)
log 2

.

By Remark 1.6,

M(3s,G) ≤ |P|(T + 1)2(3s)T eT (3s)α .

Since s = C(log H)γ and T = C(log H)2α/ρ, we deduce that

log M(3s,G) ≤ C(log H)2α(γ+1)/ρ.

Therefore

n
(
RH ,

1
G

)
≤ C(log H)2α(γ+1)/ρ

as required. The constant C effectively depends on µ, ρ, φ and d. �
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