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Abstract. We consider interval exchange transformations of n intervals with k flips, or
(n, k)-IETs for short, for positive integers k, n with k ≤ n. Our main result establishes
the existence of minimal uniquely ergodic (n, k)-IETs when n ≥ 4; moreover, these
IETs are self-induced for 2≤ k ≤ n − 1. This result extends the work on transitivity in
Gutierrez et al [Transitive circle exchange transformations with flips. Discrete Contin.
Dyn. Syst. 26(1) (2010), 251–263]. In order to achieve our objective we make a direct
construction; in particular, we use the Rauzy induction to build a periodic Rauzy graph
whose associated matrix has a positive power. Then we use a result in the Perron–
Frobenius theory [Pullman, A geometric approach to the theory of non-negative matrices.
Linear Algebra Appl. 4 (1971) 297–312] which allows us to ensure the existence of these
minimal self-induced and uniquely ergodic (n, k)-IETs, 2≤ k ≤ n − 1. We then find other
permutations in the same Rauzy class generating minimal uniquely ergodic (n, 1)- and
(n, n)-IETs.

1. Introduction
Given n ∈ N := {1, 2, 3, . . . } we define an n-interval exchange transformation, or n-IET
for short, as an injective map T : D ⊂ (0, l)→ (0, l) such that:
(i) D is the union of n pairwise disjoint open intervals, D =

⋃n
i=1 Ii , with Ii =

(ai , ai+1), 0= a1 < a2 < a3 < · · ·< an+1 = l;
(ii) T |Ii is an affine map of constant slope equal to 1 or −1.

If T reverses the orientation of each interval I f of the interval set F =
{I f1 , I f2 , . . . , I fk } (the slope is −1 in these intervals) for some 1≤ f j ≤ n, then we say
that T is an interval exchange transformation of n intervals with k flips (for this reason
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we denote the indices by f1, . . . , fk) or simply an (n, k)-IET; otherwise we say that T
is an interval exchange transformation of n intervals without flips or simply an oriented
interval exchange transformation of n intervals. If we replace [0, l] by S1

= [0, l]/≡,
(0≡ l), then we obtain the notion of circle exchange transformation of n intervals with k
flips (abbreviated as (n, k)-CET) or circle exchange transformation of n intervals without
flips (abbreviated as n-CET). Observe that the right continuous extension of an (n, k)-IET
has at most n − 1 discontinuity points; when it has exactly n − 1 we say that it is a proper
(n, k)-IET.

This type of maps has been intensively studied due to its intrinsic interest and its
application in different research areas, for instance surface flows [5, 11], Teichmüller
flows [3, 4], continued fraction expansions [33] and polygonal billiards [22].

Let x ∈ (0, l). The orbit of this point, generated by T , is the set

OT (x)= {T n(x) : n is an integer and T n(x) makes sense},

where T 0
= Id and T n

= T ◦ T n−1 for any integer n. Moreover, OT (0)= {0} ∪
OT (limx→0+ T (x)) and OT (l)= {l} ∪OT (limx→l− T (x)). T is said to be minimal if
OT (x) is dense in [0, l] for any x ∈ [0, l]. Recall that transitivity is a weaker condition: T
is said to be transitive if there exists some x ∈ [0, l] such that OT (x) is dense in [0, l].

Remark 1. According to [14, Corollary 14.5.12], if T has a dense orbit and it has no finite
orbits then any orbit is dense in [0, l]. Thus the notion of minimality introduced here is
equivalent to that used in [12], namely, a transitive map without finite orbits. We note that
transitivity does not imply minimality; see the IETs T1 and T2 after Theorem 4.

In this paper we focus in the topics of minimality and unique ergodicity. Let δ denote
a finite measure on [0, l]. Then δ is said to be an invariant measure of T if, for any
measurable set A ⊂ [0, l], we have δ(T−1(A))= δ(A); T is said to be ergodic (with
respect to δ) if δ is an invariant measure for T and, for any subset E ⊂ [0, l] satisfying
T (E)= E , either δ(E)= 0 or δ(E)= 1. In the following, we will denote by µL the
standard Lebesgue measure on [0, l].

It is easy to see that µL (and any of its multiples) is an invariant measure for any interval
exchange transformation T . Moreover, T is uniquely ergodic if it does not admit another
invariant probability measure. It is worth mentioning that, for IETs, unique ergodicity
implies ergodicity with respect to Lebesgue measure; cf. [20, §II.6, Theorem 6.1].

We will introduce coordinates in the set of IETs. Let n ∈ N. Then there exists a natural
injection between the set of n-IETs and Cn =3

n
× Sσn , where R+ = (0,∞), 3n is the

cone Rn
+ and Sσn is the set of signed permutations. By a signed permutation we mean

an injective map π : Nn = {1, 2, . . . , n} → Nσ
n = {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n}

such that |π | : Nn→ Nn is bijective, that is, a standard permutation; a non-standard
permutation will be a signed permutation π such that π(i) < 0 for some i . As in the case
of standard permutations, π will be represented by the vector (π(1), π(2), . . . , π(n)) ∈
(Nσ

n )
n . Let T be an n-IET as in the preceding paragraph. Then its associated coordinates

in Cn are (λ, π) defined as follows.
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FIGURE 1. Example of proper (6, 4)-IET with associated coordinates (λ, π), where λ is the positive vector
(λ1, λ2, λ3, λ4, λ5, λ6) and π the signed permutation (−3,−4,−5, 6, 1,−2).

• λi = ai+1 − ai for all i ∈ Nn .
• π(i) is positive (respectively, negative) if T |Ii has slope 1 (respectively, −1).

Moreover, |π(i)| is the position of the interval T (Ii ) in the set {T (Ii )}
n
i=1 taking

into account the usual order in R.
Conversely, given a pair (λ, π) we can associate to it a unique n-IET, T : D ⊂ [0, l] →
[0, l], where:
• l = |λ| :=

∑n
i=1 λi ;

• I1 = (0, λ1);
• Ii =

(∑i−1
j=1 λ j ,

∑i
j=1 λ j

)
for any 1< i ≤ n;

• T |Ii (x)=
(∑|π |(i)−((σ (π(i))+1)/2)

j=1 λ|π |−1( j)
)
+ σ(π(i))

[
x −

(∑i−1
j=1 λ j

)]
, for any

1≤ i ≤ n, where σ(z) denotes the sign of z ∈ R \ {0}, namely, σ(z)= z/|z|. Notice
that if we define

K|π |−1( j) :=

( j−1∑
s=1

λ|π |−1(s),

j∑
s=1

λ|π |−1(s)

)
,

we have T (Ii )= K|π |−1(π(i)).

These coordinates allow us to make the identification T = (λ, π); see Figure 1 to clarify
the idea. For a fixed permutation π, we can consider the Lebesgue measure of the cone
3n on the set of n-IETs having associated permutation π .

Remark 2. T = (λ, π) is a proper (n, k)-IET provided that π satisfies π( j + 1)− π( j) 6=
1 for any j ∈ {1, 2, . . . , n − 1}. Notice that π is a signed permutation.
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Remark 3. IETs and CETs are closely related: a proper (n, k)-IET T = (λ, π) : D ⊂
[0, l] → [0, l] generates an (ñ, k̃)-CET T̂ : D̂ ⊂ S1

→ S1 by identifying 0≡ l. Even more,
if T is a proper (n, k)-IET then T̂ is a proper (n, k)-CET if either the signs of π( j) and
π( j + 1) are different or they coincide and then π( j + 1)− π( j) 6≡ 1 mod (n) for any
j ∈ {1, 2, . . . , n} (note that we use arithmetic modulo n and also that for integers a, b, n,
a ≡ b mod (n)means that n divides a − b). We stress that, in any case, the minimality and
unique ergodicity of T imply those of T̂ .

Our aim is to construct minimal interval exchange transformations with flips. This
goal is important in itself but also because it will allow us to construct minimal flows on
open non-orientable surfaces of finite genus g ≥ 4 by means of the standard procedure of
suspensions of IETs; see [2, 9, 19, 29]. We recall that the first steps in this direction were
made by Gutierrez [10], who constructed a minimal proper (5, 2)-IET, T = (λ, π), with
π = (3,−4, 5, 1,−2) which is self-induced, which means that the return map induced by
T on a suitable subinterval, T̃ = (̃λ, π̃), satisfies π̃ = π and λ̃= ρλ for some ρ ∈ (0, 1).

Nogueira [23] generalized Gutierrez’s construction to obtain, for any n ≥ 2, self-
induced minimal proper (2n + 1, n)-IETs, (λ, τ ), with τ(i)= (−1)i+1(i + 2) for any
1≤ i ≤ 2n − 1, τ(2n)= 1 and τ(2n + 1)=−2. It is worth mentioning that Nogueira and
Gutierrez IETs can be used to obtain minimal proper (2n, n)-CETs and a minimal proper
(4, 2)-CET, respectively.

Both authors used the above mentioned CETs to build transitive flows on compact
and connected surfaces. Moreover, the constructed flows are minimal on some open
surfaces; in particular, Gutierrez obtained a minimal flow on N∗∗4 (the resulting surface
after removing two points from the non-orientable compact surface of genus 4, N4).
The suspensions of Nogueira (2n, n)-CETs induce minimal flows on the non-orientable
compact surface of genus 2+ n where n points were removed. Notice that in order to
obtain minimal flows on any non-orientable surface of genus greater than 4 it would be
interesting to suspend other interval exchange transformations that generate minimal flows
on non-orientable compact surfaces with a single hole. The IETs which will be constructed
in the proof of main theorem have this property; see [9].

Recent works about exchange transformations with flips are [12, 13, 25]. In particular,
[12] is due to Gutierrez et al, and it states its main result as follows.

THEOREM 4. Given n ≥ k ≥ 1, there exists a transitive proper (n, k)-CET if and only if
n + k ≥ 5.

The ‘if’ part of the proof of Theorem 4 is obtained by introducing some minimal self-
induced IETs. In particular they build (4, 2), (4, 3), (4, 4), (5, 3) and (5, 5) self-induced
minimal IETs and two operators in the set of IETs. Given a transitive (n, f )-IET T : D ⊂
[0, 1] → [0, 1], they define a transitive (n + 1, f )-IET, T1 : D1 ⊂ [0, 2] → [0, 2], and a
transitive (n + 2, f + 2)-IET, T2 : D2 ⊂ [0, 3] → [0, 3], in the following way:

T1(x)=
{

T (x)+ 1 if x ∈ D ∩ [0, 1],
x − 1 if x ∈ (1, 2),

T2(x)=


T (x)+ 1 if x ∈ D ∩ [0, 1],
−x + 4 if x ∈ (1, 2),
−x + 3 if x ∈ (2, 3).
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FIGURE 2. Tree of transitive IETs generated by means of T1 and T2.

With the (4, 2), (4, 4), (4, 3), (5, 3) and (5, 5) self-induced minimal proper IETs and
the way of generating new transitive IETs by means of T1 and T2, Theorem 4 is proved. We
remark that T1 and T2 are transitive but not minimal since OT2(2)= {2} and OT1(1)= {1}.
Figure 2 gives the idea of the proof.

Neither the problem of finding minimal uniquely ergodic proper (n, k)-IETs nor the
problem of finding minimal non-uniquely ergodic (n, k)-IETs is completed for k ≥ 1;
see [12]. We solve the first problem in the following way.

MAIN THEOREM. Given n, k ∈ N with n ≥ 4 and 1≤ k ≤ n, there exist minimal, uniquely
ergodic, proper (n, k)-IETs.

We claim that the (n, k)-IETs constructed in the proof of the previous theorem are self-
induced when 2≤ k ≤ n − 1. The idea behind our construction is to build a periodic Rauzy
graph (see §3) whose associated matrix has a positive power and to use some results on the
Rauzy–Veech theory that also apply to the non-oriented case as we show. In this scheme,
a key point is the use of Perron–Frobenius theory and, in particular, the use of the nature
of the core of a matrix analysed in [26]. It is important to stress the existence of signed
permutations which do not generate self-induced IETs; see Remark 26.

As a consequence of our main result we obtain the following generalization of
Theorem 4.

PROPOSITION A. Given n ≥ k ≥ 1, there exists a minimal proper (n, k)-CET if and only
if n + k ≥ 5.

The rest of this paper is organized as follows. In §2 we introduce some folklore results
on the theory of IETs. Then, in §3, we give the induction procedure of Rauzy and adapt
the proofs of some results on oriented IETs to the flip case. Among them, we stress the
relevance of Theorems 23–25 which guide the construction of our minimal IETs. The
following sections are devoted to the proof of our main result, distinguishing separately
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(n, k)-IETs with even n ≥ 8 and with odd n ≥ 9. In §6 we analyse the particular cases
n = 4, 5, 6, 7, and in the final section we present the proof of Proposition A.

2. Folklore results
We emphasize that oriented interval exchange transformations are usually defined
in the literature on the whole of [0, l) using the right continuous extension in the
discontinuity points; see [15]. However, when working with non-oriented interval
exchange transformations we cannot use the extension mentioned if we want the IETs
to remain one-to-one. For example, the right continuous extension of a (4, 3)-IET
with associated permutation π = (4,−2, 3,−1) is never injective. This is the reason for
working with IETs which are not defined in the discontinuity points.

Interval exchange transformations without flips have been widely studied† and there is
a characterization (in terms of the ‘orbits’ corresponding to discontinuity points) of those
being minimal due to the pioneering work by Keane [15].

Definition 5. (Generalized Keane condition) Let T be an n-IET with domain D =⋃n
i=1(ai , ai+1). We define T (a⊕i ) := limx→a+i

T (x) for 1≤ i ≤ n and T (a	i ) :=

limx→a−i
T (x) for 2≤ i ≤ n + 1. We also write T (a	1 )= T (a⊕1 ) and T (a⊕n+1)= T (a	n+1).

We say that T satisfies the Keane condition if and only if

T m(a) 6= a j , for all m ≥ 1, 2≤ j ≤ n and a ∈
n+1⋃
i=1

{a⊕i , a	i }. (1)

THEOREM 6. (Keane [15]) Let T be an oriented n-IET that satisfies the Keane condition‡.
Then T is minimal.

Remark 7. The notion of minimality introduced here is slightly different than that of the
papers on oriented IETs. Let T :

⋃n
i=1(ai , ai+1)⊂ [0, l] → [0, l] be an IET and let T :⋃n

i=1[ai , ai+1)= [0, l)→ [0, l] be the right continuous extension of T . Then it could
happen that T is minimal (it has all orbits dense) while T is not, because the points ai ,
1≤ i ≤ n, have forward orbit by T but they do not have this forward orbit by T . However,
if T satisfies the Keane condition then the points ai have infinite backward orbit and the
minimality of T implies that of T ; cf. [14, Corollary 14.5.12].

Remark 8. In [14] the authors use a notion related to the Keane condition, namely, the
notion of saddle connection. A saddle connection for T is a set

S = {ai , T 1(a⊗i ), . . . , T k(a⊗i )= a j }

with k ≥ 1, ⊗ ∈ {⊕,	}, S ∩ {ar }
n+1
r=1 = {ai , a j } (the case i = j is not excluded). Observe

that any IET has saddle connections, with a j ∈ {0, 1}: these are called trivial saddle

† See [32] for an exhaustive review with unified notation.
‡ Although Definition 5 for oriented IETs is equivalent to the classical Keane condition for the right
continuous extension, this is not the case for IETs with flips. To see this, consider minimal IETs, U and
V , defined on dense open subsets of [0, 1], whose associated permutations are πU = (−3,−4, 5, 1,−2) and
πV = (−2,−3,−5,−1,−4); see §6. Then define T : D ⊂ [0, 2] → [0, 2] by T (x)=U (x) if x ∈ [0, 1] and
T (x)= V (x − 1) if x ∈ [1, 2]. It is easy to prove that T does not satisfies Definition 5 but its right continuous
extension satisfies the classical Keane condition.
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connections. It is a simple task to realize that the absence of non-trivial saddle connection
is equivalent to the Keane condition introduced in Definition 5. Also, it is important to
stress that in [14, Corollary 14.5.12] the hypothesis on the absence of saddle connection
refers to the absence of non-trivial saddle connection.

A permutation π : Nn→ Nσ
n is said to be irreducible if |π({1, 2, . . . t})| 6=

{1, 2, . . . , t} for any 1≤ t < n. The set of irreducible permutations is denoted by Sσ,∗n . We
will write Sσ,+n to denote the set of permutations, π ∈ Sσn , satisfying |π |(n) 6= n. Observe
that Sσ,∗n ⊂ Sσ,+n ⊂ Sσn . It is easily seen that if (λ, π) is a minimal n-IET (not necessarily
oriented) then π is irreducible. Given an oriented n-IET, T = (λ, π), with π irreducible,
if the components of λ are rationally independent then T satisfies the Keane condition and
is minimal; however, the Keane condition does not imply that the components of λ are
rationally independent (see, for example, [15, §6.3]). The last condition on λ allows us
to easily construct minimal n-IETs; in fact it gives relevant information, expressed in the
following theorem.

THEOREM 9. (Keane [15]) Let π : Nn→ Nn be a fixed irreducible standard permutation.
Then almost all (with respect to the Lebesgue measure induced on 3n) n-IETs of the form
(λ, π) are minimal.

Contrary to what was conjectured since the first work of Keane [15], the minimality
of an oriented n-IET does not guarantee its unique ergodicity. Counterexamples to this
conjecture were first provided by Sataev; see [28] and [6, Theorem 2, p. 134]. Also Keynes
and Newton [17] and Keane [16] constructed minimal non-uniquely ergodic oriented 5-
and 4-IETs, respectively. In answer to another conjecture by Keane, Veech and Masur
independently proved† the following theorem.

THEOREM 10. (Masur [21, Theorem 1]; Veech [31, Theorem 13.10]) Let π : Nn→ Nn

be an irreducible standard permutation. Then almost all (with respect to the Lebesgue
measure) n-IETs of the form (λ, π) are uniquely ergodic.

Masur’s proof derives from the study of measured foliations on oriented surfaces, while
Veech’s approach is based on the powerful Rauzy induction. Although the latter technique
was developed for oriented IETs, it was adapted for non-oriented ones by Nogueira [24].
Before stating it, we introduce one relevant result concerning IETs with flips which shows
that the behaviour in the non-oriented case is rather different from the oriented case, in
particular the previous theorems by Keane, Veech and Masur are no longer true.

THEOREM 11. (Nogueira, [24]) Let π be an irreducible non-standard permutation. Then
almost all n-IETs of the form T = (π, λ) admit periodic points and, therefore, they are not
minimal.

We finish this section by emphasizing that Nogueira and Danthony generalized the
notion of IET by introducing linear involutions; see [7, 8]. While the first return map
of a flow to a transversal segment is closely related to an IET; see [2, 11, 19], the first
return map of a (non-orientable) measured foliation is linked to a linear involution.

† Previously, Veech gave in [30] a criterion to obtain the unique ergodicity of (λ, π) in terms of irreducible
matrices obtained from the Rauzy induction process; see §3.
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3. Rauzy induction and invariant measures
Roughly speaking, the generalized Rauzy induction is an operator in the set of IETs which
sends any T : D ⊂ [0, l] → [0, l] to its first return map on some subinterval [0, l ′]( [0, l].
The aim of this section is to give a formalization of this operator, by means of the maps a
and b defined on Sσn . In the final part of the section we investigate the relationship between
the Rauzy induction and the existence of minimal uniquely ergodic IETs with flips.

Let x ∈ R\{0}. Recall that the sign of x is denoted by σ(x). The generalized Rauzy
maps were introduced by Nogueira in [24] (cf. also [27]). Map a is given by

a : Sσ,+n −→ Sσn
π → a(π)

where a(π) is the permutation defined depending on the sign of π(n) by

a(π)(i)=


π(i) if |π(i)| ≤ |π(n)| −

1− σ(π(n))
2

,

σ (π(n))σ (π(i))

×

(
|π(n)| +

1+ σ(π(n))
2

)
if |π(i)| = n,

σ (π(i))(|π(i)| + 1) otherwise.

(2)

Map b is given by
b : Sσ,+n −→ Sσn

π → b(π)

where b(π) is the permutation defined depending on the sign of π(|π |−1(n)) by

b(π)(i)=


π(i) if i ≤ |π |−1(n)+

σ(π(|π |−1(n)))− 1
2

,

σ (π(|π |−1(n)))π(n) if i = |π |−1(n)+
σ(π(|π |−1(n)))− 1

2
+ 1,

π(i − 1) otherwise.

(3)

Together with these maps, we also define the generalized Rauzy matrices associated to
a permutation π ∈ Sσ,+n , Ma(π) and Mb(π). Given 1≤ i, j ≤ n, Ei, j denotes the n × n
matrix having zeros in all the positions except for the position (i, j) which is equal to 1,
and In denotes the n × n identity matrix. The definitions of Ma(π) and Mb(π) are

Ma(π)= In + En,|π |−1(n),

Mb(π)=

(|π |−1(n)∑
i=1

Ei,i

)
+ En,|π |−1(n)+(1+σ(π(|π |−1(n))))/2 +

( n−1∑
i=|π |−1(n)

Ei,i+1

)
. (4)

Now, as a trivial consequence of this definition, we obtain the following claim.

Claim 12. Let λ ∈3n and π ∈ Sσ,+n . Then Mv(π)λ ∈3
n, where v ∈ {a, b}.

Given a matrix A ∈ Mn×n(R), if {ai }
n
i=1 are the columns of A we will write A =

(a1; a2; a3; . . . ; an−1; an), so a j = (a1 j , a2 j , . . . , anj )
t , 1≤ j ≤ n, where t denotes the

https://doi.org/10.1017/etds.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.5


Minimal interval exchange transformations with flips 3109

transpose of a matrix. Let 2≤ j ≤ n and let {i1, i2, . . . , i j } ⊂ {1, 2, . . . , n}. Then we
will denote by

ai1,i2,...,i j :=

j∑
l=1

ail

the column consisting of the sum of certain columns of A. For P, Q ∈ Mn×n(R), P ≥ Q
will mean that the non-zero entries of Q are also non-zero entries of P; the values of these
entries may of course not coincide.

Positive matrices will play a relevant role in our study of minimality of IETs. A non-
negative matrix A ∈ Mn×n(R), that is, with ai, j ≥ 0 for any i, j ∈ {1, 2, . . . , n}, is said to
be positive if these inequalities are strict. In the following, the diagonal, a row or a column
of a matrix is said to be positive if all the entries in the corresponding diagonal, row or
column are positive.

Now it is a simple task to verify the following lemma. It suffices to apply the
corresponding definitions and to consider the summation equal to 0 whenever the upper
bound of the summation is less than the lower one (we leave the proof to the reader).

LEMMA 13. Let n ∈ N, A = (a1; a2; a3; . . . ; an−1; an) ∈ Mn×n(R), B ∈ Mn×n(R), and
let π ∈ Sσ,+n , Ma(π) and Mb(π) be as defined in equation (4). Then:
(1) A · Ei, j = (0; 0; . . . ; 0; ai︸︷︷︸

j th column

; 0; . . . ; 0) for all i, j ∈ {1, . . . , n};

(2) A · Ma(π)= (a1; a2; . . . ; a|π |−1(n)−1; a|π |−1(n),n; a|π |−1(n)+1; . . . ; an)

whenever |π |−1(n) > 1, and A · Ma(π)= (a|π |−1(n),n; a2; a3; . . . ; an) if |π |−1(n)
= 1;

(3) if σ(π(|π |−1(n)))= 1,

A · Mb(π)= (a1; a2; . . . ; a|π |−1(n); a|π |−1(n),n; a|π |−1(n)+1; a|π |−1(n)+2; . . . ; an−1)

whenever |π |−1(n) < n − 1, and A · Mb(π)= (a1; a2; . . . ; an−1; an−1,n) if
|π |−1(n)= n − 1;

(4) if σ(π(|π |−1(n)))=−1,

A · Mb(π)= (a1; a2; . . . ; a|π |−1(n)−1; a|π |−1(n),n;

a|π |−1(n); a|π |−1(n)+1; a|π |−1(n)+2; . . . ; an−1)

whenever |π |−1(n) > 1, and A · Mb(π)= (a1,n; a1; a2; . . . ; an−1) if |π |−1(n)= 1;
(5) if A and B are non-negative and B has positive diagonal, AB ≥ A;
(6) Ma(π)

−1
= In − En,|π |−1(n);

(7) if σ(π(|π |−1(n)))= 1,

Mb(π)
−1
=

(|π |−1(n)−1∑
i=1

Ei,i

)
+ E|π |−1(n),|π |−1(n) − E|π |−1(n),n

+ E|π |−1(n)+1,n +

( n∑
i=|π |−1(n)+2

Ei,i−1

)
;
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(8) if σ(π(|π |−1(n)))=−1,

Mb(π)
−1
=

(|π |−1(n)−1∑
i=1

Ei,i

)
+ E|π |−1(n),n − E|π |−1(n)+1,n

+ E|π |−1(n)+1,|π |−1(n) +

( n∑
i=|π |−1(n)+2

Ei,i−1

)
;

COROLLARY 14. Let n ∈ N, π ∈ Sσ,+n , A = (a1; a2; a3; . . . ; an−1; an) ∈ Mn×n(R) and
B ∈ Mn×n(R), both non-negative. Then:
(1) A · Ma(π)≥ A;
(2) if σ(π(|π |−1(n)))= 1,

A · Mb(π)≥ (a1; a2; . . . ; a|π |−1(n); an; a|π |−1(n)+1; a|π |−1(n)+2; . . . ; an−1)

whenever |π |−1(n) < n − 1, and A · Mb(π)≥ A and A · Mb(π)≥ (a1; a2; . . . ;

an−1; an−1) if |π |−1(n)= n − 1;
(3) if σ(π(|π |−1(n)))=−1,

A · Mb(π)≥ (a1; a2; . . . ; a|π |−1(n)−1; an; a|π |−1(n); a|π |−1(n)+1;

a|π |−1(n)+2; . . . ; an−1) if |π |−1(n) > 1

and
A · Mb(π)≥ (an; a1; a2 . . . ; an−1) whenever |π |−1(n)= 1;

(4) if A ≥ B, A · Ma(π)≥ B · Ma(π) and A · Mb(π)≥ B · Mb(π).

Notation 15. If A = (a1; a2; a3; . . . ; an−1; an) ∈ Mn×n(R) and we are going to multiply
it, immediately, by one of the two matrices Ma(π) or Mb(π), then we will also write:
• A = (a1; a2; . . . ; a+

|π |−1(n); . . . ; an) if σ(π(|π |−1(n)))=+1;

• A = (a1; a2; . . . ; a−
|π |−1(n); . . . ; an) otherwise.

The objective is to simplify the reading so that we know which columns will be modified
after the product in accordance with Lemma 13.

We are now ready to present formally the generalized Rauzy operator R. Let

D = {(λ, π) ∈3n
× Sσn : λn 6= λ|π |−1(n)}.

Then
R :D ⊂3n

× Sσn −→ 3n
× Sσn

T = (λ, π) → T ′ = (λ′, π ′)

is defined by

T ′ = (λ′, π ′)=
{
(Ma(π)

−1λ, a(π)) if λ|π |−1(n) < λn,

(Mb(π)
−1λ, b(π)) if λ|π |−1(n) > λn .

If T ′ is obtained from T by means of the operator a, T is said to be of type a, otherwise
T is of type b. In any case, T ′ is the Poincaré first return map induced by T on [0, l ′],
with l ′ = l −min{λn, λ|π |−1(n)}; see [1, Proposition 5]. Figure 3 shows the (6, 4)-IET
T = (λ, π) and the induced IETs T ′ = (λ′, π ′) and T ′′ = (λ′′, π ′′). Observe that, in this
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FIGURE 3. Example of an IET T and the induced IETs T ′ and T ′′.

example, λ= (λ1, λ2, λ3, λ4, λ5, λ6), π = (−3,−4,−5, 6, 1,−2), λ′ = (λ′1, λ
′

2, λ
′

3, λ
′

4,
λ′5, λ

′

6)= (λ1, λ2, λ3, λ4, λ5, λ6 − λ4), π ′ = a(π)= (−4,−5,−6,−2, 1,−3), λ′′ =
(λ′′1, λ

′′

2, λ
′′

3, λ
′′

4, λ
′′

5, λ
′′

6)= (λ
′

1, λ
′

2, λ
′

6, λ
′

3 − λ
′

6, λ
′

4, λ
′

5) and π ′′ = b(π ′)= (−4,−5, 3,
−6,−2, 1). Notice that Ma(π)

−1λ= λ′ and Mb(π)
−1λ′ = λ′′. In general, given λ=

(λ1, λ2, . . . , λn) ∈ Rn
+ and π ∈ Sσn , it can easily be checked that:

Ma(π)
−1λ= (λ1, λ2, . . . , λn−1, λn − λ|π |−1(n)); (5)

Mb(π)
−1λ= (λ1, λ2, . . . , λ|π |−1(n)−1, λ|π |−1(n) − λn, λn, λ|π |−1(n)+1, . . . , λn−1),

if σ(π(|π |−1(n)))=+1 and |π |−1(n) > 1, † (6)

Mb(π)
−1λ= (λ1 − λn, λn, λ2, . . . , λn−1),

if σ(π(|π |−1(n)))=+1 and |π |−1(n)= 1, (7)

Mb(π)
−1λ= (λ1, . . . , λ|π |−1(n)−1, λn, λ|π |−1(n) − λn, λ|π |−1(n)+1, . . . , λn−1),

if σ(π(|π |−1(n)))=−1 and |π |−1(n) > 1, ‡ (8)

Mb(π)
−1λ= (λn, λ1 − λn, λ2, . . . , λn−1),

if σ(π(|π |−1(n)))=−1 and |π |−1(n)= 1. (9)

Remark 16. It is worth claiming that if T = (λ, π) is a proper (n, k)-IET then R(T ) may
not be a proper (n, k′)-IET with k′ ∈ {k − 1, k, k + 1} (notice that if we apply a or b
with σ(π(n))= 1 or σ(π(|π |−1(n)))= 1, respectively, then the induced IET keeps the
same number of flips, but if σ(π(n))=−1 or σ(π(|π |−1(n)))=−1, then the induced
IET can have k − 1 or k + 1 flips). For example, take Ti = (λi , πi ), i ∈ {1, 2}, with π1 =

(3,−2,−5, 4, 1), π2 = (4, 1, 5, 3, 2) and λi chosen in such a way that Ti are both of type
a. Then R(Ti )= (λ

′

i , a(πi )), with a(π1)= (4,−3,−2, 5, 1) and a(π2)= (5, 1, 3, 4, 2).
In this case, T1 is a proper (5, 2)-IET and T2 is a proper (5, 0)-IET, both with four
discontinuity points. However, both R(T1) and R(T2) have three discontinuity points.

† If π(|π |−1(n))= n − 1 we will understand Mb(π)
−1λ= (λ1, λ2, . . . , λn−2, λn−1 − λn , λn).

‡ If π(|π |−1(n))= n − 1, Mb(π)
−1λ= (λ1, λ2, . . . , λn−2, λn , λn−1 − λn).
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Claim 17. If T = (λ, π) is minimal then T ∈D, otherwise λn = λ|π |−1(n) and there exist
j ∈ {1, 2, . . . , n} and⊗ ∈ {⊕,	} such that T (a⊗j )= an , which would imply that the orbit
of an is not dense.

The operators a and b induce in the set Sσ,∗n a directed graph structure whose vertices
are all the points from Sσ,∗n and the directed edges are arrows labelled by a and b. Given
π, π ′ ∈ Sσ,∗n , there exists an arrow labelled by a (respectively, b) from π to π ′ if and only if
a(π)= π ′ (respectively, b(π)= π ′). Any connected subgraph of this graph, Gn , is called a
Rauzy class (the Rauzy classes for standard permutations are studied in [18]). We remark
that we only take into account irreducible permutations because they are the only ones
for which the associated IETs can be minimal. Moreover, it is worth noticing that if π is
an irreducible standard permutation then a(π) and b(π) are irreducible, while this is not
always the case for non-standard irreducible permutations; observe that a(−4, 3, 2,−1)=
(1, 4, 3,−2).

A vector of operators is an element of {a, b}L , where L ∈ N or L =∞ (when L =∞,
{a, b}L = {a, b}N). An easy way of constructing Rauzy subgraphs is to take a vertex
π ∈ Sσ,∗n and to construct other vertices recursively by applying a vector of operators. The
Rauzy subgraph associated to π1 ∈ Sσ,∗n and v ∈ {a, b}L , Gπ1,v , is the graph of vertices
{πi }

L
i=1 satisfying vi (πi )= πi+1, 1≤ i ≤ L − 1, the edges of this graph being arrows

labelled by vi from πi to πi+1. Observe that any n-IET, T = (λ, π) ∈D, defines a Rauzy
subgraph in a natural way, the one associated to π and the vector of operators v defined by
Rauzy induction, that is, vi is a (respectively, b) if Ri−1(T ) is of type a (respectively, b);
we denote this subgraph by GT . We will say that T is infinitely inducible if v has infinite
dimension, that is, v ∈ {a, b}N.

LEMMA 18. Let γ ∈3n , π ∈ Sσ,∗n and v ∈ {a, b}. Then the IET S = (Mv(π)γ, π) is of
type v.

Proof. Write λ= Mv(π)γ . Assume first that v = a. Then λn = γn + γ|π |−1(n), λ|π |−1(n) =

γ|π |−1(n) and S is of type a. Second, if v = b we obtain λ|π |−1(n) = γ|π |−1(n) + γ|π |−1(n)+1,
while λn ∈ {γ|π |−1(n), γ|π |−1(n)+1}. Thus S is of type b in this case. �

COROLLARY 19. Let v ∈ {a, b}L for some L ∈ N and let π1 ∈ Sσ,∗n be such that Gπ1,v

has all its vertices in Sσ,∗n . Then there exists an IET T = (λ, π1) such that GT
= Gπ1,v.

Moreover, given γ ∈3n , there exists an IET T = (λ, π1) such that RL(T )= (γ, πL+1).

Proof. It suffices to take λ= Mv1(π1)Mv2(π2) · · · MvL (πL)γ . �

THEOREM 20. Let T = (λ1, π1) be an n-IET such that π1 ∈ Sσ,∗n , T infinitely inducible.
For any i ≥ 1, let Ri (λ1, π1)= (λ

i+1, πi+1). The Rauzy graph of T , GT , is the one
associated to π1 and v ∈ {a, b}N. Put

C(GT ) :=

∞⋂
i=1

Mv1(π1) · Mv2(π2) · · · · · Mvi (πi )3
n . (10)

Assume also that, for any i ∈ N, πi is irreducible. Then:
(1) λ1

∈ C(GT );
(2) if γ ∈ C(GT ) and S = (γ, π1), GT

= GS .
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Proof. Let us prove the first item. Observe that vi (πi )= πi+1 and λi
= Mvi (πi )λ

i+1

for any i ≥ 1. Thus λ1
= Mv1(π1)Mv2(π2) . . . Mvi (πi )λ

i+1 for any i ∈ N and then λ1
∈⋂

∞

i=1 Mv1(π1) · Mv2(π2) · · · · · Mvi (πi )3
n .

We now prove the second item. Since γ ∈ C(GT ), for any i ∈ N there exists γ i
∈

3n such that γ = Mv1(π1)Mv2(π2) . . . Mvi (πi )γ
i+1 and γ i

= Mvi (πi )γ
i+1. Now, by

Lemma 18, S = (γ, π1)= (Mv1(π1)γ
2, π1) is of type v1 and R(S)= (γ 2, v1(π1)).

Assume now that Ri (γ, π1)= (γ
i+1, πi+1)= (Mvi+1(πi+1)γ

i+2, πi+1), for any 1≤
i ≤ j . Then R j (γ, π1) is, by Lemma 18, of type v j+1. Therefore R j+1(γ, π1)=

(γ j+2, π j+2)= (Mv j+2(π j+2)γ
j+3, π j+2). By recurrence we obtain the result. �

The next result relates the cone introduced in (10) to two IETs, one being induced from
the other.

PROPOSITION 21. Let T = (λ1, π1) be an infinitely inducible n-IET such that πi ∈ Sσ,∗n

and Ri (λ1, π1)= (λ
i+1, πi+1) for any i ≥ 1. Assume that the Rauzy graph of T , GT , is

the one associated to π1 and v ∈ {a, b}N. Let S = (λ0, π0) be an IET such that π0 ∈ Sσ,∗n ,
R(S)= T , and π1 = v0(π0) for some v0 ∈ {a, b}. Then

Mv0(π0)C(GT )= C(GS).

Proof. In order to prove the first inclusion, take λ ∈ C(GT ). Then there exists λi
∈3n , i ∈

N, such that λ= (
∏i

j=1 Mv j (π j ))λ
i and Mv0(π0)λ= (

∏i
j=0 Mv j (π j ))λ

i for any i ∈ N.
Therefore Mv0(π0)C(GT )⊆ C(GS).

Let us proceed with the second inclusion. To this end take γ ∈ C(GS), so there exist γ i
∈

3n , i ∈ N ∪ {0}, such that γ = (
∏i

j=0 Mv j (π j ))γ
i for any i ≥ 0. Thus Mv0(π0)

−1γ =

(
∏i

j=1 Mv j (π j ))γ
i for any i ≥ 1. Then Mv0(π0)

−1γ ∈ C(GT ), γ ∈ Mv0(π0)C(GT ) and
finally Mv0(π0)C(GT )⊇ C(GS). �

In the following, given two reals a and b, we put 〈a, b〉 := (a, b) if b ≥ a, otherwise
〈a, b〉 := (b, a). Assume now thatµ is a non-negative non-zero finite invariant measure for
the minimal IET T = (λ, π). Since T is minimal, µ has no atoms and if O is a non-empty
open set then µ(O) > 0. Moreover, ϕµ(x) := µ(0, x) is a homeomorphism between I
and Iµ := (0, µ(I )). We next define Tµ as the map that makes the following diagram
commutative.

I T
> I

	

Iµ

ϕµ
∨ Tµ

> Iµ

ϕµ
∨

Thus Tµ ◦ ϕµ(x)= ϕµ ◦ T (x) for any x ∈ I .
Following [32, §28] (see also [30, §1]), we can adapt the proofs to the case of IETs with

flips. We implicitly use Claim 17.

THEOREM 22. Let T = (λ, π) be a minimal IET and let µ, µ∗ be non-negative non-zero
invariant measures. Denote by λ(µ) the positive vector having as i th component λ(µ)i =
µ(Ii ), i ∈ {1, 2, . . . , n}. Then:
(1) Tµ = (λ(µ), π);
(2) the types of T and Tµ coincide;
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(3) the subgraphs GT and GTµ coincide;
(4) if µ 6= µ∗, we have λ(µ) 6= λ(µ∗), where λ(µ∗) is defined in the same way as λ(µ).

Proof. Let T : D =
⋃n

i=1 Ii → [0, l] and let x ∈ Ii = (ai , ai+1). Then (recall the notation
used on page 3103):

ϕµ(T (x))=µ
((

0,
(|π |(i)−(σ (π(i))+1)/2∑

j=1

λ|π |−1( j)

)
+ σ(π(i))

[
x −

i−1∑
j=1

λ j

]))

=µ

((
0,
|π |(i)−(σ (π(i))+1)/2∑

j=1

λ|π |−1( j)

))

+ σ(π(i))µ
(〈|π |(i)−(σ (π(i))+1)/2∑

j=1

λ|π |−1( j),

(|π |(i)−(σ (π(i))+1)/2∑
j=1

λ|π |−1( j)

)

+ σ(π(i))
[

x −
i−1∑
j=1

λ j

]〉)
.

Notice that the invariance of µ by T implies

µ

((
0,
|π |(i)−(σ (π(i))+1)/2∑

j=1

λ|π |−1( j)

))
=µ

(|π |(i)−(σ (π(i))+1)/2⋃
j=1

I|π |−1( j)

)

=

|π |(i)−(σ (π(i))+1)/2∑
j=1

µ(I|π |−1( j))

=

k∑
j=1

λ(µ)|π |−1( j) (11)

and

µ

(〈|π |(i)−(σ (π(i))+1)/2∑
j=1

λ|π |−1( j),

(|π |(i)−(σ (π(i))+1)/2∑
j=1

λ|π |−1( j)

)

+ σ(π(i))
[

x −
i−1∑
j=1

λ j

]〉)
= µ

(
T
(( i−1∑

j=1

λ j , x
)))

. (12)

Equations (11)–(12) give

Tµ(ϕµ(x))= ϕµ(T (x))=
|π |(i)−(σ (π(i))+1)/2∑

j=1

λ(µ)|π |−1( j) + σ(π(i))µ
(( i−1∑

j=1

λ j , x
))

=

|π |(i)−(σ (π(i))+1)/2∑
j=1

λ(µ)|π |−1( j)

+ σ(π(i))
[
ϕµ(x)−

i−1∑
j=1

λ(µ) j

]
.

This proves part (1) of the theorem (cf. the definition of an IET introduced on page 3103).
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Turning to part (2), we begin by noticing that the Rauzy type of T and Tµ coincide.
Indeed, if T is of type a then T (I|π |−1(n))( In and µ(I|π |−1(n))= λ(µ)|π |−1(n) < λ(µ)n =

µ(In), and Tµ is also of type a. If, in exchange, T is of type b then T (I|π |−1(n))) In and
µ(I|π |−1(n))= λ(µ)|π |−1(n) > λ(µ)n = µ(In). Thus Tµ is also of type b.

We now prove part (3). Let T ′ : D′ =
⋃n

i=1 I ′i → [0, l ′] be the map induced by T =
(λ, π) by means of the Rauzy procedure, where l ′ = l −min{λn, λ|π |−1(n)}, and observe
that if we continue writing µ to denote the measure µ|[0,l ′], then µ is an invariant measure
for T ′ (notice also that T ′|I ′j is either T |I ′j or T 2

|I ′j
). We will now show that (T ′)µ =

(Tµ)′. We will use that Tµ = (λ(µ), π), T ′ = (λ′, c(π)), (Tµ)′ = (λ(µ)′, c(π)), (T ′)µ =
(λ′(µ), c(π)), where c is the type of T and Tµ; see part (2). First, we assume that c = a.
Then (see equation (5))

λ(µ)′i = λ(µ)i = µ(Ii )= µ(I ′i )= λ
′(µ)i , 1≤ i ≤ n − 1,

λ(µ)′n = λ(µ)n − λ(µ)|π |−1(n) = µ(In\T (I|π |−1(n)))= µ(I
′
n)= λ

′(µ)n .

Now, if c = b (see equations (6)–(9)) then

λ(µ)′i = λ(µ)i = µ(Ii )= µ(I ′i )= λ
′(µ)i , i < |π |−1(n),

λ(µ)′i = λ(µ)i−1 = µ(Ii−1)= µ(I ′i )= λ
′(µ)i , i > |π |−1(n)+ 1.

Moreover, if σ(π(|π |−1(n)))=−1 then

λ(µ)′
|π |−1(n) = λ(µ)n = µ(In)= µ(I ′|π |−1(n))= λ

′(µ)|π |−1(n),

λ(µ)′
|π |−1(n)+1 = λ(µ)|π |−1(n) − λ(µ)n = µ(I|π |−1(n))− µ(In)

=µ(I|π |−1(n))− µ(T
−1(In))

=µ(I|π |−1(n)\T
−1(In))= µ(I ′|π |−1(n)+1)= λ

′(µ)|π |−1(n)+1.

However, if σ(π(|π |−1(n)))=+1 then

λ(µ)′
|π |−1(n) = λ(µ)|π |−1(n) − λ(µ)n = µ(I|π |−1(n))− µ(In)

=µ(I|π |−1(n))− µ(T
−1(In))

=µ(I|π |−1(n)\T
−1(In))= µ(I ′|π |−1(n))= λ

′(µ)|π |−1(n),

λ(µ)′
|π |−1(n)+1 = λ(µ)n = µ(In)= µ(I ′|π |−1(n)+1)= λ

′(µ)|π |−1(n)+1.

In any case, we have proved that λ′(µ)= λ(µ)′, hence (T ′)µ = (Tµ)′, and reasoning by
recurrence we obtain that GT and GTµ coincide.

For part (4) one realizes that the proof for orientable IETs applies directly to IETs with
flips; see [32, Lemma 28.4]. �

The next result has been proved for orientable IETs only by Viana [32], but it also
holds for IETs with flips as mentioned in [12]. To fill the gap, in [1], Angosto and the
second author have related the generalized Keane condition, minimal IETs and infinitely
inducible IETs.

THEOREM 23. Let T = (λ1, π1) be an n-IET such that π1 ∈ Sσ,∗n , T infinitely inducible.
For any i ≥ 1, let Ri (λ1, π1)= (λ

i+1, πi+1). The Rauzy graph of T , GT , is the one
associated to π1 and v ∈ {a, b}N. Assume also that, for any i ∈ N, πi is irreducible. Then:
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(1) T satisfies the generalized Keane’s condition;
(2) R j (T ) is minimal for any j ∈ N ∪ {0};
(3) if C(GT ) is a half line, T is uniquely ergodic.

Proof. Parts (1) and (2) follow from [1]. We prove (3): let µ and µ∗ be two Borel, non-
negative, non-zero, finite, invariant measures and observe that by Theorem 22(3), GTµ =

GTµ∗ , and by Theorem 20(1), {λ(µ), λ(µ∗)} ⊂ C(GT ). Since C(GT ) is one-dimensional,
there exists κ ∈ R+ such that λ(µ∗)= κλ(µ)= λ(κµ), thus µ∗ = κµ, by Theorem 22(4),
and the claim follows. �

The core of a non-negative n × n matrix M is the set
⋂

j∈N M j3n with n ∈ N. We take
the next result from [26, Theorem 4.1]; the reader can also consult [30, Proposition 3.30
and Lemma 3.28] for a more general setting.

THEOREM 24. Let M be a positive n × n matrix. Then
⋂

j∈N M j3n
= {λv : λ ∈ R+} for

some (positive vector) v ∈3n .

The next result gives a method for constructing minimal IETs by means of Rauzy
graphs. Let Gπ1,v be the graph of vertices {πi }i∈N associated to π1 ∈ Sσ,∗n and v ∈ {a, b}N.
We say that Gπ1,v is periodic if there exists a minimal p ∈ N such that π j+p = π j and
v j+p = v j for any positive integer j . The period of Gπ1,v is p. The matrix associated to the
periodic Rauzy graph, Gπ1,v, of period p is MG

π1,v = Mv1(π1) · Mv2(π2) · · · · · Mvp (πp).

THEOREM 25. Let Gπ1,v be a periodic graph of period p associated to π1 ∈ Sσ,∗n and
v ∈ {a, b}N. Assume that the sth power of MG

π1,v is positive for some s ∈ N. Then:
(1) there exists λ1

∈3n such that |λ1
| = 1 and T = (λ1, π1) is minimal and uniquely

ergodic, and, in particular, C(GT ) is one-dimensional;
(2) the associated graph to T is Gπ1,v;
(3) R j (T ) is minimal, uniquely ergodic and self-induced for any j ∈ N ∪ {0}.

Proof. (1) First, we claim that
∞⋂

i=1

Mv1(π1) · Mv2(π2) · · · · · Mvi (πi )3
n
=

⋂
j∈N
(MG

π1,v)
s j3n

(notice that, by Theorem 24,
⋂

j∈N(M
G
π1,v)

s j3n
6= ∅). The inclusion ‘⊆’ is trivial. For the

other inclusion, take λ ∈
⋂

j∈N(M
G
π1,v)

s j3n . Then for any j ∈ N there exists λ j
∈3n such

that λ= (MG
π1,v

)s jλ j . Let us show that λ ∈
⋂
∞

i=1 Mv1(π1) · Mv2(π2) · · · · · Mvi (πi )3
n .

For i ∈ N, write i = spc + r, with 0≤ r < sp. Since (MG
π1,v

)s(c+1)λc+1
= λ, we deduce

[Mv1(π1) · Mv2(π2) · · · Mvp (πp)]
sc
· Mv1(π1) · Mv2(π2) · · · Mvr (πr )

· [Mvr+1(πr+1) · · · Mvsp (πsp)] · λ
c+1

= Mv1(π1) · Mv2(π2) · · · Mvi (πi ) · γ = λ,

with γ = (Mvr+1(πr+1) · · · Mvsp (πsp)) · λ
c+1
∈3n (see Claim 12). Then

λ ∈

∞⋂
i=1

Mv1(π1) · Mv2(π2) · · · · · Mvi (πi )3
n,

which proves the claim.
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Next, it suffices to apply Theorem 24 to obtain that
⋂

j∈N(M
G
π1,v)

s j3n is one-
dimensional. Therefore, by Theorem 23†, there exists a unique λ1, |λ1

| = 1, such that
T = (λ1, π) is minimal and uniquely ergodic, hence (1) follows.

Part (2) is a direct consequence of repeatedly applying Lemma 18.
Finally, we show part (3). Observe that for any j ∈ N, R j (T ) is minimal by

Theorem 23(2). Moreover, Proposition 21 implies that C(GT j
), j ∈ N, is one-dimensional

since C(GT ) is, and then Theorem 23(3) guarantees the unique ergodicity of T j . R j (T ) is
also self-induced since Gπ1,v is periodic too. �

Remark 26. Although in this paper we construct minimal self-induced IETs we now
introduce some permutations which do not generate self-induced IETs. Consider π ∈
Sσ,∗n such that π(1)=−n and π(n)=−1. Then a(π) and b(π) are both reducible.
Consequently, there is no λ ∈3n making T = (λ, π) self-induced. Observe that we can
choose π with k flips, 2≤ k ≤ n.

Also take τ ∈ Sσ,∗n satisfying τ(n − 1)= n, τ(n)=−1. Then it is a simple task to show
that b(τ )= τ , b(α) 6= τ for any α ∈ Sσ,∗n \{τ } and a(α) 6= τ for any α ∈ Sσ,∗n . Then the
existence of λ ∈3n making T = (λ, π) self-induced would imply that R j (T ) is always of
type b, but this is a contradiction with [1, Lemma 6]. Observe that τ can be chosen with k
flips, 1≤ k ≤ n − 1.

4. Proof of main theorem for n = 2m ≥ 8
We divide the proof of this case into three subsections. In §4.1 we build a periodic Rauzy
graph, and we show that its associated matrix is positive in §4.2. Finally, in §4.3, we
include the proof of main theorem for n = 2m.

4.1. The periodic Rauzy graph. We divide the proof of this section into several lemmas.
The idea is to construct a periodic Rauzy graph of period p = 4m + (2m − 3)(m − 1)
and to apply Theorem 25. Let zi

= (zi
r )

L i
r=1 ∈ {a, b}L i , with L i ∈ N and 1≤ i ≤ h,

for some integer h ≥ 2. We define the concatenation vector z= z1
∗ z2
∗ · · · zh

∈

{a, b}L1+L2+···+Lh by z j = zi
j−
∑

t<i L t
if
∑

t<i L t < j ≤
∑

t<i+1 L t for some i .
Let us take

π0 = (−3,−4,−5, . . . ,−[2m − 1], 2m, 1,−2), (13)

v1
= (a, a, a, . . . , a) ∈ {a, b}2m−3, (14)

v2
= (b, a, b, b, a, b) ∈ {a, b}6, (15)

v3
= (a, b, a, b, a, b . . . , a, b) ∈ {a, b}2m−6, (16)

v4
= (a, b, b︸︷︷︸

2

, a, a, a︸ ︷︷ ︸
3

, b, b, b, b︸ ︷︷ ︸
4

, . . . , b, . . . , b︸ ︷︷ ︸
2m−4

, a, . . . , a︸ ︷︷ ︸
2m−3

) ∈ {a, b}(2m−3)(m−1), (17)

v5
= (b, a, b) ∈ {a, b}3, (18)

v= v1
∗ v2
∗ v3
∗ v4
∗ v5
∈ {a, b}p, p = 4m + (2m − 3)(m − 1). (19)

† Observe that if π is a vertex of Gπ1,v, then π ∈ Sσ,∗n due to the periodicity of the graph, taking into account
that a reducible permutation is sent to another reducible permutation by the maps a and b.
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We can also define the vector w as the periodic concatenation of v, that is, the vector

w= (w j ) j ∈ {a, b}N, such that wi+kp = vi for any 1≤ i ≤ p and k ∈ N.

LEMMA 27. Let Gπ0,v1
be the graph of vertices {πi }

2m−3
i=0 , m ≥ 4. Then

π1 = (−4,−5,−6, . . . ,−[2m − 1],−2m,−2, 1,−3),

π2 = (−5,−6,−7, . . . ,−2m, 3,−2, 1,−4),

and, for any 3≤ j ≤ 2m − 3, we have†

π j = (−[3+ j],−[4+ j], . . . , −2m︸︷︷︸
2m−2− j

, j + 1, j, . . . , 3,−2, 1,−[2+ j]).

Proof. To compute the different values of the vertices of the graph, we must recall the
definition of a(·); see (2). Then it is easy to see that

π1 = a(−3,−4,−5, . . . ,−[2m − 1], 2m, 1,−2)

= (−4,−5,−6, . . . ,−[2m − 1],−2m,−2, 1,−3),

π2 = a(−4,−5,−6, . . . ,−[2m − 1],−2m,−2, 1,−3)

= (−5,−6,−7, . . . ,−2m, 3,−2, 1,−4).

The rest of the result follows by applying recurrence on j . For j = 3, we have

π3 = a(−5,−6,−7, . . . ,−[2m − 1],−2m, 3,−2, 1,−4)

= (−6,−7, . . . ,−2m, 4, 3,−2, 1,−5).

Now we assume that, for some j ≥ 3,

π j = (−[3+ j],−[4+ j], . . . , −2m︸︷︷︸
2m−2− j

, j + 1, j, j − 1, . . . , 3,−2, 1,−[2+ j]),

and we obtain

π j+1 = a(π j )= (−[4+ j],−[5+ j], . . . , −2m︸︷︷︸
2m−3− j

,

j + 2, j + 1, j, j − 1, . . . , 3,−2, 1,−[3+ j]),

which ends the proof. �

From the relations b(π2m−3)= π2m−2, a(π2m−2)= π2m−1, b(π2m−1)= π2m , b(π2m)=

π2m+1, a(π2m+1)= π2m+2 and b(π2m+2)= π2m+3, the next result easily follows (use the
definitions (2) and (3)).

LEMMA 28. Let Gπ2m−3,v2
be the graph of vertices {πi }

2m+3
i=2m−3, with m ≥ 4. Then:

π2m−2 = (2m − 1,−2m, 2m − 2, 2m − 3, . . . , 4, 3,−2, 1),

π2m−1 = (2m,−2, 2m − 1, 2m − 2, . . . , 5, 4,−3, 1),

π2m = (2m, 1,−2, 2m − 1, 2m − 2, . . . , 4,−3),

π2m+1 = (2m,−3, 1,−2, 2m − 1, 2m − 2, . . . , 5, 4),

π2m+2 = (5,−3, 1,−2, 2m, 2m − 1, 2m − 2, . . . , 7, 6, 4),

π2m+3 = (5,−3, 1,−2, 2m, 4, 2m − 1, 2m − 2, . . . , 7, 6).
† The underbrace in the following formula indicates the position where the value −2m is placed.
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LEMMA 29. Let Gπ2m+3,v3
be the graph of vertices {πi }

4m−3
i=2m+3, m ≥ 5. Then, for any 1≤

j ≤ m − 4, we have†

π(2m+3)+(2 j−1) = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2 j + 5, 2 j + 2,

2m︸︷︷︸
7+2( j−1)

, 2m − 1, 2m − 2, . . . , 2 j + 7, 2 j + 6, 2 j + 4)

and

π(2m+3)+2 j = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2 j + 5, 2 j + 2, 2m︸︷︷︸
7+2( j−1)

,

2 j + 4, 2m − 1, 2m − 2, . . . , 2 j + 7, 2 j + 6),

where, in both cases, 1≤ k ≤ j. Moreover, for m ≥ 4,

π4m−4 = π4m−3

= (5,−3, 1,−2, 7, 4, . . . , 2s + 5, 2s + 2, . . . , 2m − 1, 2m − 4, 2m, 2m − 2),

with 1≤ s ≤ m − 3.

Proof. If the first equation is true then the second follows since π(2m+3)+2 j =

b(π(2m+3)+(2 j−1)). Let us prove the first equality by induction on j . For j = 1 the formula
is valid because

π(2m+3)+1 = a(π2m+3)= (5,−3, 1,−2, 7, 4, 2m, 2m − 1, 2m − 2, . . . , 9, 8, 6).

Assume now that the equation is true for some j (recall that the second one is also valid).
Then

π(2m+3)+(2 j+1) = a(π(2m+3)+2 j )

= (5,−3, 1,−2, 7, 4, 9, 6, 11, 8, 13, 10, . . . , 2 j + 5, 2 j + 2,

2 j + 7︸ ︷︷ ︸
7+2( j−1)

, 2 j + 4, 2m︸︷︷︸
7+2 j

, 2m − 1, 2m − 2, . . . , 2 j + 9, 2 j + 8, 2 j + 6),

which proves that the equalities of the statement are true for π(2m+3)+(2 j−1) and
π(2m+3)+(2 j), 1≤ j ≤ m − 4. Finally, since π4m−4 = a(π4m−5) and π4m−3 = b(π4m−4),
it is easy to see that both permutations are equal to

(5,−3, 1,−2, 7, 4, . . . , 2s + 5, 2s + 2, . . . , 2m − 1, 2m − 4, 2m, 2m − 2),

with 1≤ s ≤ m − 3. �

We already know that

π4m−3 = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 3, 2m − 6,

2m − 1, 2m − 4, 2m, 2m − 2),

with 1≤ k ≤ m − 3.

† Observe that the definitions of π(2m+3)+(2 j−1) and π(2m+3)+(2 j) do not apply in the case m = 4. In this
situation, only the expressions for π4m−4 and π4m−3 make sense.
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In order to give a new representation of the vector v4 (see (19) and (17)) and to simplify
the writing in next lemma, let us introduce some notation. For j ∈ N, we define the blocks

a j
:= (a, . . . , a) ∈ {a, b} j , (20)

b j
:= (b, . . . , b) ∈ {a, b} j , (21)

and also

c j
:= a2 j−1

∗ b2 j
∈ {a, b}4 j−1. (22)

In this way, it is an easy task to check that

v4
= c1
∗ c2
∗ c3
∗ · · · ∗ cm−3

∗ cm−2
∗ a2m−3,

where the symbol ∗ denotes the concatenation of vectors.
We will write

c j
:= (c j

1 , c j
2 , . . . , c j

2 j−1, c j
2 j , . . . , c j

4 j−1), (23)

so c j
i is the i th coordinate of the vector c j .

It is an easy task to check that v4
= c1
∗ c2
∗ c3
∗ · · · ∗ cm−3

∗ cm−2
∗ a2m−3. We will

construct the graph, Gπ4m−3,v4
, of vertices {πi }

4m−3+(2m−3)(m−1)
i=4m−3 . We will also denote the

vertices by

{δ j,i : 1≤ j ≤ m − 2 and 1≤ i ≤ 4 j − 1} ∪ {εi : 1≤ i ≤ 2m − 3}, (24)

where
• δ1,1 = c1

1(π4m−3)= a(π4m−3) and δ1,i = c1
i (δ1,i−1)= b(δ1,i−1) if i = 2, 3 (recall

that c1
= (a, b, b));

• δ j,1 = c j
1(δ j−1,4 j−5), 2≤ j ≤ m − 2 (that is, δ j,1 = a(δ j−1,4 j−5));

• δ j,i = c j
i (δ j,i−1) for 2≤ i ≤ 4 j − 1, 2≤ j ≤ m − 2, so δ j,i = a(δ j,i−1) if 2≤ i ≤

2 j − 1 and δ j,i = b(δ j,i−1) if 2 j ≤ i ≤ 4 j − 1;
• ε1 = a(δm−2,4m−9) and εi = a(εi−1) if 2≤ i ≤ 2m − 3.
Roughly speaking, δ j,i is the permutation obtained from π4m−3 by applying the vector of
operators c1, . . . , c j−1 and the first i components of c j ; εi is the permutation obtained
from π4m−3 by applying c1, . . . , cm−2 and i times the operator a.

LEMMA 30. The components of the Rauzy graph Gπ4m−3,v4
are given in the following

items.
C1. For m ≥ 4, the permutations appearing when applying the operators of c1 on π4m−3

are†

π4m−2 = δ1,1 = a(π4m−3)

= (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 3, 2m − 6︸ ︷︷ ︸
2m−8 components

,

2m, 2m − 4, 2m − 1, 2m − 2),

π4m−1 = δ1,2 = b(π4m−2)

† The block of 2m − 8 components obviously disappears when m = 4.
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= (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 3, 2m − 6︸ ︷︷ ︸
2m−8 components

,

2m, 2m − 2, 2m − 4, 2m − 1),

π4m = δ1,3 = b(π4m−1)

= (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 3, 2m − 6︸ ︷︷ ︸
2m−8 components

,

2m, 2m − 1, 2m − 2, 2m − 4),

with 1≤ k ≤ m − 4.
C j . For m ≥ 5, the permutations obtained by applying the operators of the vector c j ,

with 2≤ j ≤ m − 3, are the following†:

δ j,s = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

2m − 2 j + s + 1, 2m − 2 j − 2,

2m − 2 j + s, . . . , 2m − 2 j + s − l, . . . , 2m − 2 j + 1︸ ︷︷ ︸
s components

,

2m︸︷︷︸
2m−2 j+s+1

, 2m − 1, 2m − 2, . . . , 2m − 2 j + s + 3, 2m − 2 j + s + 2︸ ︷︷ ︸
2 j−s−2 components

,

2m − 2 j)

(where 0≤ l ≤ s − 1),

δ j,2 j−2 = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

2m − 1, 2m − 2 j − 2, 2m − 2, 2m − 3, . . . , 2m − 2 j + 2, 2m − 2 j + 1,

2m︸︷︷︸
2m−1

, 2m − 2 j),

δ j,2 j−1 = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

2m︸︷︷︸
2m−2 j−1

, 2m − 2 j − 2, 2m − 1, 2m − 2, . . . , 2m − 2 j),

δ j,2 j+i = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

2m︸︷︷︸
2m−2 j−1

, 2m − 2 j + i, . . . , 2m − 2 j + i − q, . . . , 2m − 2 j︸ ︷︷ ︸
2m−2 j+i

,

2m − 2 j − 2, 2m − 1, 2m − 2, . . . , 2m − 2 j + i + 1)

(where 0≤ q ≤ i ),

δ j,4 j−1 = (5,−3, 1,−2, 7, 4, . . . , 2k + 5, 2k + 2, . . . , 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

† In the case Cm−3 it is necessary to take into account that, in the expressions for δ j,s , δ j,2 j−2, δ j,2 j−1, δ j,2 j+i
and δ j,4 j−1, the group 7, 4, 9, 6, 11, 8, . . . , 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸

2m−2 j−6 components

disappears.
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2m︸︷︷︸
2m−2 j−1

, 2m − 1, 2m − 2, . . . , 2m − 2 j︸ ︷︷ ︸
2m−1

, 2m − 2 j − 2),

with 1≤ s < 2 j − 2, 0≤ i ≤ 2 j − 2 and 1≤ k ≤ m − j − 3.
Cm−2. For m ≥ 4, the permutations obtained by applying the vector cm−2 are given by†

δm−2,s = (s + 5,−3, 1,−2, s + 4, . . . , s + 4− h, . . . , 5,

2m︸︷︷︸
s+5

, 2m − 1, . . . , s + 7, s + 6︸ ︷︷ ︸
2m−s−6 components

, 4),

δm−2,2m−5 = (2m,−3, 1,−2, 2m − 1, 2m − 2, . . . , 7, 6, 5, 4),

δm−2,2m−5+i = (2m, 3+ i, . . . , 3+ i − p, . . . , 4︸ ︷︷ ︸
i components

, −3︸︷︷︸
2+i

, 1,−2,

2m − 1︸ ︷︷ ︸
5+i

, 2m − 2, . . . , i + 4︸ ︷︷ ︸
2m−i−5components

),

δm−2,4m−9 = (2m, 2m − 1, 2m − 2, . . . , 4,−3, 1,−2),

where 1≤ s ≤ 2m − 6, 0≤ h ≤ s − 1, and 1≤ i ≤ 2m − 5, 0≤ p ≤ i − 1.
A2m−3. Finally, for m ≥ 4 we apply a2m−3 to obtain

εi = (−2, . . . ,−(2+ j), . . . ,−[i + 1]︸ ︷︷ ︸
i components

, 2m︸︷︷︸
i+1

, 2m − 1, 2m − 2, . . . , i + 4︸ ︷︷ ︸
2m−i−4components

,

−[i + 3], 1,−[i + 2]) with 1≤ i ≤ 2m − 4, 0≤ j ≤ i − 1,

ε2m−3 = (−2,−3,−4, . . . ,−[2m − 3],−[2m − 2],−2m︸︷︷︸
2m−2

, 1,−[2m − 1]).

Proof. It is straightforward to see that the result is true for C1 and it is a simple matter to
prove that C2 holds, so we omit omit the proofs‡. Next, we prove by induction that C j

holds true for 2< j < m − 3 (then we implicitly assume that m > 6). Let us suppose that
C j holds for some 2≤ j < m − 4, m > 6, and prove the validity of C j+1. Since

δ j,4 j−1 = (5,−3, 1,−2,

7, 4, 9, 6, . . . , 2m − 2 j − 3, 2m − 2 j − 6, 2m − 2 j − 1, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

2m︸︷︷︸
2m−2 j−1

, 2m − 1, 2m − 2, . . . , 2m − 2 j︸ ︷︷ ︸
2m−1

, 2m − 2 j − 2),

according to the definition of a, with σ(π(|π |−1(n)))=+1, we find

δ j+1,1 = a(δ j,4 j−1)= (5,−3, 1,−2,

7, 4, 9, 6, . . . , 2m − 2 j − 3, 2m − 2 j − 6, 2m − 2 j, 2m − 2 j − 4︸ ︷︷ ︸
2m−2 j−6 components

,

2m − 2 j − 1︸ ︷︷ ︸
2m−2 j−1

, 2m, 2m − 1, . . . , 2m − 2 j + 1︸ ︷︷ ︸
2m−1

, 2m − 2 j − 2)

† Observe that the blocks of 2m − i − 5 and 2m − s − 6 components can have length 0.
‡ Observe that if m = 4 then the item C j does not appear and we are implicitly assuming m > 4 when proving
the validity of C j .

https://doi.org/10.1017/etds.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.5


Minimal interval exchange transformations with flips 3123

= (5,−3, 1,−2, 7, 4, 9, 6, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m − 2( j + 1)+ 1+ 1, 2m − 2( j + 1)− 2, 2m − 2( j + 1)+ 1, 2m︸︷︷︸
2m−2( j+1)+1+1

,

2m − 1, 2m − 2, . . . , 2m − 2( j + 1)+ 1+ 3, 2m − 2( j + 1)+ 1+ 2,

2m − 2( j + 1)),

therefore δ j+1,1 follows the pattern of the induction. This allows us to apply induction
on s, so we will prove that if the formula δ j+1,s holds for 1≤ s < 2( j + 1)− 3, then the
formula remains valid for δ j+1,s+1. Indeed, by definition of a,

δ j+1,s+1 = a(δ j+1,s)= a(5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m − 2( j + 1)+ s + 1, 2m − 2( j + 1)− 2,

2m − 2( j + 1)+ s, . . . , 2m − 2( j + 1)+ s − l, . . . , 2m − 2( j + 1)+ 1︸ ︷︷ ︸
s components

2m︸︷︷︸
2m−2( j+1)+s+1

,

2m − 1, 2m − 2, . . . , 2m − 2( j + 1)+ s + 3, 2m − 2( j + 1)+ s + 2︸ ︷︷ ︸
2( j+1)−s−2 components

,

2m − 2( j + 1))

= (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m − 2( j + 1)+ (s + 1)+ 1, 2m − 2( j + 1)− 2,

2m − 2( j + 1)+ (s + 1), . . . , 2m − 2( j + 1)+ (s + 1)− l, . . . ,

2m − 2( j + 1)+ 1+ 1 2m − 2( j + 1)+ 1︸ ︷︷ ︸
2m−2( j+1)+s+1

,

2m, 2m − 1, . . . , 2m − 2( j + 1)+ (s + 1)+ 3, 2m − 2( j + 1)+ (s + 1)+ 2︸ ︷︷ ︸
2( j+1)−s−2 components

,

2m − 2( j + 1)),

that is,

δ j+1,s+1 = (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m − 2( j + 1)+ (s + 1)+ 1, 2m − 2( j + 1)− 2,

2m − 2( j + 1)+ (s + 1), . . . , 2m − 2( j + 1)+ (s + 1)− l, . . .
. . . , 2m − 2( j + 1)+ 1+ 1, 2m − 2( j + 1)+ 1, 2m − 2( j + 1)+ 1︸ ︷︷ ︸

2m−2( j+1)+s+1

,

 s + 1 components

2m︸︷︷︸
2m−2( j+1)+(s+1)+1

, 2m − 1, . . . , 2m − 2( j + 1)+ (s + 1)+ 3, 2m − 2( j + 1)+ (s + 1)+ 2︸ ︷︷ ︸
2( j+1)−(s+1)−2 components

,

2m − 2( j + 1)),

so δ j+1,s+1 satisfies the corresponding formula for the first part of C j+1. Thus we finish
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the induction on s. In particular, for s = 2( j + 1)− 3 we have proved that

δ j+1,2( j+1)−3 = (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m − 2, 2m − 2( j + 1)− 2,

2m − 3, 2m − 4, . . . , 2m − 2 j, 2m − 2 j − 1︸ ︷︷ ︸
2( j+1)−3 components

,

2m︸︷︷︸
2m−2

, 2m − 1︸ ︷︷ ︸
1 component

, 2m − 2( j + 1)).

Applying the operator a twice, we find

δ j+1,2( j+1)−2 = (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m − 1, 2m − 2( j + 1)− 2, 2m − 2, 2m − 3, . . . , 2m − 2 j + 1,

2m − 2 j, 2m − 2( j + 1)+ 1, 2m︸︷︷︸
2m−1

, 2m − 2( j + 1))

and

δ j+1,2( j+1)−1 = (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m︸︷︷︸
2m−2( j+1)−1

, 2m − 2( j + 1)− 2, 2m − 1, 2m − 2, . . . ,

2m − 2( j + 1)+ 4, 2m − 2( j + 1)+ 3,

2m − 2( j + 1)+ 2, 2m − 2( j + 1)+ 1, 2m − 2( j + 1)),

which ends part of the inductive process of the proof for C j+1, with 2≤ j < m − 4. It
remains to obtain the corresponding formulas for δ j+1,2( j+1)+i (0≤ i ≤ 2( j + 1)− 2) and
for δ j+1,4( j+1)−1. To this purpose, we now apply consecutively the operator b and do
induction on i . To start,

δ j+1,2( j+1) = b(δ j+1,2( j+1)−1)= b(5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m︸︷︷︸
2m−2( j+1)−1

, 2m − 2( j + 1)− 2, 2m − 1, 2m − 2, . . . ,

2m − 2( j + 1)+ 4, 2m − 2( j + 1)+ 3,

2m − 2( j + 1)+ 2, 2m − 2( j + 1)+ 1, 2m − 2( j + 1))

= (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m︸︷︷︸
2m−2( j+1)−1

, 2m − 2( j + 1), 2m − 2( j + 1)− 2,

2m − 1, 2m − 2, . . . , 2m − 2( j + 1)+ 4,

2m − 2( j + 1)+ 3, 2m − 2( j + 1)+ 2, 2m − 2( j + 1)+ 1).
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Hence, the formula δ j+1,2( j+1)+i is correct for i = 0. The induction for any other value of
i follows a direct (and tedious) procedure, so we omit it. Consequently,

δ j+1,2( j+1)+2( j+1)−2 = (5,−3, 1,−2, 7, 4, . . . , 2m − 2 j − 3, 2m − 2 j − 6︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m︸︷︷︸
2m−2( j+1)−1

, 2m − 2, 2m − 3, . . . , 2m − 2( j + 1)︸ ︷︷ ︸
2m−2

,

2m − 2( j + 1)− 2, 2m − 1).

Finally,

δ j+1,2( j+1)+2( j+1)−1 = b(δ j+1,2( j+1)+2( j+1)−2)

= (5,−3, 1,−2, 7, 4, . . . , 2m − 2( j + 1)− 1, 2m − 2( j + 1)− 4︸ ︷︷ ︸
2m−2( j+1)−6 components

,

2m︸︷︷︸
2m−2( j+1)−1

, 2m − 1, 2m − 2, 2m − 3, . . . , 2m − 2( j + 1)︸ ︷︷ ︸
2m−1

,

2m − 2( j + 1)− 2).

This ends the inductive proof of the effect of the vectors c j for j = 2, . . . , m − 4.
Concerning the effect of cm−3, we initiate the computations with the permutation

δm−4,4(m−4)−1 = (5,−3, 1,−2, 7, 4, 2m, 2m − 1, 2m − 2, . . . , 10, 9, 8, 6)

to firstly obtain

δm−3,1 = a(δm−4,4(m−4)−1)= (5,−3, 1,−2, 8, 4, 7, 2m, 2m − 1, . . . , 10, 9, 6),

which coincides with the formula for the statement for j = m − 3. The rest of the proof
for the effect of the block cm−3 is similar to that of c j , 1≤ j ≤ m − 4; merely take
into account that the block 7, 4, . . . , 2m − 2 j − 1, 2m − 2 j − 4 disappears. This ends
definitively the proof of the part C j , j = 2, . . . , m − 3.

To prove Cm−2 we first assume m ≥ 5. Our initial permutation is δm−3,4(m−3)−1,
namely

δm−3,4(m−3)−1 = (5,−3, 1,−2, 2m, 2m − 1, 2m − 2, . . . , 8, 7, 6, 4).

Then the first components of this part are

δm−2,1 = a(δm−3,4(m−3)−1)= (6,−3, 1,−2, 5, 2m, 2m − 1, . . . , 8, 7︸ ︷︷ ︸
2m−7 components

, 4),

δm−2,2 = a(δm−2,1)= (7,−3, 1,−2, 6, 5, 2m, 2m − 1, . . . , 9, 8︸ ︷︷ ︸
2m−8 components

, 4),

δm−2,3 = a(δm−2,2)= (8,−3, 1,−2, 7, 6, 5, 2m, 2m − 1, . . . , 10, 9︸ ︷︷ ︸
2m−9 components

, 4),

and it is a short exercise to check by induction the formulas of the elements appearing in
Cm−2. A special case is m = 4 for which the effect of c j does not apply. Then we provide
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the exact effect of cm−2 on π16 = δ1,3 = (5,−3, 1,−2, 8, 7, 6, 4) in order to prove this
particular case, avoiding the proof by recurrence:

(5,−3, 1,−2, 8, 7, 6, 4) a
> (6,−3, 1,−2, 5, 8, 7, 4) a

> (7,−3, 1,−2, 6, 5, 8, 4)

(8, 5, 4,−3, 1,−2, 7, 6) <b
(8, 4,−3, 1,−2, 7, 6, 5) <b

(8,−3, 1,−2, 7, 6, 5, 4)

a
∨

(8, 6, 5, 4,−3, 1,−2, 7)

b
∨

b
> (8, 7, 6, 5, 4,−3, 1,−2)

Once we have proved the parts C1–C j –Cm−2, A2m−3 follows immediately; it suffices
to apply the definition of the operator a. Indeed,

ε1 = a(δm−2,4m−9)= a((2m, 2m − 1, 2m − 2, . . . , 4,−3, 1,−2))

= (−2, 2m, 2m − 1, . . . , 5,−4, 1,−3),

ε2 = a(ε1)= a((−2, 2m, 2m − 1, . . . , 5,−4, 1,−3))

= (−2,−3, 2m, 2m − 1, . . . , 6,−5, 1,−4),

which proves the validity of the proposed expressions for ε1 and ε2. Moreover, for any
2≤ i ≤ 2m − 5, from

εi+1 = a(εi )

= a((−2, . . . ,−(2+ j), . . . ,−[i + 1]︸ ︷︷ ︸
i components

, 2m︸︷︷︸
i+1

, 2m − 1, 2m − 2, . . . , i + 4︸ ︷︷ ︸
2m−i−4 components

,

−[i + 3], 1,−[i + 2]))

= (−2, . . . ,−(2+ j), . . . ,−[i + 1],−[i + 2]︸ ︷︷ ︸
i+1 components

, 2m︸︷︷︸
i+2

,

2m − 1, 2m − 2, . . . , i + 5︸ ︷︷ ︸
2m−i−5 components

,−[i + 4], 1,−[i + 3])

we deduce that that the expressions for εi remain true for 2≤ i ≤ 2m − 4. Finally, ε2m−3

also applies:

ε2m−3 = a(ε2m−4)

= a((−2,−3,−4, . . . ,−[2m − 3], 2m︸︷︷︸
2m−3

,−[2m − 1], 1,−[2m − 2]))

= (−2,−3,−4, . . . ,−[2m − 3],−[2m − 2],−2m︸︷︷︸
2m−2

, 1,−[2m − 1]). �

LEMMA 31. Let r = 4m − 3+ (2m − 3)(m − 1) and let Gπr ,v5
be the graph of vertices

{πi }
r+3
i=r , where πr = πε2m−3 . Then:

πr+1 = (−2,−3,−4,−5, . . . ,−[2m − 2], 2m − 1,−2m, 1),

πr+2 = (−3,−4,−5, . . . ,−[2m − 1], 2m,−2, 1),

πr+3 = (−3,−4,−5, . . . ,−[2m − 1], 2m, 1,−2).

https://doi.org/10.1017/etds.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.5


Minimal interval exchange transformations with flips 3127

Proof. This follows by checking that b(πr )= πr+1, a(πr+1)= πr+2, b(πr+2)= πr+3. �

As a consequence of the previous lemmas we obtain the following result.

PROPOSITION 32.
(1) The Rauzy subgraph Gπ0,v is periodic, where π0 and v are given by (13) and (19),

respectively.
(2) In the vertices of Gπ0,v there are permutations with f flips, 2≤ f ≤ 2m − 1,

satisfying the conditions π( j + 1)− π( j) 6= 1 and π( j + 1)− π( j) 6≡ 1 mod (n),
for any j ∈ {1, 2, . . . , n}, in Remarks 2 and 3, respectively. In particular, these
permutations can be found in the set {π j }

2m−2
j=1 .

Proof. The first statement follows easily from Lemmas 27–31 since π4m+(2m−3)(m−1) =

π0.
Concerning the second statement, observe that from Lemma 27 the permutations π j ,

1≤ j ≤ 2m − 3, are in Gπ0,v. Moreover, π j has 2m − j flips, 1≤ j ≤ 2m − 3, and then
in the graph Gπ0,v there are permutations with f flips, 3≤ f = 2m − j ≤ 2m − 1. Note
finally that π2m−2 has two flips and that π j satisfies the conditions in Remarks 2 and 3 for
any 1≤ j ≤ 2m − 2. �

In the Rauzy subgraph Gπ0,v there are no permutations with 2m flips or 1 flip. The next
results give such permutations and show that they belong to the same Rauzy class as Gπ0,v.
The proofs are obtained simply by applying the operators a and b.

LEMMA 33. Let τ1, τ2 ∈ Sσ2m be the following signed permutations

τ1 = (−2,−3,−4, . . . ,−[2m − 2],−2m,−1,−[2m − 1]),

τ2 = (−2,−3,−4, . . . ,−[2m − 2], 2m − 1,−2m,−1).

Then we have the Rauzy subgraph

τ1
b
> τ2

a
> π0 = (−3,−4,−5, . . . ,−[2m − 1], 2m, 1,−2).

LEMMA 34. Let α1, α2 ∈ Sσ2m be the signed permutations

α1 = (2m − 1, 1, 2m, 2m − 2, 2m − 3, . . . , 6, 5, 4, 3,−2),

α2 = (2m, 1,−2, 2m − 1, 2m − 2, . . . , 7, 6, 5, 4,−3).

Then, we have the Rauzy subgraph

α1
a
> α2

b
> π2m+1 = (2m,−3, 1,−2, 2m − 1, 2m − 2, . . . , 7, 6, 5, 4).

4.2. Study of the matrix associated to the graph Gπ0,v of §4.1. It is a difficult task to
build the whole matrix MG

π0,v explicitly. We only need to prove that a certain power of this
matrix is positive. Thus we are only interested in showing that some entries of MG

π0,v are
non-zero.

Since MG
π0,v = MG

π0,v1 MG
π2m−3,v2 MG

π2m+3,v3 MG
π4m−3,v4 MG

πr ,v5 , with r = 4m − 3+
(2m − 3)(m − 1), we divide this section into several subsections to build, step by
step, some relations between MG

π0,v and a known matrix. It is useful to revise Notation 15
in order to clarify the meaning of the superindices, + and −, appearing in some columns
of the following matrices.
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4.2.1. The matrix MG
π0,v1 . By definition

MG
π0,v1 =W · Ma(π0) · Ma(π1) · Ma(π2) · · · · · Ma(π2m−5) · Ma(π2m−4),

where W is the n × n identity matrix W = (e1; e2; . . . ; e+2m−2; e2m−1; e2m).

LEMMA 35. MG
π0,v1 = (e

−

1 ; e2,2m; e3,2m; e4,2m; . . . ; e2m−2,2m; e2m−1; e2m).

Proof. By Lemma 27, |π j |
−1(−2m)= 2m − 2− j , 1≤ j ≤ 2m − 4; moreover,

|π0|
−1(2m)= 2m − 2. Applying Lemma 13(2) concludes the proof. �

4.2.2. The matrix MG
π0,v1∗v2 . By the definition of v2 we have

MG
π0,v1∗v2 =U · Mb(π2m−3) · Ma(π2m−2) · Mb(π2m−1) · Mb(π2m)

· Ma(π2m+1) · Mb(π2m+2),

where U is the n × n matrix

U := (u−1 ; u2; . . . ; u2m)= (e−1 ; e2,2m; e3,2m; e4,2m; . . . ; e2m−2,2m; e2m−1; e2m). (25)

LEMMA 36. MG
π0,v1∗v2 = (u1,2m,2m−3; u1,2m,2m−2; u1,2m,2m−1; u1,2m−1; u+2 ; u2,2m−3; u3;

u4; . . . ; u2m−4).

Proof. It is necessary to use Lemmas 27 and 28 to locate |π j |
−1(2m), 2m − 3≤ j ≤ 2m +

2 (also notice that σ(π2m−3(|π2m−3|
−1(2m)))=−1 whereas σ(π j (|π j |

−1(2m)))=+1 if
j = 2m − 1, 2m, 2m + 2). By using Lemma 13,

U1 =U · Mb(π2m−3)= (u1,2m; u−1 ; u2; u3; . . . ; u2m−1),

U2 =U1 · Ma(π2m−2)= (u+1,2m; u1,2m−1; u2; u3; . . . ; u2m−1),

U3 =U2 · Mb(π2m−1)= (u+1,2m; u1,2m,2m−1; u1,2m−1; u2; u3; . . . ; u2m−2),

U4 =U3 · Mb(π2m)= (u+1,2m; u1,2m,2m−2; u1,2m,2m−1; u1,2m−1; u2; u3; . . . ; u2m−3),

U5 =U4 · Ma(π2m+1)

= (u1,2m,2m−3; u1,2m,2m−2; u1,2m,2m−1; u1,2m−1; u+2 ; u3; . . . ; u2m−3),

and finally

T =U6 =U5 · Mb(π2m+2)

= (u1,2m,2m−3; u1,2m,2m−2; u1,2m,2m−1; u1,2m−1; u+2 ; u2,2m−3; u3; . . . ; u2m−4). �

4.2.3. The matrix MG
π0,v1∗v2∗v3 . In this case

MG
π0,v1∗v2∗v3 = T · Ma(π2m+3) · Mb(π2m+4) · Ma(π2m+5)

· Mb(π2m+6) · · · · · Ma(π4m−5) · Mb(π4m−4),

where T is the n × n matrix

T = (t1; t2; t3; t4; t+5 ; t6; . . . ; t2m) (26)

:= (u1,2m,2m−3; u1,2m,2m−2; u1,2m,2m−1; u1,2m−1; u+2 ; u2,2m−3; u3; . . . ; u2m−4).
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Remark 37. Notice that in terms of the values of the identity matrix, T can be written as

T = (u1,2m,2m−3; u1,2m,2m−2; u1,2m,2m−1; u1,2m−1; u+2 ; u2,2m−3; u3; . . . ; u2m−4)

= (e1,2m + e2m−3,2m; e1,2m + e2m−2,2m; e1,2m,2m−1; e1,2m−1; e2,2m;

e2,2m + e2m−3,2m; e3,2m; e4,2m; . . . ; e2m−4,2m)

≥ (e1,2m,2m−3; e1,2m,2m−2; e1,2m,2m−1; e1,2m−1; e2,2m; e2,2m,2m−3; e3,2m;

e4,2m; . . . ; e2m−4,2m). � (27)

LEMMA 38.

MG
π0,v1∗v2∗v3 = (t1; t2; t3; t4; t5,2m; t6;

t7,2m−1; t7,2m; . . . ; t5+l,2m+1−l; t5+l,2m+2−l; . . . ; tm+2,m+4; tm+2,m+5;

t+m+3; tm+3,m+4),

with l = 2, 3, . . . , m − 3.

Proof. We proceed by induction. Recall that σ(π j (|π j |
−1(2m)))=+1 for all j ∈ {2m +

3, . . . , 4m − 4}; see Lemmas 28 and 29. We will prove the following formulas for any
2≤ j ≤ m − 3:

A j := T ·
( j−2∏

h=0

Ma(π2m+3+2h)Mb(π2m+3+2h+1)

)
· Ma(π2m+3+2( j−1)) (28)

= (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; . . . ; t5+s,2m+1−s; t5+s,2m+2−s; . . . ;

t5+ j,2m+1− j ; t5+ j,2m+2− j ; t+6+j;︸︷︷︸
5+2 j

t7+ j ; . . . ; t2m+1− j ),

B j := T ·
( j−1∏

h=0

Ma(π2m+3+2h)Mb(π2m+3+2h+1)

)
= A j · Mb(π2m+3+2 j−1) (29)

= (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; . . . ; t5+s,2m+1−s; t5+s,2m+2−s; . . . ;

t5+ j,2m+1− j ; t5+ j,2m+2− j ; t+6+j;︸︷︷︸
5+2 j

t6+ j,2m+1− j ; t7+ j ; t8+ j ; . . . ; t2m− j ), (30)

where the range of the value s is 2, . . . , j . Additionally, by using Lemmas 28, 29 and 13
(observe that |π2m+3|

−1(2m)= 5 and |π2m+4|
−1(2m)= 7), we define and compute

A1 := T · Ma(π2m+3)= (t1; t2; t3; t4; t5,2m; t6; t+7 ; t8; . . . ; t2m︸ ︷︷ ︸
2m−7 columns

),

B1 := A1 · Mb(π2m+4)= (t1; t2; t3; t4; t5,2m; t6; t+7 ; t7,2m; t8; t9; . . . ; t2m−1︸ ︷︷ ︸
2m−8 columns

).

We now prove equations (28) and (29) for j = 2 and m > 4. Observe that A2 =

B1 · Ma(π2m+5), with |π2m+5|
−1(2m)= 7 and |π2m+6|

−1(2m)= 9; see Lemma 29. By
Lemma 13,

A2 = (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t+8 ;︸︷︷︸
9

t9; . . . ; t2m−1),
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B2 = A2 · Mb(π2m+6)

= (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t+8 ;︸︷︷︸
9

t8,2m−1; t9; . . . ; t2m−2).

Therefore, equations (28) and (29) hold for j = 2.
Assume now that equations (28) and (29) hold for some 2≤ l < m − 3, that is,

Al = (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t8,2m−2; t8,2m−1; . . . ;

t5+l,2m+1−l; t5+l,2m+2−l; t+6+l;︸︷︷︸
5+2l

t7+l; . . . ; t2m+1−l),

Bl = (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t8,2m−2; t8,2m−1; . . . ;

t5+l,2m+1−l; t5+l,2m+2−l; t+6+l;︸︷︷︸
5+2l

t6+l,2m+1−l; t7+l; t8+l; . . . ; t2m−l).

We will prove that equations (28) and (29) hold for j = l + 1. By Lemma 29 we know
that |π2m+3+2l |

−1(2m)= 7+ 2(l − 1)= 5+ 2l and |π2m+3+2l+1|
−1(2m)= 7+ 2l = 5+

2(l + 1). Then, according to Lemma 13, we find

Al+1 = Bl · Ma(π2m+3+2l)

= (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t8,2m−2; t8,2m−1; . . . ;

t5+l,2m+1−l; t5+l,2m+2−l; t6+l,2m−l; t6+l,2m+1−l; t+7+l;︸︷︷︸
7+2l

t8+l; . . . ; t2m−l),

Bl+1 = Bl · Ma(π2m+3+2l) · Mb(π2m+3+2l+1)

= (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t8,2m−2; t8,2m−1; . . . ;

t5+l,2m+1−l; t5+l,2m+2−l; t6+l,2m−l; t6+l,2m+1−l;

t+7+l;︸︷︷︸
7+2l

t7+l,2m−l; t8+l; t9+l; t10+l; . . . ; t2m−1−l).

Finally, observe that MG
π0,v1∗v2∗v3 = Bm−3. This concludes the proof. �

4.2.4. The matrix MG
π0,v1∗v2∗v3∗v4 . In this section we are not interested in computing

the components of the matrix MG
π0,v1∗v2∗v3∗v4 exactly. We will fix our interest on some of

its components.
It is strongly recommended to revise the notation of §4.1 (see (20)–(24)) because we

need it in the following definitions:

C1 := Ma(π4m−3) · Mb(δ1,1) · Mb(δ1,2),

C j := Ma(δ j−1,4 j−5) ·

4 j−2∏
l=1

Mc j
l+1
(δ j,l), 2≤ j ≤ m − 2,

D j := S · C1 · C2 · · · C j , 1≤ j ≤ m − 2,

Dm−1 := Dm−2 · Ma(δm−2,4m−9) ·

2m−4∏
l=1

Ma(εl).
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Moreover, S is the n × n matrix

S = (s1; s2; s3; . . . ; s2m−2; s+2m−1; s2m) (31)

= (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t8,2m−2; t8,2m−1; . . . ;

tm+2,m+4; tm+2,m+5; t+m+3; tm+3,m+4)

= MG
π0,v1∗v2∗v3 .

Remark 39. According to the definition of S and Remark 37, we can express and compare
the entries of S in terms of the entries of the identity matrix W as follows:

S = (t1; t2; t3; t4; t5,2m; t6; t7,2m−1; t7,2m; t8,2m−2; t8,2m−1; . . . ;

tm+2,m+4; tm+2,m+5; t+m+3; tm+3,m+4)

= (e1,2m + e2m−3,2m; e1,2m + e2m−2,2m; e1,2m,2m−1; e1,2m−1;

e2,2m + e2m−4,2m; e2,2m + e2m−3,2m;

e3,2m + e2m−5,2m; e3,2m + e2m−4,2m; e4,2m + e2m−6,2m; e4,2m + e2m−5,2m; . . .

. . . ; em−2,2m + em,2m; em−2,2m + em+1,2m; em−1,2m; em−1,2m + em,2m)

≥ (e1,2m,2m−3; e1,2m,2m−2; e1,2m,2m−1; e1,2m−1; e2,2m,2m−4; e2,2m,2m−3;

e3,2m,2m−5; e3,2m,2m−4; e4,2m,2m−6; e4,2m,2m−5; . . . ;

em−2,2m,m; em−2,2m,m+1; em−1,2m; em−1,2m,m). �

Observe that Dm−1 = MG
π0,v1∗v2∗v3∗v4 .

LEMMA 40. MG
π0,v1∗v2∗v3∗v4 ≥ (s1; s5; s7; . . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . .;

s8; s6; s−2 ; s3; s4).

Proof. We begin by calculating an inequality concerning D1. We use Lemma 13(2)–
(3) and Corollary 14 (observe that |π4m−3|

−1(2m)= 2m − 1, |π4m−2|
−1(2m)=

|π4m−1|
−1(2m)= 2m − 3 and σ(π j (|π j |

−1(2m)))=+1 for j = 4m − 2, 4m − 1) to find

S · Ma(π4m−3)= (s1; s2; s3; . . . ; s+2m−3; s2m−2; s2m−1,2m; s2m),

S · Ma(π4m−3) · Mb(δ1,1)≥ (s1; s2; s3; . . . ; s+2m−3; s2m; s2m−2; s2m−1,2m),

D1 = S · Ma(π4m−3) · Mb(δ1,1) · Mb(δ1,2)

≥ (s1; s2; s3; . . . ; s+2m−3; s2m−3 + s2m−1,2m; s2m; s2m−2)

≥ (s1; s2; s3; . . . ; s+2m−3; s2m−1,2m; s2m; s2m−2)=: E1.

Now, for 2≤ j ≤ m − 3, and obviously m > 4, we will prove the following inequality
by recurrence:

D j ≥ (s1; s2; s3; s4; s5; . . . ; s+2m−2j−1; s2m−2 j+1; s2m−2 j+3; s2m−2 j+5; . . . ; (32)

s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s2m−2 j )=: E j .

Since D1 ≥ E1, Corollary 14(4) yields D2 ≥ E1 · C2. Now, by Corollary 14(1,4),

E1 · C2 = E1 · Ma(δ1,3) · Ma(δ2,1) · Ma(δ2,2) · Mb(δ2,3) · Mb(δ2,4) · Mb(δ2,5) · Mb(δ2,6)

≥ E1 · Mb(δ2,3) · Mb(δ2,4) · Mb(δ2,5) · Mb(δ2,6).
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Observe that, by Lemma 30(C j )†, |δ2, j |
−1(2m)= 2m − 5 and σ(δ2, j (|δ2, j |

−1(2m)))=
+1 for j ∈ {3, 4, 5, 6}. Apply Corollary 14(4,2) repeatedly to obtain

D2 ≥ E1 · Mb(δ2,3) · Mb(δ2,4) · Mb(δ2,5) · Mb(δ2,6)

= (s1; s2; . . . ; s+2m−5; s2m−4; s2m−3; s2m−1,2m; s2m; s2m−2)

· Mb(δ2,3)Mb(δ2,4)Mb(δ2,5)Mb(δ2,6)

≥ (s1; s2; . . . ; s+2m−5; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4),

thus inequality (32) holds for j = 2 if m > 4. Assuming (32) holds for some 2≤ p <
m − 3, we will prove it holds for p + 1. By the hypothesis and Corollary 14(1,4), we have

Dp+1 = Dp · C p+1 ≥ E p · C p+1 = E p · Ma(δp,4p−1) ·

4p+2∏
l=1

M p+1
l+1 (δp+1,l)

= E p · Ma(δp,4p−1) ·

2p∏
l=1

Ma(δp+1,l) ·

4p+2∏
l=2p+1

Mb(δp+1,l)

≥ E p ·

4p+2∏
l=2p+1

Mb(δp+1,l).

Lemma 30(C j ) guarantees |δp+1,l |
−1(2m)= 2m − 2p − 3 for any 2p + 1≤ l ≤ 4p +

2 (even more, σ(δp+1,l(|δp+1,l |
−1(2m)))=+1), which, together with Corollary 14(2) and

the induction hypothesis, implies

E p ·

4p+2∏
l=2p+1

Mb(δp+1,l)

= (s1; s2; s3; s4; s5; . . . ; s+2m−2p−3; s2m−2p−2; s2m−2p−1; s2m−2p+1;

s2m−2p+3; s2m−2p+5; . . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s2m−2p)

·

4p+2∏
l=2p+1

Mb(δp+1,l)

≥ (s1; s2; s3; s4; s5; . . . ; s+2m−2p−3; s2m−2; s2m−4; . . . ; s2m−2p−2;

s2m−2p−1; s2m−2p+1; s2m−2p+3; s2m−2p+5; . . . ; s2m−3; s2m−1,2m; s2m)

·

4p+2∏
l=2p+p+1

Mb(δp+1,l)

≥ (s1; s2; s3; s4; s5; . . . ; s+2m−2p−3; s2m−2p+1; s2m−2p+3; . . . ; s2m−3;

s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s2m−2p−2; s2m−2p−1) · Mb(δp+1,4p+2)

≥ (s1; s2; s3; s4; s5; . . . ; s+2m−2p−3; s2m−2p−1; s2m−2p+1; s2m−2p+3; s2m−2p+5; . . .

. . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s2m−2p; s2m−2p−2).

Then

Dp+1 ≥ (s1; s2; s3; s4; s5; . . . ; s+2m−2p−3; s2m−2p−1; s2m−2p+1; s2m−2p+3;

† This only applies if m > 4.
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s2m−2p+5; . . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s2m−2p; s2m−2p−2),

and inequality (32) is true. Therefore, for m ≥ 4†,

Dm−3 ≥ Em−3 = (s1; s2; s3; s4; s+5 ; s7; . . . ; s2m−5; s2m−3;︸ ︷︷ ︸
m−4 columns

s2m−1,2m;

s2m; s2m−2; s2m−4; . . . ; s8; s6︸ ︷︷ ︸
m−2 columns

).

We now look for an inequality involving Dm−2. Apply Corollary 14(1,4) to obtain

Dm−2 = Dm−3 · Cm−2 = Dm−3 · Ma(δm−3,4m−13) ·

4m−10∏
l=1

Mcm−2
l+1
(δm−2,l)

= Dm−3 · Ma(δm−3,4m−13) ·

2m−6∏
l=1

Ma(δm−2,l) ·

4m−10∏
l=2m−5

Mb(δm−2,l)

≥ Em−3 · Ma(δm−3,4m−13) ·

2m−6∏
l=1

Ma(δm−2,l) ·

4m−10∏
l=2m−5

Mb(δm−2,l)

≥ Em−3 ·

4m−10∏
l=2m−5

Mb(δm−2,l).

By Lemma 30(C2m−2) we know that |δm−2,l |
−1(2m)= 1 for any 2m − 5≤ l ≤ 4m − 10,

having positive signature σ(δm−2,l(|δm−2,l |
−1(2m)))=+1. Use Corollary 14(2,4) to get

Dm−2 ≥ (s+1 ; s2; s3; s4; s5; s7; . . . ; s2m−3; s2m−1,2m;

s2m; s2m−2; s2m−4; . . . ; s8; s6) ·

4m−10∏
l=2m−5

Mb(δm−2,l)

≥ (s+1 ; s2m; s2m−2; . . . ; s8; s6; s2; s3; s4;

s5; s7; . . . ; s2m−3; s2m−1,2m) ·

4m−10∏
l=2m−5+(m−2)

Mb(δm−2,l)

≥ (s+1 ; s5; s7; . . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s8; s6; s2; s3; s4).

Finally, by Corollary 14(1), we have

Dm−1 = Dm−2 · Ma(δm−2,4m−9) ·

2m−4∏
l=1

Ma(εl)≥ Dm−2

≥ (s1; s5; s7; . . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s8; s6; s−2 ; s3; s4).

Observe that we have marked the position 2m − 2 as s−2 according to Lemma 30(A2m−3).
�

† The block of m − 4 columns disappears when m = 4.
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4.2.5. The matrix MG
π0,v1∗v2∗v3∗v4∗v5 . By the definition of v5 and Corollary 14,

MG
π0,v1∗v2∗v3∗v4∗v5 ≥ R · Mb(πr ) · Ma(πr+1) · Mb(πr+2),

with r = 4m − 3+ (2m − 3)(m − 1),

where R is the n × n matrix

R = (r1; r2; . . . ; r2m−3; r−2m−2; r2m−1; r2m) (33)

:= (s1; s5; s7; . . . ; s2m−3; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s8; s6; s−2 ; s3; s4).

Remark 41. Similarly to Remarks 37 and 39, we can describe and compare the matrix R
in terms of the identity matrix as follows†:

R = (s1; s5; s7; . . . ; s2m−3︸ ︷︷ ︸
m−4 columns

; s2m−1,2m; s2m; s2m−2; s2m−4; . . . ; s8; s6; s2; s3; s4)

= (e1,2m + e2m−3,2m︸ ︷︷ ︸
s1

; e2,2m + e2m−4,2m︸ ︷︷ ︸
s5

; e3,2m + e2m−5,2m︸ ︷︷ ︸
s7

; . . . ; em−2,2m + em,2m︸ ︷︷ ︸
s2m−3

;

em−1,2m + em−1,2m + em,2m︸ ︷︷ ︸
s2m−1,2m

; (34)

em−1,2m + em,2m︸ ︷︷ ︸
s2m

; em−2,2m + em+1,2m︸ ︷︷ ︸
s2m−2

; em−3,2m + em+2,2m︸ ︷︷ ︸
s2m−4

; . . .

. . . ; e3,2m + e2m−4,2m︸ ︷︷ ︸
s8

; e2,2m + e2m−3,2m︸ ︷︷ ︸
s6

; e1,2m + e2m−2,2m︸ ︷︷ ︸
s2

; e1,2m,2m−1︸ ︷︷ ︸
s3

; e1,2m−1︸ ︷︷ ︸
s4

)

≥ (e1,2m,2m−3; e2,2m,2m−4; e3,2m,2m−5; . . . ; e j,2m,2m− j−2︸ ︷︷ ︸
j th column

; . . . ; em−2,2m,m

︸ ︷︷ ︸
m−4 columns

;

em−1,2m,m; em−1,2m,m; em−2,2m,m+1;

em−3,2m,m+2; . . . ; em−l,2m,m+l−1︸ ︷︷ ︸
(m+l−1)th column

; . . . ; e3,2m,2m−4; e2,2m,2m−3; e1,2m,2m−2;

e1,2m,2m−1; e1,2m−1), (35)

for 1≤ j ≤ m − 2 and 1≤ l ≤ m − 1. �

LEMMA 42.

MG
π0,v1∗v2∗v3∗v4∗v5

≥ (r1; r2; r3; . . . ; r2m−4; r2m−3; r2m−2,2m; r2m−2,2m,2m−1; r2m−2,2m−1).

Proof. By Corollary 14 and Lemmas 13, 30 and 31, we have (take into account
that σ(πr (|πr |

−1(2m)))=−1, σ(πr+1(|πr+1|
−1(2m)))=−1, σ(πr+2(|πr+2|

−1(2m)))=
+1, and |πr |

−1(2m)= 2m − 2, |πr+1|
−1(2m)= 2m − 1, |πr+2|

−1(2m)= 2m − 2)

MG
π0,v1∗v2∗v3∗v4∗v5

≥ R · Mb(πr ) · Ma(πr+1) · Mb(πr+2)

† Note that the blocks of m − 4 columns disappears when m = 4.
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= (r1; r2; r3; . . . ; r2m−4; r2m−3; r−2m−2; r2m−1; r2m) · Mb(πr ) · Ma(πr+1) · Mb(πr+2)

= (r1; r2; r3; . . . ; r2m−4; r2m−3; r2m−2,2m; r−2m−2; r2m−1) · Ma(πr+1) · Mb(πr+2)

= (r1; r2; r3; . . . ; r2m−4; r2m−3; r+2m−2,2m; r2m−2,2m−1; r2m−1) · Mb(πr+2)

= (r1; r2; r3; . . . ; r2m−4; r2m−3; r2m−2,2m; r2m−2,2m,2m−1; r2m−2,2m−1). �

Finally, we need to write MG
π0,v1∗v2∗v3∗v4∗v5 in terms of the initial identity matrix

(e1; e2; e3; . . . ; e2m).

PROPOSITION 43.

MG
π0,v1∗v2∗v3∗v4∗v5 ≥ (r1; r2; r3; . . . ; r2m−4; r2m−3; r2m−2,2m; r2m−2,2m,2m−1; r2m−2,2m−1)

≥ (e1,2m−3,2m; e2,2m−4,2m; e3,2m−5,2m; e4,2m−6,2m;

. . . ; em−2,m,2m; em−1,m,2m; em,m−1,2m; em+1,m−2,2m;

. . . ; e2m−5,4,2m; e2m−4,3,2m; e2m−3,2,2m;

e2m−2,1,2m−1,2m; e2m−1,1,2m−2,2m; e2m,1,2m−2,2m−1).

Proof. By Lemma 42, we have

MG
π0,v1∗v2∗v3∗v4∗v5

≥ (r1; r2; r3; . . . ; r2m−4; r2m−3; r2m−2,2m; r2m−2,2m,2m−1; r2m−2,2m−1).

Moreover, by (35):

R ≥ (e1,2m,2m−3; e2,2m,2m−4; e3,2m,2m−5; e4,2m,2m−6,2m; . . .

. . . ; em−2,2m,m; em−1,2m,m; em−1,2m,m; em−2,2m,m+1; em−3,2m,m+2; . . .

. . . ; e3,2m,2m−4; e2,2m,2m−3; e1,2m,2m−2; e1,2m,2m−1; e1,2m−1).

Finally, the result follows since the columns r2m−2,2m, r2m−2,2m,2m−1 and r2m−2,2m−1 are
greater than e1,2m−2,2m−1,2m . �

4.2.6. Positive character of MG
π0,v1∗v2∗v3∗v4∗v5 .

PROPOSITION 44. There exists a power of A := MG
π0,v1∗v2∗v3∗v4∗v5 which is positive.

Proof. Observe first that, by Proposition 43, the diagonal of A is positive and then, by
Lemma 13(5),

Ak+1
≥ Ak, for any k ≥ 1. (36)

Use Proposition 43 to realize that the 2mth row of A is positive and a1,2m > 0,
a2m−2,2m > 0, a2m−1,2m > 0. Then we deduce that rows 1, 2m − 2, 2m − 1 and 2m of
A2 are positive.

We claim that if 1≤ k ≤ m − 2 and we assume that the kth row of some power
A j , j ∈ N, is positive then A j+1 has positive row 2m − 2− k since a2m−2−k,k > 0 by
Proposition 43. Indeed, take into account that if A j+1

= (αs,t ), A j
= (βs,t ) and A = (as,t )

with 1≤ s, t ≤ 2m then

α2m−2−k,r =

2m∑
l=1

a2m−2−k,lβl,r ≥ a2m−2−k,kβk,r > 0, r = 1, 2, . . . , 2m.
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If, in exchange, m − 1≤ k ≤ 2m − 2 and the kth row of some power A j is positive then
row 2m − 1− k of A j+1 is positive because Proposition 43 provides a2m−1−k,k > 0 (the
reasoning is similar to the previous one 1≤ k ≤ m − 2).

Now let S+(n) := {k : An has kth row positive}. By the first observation in this
proof, S+(n)⊆ S+(n + 1) and {2m − 2, 2m − 1, 2m, 1} ⊆ S+(2). The claim guarantees
consecutively {2m − 2, 2m − 1, 2m, 1, 2m − 3} ⊆ S+(3), {2m − 2, 2m − 1, 2m, 1,
2m − 3, 2} ⊆ S+(4), {2m − 2, 2m − 1, 2m, 1, 2m − 3, 2, 2m − 4} ⊆ S+(5), {2m − 2,
2m − 1, 2m, 1, 2m − 3, 2, 2m − 4, 3} ⊆ S+(6), and recursively we will obtain

{2m − 2, 2m − 1, 2m, 1, 2m − 3, 2, 2m − 4, 3, 2m − 5, . . . ,

m − 3, m + 1, m − 2, m} ⊆ S+(2m − 3),

{2m − 2, 2m − 1, 2m, 1, 2m − 3, 2, 2m − 4, 3, 2m − 5, . . . ,

m − 3, m + 1, m − 2, m, m − 1} ⊆ S+(2m − 2).

Therefore A2m−2 is positive. �

4.3. Proof of main theorem for n = 2m ≥ 8. Let Gπ0,v be the Rauzy subgraph
associated to π0, defined by (13), and v, introduced in (19). Propositions 32 and 44
guarantee that Gπ0,v satisfies the hypothesis of Theorem 25, and then we obtain a minimal,
uniquely ergodic, self-induced (2m, 2m − 2)-IET, T0 = (λ

0, π0), whose associated graph
is Gπ0,v. Moreover, R j (T0)= (λ

j , π j ) is minimal, uniquely ergodic and self-induced by
Theorem 25(3), and Proposition 32(2) guarantees that in the set {R j (T0)}

2m−2
j=1 we can

find (2m, k)-IETs, 2≤ k ≤ 2m − 1, which are proper since they satisfy the condition in
Remark 2.

We now show the existence of minimal, proper, uniquely ergodic (2m, 1)-IETs. We
apply Corollary 19 to the subgraph given in Lemma 34 and we obtain a (2m, 1)-IET,
U = (γ, α1), such that R2(U )= T0. Now Proposition 21 and Theorem 23(3) imply the
unique ergodicity of U . Theorem 23(2) implies the minimality of U . Moreover, it is easy
to check that α1 satisfies the condition in Remark 2 and then U is also proper.

The existence of minimal, proper, uniquely ergodic (2m, 2m)-IETs can be proved by
repeating the argument in the previous paragraph for the subgraph in Lemma 33.

5. Proof of main theorem for n = 2m + 1≥ 9
The procedure is similar to the even case. We will omit the proofs of the results since they
follow a similar scheme used for n = 2m ≥ 8. We only present the required Rauzy graph
and some of its properties.

5.1. The periodic Rauzy graph. We construct a periodic Rauzy graph of period p =
4m + 2+ (2m − 1)(m − 1).

Let us take

π̃0 = (−3,−4,−5, . . . ,−2m, 2m + 1, 1,−2), (37)

u1
= (a, a, a, . . . , a) ∈ {a, b}2m−2, (38)

u2
= (b, a, b, b, a, b) ∈ {a, b}6, (39)
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u3
= (a, b, a, b, a, b . . . , a, b, a, b) ∈ {a, b}2m−4, (40)

u4
= (a, a︸︷︷︸

2

, b, b, b︸ ︷︷ ︸
3

, a, a, a, a︸ ︷︷ ︸
4

, . . . , b, . . . , b︸ ︷︷ ︸
2m−3

, a, . . . , a︸ ︷︷ ︸
2m−2

) ∈ {a, b}m(2m−3) (41)

u5
= (b, a, b) ∈ {a, b}3, (42)

u= u1
∗ u2
∗ u3
∗ u4
∗ u5
∈ {a, b}p, p = 4m + 3+ m(2m − 3)= 2m2

+ m + 3.

(43)

Moreover, we consider the vector w ∈ {a, b}N of infinite length given by wi+kp = ui

for any 1≤ i ≤ p and k ∈ N.
Reasoning as in the even case it can be proved, after a long procedure that does not

involve significant novelties, the following result.

PROPOSITION 45.
(1) The Rauzy subgraph Gπ̃0,u is periodic.
(2) There exist in Gπ̃0,u permutations with f flips, 2≤ f ≤ 2m. Moreover, for any 2≤

f ≤ 2m there exists a vertex in Gπ̃0,u which satisfies the conditions in Remarks 2
and 3.

(3) A = MG
π̃0,u1∗u2∗u3∗u4∗u5 has a power which is positive.

In the Rauzy subgraph Gπ̃0,u there are no permutations with 2m + 1 flips nor with 1
flip. The next two results give such permutations and show that they belong to the same
Rauzy class as Gπ̃0,u. Both results follows immediately by applying the definitions of the
operators a and b.

LEMMA 46. Let τ̃1, τ̃2 ∈ Sσ2m+1 be the signed permutations

τ̃1 = (−2,−3,−4, . . . ,−[2m − 2],−[2m − 1],−[2m + 1],−1,−2m),

τ̃2 = (−2,−3,−4, . . . ,−[2m − 2],−[2m − 1], 2m,−[2m + 1],−1).

Then we have the Rauzy subgraph

τ̃1
b
> τ̃2

a
> π̃0 = (−3,−4,−5, . . . ,−[2m − 1],−[2m], 2m + 1, 1,−2).

LEMMA 47. Let α̃1, α̃2 ∈ Sσ2m+1 be the signed permutations

α̃1 = (2m, 1, 2m + 1, 2m − 1, 2m − 2, . . . , 6, 5, 4, 3,−2),

α̃2 = (2m + 1, 1,−2, 2m, 2m − 1, . . . , 7, 6, 5, 4,−3).

Then we have the Rauzy subgraph

α̃1
a
> α̃2

b
> π̃2m+2 = (2m + 1,−3, 1,−2, 2m, 2m − 1, . . . , 7, 6, 5, 4).

5.2. Proof of main theorem for n = 2m + 1≥ 9. The proof follows the reasoning
in §4.3 for the even case, taking into account the Rauzy subgraph Gπ̃0,u introduced in §5.1.
Then we repeat the arguments using, in this case, Proposition 45 and Lemmas 46 and 47.
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FIGURE 4. Complete Rauzy graphs presented in Gn , n = 4, 5.

6. The cases n = 4, 5, 6, 7

In order to complete the proof of the main theorem we must present periodic Rauzy graphs
in Gn , n = 4, 5, 6, 7, because these have not been constructed in the general case. We will
call them H4, H5, H6 and H7, respectively.

A periodic Rauzy graph in G4 is generated from the permutation τ4 = (−3, 4, 1,−2)
by applying the vector of operators ṽ4

= (ṽ1, . . . , ṽ9)= (a, b, a, b, b, a, b, a, b). This
graph, introduced in Figure 4, is taken from [12, Theorem 6.1]. Its associated matrix is
M4 =

∏9
j=1 Mṽ j (σ j ), with σ1 = τ4, σ j = ṽ j−1(σ j−1) for 2≤ j ≤ 9; see Table 1.

In G5 we take τ5 = (−3,−4, 5, 1,−2) and the vector of operators ṽ5
= (a, a, b, a,

b, b, a, b, a, a, b, a, b). See the complete graph in Figure 4. The associated matrix is
M5, given in Table 1.

The permutation τ6 = (−3,−4,−5, 6, 1,−2) jointly with ṽ6
= (a, a, a, b, a, b, b, a,

b, a, b, b, a, a, a, b, a, b) generates a periodic Rauzy graph in G6. See Figure 5 and its
associated matrix M6 in Table 1.

A periodic Rauzy graph in G7 is the one associated to the permutation τ7 = (−3,−4,
−5,−6, 7, 1,−2) and ṽ7

= (a, a, a, a, b, a, b, b, a, b, a, b, a, a, b, b, b, a, a, a, a, b,
a, b). See the complete graph in Figure 6. The associated matrix is M7; see Table 1.

Observe that M2
4 , M2

5 , M3
6 and M4

7 are positive. Then Theorem 25 provides minimal,
uniquely ergodic, self-induced and proper (n, k)-IETs for any (n, k) with 4≤ n ≤ 7 and
2≤ k ≤ n − 1.
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TABLE 1. Matrices of the periodic Rauzy graphs presented in Gn , n = 4, 5, 6, 7.

M4 =


2 2 3 2
0 1 1 1
1 1 2 1
1 2 3 3

 M5 =


2 2 2 3 2
1 2 0 0 0
0 0 1 1 1
1 1 1 2 1
2 3 2 3 3



M6 =


2 2 2 2 3 2
0 2 1 0 0 0
1 2 2 0 0 0
0 0 0 1 1 1
1 1 1 1 2 1
2 5 4 2 3 3

 M7 =



2 2 2 2 2 3 2
0 2 2 1 0 0 0
0 1 2 0 0 0 0
1 2 2 2 0 0 0
0 0 0 0 1 1 1
1 1 1 1 1 2 1
2 6 7 4 2 3 3



We next construct proper (n, n)-IETs for any 4≤ n ≤ 7. To this end we consider the
Rauzy subgraphs

(−2,−4,−1,−3)
b

> (−2, 3,−4,−1)
a

> τ4 = (−3, 4, 1,−2)

(−2,−3,−5,−1,−4)
b

> (−2,−3, 4,−5,−1)
a

> τ5 = (−3,−4, 5, 1,−2)

(−2,−3,−4,−6,−1,−5)
b
> (−2,−3,−4, 5,−6,−1)

a
> τ6 = (−3,−4,−5, 6, 1,−2)

(−2,−3,−4,−5,−7,−1,−6)
b
> (−2,−3,−4,−5, 6,−7,−1)

a
> τ7 = (−3,−4,−5,−6, 7, 1,−2)

Then it suffices to apply Corollary 19 to the subgraphs and the corresponding IETs
built in the previous paragraph. The minimality of the obtained IETs is guaranteed by
Theorem 23(2), and the unique ergodicity by simultaneously applying Proposition 21 and
Theorem 23(3).

We finally build minimal proper (n, 1)-IETs for 4≤ n ≤ 7. Consider now the following
Rauzy subgraphs (the elements δ5, δ6 and δ7 belong to the periodic graphs H5, H6 and
H7, respectively; see Figures 4–6):

(−4, 1, 3, 2)
(b,b,a,b,a,b,b,a)

> (4,−3, 1,−2)
(a,b,a,b)

> τ4 (this subgraph is taken from [12])

(4, 1, 5, 3,−2)
a
> (5, 1,−2, 4,−3)

b
> δ5 = (5,−3, 1,−2, 4)

a
> . . . part of H5 . . .

b
> τ5

(5, 1, 6, 4, 3,−2)
a
> (6, 1,−2, 5, 4,−3)

b
> δ6 = (6,−3, 1,−2, 5, 4)

a
> . . . part of H6 . . .

b
> τ6

(6, 1, 7, 5, 4, 3,−2)
a
> (7, 1,−2, 6, 5, 4,−3)

b
> δ7 = (7,−3, 1,−2, 6, 5, 4)

a
> . . . part of H7 . . .

b
> τ7.

Then, repeating the previous reasoning for the case of (n, n)-IETs, we obtain the desired
(n, 1)-IETs for 4≤ n ≤ 7.

7. Proof of Proposition A
The ‘only if part’ is proved by Theorem 4: a minimal proper (n, k)-CET is automatically
transitive. For the ‘if part’ we distinguish separately the cases of (n, k)-CETs with n =
2m ≥ 8, n = 2m + 1≥ 9, n = 3, n = 4, n = 5, n = 6 and n = 7.

Assume first n = 2m ≥ 8. We consider now the proper, minimal and uniquely ergodic
(2m, k)-IETs constructed in §4.3. In this case, observe that we obtained λ ∈3n such
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FIGURE 5. Periodic Rauzy graph in G6.

that T = (λ, π0) is a minimal and uniquely ergodic (2m, 2m − 2)-IET and in the set
E = {Ri (T )} = {(λi , πi )}

2m−2
i=1 we found proper, minimal and uniquely ergodic (2m, k)-

IETs, 2≤ k ≤ 2m − 1. Now it suffices to notice that each πi , 1≤ i ≤ 2m − 2, satisfies
the condition in Remark 3 by Proposition 32(2). Then, for any 1≤ i ≤ 2m − 2, after
identifying the endpoints of the domain of Ri (T ), we obtain a proper, minimal and
uniquely ergodic (2m, k)-CET R̂i (T ) with the same flips as Ri (T ). This guarantees the
proof of Proposition A for (2m, k)-CETs with m ≥ 4 and 2≤ k ≤ 2m − 1. For k = 1 it is
enough to note that the associated permutations of the (n, 1)- and (n, n)-IETs, constructed
in §4.3, also satisfy the condition in Remark 3 (see Lemmas 34 and 33).

The case n = 2m + 1≥ 9 just requires the adaptation of the previous reasoning by
exchanging Proposition 32 for Proposition 45, Lemma 34 for Lemma 46 and Lemma 33
for Lemma 47.

For n = 3 we note the existence of minimal, uniquely ergodic IETs T1 and T2 of type
(4, 2) and (4, 4), with respective permutations (4, 1,−2,−3) and (−2,−4,−1,−3);
see §6. Then T̂1 and T̂2 (for an IET T we use T̂ to denote the CET obtained from T after
identifying the endpoints of the domain of T ) are proper, minimal and uniquely ergodic
(3, 2)- and (3, 3)-CETs, respectively.

Similarly, it is easy to check that the IETs with associated permutations (−4, 1, 3, 2),
(3,−4,−2, 1), (−4,−2, 1,−3) (again from §6) provide proper, minimal and uniquely
ergodic (4, 1)-, (4, 2)- and (4, 3)-CETs, respectively (take into account Remark 3).
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FIGURE 6. Periodic Rauzy graph in G7.

The IETs with associated permutations (4, 1, 5, 3,−2), (4,−5, 3,−2, 1),
(−5, 3,−2, 1,−4), (−4,−5,−2, 1,−3) and (−2,−3,−5,−1,−4) provide in turn
proper, minimal and uniquely ergodic (5, 1)-, (5, 2)-, (5, 3)-, (5, 4)- and (5, 5)-CETs
(see §6 and apply Remark 3).

Following the same reasoning as in the previous cases, if we now consider the IETs with
associated permutations (5, 1, 6, 4, 3,−2), (5,−6, 4, 3,−2, 1), (−6, 4, 3,−2, 1,−5),
(−5,−6, 3,−2, 1,−4), (−4,−5,−6,−2, 1,−3) and (−2,−3,−4,−6,−1,−5), we
obtain respectively proper, minimal and uniquely ergodic (6, 1)-, (6, 2)-, (6, 3)-, (6, 4)-,
(6, 5)- and (6, 6)-CETs.

Analogously, if we take the IETs with associated permutations (6, 1, 7, 5, 4,
3,−2), (6,−7, 5, 4, 3,−2, 1), (−7, 5, 4, 3,−2, 1,−6), (−6,−7, 4, 3,−2, 1,−5),
(−5,−6,−7, 3,−2, 1,−4), (−4,−5,−6,−7,−2, 1,−3) and (−2,−3,−4,−5,
−7,−1,−6), then we obtain proper, minimal and uniquely ergodic (7, 1)-, (7, 2)-,
(7, 3)-, (7, 4)-, (7, 5)-, (7, 6)- and (7, 7)-CETs.

It only remains to check the existence of a proper, minimal, uniquely ergodic (4, 4)-
CET. The permutations considered in §6 do not generate (4, 4)-CETs. To overcome this
difficulty we will show the existence of a minimal, uniquely ergodic, proper (5, 5)-IET
with associated permutation π := (−4,−1,−5,−2,−3). From here we will deduce the
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existence of a proper, minimal and uniquely ergodic (4, 4)-CET. Take into account the
Rauzy graph

π = (−4,−1,−5,−2,−3) a
> (−5,−1, 3,−2,−4) b

> (4,−5,−1, 3,−2)
b
> (4, 2,−5,−1, 3)=: τ

(44)

Also, it can be checked that τ = (4, 2,−5,−1, 3) jointly with the vector of operators
x= (x1, x2, . . . , x13) := (b, a, b, a, a, b, b, a, b, a, b, b, a) generates a periodic Rauzy
graph in G5 whose associated matrix has its second power positive. Indeed,

τ = (4, 2,−5,−1, 3) b
> (4, 2,−3,−5,−1) a

> (5, 3,−4, 1,−2)

(3,−4, 5,−2, 1) < a
(2,−3, 4,−5, 1) < a

(5,−2, 3,−4, 1)

b
∨

(3,−4, 5, 1,−2)

b
∨

b
> (3,−4, 5,−2, 1) a

> (4,−5, 2,−3, 1)

(5,−4,−1, 3, 2) < b
(5,−1, 3, 2,−4) < a

(4,−1,−5, 2,−3)

b
∨

(5, 2,−4,−1, 3)

b
∨

a
> (4, 2,−5,−1, 3)= τ

and the associated matrix R :=
∏13

j=1 Mx j (σ j ) is given by (here σ1 = τ and σ j =

x j−1(σ j−1), 2≤ j ≤ 13)

R =


2 1 1 1 1
1 2 1 1 1
3 2 3 1 2
3 2 2 2 2
1 0 1 0 1

 ,
therefore R2 is positive. Then we apply, as in §6, Theorem 25 to obtain a minimal,
uniquely ergodic (n, k)-IET with associated permutation τ . Next, we apply Corollary 19 to
the subgraph (44) and we obtain an IET, U , with associated permutation π . U is minimal
by Theorem 23(2) and uniquely ergodic by Proposition 21 and Theorem 23(3). Finally, Û
is a proper, minimal and uniquely ergodic (4, 4)-CET.
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[31] W. A. Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2)
115 (1982), 201–242.

[32] M. Viana. Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1) (2006), 7–100.
[33] J.-C. Yoccoz. Continued fraction algorithms for interval exchange maps: an introduction. Frontiers in

Number Theory, Physics, and Geometry. I. Springer, Berlin, 2006, pp. 401–435.

https://doi.org/10.1017/etds.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.5

	Introduction
	Folklore results
	Rauzy induction and invariant measures
	Proof of main theorem for n=2m≥8
	The periodic Rauzy graph
	Study of the matrix associated to the graph Gπ0,v of §4.1
	The matrix MGπ0,v1
	The matrix MGπ0,v1*v2
	The matrix MGπ0,v1* v2*v3
	The matrix MGπ0,v1*v2 *v3*v4
	The matrix MGπ0,v1*v2 *v3*v4*v5
	Positive character of MGπ0,v1* v2*v3*v4*v5

	Proof of main theorem for n=2m≥8

	Proof of main theorem for n=2m+1≥9
	The periodic Rauzy graph
	Proof of main theorem for n=2m+1≥9

	The cases n=4,5,6,7
	Proof of Proposition A
	Acknowledgements
	References

