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Abstract. We consider interval exchange transformations of n intervals with k flips, or
(n, k)-IETs for short, for positive integers k, n with k <n. Our main result establishes
the existence of minimal uniquely ergodic (n, k)-IETs when n > 4; moreover, these
IETs are self-induced for 2 <k <n — 1. This result extends the work on transitivity in
Gutierrez et al [Transitive circle exchange transformations with flips. Discrete Contin.
Dyn. Syst. 26(1) (2010), 251-263]. In order to achieve our objective we make a direct
construction; in particular, we use the Rauzy induction to build a periodic Rauzy graph
whose associated matrix has a positive power. Then we use a result in the Perron—
Frobenius theory [Pullman, A geometric approach to the theory of non-negative matrices.
Linear Algebra Appl. 4 (1971) 297-312] which allows us to ensure the existence of these
minimal self-induced and uniquely ergodic (n, k)-IETs, 2 < k <n — 1. We then find other
permutations in the same Rauzy class generating minimal uniquely ergodic (n, 1)- and
(n, n)-IETs.

1. Introduction
Given n e N:={1, 2, 3, ...} we define an n-interval exchange transformation, or n-IET
for short, as an injective map 7' : D C (0, ) — (0, I) such that:
(i) D is the union of n pairwise disjoint open intervals, D =J!_, [;, with [; =
(@i, ai+1),0=ay <apx <az <--- <apt1=1;

(i) Ty, is an affine map of constant slope equal to 1 or —1.

If T reverses the orientation of each interval Iy of the interval set F =
{Ir,, 1y, ..., I} (the slope is —1 in these intervals) for some 1 < fj < n, then we say
that T is an interval exchange transformation of n intervals with k flips (for this reason
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we denote the indices by fi, ..., fx) or simply an (n, k)-IET; otherwise we say that T
is an interval exchange transformation of n intervals without flips or simply an oriented
interval exchange transformation of n intervals. If we replace [0, [] by S' =10, []/ =,
(0 =1), then we obtain the notion of circle exchange transformation of n intervals with k
flips (abbreviated as (n, k)-CET) or circle exchange transformation of n intervals without
flips (abbreviated as n-CET). Observe that the right continuous extension of an (n, k)-IET
has at most n — 1 discontinuity points; when it has exactly n — 1 we say that it is a proper
(n, k)-IET.

This type of maps has been intensively studied due to its intrinsic interest and its
application in different research areas, for instance surface flows [5, 11], Teichmiiller
flows [3, 4], continued fraction expansions [33] and polygonal billiards [22].

Let x € (0, ). The orbit of this point, generated by 7', is the set

Or(x) ={T"(x) : n is an integer and T" (x) makes sense},

where T°=1Id and T"=T o T""! for any integer n. Moreover, Or(0)={0} U
Or(lim,_,o+ T(x)) and Or(l) = {{} U Or(lim,_,;- T(x)). T is said to be minimal if
Or(x) is dense in [0, /] for any x € [0, []. Recall that transitivity is a weaker condition: T
is said to be transitive if there exists some x € [0, [] such that O7 (x) is dense in [0, [].

Remark 1. According to [14, Corollary 14.5.12], if T has a dense orbit and it has no finite
orbits then any orbit is dense in [0, /]. Thus the notion of minimality introduced here is
equivalent to that used in [12], namely, a transitive map without finite orbits. We note that
transitivity does not imply minimality; see the IETs 77 and 7, after Theorem 4.

In this paper we focus in the topics of minimality and unique ergodicity. Let § denote
a finite measure on [0, /]. Then § is said to be an invariant measure of T if, for any
measurable set A C [0, [], we have 8§(T~'(A)) =8(A); T is said to be ergodic (with
respect to &) if § is an invariant measure for T and, for any subset E C [0, ] satisfying
T(E)=E, either 5(E) =0 or §(E)=1. In the following, we will denote by py the
standard Lebesgue measure on [0, /].

Itis easy to see that ;7 (and any of its multiples) is an invariant measure for any interval
exchange transformation 7. Moreover, T is uniquely ergodic if it does not admit another
invariant probability measure. It is worth mentioning that, for IETs, unique ergodicity
implies ergodicity with respect to Lebesgue measure; cf. [20, §11.6, Theorem 6.1].

We will introduce coordinates in the set of IETs. Let n € N. Then there exists a natural
injection between the set of n-IETs and C, = A" x S7, where Ry = (0, c0), A" is the
cone R and Sy is the set of signed permutations. By a signed permutation we mean
aninjectivemapmw : N, ={1,2,...,n} > N ={-n,—(n—-1),...,—-1,1,2,...,n}
such that |7 |: N, — N, is bijective, that is, a standard permutation; a non-standard
permutation will be a signed permutation v such that (i) < O for some i. As in the case
of standard permutations, 7w will be represented by the vector (7w (1), 7(2), ..., w(n)) €
(N2)*'. Let T be an n-1ET as in the preceding paragraph. Then its associated coordinates
in C, are (A, i) defined as follows.
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FIGURE 1. Example of proper (6, 4)-IET with associated coordinates (A, ), where A is the positive vector
(X1, A2, A3, Aq, A5, Ag) and 7 the signed permutation (-3, —4, —5, 6, 1, —2).

° Ai =ajy1 —a; foralli e N,,.

° (i) is positive (respectively, negative) if T|; has slope 1 (respectively, —1).
Moreover, |7 (i)| is the position of the interval T'(I;) in the set {T(I;)}/_, taking
into account the usual order in R.

Conversely, given a pair (A, 7) we can associate to it a unique #-IET, T : D C [0, [] —

[0, ], where:

o == A0

o I1=(0,A1);

° Ii:(Z§'_=l1 )\j,Z"j:l kj) forany 1 <i <n;

o T|; (x) = (Z\jzi(li)_((o(n(i))ﬂ)/Z) )‘\n\—l(j)) + a(rr(i))[x _ (Zz];l] )\j)]’ for any
1 <i <n, where o (z) denotes the sign of z € R\ {0}, namely, o (z) = z/|z|. Notice
that if we define

j-1 j
Kz = (Z M1 D )”Inl“(s))’
s=1 s=1

we have T'(I;) = wal(ﬂ(i)).
These coordinates allow us to make the identification T = (A, 7); see Figure 1 to clarify
the idea. For a fixed permutation 7r, we can consider the Lebesgue measure of the cone
A" on the set of n-IETs having associated permutation 7.

Remark 2. T = (X, m) is a proper (n, k)-IET provided that 7 satisfies 7 (j + 1) — 7 (j) #
1 forany j € {1, 2, ..., n— 1}. Notice that 7 is a signed permutation.
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Remark 3. 1ETs and CETs are closely related: a proper (n, k)-IET T = (A, 7): D C
[0, ] — [0, [] generates an (71, k)-CET T:DcS'—s! by identifying 0 = /. Even more,
if T is a proper (n, k)-IET then Tisa proper (n, k)-CET if either the signs of 7 (j) and
m(j + 1) are different or they coincide and then 7 (j 4+ 1) — 7 (j) # 1 mod (n) for any
je{l,2,...,n} (note that we use arithmetic modulo n and also that for integers a, b, n,
a = b mod (n) means that n divides a — b). We stress that, in any case, the minimality and
unique ergodicity of T imply those of T.

Our aim is to construct minimal interval exchange transformations with flips. This
goal is important in itself but also because it will allow us to construct minimal flows on
open non-orientable surfaces of finite genus g > 4 by means of the standard procedure of
suspensions of IETs; see [2, 9, 19, 29]. We recall that the first steps in this direction were
made by Gutierrez [10], who constructed a minimal proper (5, 2)-IET, T = (A, &), with
7 =3, —4,5, 1, —2) which is self-induced, which means that the return map induced by
T on a suitable subinterval, T = (3:, 7), satisfies T = 7 and = pA for some p € (0, 1).

Nogueira [23] generalized Gutierrez’s construction to obtain, for any n > 2, self-
induced minimal proper (2n + 1, n)-IETs, (A, 7), with t(i) = (=Dt (G +2) for any
1<i<2n-1,7(2n)=1and t(2n + 1) = —2. It is worth mentioning that Nogueira and
Gutierrez IETs can be used to obtain minimal proper (2n, n)-CETs and a minimal proper
(4, 2)-CET, respectively.

Both authors used the above mentioned CETs to build transitive flows on compact
and connected surfaces. Moreover, the constructed flows are minimal on some open
surfaces; in particular, Gutierrez obtained a minimal flow on Njf* (the resulting surface
after removing two points from the non-orientable compact surface of genus 4, Ny).
The suspensions of Nogueira (2n, n)-CETs induce minimal flows on the non-orientable
compact surface of genus 2 + n where n points were removed. Notice that in order to
obtain minimal flows on any non-orientable surface of genus greater than 4 it would be
interesting to suspend other interval exchange transformations that generate minimal flows
on non-orientable compact surfaces with a single hole. The IETs which will be constructed
in the proof of main theorem have this property; see [9].

Recent works about exchange transformations with flips are [12, 13, 25]. In particular,
[12] is due to Gutierrez et al, and it states its main result as follows.

THEOREM 4. Given n >k > 1, there exists a transitive proper (n, k)-CET if and only if
n+k=>>5.

The ‘if” part of the proof of Theorem 4 is obtained by introducing some minimal self-
induced IETs. In particular they build (4, 2), (4, 3), (4, 4), (5, 3) and (5, 5) self-induced
minimal IETs and two operators in the set of IETs. Given a transitive (n, f)-IETT : D C
[0, 1] — [0, 1], they define a transitive (n 4+ 1, f)-IET, T : D; C [0, 2] — [0, 2], and a
transitive (n + 2, f + 2)-IET, T> : D, C [0, 3] — [0, 3], in the following way:

Tx)+1 ifxeDNJO, 1],
Hh(x)y={—x+4 ifx e (1, 2),
—x+3 if x € (2, 3).

Tx)+1 ifxeDNIO, 1],

Tl(x)={x_1 ifx e(1,2),
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FIGURE 2. Tree of transitive IETs generated by means of 77 and 75.

With the (4, 2), (4, 4), (4, 3), (5, 3) and (5, 5) self-induced minimal proper IETs and
the way of generating new transitive IETs by means of 71 and 75, Theorem 4 is proved. We
remark that 77 and 7> are transitive but not minimal since O7, (2) = {2} and O7, (1) = {1}.
Figure 2 gives the idea of the proof.

Neither the problem of finding minimal uniquely ergodic proper (n, k)-IETs nor the
problem of finding minimal non-uniquely ergodic (n, k)-IETs is completed for k > 1;
see [12]. We solve the first problem in the following way.

MAIN THEOREM. Givenn, k € Nwithn > 4 and 1 < k < n, there exist minimal, uniquely
ergodic, proper (n, k)-IETs.

We claim that the (n, k)-IETs constructed in the proof of the previous theorem are self-
induced when 2 < k <n — 1. The idea behind our construction is to build a periodic Rauzy
graph (see §3) whose associated matrix has a positive power and to use some results on the
Rauzy—Veech theory that also apply to the non-oriented case as we show. In this scheme,
a key point is the use of Perron—Frobenius theory and, in particular, the use of the nature
of the core of a matrix analysed in [26]. It is important to stress the existence of signed
permutations which do not generate self-induced IETs; see Remark 26.

As a consequence of our main result we obtain the following generalization of
Theorem 4.

PROPOSITION A. Given n >k > 1, there exists a minimal proper (n, k)-CET if and only
ifn+k=>5.

The rest of this paper is organized as follows. In §2 we introduce some folklore results
on the theory of IETs. Then, in §3, we give the induction procedure of Rauzy and adapt
the proofs of some results on oriented IETs to the flip case. Among them, we stress the
relevance of Theorems 23-25 which guide the construction of our minimal IETs. The
following sections are devoted to the proof of our main result, distinguishing separately
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(n, k)-IETs with even n > 8 and with odd n > 9. In §6 we analyse the particular cases
n=4,5, 6,7, and in the final section we present the proof of Proposition A.

2. Folklore results
We emphasize that oriented interval exchange transformations are usually defined
in the literature on the whole of [0, ) using the right continuous extension in the
discontinuity points; see [15]. However, when working with non-oriented interval
exchange transformations we cannot use the extension mentioned if we want the IETs
to remain one-to-one. For example, the right continuous extension of a (4, 3)-IET
with associated permutation 7 = (4, —2, 3, —1) is never injective. This is the reason for
working with IETs which are not defined in the discontinuity points.

Interval exchange transformations without flips have been widely studiedf and there is
a characterization (in terms of the ‘orbits’ corresponding to discontinuity points) of those
being minimal due to the pioneering work by Keane [15].

Definition 5. (Generalized Keane condition) Let 7 be an n-IET with domain D =
U’ (@i, ai+1). We define T(a?):=lim _ + T(x) for 1<i<n and T(aP):=
lim,_, - T(x)for2 <i <n+ 1. Wealso write T (a{) = T (af) and T (a?, ) = T (@S, ).
We say that T satisfies the Keane condition if and only if

n+1
T"(a) #aj, forallmzl,ZgjgnandaeU{ai@,aie}. (1)
i=1
THEOREM 6. (Keane [15]) Let T be an oriented n-1ET that satisfies the Keane conditioni.
Then T is minimal.

Remark 7. The notion of minimality introduced here is slightly different than that of the
papers on oriented IETs. Let T : Ul’-’zl(a,', ai+1) C [0, 7] — [0, /] be an IET and let T:
U?zl[a,-, ai+1) = [0, 1) — [0, /] be the right continuous extension of 7. Then it could
happen that 7 is minimal (it has all orbits dense) while T is not, because the points a;,
1 <i < n, have forward orbit by T but they do not have this forward orbit by 7. However,
if T satisfies the Keane condition then the points a; have infinite backward orbit and the
minimality of T implies that of T'; cf. [14, Corollary 14.5.12].

Remark 8. In [14] the authors use a notion related to the Keane condition, namely, the
notion of saddle connection. A saddle connection for T is a set

S ={a;, Tl(a?), R Tk(a?) =aj}

withk > 1, ® € {®, 6},SN {ar}fi} = {a;, a;} (the case i = j is not excluded). Observe
that any IET has saddle connections, with a; € {0, 1}: these are called trivial saddle

T See [32] for an exhaustive review with unified notation.

% Although Definition 5 for oriented IETs is equivalent to the classical Keane condition for the right
continuous extension, this is not the case for IETs with flips. To see this, consider minimal IETs, U and
V, defined on dense open subsets of [0, 1], whose associated permutations are 7wy = (=3, —4, 5, 1, —2) and
ny = (=2, =3, =5, —1, —4); see §6. Then define T : D C [0, 2] — [0, 2] by T'(x) = U (x) if x € [0, 1] and
T(x)=V(x—1)ifx €[l, 2]. Itis easy to prove that T does not satisfies Definition 5 but its right continuous
extension satisfies the classical Keane condition.
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connections. It is a simple task to realize that the absence of non-trivial saddle connection
is equivalent to the Keane condition introduced in Definition 5. Also, it is important to
stress that in [14, Corollary 14.5.12] the hypothesis on the absence of saddle connection
refers to the absence of non-trivial saddle connection.

A permutation m:N, — NJ is said to be irreducible if |w({1,2,...1})|#
{1,2,...,t}forany 1 <t < n. The set of irreducible permutations is denoted by ST*. We
will write Sy “+ to denote the set of permutations, 7 € Sy, satisfying |7 |(n) # n. Observe
that Sg'* c Sy tc S7. It is easily seen that if (A, ) is a minimal n-IET (not necessarily
oriented) then 7 is irreducible. Given an oriented n-1ET, T = (A, ), with 7 irreducible,
if the components of A are rationally independent then T satisfies the Keane condition and
is minimal; however, the Keane condition does not imply that the components of A are
rationally independent (see, for example, [15, §6.3]). The last condition on A allows us
to easily construct minimal n-IETs; in fact it gives relevant information, expressed in the
following theorem.

THEOREM 9. (Keane [15]) Let w : N, — N, be a fixed irreducible standard permutation.
Then almost all (with respect to the Lebesgue measure induced on A") n-1ETs of the form
(A, ) are minimal.

Contrary to what was conjectured since the first work of Keane [15], the minimality
of an oriented n-IET does not guarantee its unique ergodicity. Counterexamples to this
conjecture were first provided by Sataev; see [28] and [6, Theorem 2, p. 134]. Also Keynes
and Newton [17] and Keane [16] constructed minimal non-uniquely ergodic oriented 5-
and 4-1ETs, respectively. In answer to another conjecture by Keane, Veech and Masur
independently provedf the following theorem.

THEOREM 10. (Masur [21, Theorem 1]; Veech [31, Theorem 13.10]) Let 7 : N,, — N,
be an irreducible standard permutation. Then almost all (with respect to the Lebesgue
measure) n-IETs of the form (A, w) are uniquely ergodic.

Masur’s proof derives from the study of measured foliations on oriented surfaces, while
Veech’s approach is based on the powerful Rauzy induction. Although the latter technique
was developed for oriented IETs, it was adapted for non-oriented ones by Nogueira [24].
Before stating it, we introduce one relevant result concerning IETs with flips which shows
that the behaviour in the non-oriented case is rather different from the oriented case, in
particular the previous theorems by Keane, Veech and Masur are no longer true.

THEOREM 11. (Nogueira, [24]) Let w be an irreducible non-standard permutation. Then
almost all n-IETs of the form T = (7, \) admit periodic points and, therefore, they are not
minimal.

We finish this section by emphasizing that Nogueira and Danthony generalized the
notion of IET by introducing linear involutions; see [7, 8]. While the first return map
of a flow to a transversal segment is closely related to an IET; see [2, 11, 19], the first
return map of a (non-orientable) measured foliation is linked to a linear involution.

+ Previously, Veech gave in [30] a criterion to obtain the unique ergodicity of (A, ) in terms of irreducible
matrices obtained from the Rauzy induction process; see §3.
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3. Rauzy induction and invariant measures
Roughly speaking, the generalized Rauzy induction is an operator in the set of IETs which
sendsany T : D C [0, I] — [0, [] to its first return map on some subinterval [0, I'] C [0, ].
The aim of this section is to give a formalization of this operator, by means of the maps a
and b defined on S . In the final part of the section we investigate the relationship between
the Rauzy induction and the existence of minimal uniquely ergodic IETs with flips.

Let x € R\{0}. Recall that the sign of x is denoted by o (x). The generalized Rauzy
maps were introduced by Nogueira in [24] (cf. also [27]). Map a is given by

a:Syt — 50

T — a(m)

where a (i) is the permutation defined depending on the sign of 7 (n) by

7(0) it (i) = () — +— T,
(mr(n))o (7 (i)
(o) (i) = o(mn))o(x( Lt otetn) @
X <|71(n)| + f) if |7 (@) =n,
a(@@)(m@)+1) otherwise.
Map b is given by
b:Syt — §°
T — b(mw)
where b(rr) is the permutation defined depending on the sign of 7 (||~ (n)) by
—1 .
7(0) iti = 1y + LN =L
b ) = -1 — 3
O ol wpn it = i+ ZTEOD L )
T —1) otherwise.

Together with these maps, we also define the generalized Rauzy matrices associated to
a permutation m € S,‘Z’Jr, M, () and Mp(r). Given 1 <i, j <n, E; j denotes the n x n
matrix having zeros in all the positions except for the position (i, j) which is equal to 1,
and I,, denotes the n x n identity matrix. The definitions of M, () and M, (;r) are

My(n)=1, +E

n,lw|=1(n)»

B O]

n—1
Mb(”)=< > Ew’) +En,n1(n)+(1+a<n<|n|1(n>)>>/2+( > Eiﬁi“)' “)

i=1 i=|m|~ (n)
Now, as a trivial consequence of this definition, we obtain the following claim.

Claim 12. Let» € A" and = € ST Then M, (7)A € A", where v € {a, b}.

Given a matrix A € M, x,(R), if {a;}7_, are the columns of A we will write A =

(ar; a2; a3; ... ay—1; an), S0 a; = (a1, azj, . . ., anj)’, 1 < j <n, where ¢ denotes the
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transpose of a matrix. Let 2 < j <n and let {i1, iz, ...,i;} C{1,2,...,n}. Then we
will denote by

J
Qi iy,.ij t= E :ail
=1

the column consisting of the sum of certain columns of A. For P, Q € M, «,(R), P > Q
will mean that the non-zero entries of Q are also non-zero entries of P; the values of these
entries may of course not coincide.

Positive matrices will play a relevant role in our study of minimality of IETs. A non-
negative matrix A € M, x,(R), thatis, witha; ; > Oforany i, j € {1, 2, ..., n}, is said to
be positive if these inequalities are strict. In the following, the diagonal, a row or a column
of a matrix is said to be positive if all the entries in the corresponding diagonal, row or
column are positive.

Now it is a simple task to verify the following lemma. It suffices to apply the
corresponding definitions and to consider the summation equal to 0 whenever the upper
bound of the summation is less than the lower one (we leave the proof to the reader).

LEMMA 13. Letne N, A=(aj;ap;a3;...;a,-1; a,) € M;,x,(R), Be M,,«,(R), and
letm € Sg’+, M, () and My (1) be as defined in equation (4). Then:
() A-E;;j=(0,0;...;0; a; ;0;...;0)foralli,je{l,...,n};

—

jth column
(2) A-Mu(m)=(a15 82 ... Az~ 14)—15 A |~ ()0 Brr|~ 1 (n)+15 - - - > @n)
whenever ||~V (n) > 1, and A - M, (n) = @)1y 05 @25 @35 .25 ) O 71~ (n)
e l;
3) ifo@(rl~ ) =1,
A Mp(m) = (a15 25 - -5 Q-1 (n)s QL) Q|- ()+15 B~ L(n)425 - - - > Bn—1)
whenever || '(n) <n—1, and A-Mp(r)=(a;; a2; ...; ap_1: an_1.,) If
7~ ) =n —1;
@ ifo(rl™ () =1,
A Mp(m) = (@15 82} -+ -5 Q-1 )— 13 A1 ()05
a|7f|_1(”); a|7T|_I(”)+1; a|n|_1(n)+2; ey an_l)
whenever ||~ (n) > 1, and A - My(m) = (a1,n: a1; a2; .. .5 ap—1) if 7| ' (n) = 1;

(5) if A and B are non-negative and B has positive diagonal, AB > A;
6) My(m) ™' =1y = E, 1105
M) ifo@(x|~ m) =1,

|~ (m)—1

—1
My ()~ = < > Ei,i) T Eppi-ty ') ~ Ejm-ton
i=1
n

+ Ejr -ty T ( > Ei,i—l);
i=lw [ (n)+2
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®) ifo(r~ () =-1,
|~ (m)—1

—1
Mp(m)—" = < > Elli) T Ejz-1yn = Ei- 1y 1
i=1
n

+ Ejr -t 41,17~ () T < Z Ei,i—l);

i=|m|~ ()42

COROLLARY 14. Let neN, 7 € ST, A=(a;; a2; a3, ...; a_1; ay) € Mysn(R) and
B € My« (R), both non-negative. Then:

1 A-My(@) = A;

@ ifo@(zl ) =1,

A-Mp(m) = (@r; @25 - .5 Q=1 ()5 Bns Q=1 ()15 A |~1(m)425 - - - 5 Bn—1)

whenever || '(n) <n—1, and A-My(w)> A and A- My(7) > (a1; a; . . . ;
13 ap—1) if 7|7 () =n — 1;

3) ifo@(xl () =-1,

A-Mp(m) > (ar; a; . . . ; r|-1m)—15> s Az =) dr|~1(n)+15
Q-1 a2t - -5 1) if 7T ) > 1
and
A-Mp(m)>(ay;ar;ay...;a,—1) whenever |71|_1(n) =1,

“4) ifA>=B,A-My(w)>B- -M,(w)and A - Mp(w) > B - My (7).

Notation 15. If A = (ar; az; a3; ...; a,—1; a,) € My, (R) and we are going to multiply
it, immediately, by one of the two matrices M, (r) or M}, (), then we will also write:
. A=(aj;ax...; al-:rl"(n); o) ifo@(r]T () = +1;

° A=(aj;ap;...; al;l"(n); ...;a,) otherwise.
The objective is to simplify the reading so that we know which columns will be modified

after the product in accordance with Lemma 13.
We are now ready to present formally the generalized Rauzy operator R. Let
D= {()\,, 7T) € A" x Sg . )\.n # )\.lnl—l(n)}

Then
R:DCA" xS — A" x S
T=0n) — T =W,

is defined by

-1 .
T/=()L/, n/)z{(Ma(JT) A, a(m)) lfA‘IﬂI*l(n)<)‘n’

(Mp ()" A, b(T)) i A =10y > e

If T’ is obtained from T by means of the operator a, T is said to be of type a, otherwise
T is of type b. In any case, T’ is the Poincaré first return map induced by T on [0, I],
with " =1 — min{A,, Mnrl(n)}; see [1, Proposition 5]. Figure 3 shows the (6, 4)-IET
T = (A, ) and the induced IETs T/ = (A, #’) and T” = (A", =”"). Observe that, in this
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FIGURE 3. Example of an IET T and the induced IETs 7/ and T”.

example9 )" = ()"1’ )"27 )"3’ )"47 )"5’ )"6)’ T = (_37 _4” _5’ 67 13 —2), )‘4/ = ()"/ ) )"/2’ )"%y )‘-ip
A5, Ag) = (M, A2, A3, A4, As, e —A4), ' =a(m) = (-4, =5, -6, 2,1, =3), )" =
Wy My WYL M AL A = (W), Ay, A, 2 — A, A4, A%) and 0 = b)) = (—4, =5, 3,
—6, =2, 1). Notice that M, ()" 'A =1" and M;(7)"'A’ =1". In general, given A =

(A, A2, ..., Ap) € ]Ri and w € Sy, it can easily be checked that:

My ()™ =ty Aas s Dt hn = A o1 )
My(m) ™ A= (1 A A1 Mr ety — e A Mg etgnysts - -0 Ane1)s

if o (x|~ () =+1and 7|7 () > 1, 1 (6)
M) A= (M = Ay Ans Aas oo ),

if o (|~ (n)) =+1and |7| ' (n) = 1, ©)
Mp(@) "' A= Mgt A Aty — A A1yt - -

if o (x| () =—1and [7|"'(n) > 1, § (8)
Mp(r) " = (s At = Ay A2s oo ),

ifo(x(7| ' () =—1and 7| "' (n) = 1. )

Remark 16. It is worth claiming that if T = (X, &) is a proper (n, k)-IET then R(T) may
not be a proper (n, k')-IET with k' € {k — 1, k, k + 1} (notice that if we apply a or b
with o (w(n)) =1 or a(n(|n|_1(n))) = 1, respectively, then the induced IET keeps the
same number of flips, but if o (w(n)) = —1 or o(n(|n|_1(n))) = —1, then the induced
IET can have k — 1 or k + 1 flips). For example, take 7; = (A;, 7;), i € {1, 2}, with 7 =
3,-2,-5,4,1),mm=(4, 1,5, 3, 2) and A; chosen in such a way that 7; are both of type
a. Then R(T;) = ()L;, a(m;)), witha(ry) =4, =3, =2, 5, ) anda(m) = (5, 1, 3, 4, 2).
In this case, 77 is a proper (5, 2)-IET and 7> is a proper (5, 0)-IET, both with four
discontinuity points. However, both R(77) and R(7>) have three discontinuity points.

1 If w(Iw| "1 (n)) = n — 1 we will understand My (w) "1 = (Aq, Aa, ..., A2y An—1 — Ay An).
tIEn(rl M @) =n—1, Mp(m) A= (A1, Aoy - An—2s My Age1 = ).
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Claim 17. If T = (A, 7) is minimal then T € D, otherwise A, = A -1, and there exist
jef{l,2,...,n}and ® € {®, S} such that T(a?) = a,, which would imply that the orbit
of a, is not dense.

The operators a and b induce in the set Sy * a directed graph structure whose vertices
are all the points from Sy'* and the directed edges are arrows labelled by a and b. Given
7, ' € Sy*, there exists an arrow labelled by a (respectively, b) from 7 to 7’ if and only if
a(m) = 7’ (respectively, b(r) = n’). Any connected subgraph of this graph, G, is called a
Rauzy class (the Rauzy classes for standard permutations are studied in [18]). We remark
that we only take into account irreducible permutations because they are the only ones
for which the associated IETs can be minimal. Moreover, it is worth noticing that if 7 is
an irreducible standard permutation then a(;r) and b(;r) are irreducible, while this is not
always the case for non-standard irreducible permutations; observe that a(—4, 3, 2, —1) =
(1, 4,3, =2).

A vector of operators is an element of {a, b}L, where L € N or L = oo (when L = o0,
{a, b}t ={a, b}N). An easy way of constructing Rauzy subgraphs is to take a vertex
m € Sp°* and to construct other vertices recursively by applying a vector of operators. The
Rauzy subgraph associated to w1 € S5 and v € {a, b}*, G™Y, is the graph of vertices
{T[i}l.l‘zl satisfying v; (r;) = w41, 1 <i <L — 1, the edges of this graph being arrows
labelled by v; from m; to m;41. Observe that any n-IET, T = (A, ) € D, defines a Rauzy
subgraph in a natural way, the one associated to 7 and the vector of operators v defined by
Rauzy induction, that is, v; is a (respectively, b) if R'~!(T) is of type a (respectively, b);
we denote this subgraph by GT. We will say that T is infinitely inducible if v has infinite
dimension, that is, v € {a, b}N.

LEMMA 18. Let y € A", mw € S¢°* and v € {a, b}. Then the IET S = (M,(n)y, 7) is of
type v.

Proof. Write A = M, (r)y. Assume first that v = a. Then Ay = yn + Vjz-1(n)> Mz -1 (n) =
Yix|-1 () @nd S is of type a. Second, if v = b we obtain Az -1y = Vi |-\ (n) + Vx|~ (1) 41+
while 4, € {¥|7|-1a)s V|- 1(n)41}- Thus S is of type b in this case. O

COROLLARY 19. Let v € {a, b)Y for some L € N and let w1 € S be such that G*V
has all its vertices in S3’*. Then there exists an IET T = (A, m1) such that GT = GV,
Moreover; given y € A", there exists an IET T = (A, 1) such that R*(T) = (y, mp41).

Proof. Tt suffices to take A = My, (r1) My, (7r2) - - - My, (7)Y . O

THEOREM 20. Let T = (A!, m1) be an n-IET such that m\ € Sg°*, T infinitely inducible.
For any i > 1, let Ri(kl, mT) = ()J""l, 7wi+1). The Rauzy graph of T, GT, is the one
associated to 7y and v € {a, b}N. Put

o0
C(gT) ::mMUl(nl) -Mvz(nz) ..... Mv,-(ni)An. (10)
i=1
Assume also that, for any i € N, 7; is irreducible. Then:
(1) Arlec@hy;
) ifyeC@Gand S=(y,m) GT =G5
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Proof. Let us prove the first item. Observe that v; (77;) = 7;+1 and A = M, (7m;) A/t
for any i > 1. Thus A! = My, (1) My, (772) . . . My, (;)A+! for any i € N and then A! €
m?i1 My, (1) - My, () - - - - - My, (i) A"

We now prove the second item. Since y € C(GT), for any i € N there exists y! €
A" such that y = My, (m1) My, (72) . . . My, (m)y'T! and v = M, (;)y'*!. Now, by
Lemma 18, S = (y, m) = (M, (m1)y?, m1) is of type vy and R(S) = (2, vi(m1)).
Assume now that R'(y, m) = (y'™, mip1) = (My,,, (ig1)y 2, miq), for any 1<
i <j. Then R/(y,m) is, by Lemma 18, of type vjt1. Therefore RITl(y, m) =
(It wip0) = (My, (wj+2)y? 13, mj42). By recurrence we obtain the result. O

The next result relates the cone introduced in (10) to two IETs, one being induced from
the other.

PROPOSITION 21. Let T = (M, 71) be an infinitely inducible n-IET such that w; € Sy
and R'(\Y, ) = (WY, i 41) for any i > 1. Assume that the Rauzy graph of T, GT, is
the one associated to w1 and v € {a, b}N. Let S = (AO, 7o) be an IET such that o € S9°%,
R(S) =T, and 71 = vy (o) for some vy € {a, b}. Then

My, (70)C(GT) = C(G®).

Proof. Tn order to prove the first inclusion, take A € C(G”). Then there exists A' € A", i €
N, such that A = (]_[lj=1 My, ()" and My, (mo)h = (]_[lj=0 My, ()Ml for any i € N.
Therefore My, (0)C(GT) € C(GY).

Let us proceed with the second inclusion. To this end take y € C(G®), so there exist ¥’ €
A”,. i e NU {0}, such that y = (]_['j:O My, (rrj))y" for any i > 0. Thus M,, (mo) "y =
([Tj= My, rj))y" for any i > 1. Then My, (mo) ™'y € C(GT), y € My, (0)C(G") and
finally M, (0)C(GT) 2 C(G%). .

In the following, given two reals a and b, we put (a, b) := (a, b) if b > a, otherwise
(a, b) := (b, a). Assume now that u is a non-negative non-zero finite invariant measure for
the minimal IET T = (X, 7). Since T is minimal, ¢ has no atoms and if O is a non-empty
open set then ©(0) > 0. Moreover, ¢, (x) := (0, x) is a homeomorphism between [/
and I, := (0, u(I)). We next define T), as the map that makes the following diagram
commutative.

Thus T, o ¢, (x) = ¢, o T(x) forany x € 1.
Following [32, §28] (see also [30, §1]), we can adapt the proofs to the case of IETs with
flips. We implicitly use Claim 17.

THEOREM 22. Let T = (A, m) be a minimal IET and let |1, u* be non-negative non-zero
invariant measures. Denote by A(u) the positive vector having as ith component A(jL); =
wly),ie{l,2,...,n}. Then:

0 T =@, m);

(2) the types of T and T, coincide;
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(3) the subgraphs GT and G™r coincide;
@) if u#£ u*, we have A(j1) # r(u*), where L(u*) is defined in the same way as A().

Proof. LetT : D = U;’zl I; — [0, ] and let x € I; = (a;, a;j+1). Then (recall the notation

used on page 3103):
[ |(@)=(o (7 (@)+1)/2 i—1
j=1 j=1
[7|(@)—(o (@)+1)/2
=“<<0’ > Mml(j)))
j=1
71— (o (m@)+1)/2 [T — (o (@)+1)/2
+ "(”(i))“« > M=) ( > Mn—‘(j))
j=1 j=1
i—1
+ a(n(i))[x -y A,»D).
j=1

Notice that the invariance of u by T implies

(1) — (o (r()+1)/2 1)~ (o (e (@) +1)/2
“((0’ > A|:r|‘<j>)) =M( U 1|n|1<j>>

j=1 j=1
71— (o () +1)/2
= > “pz-15))
j=1

k
= MW (11)
j=1

and

1)~ (0 () +1)/2 71— (o (i) +1)/2
M(< > Mzl=1(j)s ( > Mnrl(j))

j=1 j=1

+a(7‘r(i))|:x—§)»jj|>>=M<T<<§Aj,x))). (12)

Equations (11)—(12) give

[ |(i)=(o (= (@)+1)/2 i—1
T (0 (X)) = @ (T (x)) = > A 1y + a(ﬂ(l’))M((Z A, x))
j=1 j=1

[l — (o ((@))+1)/2
= > M 1))
j=1
i1
+ o (i) [mx) -3 x(u),}.
j=1
This proves part (1) of the theorem (cf. the definition of an IET introduced on page 3103).
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Turning to part (2), we begin by noticing that the Rauzy type of T and 7, coincide.
Indeed, if 7' is of type a then T'(1;-1(,)) & In and w(lj7-1¢,)) = AW 7 -1 ¢y < AW =
n(1y), and T, is also of type a. If, in exchange, T is of type b then T(I|ﬂ|71(n)) 21, and
,u(lmfl(n)) = X(,u,)mrl(n) > A(u)y = u(l,). Thus T, is also of type b.

We now prove part (3). Let 77: D" =Ji_; I/ — [0, '] be the map induced by T =
(A, ) by means of the Rauzy procedure, where I’ =1 — min{A,,, )\.‘nl—l(n)}, and observe
that if we continue writing p to denote the measure (t][o, /1, then  is an invariant measure
for T’ (notice also that T’|IJ4 is either T|IJ( or T2|[}). We will now show that (77), =
(T,)'. We will use that T), = (\(n), m), T = (X, c()), (T) = A(w), c(@)), (T =
(A (w), c()), where c is the type of T and T},; see part (2). First, we assume that ¢ = a.
Then (see equation (5))

Mw);=r(u)i = pl) =pd) =r"(w)i, 1<i<n-1,
My = A — M) g1y = WUINT U 1)) = (L) = 2 ().
Now, if ¢ = b (see equations (6)—(9)) then

M)t =r(w)i = pnly) = pd)) =N (w);, i<|rl™ '),
AW = r(i-1 = pli-1) = p() =2y, i> 7|7+ 1.
Moreover, ifa(n(lrrl_l(n))) = —1 then

MV 1y = 2000 = ) = 1) = 2 () 1y
A 1 g1 = AW 1y — A(n = 1 -1 ) — ()
= =1 () = (T~ (1))
= 11 o \T ™ ) = w1 ) = X (W) 21 41
However, if o (7 (||~ (n))) = 41 then
A g1 oy = MO =1y — M = 11Uy =1 y) — (L)
= g1 ny) — (T (1))
= 11 o \T ™ ) = 1] 1) = 2 () e 1y
M 1yt = 2000 = ) = 1] ) =2 (0 -1y 1

In any case, we have proved that A'() = A(n)’, hence (7"),, = (T,,)’, and reasoning by
recurrence we obtain that G7 and G7+ coincide.

For part (4) one realizes that the proof for orientable IETs applies directly to IETs with
flips; see [32, Lemma 28.4]. O

The next result has been proved for orientable IETs only by Viana [32], but it also
holds for IETs with flips as mentioned in [12]. To fill the gap, in [1], Angosto and the
second author have related the generalized Keane condition, minimal IETs and infinitely
inducible IETs.

THEOREM 23. Let T = (A!, m1) be an n-IET such that 7w\ € S5°*, T infinitely inducible.
For any i > 1, let Ri(kl, m) = (Ai+1, 7wit+1). The Rauzy graph of T, GT, is the one
associated to w1 and v € {a, b}N. Assume also that, for any i € N, m; is irreducible. Then:
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(1) T satisfies the generalized Keane’s condition;
(2)  RI(T) is minimal for any j € N U {0};
(3) ifC(GT) is a half line, T is uniquely ergodic.

Proof. Parts (1) and (2) follow from [1]. We prove (3): let 1 and p* be two Borel, non-
negative, non-zero, finite, invariant measures and observe that by Theorem 22(3), Gln =
Gl | and by Theorem 20(1), {A (), A(1*)} € C(GT). Since C(GT) is one-dimensional,
there exists « € Ry such that A(u*) = k() = A(k ), thus u* = k u, by Theorem 22(4),
and the claim follows. ad

The core of a non-negative n x n matrix M is the set ﬂjeN M7 A" with n € N. We take
the next result from [26, Theorem 4.1]; the reader can also consult [30, Proposition 3.30
and Lemma 3.28] for a more general setting.

THEOREM 24. Let M be a positive n x n matrix. Then ﬂ/eN MJA" = {pv:reRy) for
some (positive vector) v € A".

The next result gives a method for constructing minimal IETs by means of Rauzy
graphs. Let G™1'Y be the graph of vertices {7; };cn associated to 7 € S7* and v € {a, b}N.
We say that G™'V is periodic if there exists a minimal p € N such that w;,, =m; and
vj4p = v; for any positive integer j. The period of G**V is p. The matrix associated to the
periodic Rauzy graph, G™!*¥, of period p is MY = My, (1) - My, (2) - - - - - My, (7p).

1,V

THEOREM 25. Let G™'Y be a periodic graph of period p associated to my € Sy’* and

v e {a, b)N. Assume that the sth power of Mgl v Is positive for some s € N. Then:

(1)  there exists A € A" such that |]\'| =1 and T = (A", 1) is minimal and uniquely
ergodic, and, in particular, C (gT) is one-dimensional;

(2) the associated graphto T is G™'Y;

(3)  RI(T) is minimal, uniquely ergodic and self-induced for any j € N U {0}.

Proof. (1) First, we claim that

o0

() Moy (1) - My (2) -+ -+ - My, (ri) A" = ) (M )/ A"

i=1 jeN
(notice that, by Theorem 24, N j EN(Mg1 ’V)Sj A" # (). The inclusion ‘C’ is trivial. For the
other inclusion, take A € ﬂjeN(Mgl’v)sj A", Then for any j € N there exists A/ € A" such
that A = (M%U)”)J. Let us show that A € ({2, My, (1) - My, (r2) - - - - - My, (r) A",
Fori € N, write i = spc + r, with 0 < r < sp. Since (Mgl’v)s(vﬂ))\cqtl = A, we deduce

[le(nl) : Mvz(n2) te Mvp(np)]xc : le(nl) : Mv2(7T2) ce Mv,(n'r)
My, (Trg1) -+ - My, ()] - AT
= le(ﬂ']) ' MU2(7T2) e MU,'(T[i) V= A,

with y = (M, (Tp41) - - - My, (7T5p)) -A¢tl e A" (see Claim 12). Then

o0
he () My, (1) - My, () -+ - - My, (i) A",

i=1
which proves the claim.
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Next, it suffices to apply Theorem 24 to obtain that () jeN(MglyV)sj A" is one-
dimensional. Therefore, by Theorem 23+, there exists a unique AL |k1| =1, such that
T = (A, ) is minimal and uniquely ergodic, hence (1) follows.

Part (2) is a direct consequence of repeatedly applying Lemma 18.

Finally, we show part (3). Observe that for any jeN, R/(T) is minimal by
Theorem 23(2). Moreover, Proposition 21 implies that C(G T]), j €N, is one-dimensional
since C(G7) is, and then Theorem 23(3) guarantees the unique ergodicity of 7/. R/ (T) is
also self-induced since G™!*V is periodic too. O

Remark 26. Although in this paper we construct minimal self-induced IETs we now
introduce some permutations which do not generate self-induced IETs. Consider 7 €
Sy* such that 7(1) = —n and w(n) = —1. Then a(x) and b() are both reducible.
Consequently, there is no A € A" making T = (A, 7) self-induced. Observe that we can
choose m with & flips, 2 <k <n.

Also take T € S7°* satisfying t(n — 1) =n, 7(n) = —1. Then it is a simple task to show
that b(t) =1, b(ar) # 7 for any o € S, *\{r} and a(a) # t for any o € Sy°*. Then the
existence of A € A" making T = (X, 7r) self-induced would imply that R/ (T') is always of
type b, but this is a contradiction with [1, Lemma 6]. Observe that 7 can be chosen with k
flips, 1 <k <n-—1.

4. Proof of main theorem for n = 2m > 8

We divide the proof of this case into three subsections. In §4.1 we build a periodic Rauzy
graph, and we show that its associated matrix is positive in §4.2. Finally, in §4.3, we
include the proof of main theorem for n = 2m.

4.1. The periodic Rauzy graph. ~ We divide the proof of this section into several lemmas.
The idea is to construct a periodic Rauzy graph of period p =4m + (2m — 3)(m — 1)

and to apply Theorem 25. Let 7t = (zi)ril € {a, b}L", with L; e N and 1 <i <h,

1 2 h

for some integer h > 2. We define the concatenation vector z=17" %2°%---72" €

{a, bylr+lot+Li by 7. =z;_zx<i L, if DouciLi<j<> iy L forsomei.

Let us take

mo=(=3,—-4,-5,...,—2m —1],2m, 1, =2), (13)
vi=(,a,a, ..., a) ela, b}, (14)
v’ =(b,a, b, b,a,b) e {a, b)®, (15)
v’=(a,b,a,b,a,b..., a,b)e{a, b}, (16)
v'=(a,b,b,a,a,a,b,b,b,b,...,b,....b,a,..., a)€la, b}FIm=D (q7)

e —— ——— —— ——
2 3 4 2m—4 2m—3

v’ = (b, a, b) € {a, b, (18)
v=v « vV« V¥ s vt kv’ €{a, b})?, p=4m+ (2m —3)(m — 1). (19)

+ Observe that if 77 is a vertex of G71'Y, then 7 € Sy'* due to the periodicity of the graph, taking into account
that a reducible permutation is sent to another reducible permutation by the maps a and b.

https://doi.org/10.1017/etds.2017.5 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2017.5

3118 A. Linero Bas and G. Soler Lopez

We can also define the vector w as the periodic concatenation of v, that is, the vector
w=(w;); € {a, b}N, such that w; 1y, =v; forany 1 <i < pandk € N.

LEMMA 27. Let Q”O’Vl be the graph of vertices (712" 3 m > 4. Then

i=0 >
= (-4, -5, -6, ..., —[2m—1], —2m, =2, 1, =3),
my=(-5-6,-7,...,—2m,3, =2, 1, —4),
and, for any 3 < j <2m — 3, we havet
=B+, -4+l ..., ;2,."3 S+ L g3, -2, 1, =2+ ).
2m—2—j

Proof. To compute the different values of the vertices of the graph, we must recall the
definition of a(-); see (2). Then it is easy to see that

my=a(=3,—4,-5,..., —[2m —1],2m, 1, =2)
=(—4,-5 —6,...,—[2m —1], —2m, =2, 1, =3),
m=a(—4, -5, —6,...,—[2m — 1], —2m, =2, 1, =3)
=(=5,-6,-7,...,—2m,3,-2,1, —4).
The rest of the result follows by applying recurrence on j. For j = 3, we have
3 =a(=5,—6,—-7,..., —[2m —1], —2m, 3, =2, 1, —4)
=(—6,-7,...,—-2m,4,3,-2,1, =5).
Now we assume that, for some j > 3,
=3+ jl,—-[4+]jl,..., jﬂ i+ L g =103, =21, —[24j]),
2m—2—j
and we obtain
wiv1=a(wj) = (—[4+jl, =[5+ /], ..., ;Zﬁ ,
2m—3—j
j+2,j+1,4,j—-1,...,3, =2, 1,-[3+ /],
which ends the proof. O

From the relations b(w2,—3) = Tom—2, A(Tom—2) = Tom—1, b(Tom—1) = Tom, b(7T2m) =
Tom+1> A(Tom+1) = Tom42 and b(wam+2) = Tom+3, the next result easily follows (use the
definitions (2) and (3)).

LEMMA 28. Let g”zm—3~vz be the graph of vertices {71,'}1.2;";3_3, withm > 4. Then:

Tom—2=0Q2m—1,=2m,2m —2,2m -3, ...,4,3, =2,1),
Tom—1=02m, =2,2m —1,2m —2,...,5,4, =3, 1),
Tom=02m,1,-2,2m—1,2m -2, ...,4,=3),
Tom+1=Cm, =3, 1, =2,2m —1,2m —=2,...,5,4),
Tomy2=0,=3,1,-2,2m,2m —1,2m -2, ...,7,6,4),
Tom+3 =0, =3,1,-2,2m,4,2m —1,2m —2,...,7,6).

+ The underbrace in the following formula indicates the position where the value —2m is placed.
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4m—3

LEMMA 29. Let Q”Z"’+3’V3 be the graph of vertices {ni}i=2;n+3’

Jj <m — 4, we havet

m > 5. Then, for any 1 <

7'[(2,,,_;,_3)_;,_(2.,'_1):(5, =3,1,-2,7,4,...,2k+5,2k+2,...,2j+5,2j +2,
2m ,2m—1,2m—2,...,2j+7,2j4+6,2j+4)
T+2(—1)

and
Tomd42; =06, =3, 1, =2,7,4, ..., 2k+52k+2,...,2j+52j+2, 2m |,

TH2(j—-1)
2j4+42m—1,2m—2,...,2j+7,2j+6),

where, in both cases, 1 <k < j. Moreover, for m > 4,

T4m—4 = Tam—3
=06,-3,1,-2,7,4,...,25s4+52s+2,...,2m—1,2m — 4, 2m, 2m — 2),

withl <s <m — 3.

Proof. 1If the first equation is true then the second follows since mom43)42j =

b(7w2m+3)+(2j—1))- Letus prove the first equality by induction on j. For j = 1 the formula
is valid because

Tom+3)+1 =a(@om43) =6, =3,1, 2,7, 4,2m,2m —-1,2m -2,...,9, 8, 6).

Assume now that the equation is true for some j (recall that the second one is also valid).
Then
TQm+3)+@2j+1) = a(TQm+3)+25)
=(,-3,1,-2,7,4,9,6,11,8,13,10,...,2j +5,2j + 2,
2j+7,2j4+4, 2m,2m—1,2m—2,...,2j+9,2j+8,2j +6),
—_—— ~—~—
T+2(j-1) T+2j

which proves that the equalities of the statement are true for mu43)+2j—1) and
Tem+3)+2j), 1 < j <m — 4. Finally, since w4y, 4 = a(7w4p—5) and 4,3 = b(7w4m—4),
it is easy to see that both permutations are equal to

5,-3,1,-2,7,4,...,2s+5,2s+2,...,2m—1,2m — 4, 2m, 2m — 2),
with1 <s <m — 3. O
We already know that

Tym—3=(,-3,1,-2,7,4,...,2k+5,2k+2,...,2m—3,2m — 6,
2m —1,2m —4,2m, 2m — 2),

withl <k <m — 3.

T Observe that the definitions of 7(2;;43)+2j—1) and (2 43)+(2;) do not apply in the case m =4. In this
situation, only the expressions for 4, 4 and m4,,_3 make sense.
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In order to give a new representation of the vector v* (see (19) and (17)) and to simplify
the writing in next lemma, let us introduce some notation. For j € N, we define the blocks

a’ :=(a,...,a)e{a, b}, (20)
b/ :=(b, ..., b) € {a, by, (21)

and also
¢/ :i=a% "V xp¥ efa, by, (22)

In this way, it is an easy task to check that

vi=el s sl x ke P " 2w,

where the symbol * denotes the concatenation of vectors.
We will write

j . JoJ J J J
¢/ = (c1, 0 "'102]'71702]"""64,’71)’ (23)

SO ciJ is the ith coordinate of the vector ¢/ .
It is an easy task to check that v* = ¢! x¢Z s ¢ % - - - % "3 % "2 % a?" 3. We will
Tam—3,V* . Am—3+2m—=3)(m—1) .
construct the graph, G™n-3V" of vertices {7'[,-}i:4m_3 . We will also denote the
vertices by

{8ji:1<j<m—2and1<i<4j—1}U{g:1<i<2m—3}, 24)

where

o S11=cl(mam—3) =a(mum—3) and & ; =c}(81,-1) =b(81,_1) if i =2,3 (recall
that ¢! = (a, b, b));

o Jj1= Cf (Bj-1,4j-5),2=<j<m—2(thatis, 8; 1 =a(8;—1,4j-5));

° dji= C{(S./,i_l) for2<i<4j—-1,2<j<m-—2,s0 dji=a(dji-1) if2<i<
2j—1landd;; =b(;;—1)if2j <i<4j—1;

° e1=a(Bm—-24m—9) and & = a(ej—1) if2 <i <2m — 3.

Roughly speaking, ;; is the permutation obtained from 74,3 by applying the vector of

operators ¢!, ..., ¢/7! and the first i components of ¢/; & is the permutation obtained

from 74,3 by applying ¢!, . .., "2 and i times the operator a.

LEMMA 30. The components of the Rauzy graph g”4m*3’v4 are given in the following

items.

Ci. Form > 4, the permutations appearing when applying the operators of ¢! on 7w4m_3
aret

Tam—2 = 61,1 = a(7Tam—3)
=6,-3,1,-2,7,4,...,2k+5,2k+2,...,2m —3,2m — 6,

2m—8 components

2m,2m —4,2m — 1,2m — 2),

Tam—1 =081,2 = b(mam—2)

+ The block of 2m — 8 components obviously disappears when m = 4.
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=(06,-3,1,-2,7,4,...,2k+5,2k+2,...,2m —3,2m — 6,
2m—8 components
2m,2m —2,2m — 4, 2m — 1),
T4m = 81,3 = b(Tam—1)
=06,-3,1,-2,7,4,...,2k+52k+2,...,2m —3,2m — 6,

2m—8 components

2m,2m — 1,2m — 2, 2m — 4),

withl <k <m —4.
C;. For m >3, the permutations obtained by applying the operators of the vector c/,
with2 < j <m — 3, are the followingt:

8js=(5—3,1,-2,7,4, ..., 2k+52k+2,...,2m—2j —1,2m —2j — 4,

2m—2j—6 components
2m —2j4+s+1,2m —2j —2,
2m —2j+s,...,2m—2j+s—1,...,2m —2j+ 1,

s components
2m 2m—1,2m—2,...,2m —2j4+s+3,2m —2j+s+2,
=~
2m—2j+s+1 2 j—s—2 components
2m —2j)
(where 0 <1 <s — 1),

8j2j—2=0(5,-3,1,-2,7,4,...,2k+5,2k+2,...,2m—2j—1,2m—-2j -4,

2m—2j—6 components
2m—1,2m—2j—2,2m—2,2m—3,...,2m —2j +2,2m —2j + 1,
2m ,2m —2j),
2m—1
8joj—1=05,-3,1,-2,7,4,...,2k+5,2k+2,...,2m—2j—1,2m—-2j —4,

2m—2j—6 components
2m  ,2m —2j—2,2m—1,2m —2,...,2m — 2j),
——
2m—2j—1
Sjajpi=(5, =3, 1,=2,7,4,...,2k+52k+2,...,2m—2j —1,2m —2j — 4,

2m—2j—6 components

2m  2m—2j+i,...,.2m—2j+i—q,...,2m—2j,
~—— ——
2m—=2j—1 2m—2j+i

2m —2j —2,2m—1,2m—2,...,2m —2j +i+1)
(Where 0 < q <1i),

8jaj—1=0,-3,1,-2,7,4,...,2k+5,2k+2,...,2m—=2j—1,2m—-2j —4,

2m—2j—6 components

T In the case Cy,;, 3 it is necessary to take into account that, in the expressions for 8; s, 8;2;-2,8;2j—-1,8;2j+i
and 6_,;4_[,1, the group 7, 4,9, 6, 11,8, ..., 2m —2j —1,2m — 2j — 4 disappears.

2m—2 j—6 components
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dm L 2m—1,2m—2,...,2m—2j,2m—2j—2),
~— ——
2m—2j—1 2m—1

withl <s<2j—20<i<2j—2andl1 <k<m—j—3.

C,u—2. For m > 4, the permutations obtained by applying the vector ¢" 2

are given byt
Om—2s=(6+5 -3,1,-2,s+4,....,s+4—h,...,5,

2m ,2m—1,...,s+7,5+6,4),
-
s+5 2m—s—6 components
dm—22m—5=02m,=3,1,-2,2m—-1,2m —-2,...,7,6,5,4),
Sm—22m—s54+i=0Cm,34+1i,...,34+i—p,..., 4, =3,1, =2,
i components 2+i

2m —1,2m —2,...,i+4),
\—\,—/

S5+i 2m—i—5Scomponents

6141—2,4"1—9 = (Zma 2m — 1’ 2m — 25 L) 47 _33 17 _2)5

where 1l <s <2m —6,0<h<s—1l,and1 <i<2m—-50<p<i-—1.
Ao_3. Finally, for m > 4 we apply a¥" =3 to obtain

&=2,...,—Q+j),....,—li+1], 2m ,2m—1,2m —2,...,i +4,
-
i components i+1 2m—i—d4components
—[+3L 1, —[i+2]) withl<i<2m—-4,0<j<i-—1,
eom—3=(—2,-3,—4, ..., —[2m —=3], —[2m — 2], —2m, 1, —[2m — 1]).
2m—2

Proof. 1t is straightforward to see that the result is true for C; and it is a simple matter to
prove that C; holds, so we omit omit the proofs$. Next, we prove by induction that C;
holds true for 2 < j < m — 3 (then we implicitly assume that m > 6). Let us suppose that
C; holds for some 2 < j <m — 4, m > 6, and prove the validity of C;. Since

8/,4_}—12(59 _39 11_29
7,4,9,6,...,2m—2j —3,2m—2j —6,2m—2j —1,2m —2j — 4,

2m—2j—6 components

2m ,2m—1,2m —2,...,2m —2j,2m —2j — 2),
S~~~ —_——
2m—2j—1 2m—1

according to the definition of a, with a(n(|n|_l(n))) = +1, we find
Sj+11=a(8jasj—1)=(,=3,1, -2,
7,4,9,6,...,2m—2j—3,2m—2j —6,2m —2j,2m —2j — 4,

2m—2 j—6 components

2m —2j —1,2m,2m —1,...,2m —2j+1,2m —2j — 2)
—_——

[ —
2m—2j—1 2m—1
+ Observe that the blocks of 2m — i — 5 and 2m — s — 6 components can have length 0.
i Observe that if m =4 then the item C; does not appear and we are implicitly assuming m > 4 when proving

the validity of C;.
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=6,-3,1,-2,7,4,9,6,...,2m—2j —3,2m —2j — 6,

2m—2(j+1)—6 components
2m =20+ D+ 1+1,2m =2+ D =2.2m =2+ D+1.  2m |
2m=2(j+D)+1+1
2m —1,2m—2,....2m—=2(j+ 1)+ 14+3,2m —-2(j+ 1)+ 1+2,

2m —2(j + 1)),

therefore 6;,1,1 follows the pattern of the induction. This allows us to apply induction
on s, so we will prove that if the formula §;,1 s holds for 1 <s <2(j + 1) — 3, then the
formula remains valid for § 41 541. Indeed, by definition of a,

Sjtisr1=a(j115) =a(5, —=3,1,-2,7,4,...,2m —2j —3,2m —2j —6,

2m—2(j+1)—6 components
2m =2+ D +s+1,2m—2(+1)—2,
2m = 2(j+ D +s,....2m=2(j+ D) +s—1,....2m =2(j+ 1)+ 1

§ components

2m ,
———

2m—2(j+1)+s+1
2m —1,2m —2,....2m —=2(j+ D) +s+3,2m —=2(j+ 1)+ s + 2,

2(j+1)—s—2 components
2m —2(j + 1))
=5, =3, 1,-2,7,4,....,2m—2j —3,2m —2j — 6,

2m—2(j+1)—6 components
2m =2+ D)+ G+D+1,2m—2(G+1) -2,
2m =2+ D+ G6+1D,....2m =2+ D+ G+ -1, ...,
=2+ D +1+12m =2+ 1) +1,
2m—=2(j+1)+s+1
2m,2m—1,....2m=2(j+ D+ +D+3,2m -2+ D+ +1)+2,

2(j+1)—s—2 components
2m —2(j + 1)),

that is,

Sjttor1 =5 =3,1,-2,7,4,...,2m—2j —3,2m —2j —6,

2m—2(j+1)—6 components
2m =2+ D+ G+D+1,2m =2+ 1D -2,

2m =2+ D)+ +1),..., 2 =2+ D+ G+ —1,...
,2m—2(]—I—1)+1+1,2m—2(]+1)+1,2m—2(j+1)+1, SJrlcomponents
| S —

2m=2(j+1)+s+1

2m m—1,..., =2+ D+ 4+ +3,2m =2 +1)+(+1)+2,
2m=2(j+D+(s+D+1 2(j+1)—(s+1)—2 components
2m —2(j + 1),

0 811,541 satisfies the corresponding formula for the first part of C; . Thus we finish
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the induction on s. In particular, for s = 2(j + 1) — 3 we have proved that

Siv12(+H-3=05,-3,1,-2,7,4,...,2m—2j —3,2m —2j — 6,

2m—2(j+1)—6 components
2m—2,2m—2(j+1) -2,
2m —3,2m —4,...,2m —2j,2m —2j — 1,

2(j+1)—3 components
2m, 2m—1 ,2m —2(j + 1)).
~— ———

2m—2 1 component

Applying the operator a twice, we find

8j+1,2(j+1)—2:(5v =3,1,-2,7,4,...,2m—2j —3,2m —2j — 6,

2m—2(j+1)—6 components
2m —1,2m —-2(j+1)—-2,2m —2,2m —3,...,2m —2j + 1,
2m —2j,2m —=2(j+ D+ 1, 2m ,2m —2(j + 1))
2m—1

and

Sjv12(j+1)-1=(5,=3,1,-2,7,4,...,2m—2j —3,2m —2j -6,

2m—2(j+1)—6 components
2m 2m—=2(j+ 1) —2,2m—1,2m -2, ...,
——
2m—2(j+1)—1
2m =2(j+ 1) +4,2m—-2(j +1) + 3,
2m =2(j+1D)+2,2m =2(j+ 1)+ 1,2m = 2(j + 1)),
which ends part of the inductive process of the proof for C;1, with2 < j <m —4. It
remains to obtain the corresponding formulas for 8; 1 2¢j+1)+i (0 <i <2(j + 1) — 2) and

for 6;41,4(j+n—1. To this purpose, we now apply consecutively the operator b and do
induction on i. To start,

8it1.2+0) =bjt12(j+1)-1) =b(5, =3, 1,-2,7,4,...,2m —2j —3,2m —2j — 6,

2m—2(j+1)—6 components
2m 2m =2+ 1) —2,2m—1,2m -2, ...,
——
2m=2(j+1)—1
2m—2(j+1)+4,2m —2(j + 1) + 3,
2m =2+ 1) +2,2m =2+ D) +1,2m—2( + 1)
=(5,-3,1,-2,7,4,...,2m—2j —3,2m —2j — 6,

2m—2(j+1)—6 components
2m 2m =2+ 1), 2m —2(j +1) — 2,
2m=2(j+1)-1
2m —1,2m —2,...,2m —2(j + 1)+ 4,

2m =2+ 1) +3,2m =2+ 1) +2,2m—2(j + 1) + 1).
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Hence, the formula § 41 2(j+1)+ is correct for i = 0. The induction for any other value of
i follows a direct (and tedious) procedure, so we omit it. Consequently,

8j+1,2(j+1)+2(j+1)—2 = (5, —3, 1, —2, 7, 4, ey 2m — 2j — 3, 2m — 2j — 6,

2m—2(j+1)—6 components

2m ,2m—2,2m —3,...,2m—2(j + 1),
~—— —_—
2m—=2(j+1)—1 2m—2

2m —2(j+1)—2,2m —1).
Finally,

3j1,2(j+D+2(+1)—1 =b(j+12(j+D+2(j+1)—2)
=5, =3, 1,2, 7,4, ....2m =2+ 1) —1,2m —2(j + 1) — 4,

2m—2(j+1)—6 components

dm 2m—1,2m—2,2m =3, ..., 2m—2(j +1),
~— —_—
2m—=2(j+1)—1 2m—1

2m—2(j +1)—2).

This ends the inductive proof of the effect of the vectors ¢/ for j=2,...,m—4.

Concerning the effect of ¢ 3

, we initiate the computations with the permutation
Sm—a.4m—a—1=0,-3,1,-2,7,4,2m,2m —1,2m -2, ...,10,9, 8, 6)
to firstly obtain
m—3,1=a(m-4.4m-a-1)=05,-3,1,-2,8,4,7,2m,2m —1,...,10,9, 6),

which coincides with the formula for the statement for j =m — 3. The rest of the proof
for the effect of the block ¢”~3 is similar to that of ¢/, 1 < Jj <m —4; merely take

into account that the block 7,4, ...,2m —2j — 1, 2m — 2j — 4 disappears. This ends
definitively the proof of the part C;, j =2, ..., m — 3.

To prove C,,—» we first assume m > 5. Our initial permutation is 8,3 4(n—3)—1,
namely

Sm—3,4m-3)—1=0,=3,1,-2,2m,2m - 1,2m —-2,...,8,7,6,4).

Then the first components of this part are

2.1 =aBm_3.4m-3-1)=(6,—-3,1,-2,5.2m,2m —1,...,8,7,4),
2m—T7 components -
dm—22=0am-—21)=(1,-3,1,-2,6,52m,2m —1,...,9,8, 4),
2m—8 components
Sm23=a(m_22) =8, —3,1,-2,7,6,5,2m,2m —1,...,10,9, 4),

2m—9 components

and it is a short exercise to check by induction the formulas of the elements appearing in
Cu—2. A special case is m = 4 for which the effect of ¢/ does not apply. Then we provide
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the exact effect of ¢”~2 on 76 = 813=(5,-3,1,-2,8,7,6,4) in order to prove this
particular case, avoiding the proof by recurrence:

(5.-3.1,-2,8,7,6,4) > (6, -3,1,-2,5,8,7.4) == (7, -3,1,-2,6,5,8,4)

|
(8,5,4,-3,1,-2,7,6) <z (8,4,-3,1,-2,7,6,5) Z 8,-3,1,-2,7,6,5, 4
|
(8,6,5,4,-3,1,-2,7) A (8,7,6,5,4, 3,1, =2)
Once we have proved the parts C;—C;—C,, 2, Az, 3 follows immediately; it suffices
to apply the definition of the operator a. Indeed,
&1 =aBm-2,4m—9) =a(@m,2m —1,2m —2,...,4,=3,1, =2))
=(-2,2m,2m—1,...,5, —4,1, =3),
e =a(e))=a((-2,2m,2m—1,...,5, —4,1, =3))
=(-2,-3,2m,2m—1,...,6,-=5,1, —4),

which proves the validity of the proposed expressions for €1 and &;. Moreover, for any
2<i<2m -5, from

giv1 =a(e;)
=a((-2,...,—Q4+j),...,—[i+1],2m,2m—1,2m —2,...,i + 4,
i components i+1 2m—i—4 components
=(_21 cee _(2+])s ) _[l +1]1 _[l +2]a 2m s
i+1 components i+2
2m —1,2m —2,...,i+5, —[i +4], 1, —=[i +3)])
2m—i—5 components

we deduce that that the expressions for &; remain true for 2 <i < 2m — 4. Finally, 2,,_3
also applies:

&m—3 = a(&yn—4)

—a((=2, =3, —4, ..., —[2m —3], 2m , —[2m — 1], 1, —[2m — 2]))
2m—3
=(=2,-3,—4,...,—[2m -3], —[2m = 2], —2m, 1, —[2m — 1]). O
\\/_J
2m—2

LEMMA 31. Letr =4m — 3+ 2m — 3)(m — 1) and let g”r»VS be the graph of vertices

{ni}?:r?’, where 71, = 1, . Then:

M1 =(—2, -3, -4, -5,...,—[2m —-2],2m — 1, —2m, 1),
Tr42 = (_37 _47 _57 ceey _[2m - 1]3 2m7 _27 1)7
Tois= (=3, =4, =5, ..., —[2m — 1], 2m, 1, =2).
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Proof. This follows by checking that b () = my41, a(7Tr41) = Tr42, b(Tr42) = Tr43. O
As a consequence of the previous lemmas we obtain the following result.

PROPOSITION 32.

(1) The Rauzy subgraph G™V is periodic, where 7o and v are given by (13) and (19),
respectively.

(2) In the vertices of G™V there are permutations with f flips, 2 < f <2m — 1,
satisfying the conditions n(j + 1) —nw(j)#1 and n(j + 1) — n(j) £ 1 mod (n),

for any je{l,2,...,n}, in Remarks 2 and 3, respectively. In particular, these
permutations can be found in the set {; }?il_z
Proof. The first statement follows easily from Lemmas 27-31 since 4+ 2m-3)m-1) =
0.

Concerning the second statement, observe that from Lemma 27 the permutations 7,
1 <j<2m—3,arein G V. Moreover, 7r; has 2m — j flips, 1 < j <2m — 3, and then
in the graph G there are permutations with f flips, 3 < f =2m — j <2m — 1. Note
finally that 75, > has two flips and that 77; satisfies the conditions in Remarks 2 and 3 for
any 1 <j <2m —2. O

In the Rauzy subgraph G-V there are no permutations with 2m flips or 1 flip. The next
results give such permutations and show that they belong to the same Rauzy class as GV,
The proofs are obtained simply by applying the operators a and b.

LEMMA 33. Let 1y, 12 € S5, be the following signed permutations
11=(-2,-3,—4,...,—[2m —2], 2m, —1, —[2m — 1)),
n=(-2,-3,—4,...,—[2m—2],2m — 1, —2m, —1).

Then we have the Rauzy subgraph

1 —Ls 1 —% mo=(=3, -4, -5, ..., —[2m — 1], 2m, 1, —2).

LEMMA 34. Letay, az € S5, be the signed permutations
o =0C2m—1,1,2m,2m —-2,2m —3,...,6,5,4, 3, =2),
a=02m,1,-2,2m—-1,2m—-2,...,7,6,5,4, =3).

Then, we have the Rauzy subgraph

a —%> ar % Tomir = @m, =3, 1, -2,2m —1,2m —2,...,7,6,5,4).

4.2. Study of the matrix associated to the graph G™Y of §4.1. It is a difficult task to
build the whole matrix Mj%,v explicitly. We only need to prove that a certain power of this
matrix is positive. Thus we are only interested in showing that some entries of Mgoyv are
non-zero.

Since MY, = Mfo . Mim_&szfz o MZ ,,,_3,V4M5,,v5’ with r=4m—3+
(2m — 3)(m — 1), we divide this section into several subsections to build, step by
step, some relations between MJ%V and a known matrix. It is useful to revise Notation 15
in order to clarify the meaning of the superindices, + and —, appearing in some columns

of the following matrices.
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42.1. The matrix M9 .- By definition
70,V

MY =W My(w0) - Ma(1) - Mo(2) -+ M(am—5) - Mo (om—a),
where W is the n x n identity matrix W = (eq; e2; . . .; e;m_z; €m—1; €m)-
LEMMA 35. Mfo v = (@15 €20m5 €32m} €4.2m5 - - -3 €2m—2,2m5 €2m—1} €2m)-

Proof. By Lemma 27, |Jrj|_1(—2m) =2m—-2—j, 1<j<2m—4; moreover,
|mo|~! (2m) = 2m — 2. Applying Lemma 13(2) concludes the proof. O

4.2.2. The matrix Mgo ey By the definition of v> we have

MEOQVI*VZ =U - Mp(mom—3) - Ma(mom—2) - Mp(mt2m—1) - Mp(w2)
- Mo (omy1) - Mp(om+2),

where U is the n x n matrix

U= ;u;...5u,) = (€]; €2.2m; €3.2m5 €4.2m5 - - - 5 €2m—2,2m> €2m—1; €2m). (25)

g . . . ——  Ua-
LEMMA 36. M ' > = (U1,2m,2m—33 UL,2m,2m—23 UL,2m,2m—13 UL,2m—1; Uy 5 U223} U3}

Ug; ... Upm—4).

Proof. Itis necessary to use Lemmas 27 and 28 to locate |7 |_1 2m),2m —3 < j <2m +
2 (also notice that a(ngm,3(|n2m,3|_l(2m))) = —1 whereas o(nj(|yrj|_1(2m))) =+1if
Jj=2m—1,2m,2m 4 2). By using Lemma 13,

Ui =U - Mp(mmom—3) = (U125 Uy ; U2; U35 . .05 Udp—1),
+ . . . . .
Uy =Ui - My(mrom—2) = (U3 3 U1, 2m—15 U2 U35 ... 5 U—1),

+ . ) e e -
Us=Us - Mp(mtom—1) = (U7 53 U12m 2m—15 UL2m—15 U25 U35 . . .5 Uap—2),

Uy =U;s - Mp(mom) = (ume; U 2m,2m—25 UL,2m,2m—15 U1,2m—1; U2; U35 . . .5 U2p—3),
Us =Us - My(mt2m+1)
= (U1,2im,2m—35 U1,2m,2m—2; U1,2m,2m—1; Ul 2m—1; u;r; us; ... U2m—3),
and finally

T =Usg=Us - Mp(mom+2)

= (u1,2m,2m73, U1,2m,2m—25 U1,2m,2m—1;5 U1,2m—1; Uy 5 U2 2;-3; U35 . . . ; u,—4). O

4.2.3. The matrix M go In this case

70, Viskv2sy3”

rowlivieys = L - Ma(om+3) - Mp(om-+4) - Ma (7T2m+:5)

- Mp(Tomte) - - - - M, (am—s) - Mp(Ttam—a),
where T is the n x n matrix
T = (t1; 0 35 s 63 t63 . . 5 tom) (26)
= (u1,2m,2m—3; U1,2m,2m—25 W1,2m,2m—1; U1 2m—1; u;_; U2 2m—3; U35 ...; Wpn—4).

https://doi.org/10.1017/etds.2017.5 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2017.5

Minimal interval exchange transformations with flips 3129

Remark 37. Notice that in terms of the values of the identity matrix, 7 can be written as

T = (U1, 2m,2m—35 U12m,2m—23 Ul 2m,2m—13 UL 2m—1; Uy 5 U2 2m—3} U3} - ..} Udp—d)
= (e1,2m + €2m—3,2m5 €1,2m + €2m—2,2m5 €1,2m,2m—1; €1,2m—1; €2,2m5
€2,2m + €2m—3,2m; €3,2m; €4.2m5 - - - 3 €2m—4,2m)
> (el,2m,2m—3; €1,2m,2m—25 €1,2m,2m—1; €1,2m—15 €2.2m; €2.2m,2m—3; €3,2m>
€4.2m5 - - - €2m—4.2m)- 027
LEMMA 38.
g

ovlay2ayd = (015 023 133 145 t5.0m5 6

7.2m—15 7.2m5 -« - S 41 2m+1-15 B12m42-15 - - - Unt2,m+435 Unt2,m+5;
+ .
tm+3’ tm—i—3,m—§—4)9

withl=2,3,...,m—3.
Proof. We proceed by induction. Recall that o (7 ; (|7 |’1 (2m))) =41 forall j € {2m +

3,...,4m — 4}; see Lemmas 28 and 29. We will prove the following formulas for any
2<j<m-3:

-2
Aj:=T- <1_[ Ma(ﬂzm+3+2h)Mh(ﬂ2m+3+2h+1)> s Mo (Tom+3+2(-1)) (28)
h=0
= (t1; t2; t35 €45 t5,2m; t65 17, 2m—15 07, 2m5 - - -5 C5s 2mt1—s3 G5ps, 2m42—s55 - - - 5
. et . .
U5 2m+1-j5 G jama2—j5 Yo igs 45 - mt1—j)s
~———
54+2j

j—1
Bj:=T- (H M, (nzm+3+zh)Mb(nzm+3+2h+1)) =Aj - My(Tomias2j-1)  (29)

h=0
= (t1; t2; t35 t4; t52m; 165 7,2m—15 07,2m5 « - -5 G55 2ma1—s55 54s,2m42—s3 - - -3
54 j.2m+1—j5 U jamt2—j5 toyys torjomt1—j3 T ji teji oo s am—j),  (30)
~——
542j

where the range of the value s is 2, . .., j. Additionally, by using Lemmas 28, 29 and 13
(observe that |m2,,43 |_l (2m) =5 and |712m+4|_1 (2m) =7), we define and compute

Api=T - My(mome3) = (U5 3 133 U5 t5.2m5 te; 5 tg5 ... 5 o),
NI
2m—7 columns
By = Ay Mp(momya) = (45 3 135 1 t5.0m5 Gos 65 7,05 85 005+« 5 Lom—1).
2m—8 columns
We now prove equations (28) and (29) for j =2 and m > 4. Observe that Ay =
B1 - My (2m5), with |m2,151~1(2m) =7 and |mom46/ "' (2m) = 9; see Lemma 29. By
Lemma 13,
Ar = (U5 ©3 35 43 t5.0m5 tes 7 om—15 T.om3 tg 3 o35 tyue1),

~—~—
9
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By = Az - Mp(7t2m+6)
= (t1; t2; 13; t; t52m; 63 7,2m—15 t7,2m5 tg{; t8 2m—1; t9; - - . 5 t2m—2).

——
9

Therefore, equations (28) and (29) hold for j = 2.
Assume now that equations (28) and (29) hold for some 2 <[ < m — 3, that is,
Ay = (t1; t2; t35 t45 t5 25 t6) t7,0m—15 7,2m5 18,2m—25 8. 2m—1; - - -
tS17 2m+1—15 U541, 2m+2—15 tal; 7405 s mr1-1),
——
5421
By = (t1; 3 135 145 t5 25 63 17, 2m—15 17,2m5 18,2m—25 8, 2m—15 - - -
U541, 2m+1-15 U541, 2m+2—1; tal; ot 2m+1-15 G5 8415+« -5 Lom—1)-
——
5421
We will prove that equations (28) and (29) hold for j =/ + 1. By Lemma 29 we know
that |7momq342] "1 2m) =7 +2(1 — 1) =5+ 21 and |mopmasqn41] " Cm) =7 4+20 =5+
2(l 4+ 1). Then, according to Lemma 13, we find
Apy1= By - My (mTom+3421)
= (t1; t2; t3; t4; t5.2m; 63 t7.2m—15 t7,2m5 18,2m—25 t8.2m—15 - - -
U501, 2m4-1-15 8541, 2m42—15 t6+1,2m—15 Yo4+1,2m+1—1; t;LH; t84s5 v o5 m—1),
——

7421
Bi+1 =By - My(mom+3+21) - Mp(Tom+3+4214+1)

= (t1; ©; 135 t45 €525 63 17,2m—15 t7,2m5 t8,2m—25 t8,2m—15 - - -

5+1.2m+1-15 G5+1,2m+2—15 to+1,2m—15 t6+1,2m+1-15

t;rﬂ; 740, 0m—15 18+15 19415 O+ - -+ 5 2m—1-1)-
~——
7421
Finally, observe that MSO Visy2ayd = Bm=3- This concludes the proof. O

42.4. The matrix MY '

70, Visv2sev3svd

: g
the components of the matrix Mﬂo’v,*vz*V3 -

In this section we are not interested in computing

exactly. We will fix our interest on some of
its components.

It is strongly recommended to revise the notation of §4.1 (see (20)—(24)) because we
need it in the following definitions:

C1:=My(mam—3) - Mp(81,1) - Mp(81,2),

4j-2
Cj=MiGj-14j-5)- [ M, &), 2<j<m-2,
-1 I+1
DjIZS-C1~C2--~Cj, 1<j<m-2,
2m—4
Dy—1:=Dm—2 - Mg(8m—2,4m-9) - l_[ M (er).
=1
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Moreover, S is the n x n matrix

e cn- . Lot
§=(815 825835 - - - Sam—2; Som_1° $2m) (31)
= (t1; ©; 135 145 65205 63 17, 2m—15 17,2m5 18,2m—25 8, 2m—15 - - -

. RS
tm+2,m+47 tm+2,m—+—5v tm+3’ tm+3,m+4)
g

70, Visv2sy3”
Remark 39. According to the definition of § and Remark 37, we can express and compare
the entries of S in terms of the entries of the identity matrix W as follows:

S=(t1; ©; 3; 4; t52m5 65 7,2m—15 7,2m5 8. 2m—2; 8. 2m—15 + - -3
Un+2,m+45 tn+2,m+5; tl_;+3; tm+3,m+4)
= (€1,2m + €2m—3,2m> €1,2m + €2m—2,2m’ €1,2m,2m—1; €1,2m—1;
€2.2m + €2m—4,2m; €2,2m + €2m—3,2m;
€3,2m + €2m—52m; €3,2m + €2m—4,2m; €4,2m + €2m—6,2m; €4,2m + €2m—52m; - - -
e Cm—2.2m F+ €m.2ms €m—2.2m + €m+1,2m> €m—1,2m> Cm—1,2m + em,2m)
= (el,Zm,2m—3; €1,2m,2m—-25 €1,2m,2m—15 €1,2m—15 €2.2m,2m—4; €2,2m,2m—3;
€3.2m,2m—55 €3,2m,2m—4; €4.2m,2m—6; €42m,2m—55 « - -3

Cm—2.2m,ms Cm—2,2m,m+15 €m—1,2m> em—l,2m,m)-

Observe that D, = M g

70, V! %v25v3xv4

LEMMA40. MY | vt = (813855 875 0.5 S2m—33 S2m—1,2m5 S2m} S2m—25 S2m—4; - - -}

o, Visv2sy3
$8; S65 Sy 5 $3; S4).

Proof. We begin by calculating an inequality concerning D;. We use Lemma 13(2)-
(3) and Corollary 14 (observe that |mgm—3|~'Qm)=2m —1, |mgm_2|"'Cm)=
|T4m—11"1(2m) =2m — 3 and a(rrj(|7rj|_l(2m))) =+1for j =4m — 2, 4m — 1) to find

S Ma(Tam—3) = (SI5 825 S33 - - -5 Sgm_33 S2m—2} S2m—1.2m’ S2m),
S Ma(ram—3) - Mp(81,1) = (S13 525 835 + - - 3 S35 S2m’ S2m—25 S2m—1,2m)
Dy =S My(7w4m—3) - Mp(31,1) - Mp(31,2)
> (S15805 833 -+ -5 Sy 33 S2m—3 + S2m—1,2m S2m’ S2am—2)
> (S13 523 835 -+ - 5 Sqm_35 S2m—1,2m5 S2m’ Som—2) =1 E|.

Now, for 2 < j <m — 3, and obviously m > 4, we will prove the following inequality
by recurrence:

Dj > (s1; 825 83; 84 855 . . . 3 Sfm,zj,l; Sam—2j+15 S2m—2j+3} S2m—2j+5; - - -5 (32)
S2m—35 S2m—1,2m5 S2m’ S2m—2; S2m—4; - - -3 Sam—2j) =: E;j.
Since Dy > E1, Corollary 14(4) yields D> > E; - C,. Now, by Corollary 14(1,4),
Ei-Co=E1-My(813) - My(82,1) - Ma(82,2) - Mp(82,3) - Mp(82,4) - Mp(82,5) - Mp(32,6)
> E1 - Mp(82,3) - Mp(82,4) - Mp(82,5) - Mp(82,6).
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Observe that, by Lemma 30(C;)t, |82, |_1 (2m) =2m — Sand o (82, (|82, |_1 (2m))) =
+1 for j € {3, 4, 5, 6}. Apply Corollary 14(4,2) repeatedly to obtain

Dy > Ey - Mp(823) - Mp(82,4) - Mp(82,5) - Mp(82,6)

= (51352} - - -} Sypy_s5 S2m—4 S2m—3; S2m—1,2m’ S2m’ S2m—2)
- Mp(82,3) Mp(82,4) Mp(32,5) Mp(52,6)
> (S15925 -+ - Sym_55 S2m—3} S2m—1,2m5 S2m’ S2m—25 S2m—4),

thus inequality (32) holds for j =2 if m > 4. Assuming (32) holds for some 2 < p <
m — 3, we will prove it holds for p 4+ 1. By the hypothesis and Corollary 14(1,4), we have

4p+2
+1
Dpii=Dp-Cpr1 = Ep-Cpy1 =Ep-Ma@pap-1)- [ [ MIY Gpir)
=1
2p 4p+2
=Ep MaGpap-1)- [ [MaGprr)- [] Mp(psr)
=1 [=2p+1
4p+2
>E,- l—[ Mp(p+1,0)-
1=2p+1

Lemma 30(C;) guarantees |§,41,|~'(2m) =2m —2p — 3 forany 2p + 1 <1 <4p +
2 (even more, 0 (841,118 p+1,1 |~1(2m))) = +1), which, together with Corollary 14(2) and
the induction hypothesis, implies

4p+2
Ep- 1_[ My p+1.0)

1=2p+1

= (517 527 537 547 S57 MR slm72p73’ 52m—2p—2, SZm—Zp—l, 52m—2p+17
S2m—2p+35 S2m—2p+55 + - - 5 S2m—35 S2m—1,2m> S2m> S2m—2; S2m—4; - - - 3 52m—2p)

4p+2
: l_[ My p+1.0)
1=2p+1

2 (819 S29 S37 S47 857 R} 52m72p73’ S2m—2s Szm—4s MR} 52m—2p—2,

S2m—2p—15 S2m—2p+1;5 S2m—2p+35 S2m—2p+5; - - - 5 S2m—3; S2m—1,2m; $2m)
4p+2
[T MeGprin
I1=2p+p+1

= (819 825 83; 845 855 ... Szm_2p_3s Szm—2p+17 Szm—2p+3a e s S2m—3;
Sam—1,2m’ S2m5 S2m—25 S2m—43 - - - 5 S2m—2p—2; S2m—2p—1) - Mp(8p41,4p+2)

= (819 825835845855 ... Szm,2p,31 SZm—Zp—l, S2m—2p+17 SZm—2p+3v Szm—2p+59 oo
<o S2m—35 S2m—1,2ms S2ms S2m—2;5 S2m—4; - - -5 S2m—2p; 52m—2p—2)-

Then
D > (S1; S2; S3; S43 Ss; 'S+ g ) g .
erl - 15, 52, 53, 84, 55, - . ., 2m_2p_37 2m72p71» 2}7[72[74»15 2m72p+3,

+ This only applies if m > 4.
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S2m—2p+5;5 + - -5 S2m—3; S2m—1,2m> S2m; S2m—2; S2m—4; - - - 5 S2m—2p; 52m72p72):
and inequality (32) is true. Therefore, for m > 47,

Dy—3 > Ejp—3 = (S1; 25 83; 84; S55 S75 + + . 5 S2m—55 S2m—3; S2m—1,2m>

m—4 columns

Som’ S2m—2; S2m—4; - . .3 585 6)-

m—2 columns

We now look for an inequality involving D,,_>. Apply Corollary 14(1,4) to obtain

4m—10

Dp2=Dpn3Cp2=Dp 3 MaGn-3am-13) - |] M -2 (Gm—2.1)
I=1

2m—6 4m—10
=Dp3  MaGn-34m13) - [ | MaGm-2- [ MpGn-21)
=1 [=2m—5
2m—6 4m—10
> En-3 MaGn-3am13) - [| MaGuan- [] MpGu-2)
I=1 1=2m—5
4m—10
>En3- [[ MoGman.
[=2m—5

By Lemma 30(Cs;,—2) we know that |8m,2,1|_1 (2m) =1 for any 2m — 5 <1 <4m — 10,
having positive signature 0(8m72,1(|8m,2,1|_1 (2m))) = +1. Use Corollary 14(2,4) to get

D2 > (S{5 2 833 S43 855 875 « . . 5 Sam—3} Sam—1,2m;
4m—10
S2mi S2m—2} S2m—45 - - -5 S85 S6) - 1_[ My (8m—2.1)
1=2m~—5
> (S) Sams Som—23 - - -5 S81 S63 S23 S3; 845
4m—10
85587 .+ 3 S2m—35 S2m—1,2m) 1_[ My (Bm—2.1)

1=2m—5+(m—2)

> (Sy5 855 875 -+ -5 Sam—35 S2m—1,2m> S2m> S2m—25 S2m—4; - - - 5 S8 865 S25 S35 S4).

Finally, by Corollary 14(1), we have

2m—4

Dy-1=Dy_2- Ma(5m72,4m79) . 1_[ M,(e1) > Dy
=1

> (S15 855 875+« - 3 S2m—3} S2m—1,2m5 S2m’ S2m—2; S2m—45 - - - 5 S8 S6; Sy 5 83 $4).

Observe that we have marked the position 2m — 2 as s, according to Lemma 30(Az;,—3).
O

+ The block of m — 4 columns disappears when m = 4.
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4.2.5. The matrix MY

770, V! V253 svhseyS

By the definition of v> and Corollary 14,
70,V 2 5v3 sevh v = R- Mb(ﬂr) . Ma(nr+l) . Mb(nr+2)7
withr =4m — 3+ 2m — 3)(m — 1),
where R is the n x n matrix
R = (r;; 125 .. 5 Tom=3; Tppy a5 T2m—15 T2m) (33)
1= (S1; 855 875 .. .5 Som—3; S2m—1,2ms S2m> S2m—25 S2m—4; - - -5 S8; S6, 52_; S3; S4).

Remark 41. Similarly to Remarks 37 and 39, we can describe and compare the matrix R
in terms of the identity matrix as follows:

R =(s1; 855 875 - - 5 S2m—3; S2m—1,2m5 S2m> S2m—2; S2m—45 - - - 5 S8; S6; S2; S3; S4)
m—4 columns
= (€1,2m + €2m—3,2m’ €2,2m + €2m—4.2m’ €3.2m + €2m—52m; - - - ; €m—2,2m + €m,2m’
S1 S5 $7 S2m—3
€m—1,2m + €m—1,2m + Cm,2m> (34)
S2m—1,2m

Cm—1,2m + €m,2ms €m—2,2m + €m+1,2m> €m—32m + €m+22m; - - -

S2m S2m—2 Som—4

o5 €3.0m + €m—4.2m €2,2m + €2m—32m; €1,2m + €2m—2,2m’ €1,2m,2m—1; €1,2m—1)

R/—-/
sg 6 S s3 S4
> (el,Zm,2m—3§ €2,2m,2m—4; €3 2m,2m—-5; - - -5 €j.2m2m—j—25 - - -5 €m—22m,m;
—_——
jth column
m—4 columns
Cm—1,2m,ms €m—1,2m,m> €m—22m,m+1;
Cm—3,2m,m+25 - -5 Cm—12mm+I—15 - - -5 €32m,2m—4; €2,2m,2m—35 €1,2m,2m—2;
—— ———
(m—+[—1)th column
€1,2m,2m—15 e1,2m—1)7 (35)
forl<j<m-—2and1<l<m-—1. O
LEMMA 42.
70, VI %v25v3 xvhsyd
> (r1; 12; 135 . - . T2m—4; T2m—3; 02m—2.2m: 2m—2,2m,2m—1; r2m—2,2m—l)~

Proof. By Corollary 14 and Lemmas 13, 30 and 31, we have (take into account
that o (7, (|7, 171 2m))) = —1, 0 (11 (1701117 2m))) = — 1, 0 (Tr42 (17,12~ 2m))) =
+1, and |, |71 2m) =2m = 2, |70 |7 2m) =2m — 1, 7407 2m) = 2m — 2)

1o, v xv2sv3xvtxvd

>R - My(my) - My(mpq1) - Mp(mtr42)

+ Note that the blocks of m — 4 columns disappears when m = 4.
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= (I3 12, 135 -« . Tom—d45 T2m—3; Yo o5 Tom—15 T2m) - Mp(mwy) - My (py1) - Mp(mr42)
2m-—2
= (r1; 125 135 - -+ 5 T2m—45 D2m—3; Tm—2.2m5 Ty 25 T2m—1) - Mo (1) - Mp(7r42)
2m—2
= (115 123 135« .5 T2m—43 T2m=3} Py 5 o’ T2m—2,0m—13 T2m—1) - Mp(7r42)
= (r1; 125 13 - . . 5 Tom—4; T2m—3; 2m—2.2ms 2m—2,2m,2m—1; r2m—2,2m—l)- O
Finally, we need to write M g l.o2.5.4 s in terms of the initial identity matrix
TT0,V kVERVI XV XV
(e1; €25 €35 ... €m).
PROPOSITION 43.
AR O O S > (r1; 12; 135 . . . 5 T2m—4; T2m—3; 2m—2.2ms 2m—2,2m,2m—1; r2m—2,2m—1)

= (el,2mf3,2m; €2.2m—4,2m> €3,2m—52m> €4,2m—6,2m>
v s Cm—2m,2ms Cm—1,m,2m> €m,m—1,2ms Cm+1,m—2,2ms
e C2m—5.4.2ms €2m—4,32ms €2m—3,2,2m>

€2m—2,1,2m—1,2m> €2m—1,1,2m—2,2ms e2m,1,2m—2,2m—1)-

Proof. By Lemma 42, we have
g

70, Vi %v25v3 5vhseyd

> (015125 135« w2 Tm—da’ Tom—35 T2m—2.2m5 T2m—2,2m,2m—1; T2m—2,2m—1)-
Moreover, by (35):

R> (el,2m,2m—3; €2.2m,2m—4; €3.2m,2m—55 €4.2m,2m—6,2ms - - -
s Cm—22mms Cm—1.2m,m> €m—1,2m,ms €m—2.2m,m+15 €m—32m,m+2; - - -
<o o5 €32m,2m—45 €2.2m,2m—35 €1,2m,2m—25 €1,2m,2m—15 e1,2m—1)-

Finally, the result follows since the columns 12,32 2/, 12 —2,2m,2m—1 and 12,2 2,m—1 are
greater than €1 2, —2,2m—1,2m- O

4.2.6. Positive character of MY |

70, VEv2sv3seviseyS”

PROPOSITION 44. There exists a power of A := MY ln. 34
T, V' *VZkV %V

s Which is positive.
Proof. Observe first that, by Proposition 43, the diagonal of A is positive and then, by
Lemma 13(5),

Akl > Ak, for any k > 1. (36)

Use Proposition 43 to realize that the 2mth row of A is positive and aj 2m > 0,
arm—2.2m > 0, azm—1,2m > 0. Then we deduce that rows 1, 2m — 2, 2m — 1 and 2m of
A? are positive.

We claim that if 1 <k <m —2 and we assume that the kth row of some power
AJ, j €N, is positive then A/F! has positive row 2m — 2 — k since az,—2—xx > 0 by
Proposition 43. Indeed, take into account that if A/+! = (), A7 = (Bs.,) and A = (ay,)
with 1 <s, t <2m then

2m
om—2—k,r = Z @m—2-k1B1,r = Qom—2-k kBrr >0, r=1,2,...,2m.
=1
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If, in exchange, m — 1 <k < 2m — 2 and the kth row of some power A is positive then
row 2m — 1 —k of A/t s positive because Proposition 43 provides az;,—1—k .k > 0 (the
reasoning is similar to the previous one 1 <k <m — 2).

Now let S*(n):={k: A" has kth row positive}. By the first observation in this
proof, ST(n) € ST(n + 1) and {2m — 2, 2m — 1, 2m, 1} € ST(2). The claim guarantees
consecutively {2m —2,2m —1,2m, 1,2m — 3} C St3), {2m—2,2m—1,2m, 1,
2m —3,2}CST@4), 2m—2,2m —1,2m,1,2m —3,2,2m — 4} € ST(5), {2m —2,
2m —1,2m,1,2m —3,2,2m — 4, 3} € ST(6), and recursively we will obtain

2m—-2,2m—1,2m,1,2m —3,2,2m —4,3,2m -5, ...,
m—3,m~|—1,m—2,m}§S+(2m—3),

{2m—-2,2m—1,2m,1,2m —3,2,2m —4,3,2m -5, ...,
m—=3m+1,m—2mm—1}CST2m —2).

Therefore A2"~2 is positive. O

4.3. Proof of main theorem for n=2m >8. Let G™V be the Rauzy subgraph
associated to mp, defined by (13), and v, introduced in (19). Propositions 32 and 44
guarantee that G-V satisfies the hypothesis of Theorem 25, and then we obtain a minimal,
uniquely ergodic, self-induced (2m, 2m — 2)-1ET, Tp = (AO, 7o), whose associated graph
is G™-Y. Moreover, R/ (Tp) = (A/, 7;) is minimal, uniquely ergodic and self-induced by
Theorem 25(3), and Proposition 32(2) guarantees that in the set {R/ (To)}§’21_2 we can
find (2m, k)-1ETs, 2 < k <2m — 1, which are proper since they satisfy the condition in
Remark 2.

We now show the existence of minimal, proper, uniquely ergodic (2m, 1)-IETs. We
apply Corollary 19 to the subgraph given in Lemma 34 and we obtain a (2m, 1)-IET,
U = (y, a1), such that R2(U) = Ty. Now Proposition 21 and Theorem 23(3) imply the
unique ergodicity of U. Theorem 23(2) implies the minimality of U. Moreover, it is easy
to check that o satisfies the condition in Remark 2 and then U is also proper.

The existence of minimal, proper, uniquely ergodic (2m, 2m)-IETs can be proved by
repeating the argument in the previous paragraph for the subgraph in Lemma 33.

5. Proof of main theorem forn =2m +1>9

The procedure is similar to the even case. We will omit the proofs of the results since they
follow a similar scheme used for n = 2m > 8. We only present the required Rauzy graph
and some of its properties.

5.1. The periodic Rauzy graph. ~We construct a periodic Rauzy graph of period p =
dm+2+ C2m — 1)(m — 1).

Let us take

Fo=(=3, -4, =5, ..., =2m,2m+ 1,1, =2), (37)
=@, a,a,..., a) ela, b} 2, (38)
w’=(b,a,b,b,a,b)cla,b)’, (39)
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w=(@,b,ab,ab... ab, a,b)cla b}’ 4, (40)
u4:(a,a,b,b,b,a,a,a,a,...,b,...,b,a,...,a)e{a,b}m(zm%) 41)
—_—— —— —— —— ——
2 3 4 2m—3 2m—2
w = (b, a, b) € {a, b, (42)
u=u'sxw’ stk efa, b)Y, p=4m+3+mQ@m —3)=2m>+m+3.
(43)

Moreover, we consider the vector w € {a, b} of infinite length given by Witkp = U
forany 1 <i < pandk € N.

Reasoning as in the even case it can be proved, after a long procedure that does not
involve significant novelties, the following result.

PROPOSITION 45.

(1) The Rauzy subgraph Gro-u g periodic.

(2) There exist in GT" permutations with f flips, 2 < f <2m. Moreover, for any 2 <
f <2m there exists a vertex in G which satisfies the conditions in Remarks 2
and 3.

3) A=MY

2 has a power which is positive.
To,ul xu2sud xutsud P P

In the Rauzy subgraph GT0-U there are no permutations with 2m + 1 flips nor with 1
flip. The next two results give such permutations and show that they belong to the same
Rauzy class as G70-u_ Both results follows immediately by applying the definitions of the
operators a and b.

LEMMA 46. Let 7|, T2 € S5, | be the signed permutations

m+1
T =(=2,-3,—4,..., —[2m = 2], =[2m — 1], =[2m + 1], —1, —2m),
T =(-2,-3,—4,...,—[2m = 2], —[2m — 1], 2m, —[2m + 1], —1).

Then we have the Rauzy subgraph
Tl L H —5 Fo=(=3, -4, =5, ..., —[2m — 1], —=[2m], 2m + 1, 1, =2).
LEMMA 47. Letay, o € S5, ., be the signed permutations

m+1

ar=Cm,1,2m+1,2m—1,2m—2,...,6,5,4,3, =2),
a=0Cm+1,1,-2,2m,2m—1,...,7,6,5,4, =3).

Then we have the Rauzy subgraph

T~ G B T =Cm 41, =3, 1, -2,2m,2m — 1, ...,7,6,5,4).

5.2. Proof of main theorem for n =2m +1>9. The proof follows the reasoning
in §4.3 for the even case, taking into account the Rauzy subgraph G™0" introduced in §5.1.
Then we repeat the arguments using, in this case, Proposition 45 and Lemmas 46 and 47.
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75 = (—3,—-4,5,1,-2)

b a
—3,-4,5,-2,1 —4,-5,-2,1,-3
T4 =(-3,4,1,-2) ( ) ( )
a a a
b
—2,-3,4,-5,1 ~5,3,-2,1,—4
(—3,4,-2,1) (—4,-2,1,-3) ( ) ( )
b b
a b
—2,-3,-5,1,-4 4,-5,3,-2,1
(72737 7471) (37 7477271) ( ) ( )
b a a a
—2,5,—4,1,-3 5,-2,4,—3,1
(—2,-4,1,-3) (4,-2,-3,1) ( ) ( )
a b
a b
5,4,—3,1,—2 5.1,-2,4,—3
(47 737 17 72) %b (47 ]-7 727 73) ( ) ( )
b b

(5,—-3,1,-2,4) <= §5 := (5,—3,1,—2,4)

FIGURE 4. Complete Rauzy graphs presented in G,, n =4, 5.

6. The casesn=4,5,6,7

In order to complete the proof of the main theorem we must present periodic Rauzy graphs
in G,,n =4, 5, 6,7, because these have not been constructed in the general case. We will
call them H4, Hs, He and H7, respectively.

A periodic Rauzy graph in Gy is generated from the permutation 74 = (=3, 4, 1, —2)
by applying the vector of operators V=@, ...,0)=(a,b,a,b,b,a,b,a,b). This
graph, introduced in Figure 4, is taken from [12, Theorem 6.1]. Its associated matrix is
My = ]_[?:1 M, (o)), withoy =14, 0 = vj_1(0j—1) for 2 < j <9; see Table 1.

In Gs we take 75 = (=3, —4, 5, 1, —2) and the vector of operators V> = (a, a, b, a,
b,b,a,b,a,a,b,a,b). See the complete graph in Figure 4. The associated matrix is
Ms, given in Table 1.

The permutation t¢ = (—3, —4, —5, 6, 1, —2) jointly with ¥ =(,a,a,b,a,b,b,a,
b,a,b,b,a,a,a,b,a,b) generates a periodic Rauzy graph in Gg. See Figure 5 and its
associated matrix Mg in Table 1.

A periodic Rauzy graph in G7 is the one associated to the permutation t7 = (—3, —4,
—-5,—-6,7,1, —2) and ¥ = (a,a,a,a,b,a,b,b,a,b,a,b,a,a,b,b,b,a,a,a,a,b,
a, b). See the complete graph in Figure 6. The associated matrix is M7; see Table 1.

Observe that Mf, M52, Mg and M;1 are positive. Then Theorem 25 provides minimal,
uniquely ergodic, self-induced and proper (n, k)-IETs for any (n, k) with 4 <n <7 and
2<k<n-—1.
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TABLE 1. Matrices of the periodic Rauzy graphs presented in G,, n =4, 5, 6, 7.

22232
(2)%?? 12000
My = Ms=]|00 111
b2 11121
233 23233
2222232
3;%333 0221000
T 592000 0120000
Mg = Mi=|1222000
0001 0000111
é;i;%é 1111121
267 4233

We next construct proper (n, n)-IETs for any 4 <n < 7. To this end we consider the

Rauzy subgraphs
(=2, —4, —1,=3) —— > (-2,3,—4 1) —— > = (-3,4,1,-2)
(=2, -3, =5, —1, ~4) ——> (=2, -3,4, -5, —1) ——> 15=(-3,-4,5,1,-2)

(=2, -3, -4, -6, -1, —5) — = (=2, -3, 4,5, -6, 1) —* > 15= (-3, -4, -5,6,1, -2)

(=2, =3, —4, =5, =7, =1, —6) > (=2, =3, =4, =5,6, =7, —1) > 7= (=3, —4, -5, —6,7, 1, =2)

Then it suffices to apply Corollary 19 to the subgraphs and the corresponding IETSs
built in the previous paragraph. The minimality of the obtained IETs is guaranteed by
Theorem 23(2), and the unique ergodicity by simultaneously applying Proposition 21 and
Theorem 23(3).

We finally build minimal proper (n, 1)-IETs for 4 <n < 7. Consider now the following
Rauzy subgraphs (the elements §5, §¢ and &7 belong to the periodic graphs Hs, Hg and
‘H7, respectively; see Figures 4-6):

(b,b,a,b,a,b,b,a) (a,b,a,b)
—_—

(—4,1,3,2) (4, =3, 1, —=2) —— 14 (this subgraph is taken from [12])

4,1,5,3,-2) —“ 5 (5,1,-2,4,-3) — 2 5 65=(5,-3,1,-2,4) —% .. . patofHs... 2> 15
(5.1,6,4,3,-2) —“> (6,1,-2,5,4, -3) —2> §6=(6,-3,1,-2,5,4) —% .. .partofHg... =—> 16
6,1,7,5,4,3,-2) > (7,1, -2,6,5,4, -3) L s =(7,-3,1,-2,6,5,4) -~ ...partof H7 . .. LA

Then, repeating the previous reasoning for the case of (n, n)-IETs, we obtain the desired
(n, D-IETsfor4 <n <7.

7. Proof of Proposition A
The ‘only if part’ is proved by Theorem 4: a minimal proper (n, k)-CET is automatically
transitive. For the ‘if part’” we distinguish separately the cases of (n, k)-CETs with n =
2m>8,n=2m+1>9,n=3,n=4,n=5n=6andn="7.

Assume first n = 2m > 8. We consider now the proper, minimal and uniquely ergodic
(2m, k)-IETs constructed in §4.3. In this case, observe that we obtained A € A" such
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76 = (—3,—4,-5,6,1,-2) > (—4,-5,—6,-2,1, —3) —> (=5, —6,3,—2,1, —4)

a\L
a b

(67 *Qa 57 47 *33 1) < (57 767 47 37 *Qa 1) < (*Ga 47 37 *23 17 75)

| |

(6,1,—2,5,4,—3) ——> (6,—3,1,—2,5,4) =: 66 —> (5, —3,1,—2,6,4)

b\L
b a

(67 4a 737 17 723 5) < (67 737 17 72a 55 4) < (5a 737 17 725 67 4)

|

(67 5a 45 737 17 72) %a (72’ 67 57 747 17 73) %a (723 737 67 755 17 74)

|

(_37 _4a _57 6a _27 1) %a (_27 _37 _47 5a _67 1) é (_2a _37 _4a _67 17 _5)

:
(_37 _45 _57 67 la _2) = T6

FIGURE 5. Periodic Rauzy graph in Gg.

that T = (A, mp) is a minimal and uniquely ergodic (2m, 2m — 2)-IET and in the set
&= {Ri (M} = {(\ 71,-)}1.2:1_ 2 we found proper, minimal and uniquely ergodic (2m, k)-
IETs, 2 <k <2m — 1. Now it suffices to notice that each m;, 1 <i <2m — 2, satisfies
the condition in Remark 3 by Proposition 32(2). Then, for any 1 <i <2m — 2, after
identifying the endpoints of the/dimain of RI(T), we obtain a proper, minimal and
uniquely ergodic (2m, k)-CET R!(T) with the same flips as R’(T). This guarantees the
proof of Proposition A for (2m, k)-CETs withm >4 and 2 <k <2m — 1. Fork =1 itis
enough to note that the associated permutations of the (n, 1)- and (n, n)-IETs, constructed
in §4.3, also satisfy the condition in Remark 3 (see Lemmas 34 and 33).

The case n =2m + 1 > 9 just requires the adaptation of the previous reasoning by
exchanging Proposition 32 for Proposition 45, Lemma 34 for Lemma 46 and Lemma 33
for Lemma 47.

For n = 3 we note the existence of minimal, uniquely ergodic IETs 77 and 73 of type
(4, 2) and (4, 4), with respective permutations (4, 1, —2, —3) and (-2, —4, —1, —3);
see §6. Then ]/:1 and fg (for an IET T we use T to denote the CET obtained from T after
identifying the endpoints of the domain of T') are proper, minimal and uniquely ergodic
(3, 2)- and (3, 3)-CETs, respectively.

Similarly, it is easy to check that the IETs with associated permutations (—4, 1, 3, 2),
(3, -4, -2, 1), (-4, =2, 1, —3) (again from §6) provide proper, minimal and uniquely
ergodic (4, 1)-, (4, 2)- and (4, 3)-CETs, respectively (take into account Remark 3).
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7 =(-3,-4,-5,-6,7,1,-2) -> (=4, -5,-6,-7,-2,1,-3) > (=5,—6,-7,3,-2,1,—4)

|

(6,—7,5,4,3,-2,1) <" (~7,5,4,3,-2,1,—6) <" (=6,-7,4,3, 2,1, -5)
.}
(7,-2,6,5,4,—-3,1) — "= (7,1,-2,6,5,4,-3) — > 6, := (7,-3,1,-2,6,5,4)
)
(5,—3,1,-2,7,4,6) < (5,-3,1,-2,7,4,6) <> (5,~3,1,-2,7,6,4)
!
(5,-3,1,-2,7,6,4) ————> (6,-3,1,-2,5,7,4) ———> (7,-3,1,—2,6,5,4)
|
(7,6,5,4,-3,1,-2) <" (7,5,4,-3,1,-2,6) < (7,4,—3,1,-2,6,5)
)
(-2,7,6,5,—4,1,-3) —2> (—2,-3,7,6,—5,1, —4) ——> (=2, -3, —4,7,—6,1,—5)
a
!

(_Sa _47 _57 _67 77 _27 1) %“ (_27 _37 _47 _57 67 _77 1) eb (_27 _37 _47 _57 _7> 17 _6)

!
(737 74, 753 76, 7a 17 72) =T7

FIGURE 6. Periodic Rauzy graph in G7.

The IETs with associated permutations (4, 1,5,3,-2), 4, -5,3,-2,1),
(-5,3,-2,1,-4), (-4, -5,-2,1,-3) and (-2, -3, =5, —1, —4) provide in turn
proper, minimal and uniquely ergodic (5, 1)-, (5, 2)-, (5, 3)-, (5, 4)- and (5, 5)-CETs
(see §6 and apply Remark 3).

Following the same reasoning as in the previous cases, if we now consider the IETs with
associated permutations (5, 1, 6,4, 3, =2), (5, —6,4,3, =2, 1), (—6,4,3, =2, 1, -5),
(-5, 6,3, -2, 1, —-4), (-4, -5, -6, =2, 1, —3) and (-2, —3, —4, —6, —1, —5), we
obtain respectively proper, minimal and uniquely ergodic (6, 1)-, (6, 2)-, (6, 3)-, (6, 4)-,
(6, 5)- and (6, 6)-CETs.

Analogously, if we take the IETs with associated permutations (6, 1,7,5, 4,
3,-2), (6,-7,5,4,3,-2,1), (-7,5,4,3,-2,1,-6), (—6,-7,4,3,-2,1,-5),
(-5,-6,-7,3,-2,1,-4), (—4,-5,-6,-7,-2,1,-3) and (-2, -3, —4, -5,
—7, —1, —6), then we obtain proper, minimal and uniquely ergodic (7, 1)-, (7, 2)-,
(7, 3)-, (7, 4)-, (7, 5)-, (7, 6)- and (7, 7)-CETs.

It only remains to check the existence of a proper, minimal, uniquely ergodic (4, 4)-
CET. The permutations considered in §6 do not generate (4, 4)-CETs. To overcome this
difficulty we will show the existence of a minimal, uniquely ergodic, proper (5, 5)-IET
with associated permutation 7 := (—4, —1, —5, —2, —3). From here we will deduce the
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existence of a proper, minimal and uniquely ergodic (4, 4)-CET. Take into account the
Rauzy graph

m=(—4,—-1,-5 -2, -3) A (=5,-1,3, -2, -4 $ 4, -5,-1,3,-2)
, (44)
— 4,2,-5,-1,3) =1

Also, it can be checked that T = (4, 2, —5, —1, 3) jointly with the vector of operators

x = (x1, x2,...,x13):=(b,a,b,a,a,b,b,a,b,a,b, b, a) generates a periodic Rauzy
graph in Gs whose associated matrix has its second power positive. Indeed,

t=04,2,-5 -1,3) L 4,2,-3,-5,-1 LIS 5,3, 4,1, -2)
g
(3, —4,5 -2, 1) <2— (2, 3,4, =5, 1) <= (5, -2, 3, -4,

)| b

(39 _47 55 17 _2) e (37 _47 57 _27 1) ﬁa (45 _57 25 _35 1)

b |

(59 _47 _17 35 2) < (57 _17 37 25 _4) 4 (45 _15 _55 2’ _3)

]

(59 2’ _45 _15 3) %a (47 27 _57 _17 3) =T

1)

and the associated matrix R := l—[}i] ij (0j) is given by (here o1 =71 and o; =
xj—1(0j-1),2<j <13)

SN N =
—_— N W = =
—_ N DN = =

=

I
_— W W = N
O N = =

therefore R? is positive. Then we apply, as in §6, Theorem 25 to obtain a minimal,
uniquely ergodic (n, k)-IET with associated permutation t. Next, we apply Corollary 19 to
the subgraph (44) and we obtain an IET, U, with associated permutation rr. U is minimal
by Theorem 23(2) and uniquely ergodic by Proposition 21 and Theorem 23(3). Finally, U
is a proper, minimal and uniquely ergodic (4, 4)-CET.
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