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We consider a stochastic input–output system with additional total clearings at cer-
tain random times determined by its own evolution~and specified by a controller!+
Between two clearings, the stock level process is a superposition of a Brownian
motion with drift and a compound Poisson process with positive jumps, reflected at
zero+We introduce meaningful cost functionals for this system and determine them
explicitly under several~classical and new! clearing policies+

1. INTRODUCTION

We consider a storage system with a clearing mechanism~i+e+, a model characterized
by stochastic inputs and outputs and an additional total “clearing” at certain random

Probability in the Engineering and Informational Sciences, 17, 2003, 1–22+ Printed in the U+S+A+

© 2003 Cambridge University Press 0269-9648003 $12+50 1

https://doi.org/10.1017/S026996480317101X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480317101X


times determined by its own evolution!+ The associated content process is assumed
to be regenerative, starting anew at level zero at every clearing time+ The examples
of real-world applications we have in mind are queues with triggered bulk services
and0or with “catastrophic” clearings of their workload and various other demand-
responsive service systems, as well as inventory systems with backlog removal pol-
icies+ In order to assess the functioning of such an inventory model, three types of
cost are essential: the setup cost for the clearings, the holding cost for the stock, and
the cost due to unsatisfied demand+ The main objective of this article is to develop
techniques to compute meaningful measures of these costs for several clearing mech-
anisms+ For background on clearing models, see Stidham@22–24# , Serfozo and
Stidham@21# ,Whitt @25# , and Kella@15# + Further uses of these models include the
control of epidemics, in which the quantity of interest is the number of “suscepti-
bles” and clearing corresponds to mass vaccination, and the quality control in in-
dustrial processes, in which one is interested in some measure of deviation from a
norm for the process and clearing corresponds to resetting the process to the norm+
Another point of view on clearing models has been recently developed in the queu-
ing literature in which, in addition to regular customers, so-called negative arrivals
are considered+Anegative arrival has the effect of deleting some customers~or some
amount of the workload! from the queue+These queues were first studied by Gelenbe
et al+ @11# and Harrison and Pitel@13,14# + Recently, Boucherie and Boxma@6# and
Boucherie, Boxma, and Sigman@7# generalized this concept by allowing the re-
moval of random amounts of work, or indeed of all work, as is the case at a time of
clearing+ The asymptotic distribution of the workload in anM0G01 clearing system
was studied by Boxma, Perry, and Stadje@8# + Further ramifications can be found in
Kim and Seila@17# , Chao@10#, and Artalejo and Gomez-Corral@1# +

In our model,we assume that the stock level processW5 ~W~t !!t$0 starts anew
from zero after each clearing and has two components:

1+ There are continuous “small” inflows and outflows which, together, form a
Brownian motion with drift+

2+ In addition, batches of random size arrive at random times, forming a Pois-
son process of instantaneous big inflows+

We model this situation by takingW between clearings as an independent super-
position of a Brownian motion~BM ! with drift and a compound Poisson process+To
deal with unsatisfied demand, we use the local time process, which is the minimal
process that has to be added in order to keep the underlying process from becoming
negative, so that the stock level process is reflected at zero+

The inflow and the demand never stop and all arriving batches are admitted to
the system so that, from the operational research point of view, the clearing policy is
the only decision variable+ In earlier models, the clearing times are taken as the
instances when the stock level process crosses some critical levelq ~which is then
taken as the decision variable!+We also consider this traditional policyTq 5 inf $t $
06W~t ! $ q% ~q . 0 fixed! for our model; Figure 1 shows a typical sample path ofW
underTq+
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Additionally,we study some other useful clearing policies+ If the controller who
clears the system is not continuously available, policy Tq is not possible+ In our
second core model,we assume that the clearing times form a Poisson process which
is independent ofW so that the clearing policy for the first cycle is an exp~j!-
distributed random time, sayT~j!, which can, for example, be interpreted as the
waiting time for the controller’s first arrival or the time of the first “catastrophic”
clearing due to exogeneous causes+ We also deal with combinations of the above
clearing policies:

~a! Tq1T~j!, a policy with lead timeT~j!,meaning that once levelq is reached
or exceeded~at timeTq!, the controller arrivesT~j! time units later;

~b! min~Tq,T~j!!,with the interpretation that clearing takes place at timeT~j!
unless the levelq is reached before, in which case the controller gets an
emergency call, arrives immediately, and clears the system+

Our objective is to obtain tractable formulas for the appropriate cost functionals
under all of these clearing policies+We consider cost for setup, holding and unsat-
isfied demand and a large class of phase-type distributions for the jump sizes+ To
derive the functionals forTq, T~j!, and their combinations, it is required to solve a
system of linear equations whose coefficients depend on the roots of a certain poly-
nomial+ The number of equations and unknowns and the degree of this polynomial
are both equal toN 1 2, whereN is the total number of phases involved+ Thus,
already for exponential jumps, the polynomial is cubic; in this case, the linear equa-
tions can, however, be solved in closed form; we will discuss these derivations~and
the special distributions involved! in some detail+ If more than two phases are pos-
sible, no fully explicit solutions are available+ It is clear that closed-form expressions
will be intricate and some numerical and algebraic work needs to be done in any
concrete example+ Using a second approach~applicable toTq!, the functionals of

Figure 1. A typical sample path ofW under the clearing policyTq+
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interest turn out to be expressible in terms of a complete system of linearly inde-
pendent eigenvectors of a certain generating matrix+

Diffusion models have often been used successfully as approximations of clas-
sical discrete models of random-walk type in various applications under conditions
of heavy traffic+ As examples, we mention Browne and Zipkin@9# , Bar-Ilan and
Sulem@5# , Asmussen and Perry@4# , Kella @15# , and Perry and Stadje@19,20# + Our
specific problem is similar to buffer flow applications in Harrison@12, Chap+ 5# and
in Newell @18,Chap+ 2# + The basic process in this article is, however, a combination
of a BM diffusion and a compound Poisson jump process+As will be seen, our entire
approach, the techniques, the problems, and the results, are different+

In this article, no optimization issues are treated: We only determine the cost
functionals as explicitly as possible+ Starting from this analysis, one can minimize
the cost of the system with respect to the parameters of the feasible clearing policies+

The article is organized as follows+ In Section 2, we define the clearing process
and the cost functionals in a formal manner+ The crucial tool of the analysis is a
martingale introduced by Kella and Whitt@16# and extended to a multivariate setting
by Asmussen and Kella@3# + The basic technique is expounded in Section 3+ In Sec-
tions 4 and 5, we present two approaches to clearing underTq, based on the one-
dimensional and the multidimensional martingales, respectively+ In Sections 5–8,
we derive all cost functionals under the different clearing policies+

2. THE STOCK LEVEL PROCESS AND THE COST FUNCTIONALS

Let tn, n $ 1, be the length of thenth cycle~i+e+, the time between the~n21!st and
thenth clearing!+ LetWn5 ~Wn~s!!s$0 be the stock level process for thenth cycle+We
assume that the pairs~tn,Wn!, n $ 1, are independent and identically distributed
~i+i+d+!+ Let S0 5 0, Sn 5 t1 1 {{{ 1 tn for n $ 1, andN~t ! 5 sup$n [ R16Sn # t % +
Then, the stock level processW5 ~W~t !!t$0 is defined byW~0! 5 0 and

W~t ! 5 Wn~t 2 Sn! if n [ Z1 ,Sn , t # Sn11+

Clearly,W is a regenerative process with respect to the clearing timesS0,S1,S2, + + + +
Within each cycle,we assume that the stock level process is a Lévy process reflected
at zero and composed of a BM with drift and a compound Poisson process with
positive phase-type distributed jumps, so that the only negative jump in a cycle is the
clearing at its end+ The paths ofWare right-continuous within each cycle~Sn,Sn11# +
Note thatN~t ! is the number of cycles completed in@0, t # +

Using regenerative theory we can express all cost functionals in terms of
~W~t !!t#t1

5 ~W1~t !!t#t1
, the stock level process in the first cycle~for all clearing

policies under consideration!+ For t # t1 5 T, the processW can be written as

W~t ! 5 X~t ! 1 J~t ! 1 L~t !, 0 # t # T,

whereX5 ~X~t !!t$0 andJ5 ~J~t !!t$0 are independent,X is a Brownian motion with
drift m and variances2, J is a compound Poisson process with ratel and positive
phase-type jump sizes, X~0! 5 J~0! 5 0, andL~t ! 5 2min0#s#t ~X~s! 1 J~s!! is

4 O. Kella, D. Perry, and W. Stadje
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the local time process+Without loss of generality, we assume thats2 5 2+ Note that
X1 J is a Lévy process with driftµ1 ~l0n!, n21 being the mean jump size, and that
W$ 0 is its reflection at zero+

Let us now introduce meaningfuldiscounted functionalsto measure the main
cost factors of the clearing system+

~a! Setup cost for clearings.Recall thatN~t ! is the number of clearings up to
time t+ Thus,

C1~b! 5 KESE
0

`

e2bt dN~t !D
is an appropriate clearing cost functional+Here,K is the cost of one clearing
andb . 0 is a discount factor+ Clearly, C1~b! can be expressed in terms of
one cycle:

C1~b! 5 KES(
n51

`

e2bSnD5 K
u~b!

12 u~b!
, (2.1)

whereu~b! 5 E~e2bT! is the Laplace–Stieltjes transform~LST! of the
clearing timeT+

~b! Holding cost.The total expected discounted holding cost can be expressed
as

C2~b! 5 hESE
0

`

e2btW~t ! dtD,
whereh dt is the holding cost for a unit of stock during a time interval of
lengthdt+ In terms of the first cycle, we have

C2~b! 5 hESE
0

t1

e2btW~t ! dt 1 e2bt1E
0

t2

e2btW~t1 1 t ! dt 1 {{{D
5 h

ESE
0

T

e2btW~t ! dtD
12 u~b!

+ (2.2)

~c! Unsatisfied demands.The local time processL is nondecreasing and in-
creases only whenW5 0+ Therefore, an appropriate functional for the cost
of unsatisfied demands is

C3~b! 5 rESE
0

`

e2bt dL~t !D,
where we considerr dL~t ! as the penalty for the unsatisfied demand that oc-
curs in the time interval~t, t1dt!+The constantr . 0 is the penalty per unit
of unsatisfied demand+ In terms of the first cycle, we can writeC3~b! as
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C3~b! 5

rESE
0

T

e2bt dL~t !D
12 u~b!

+ (2.3)

The simplest way to combine the functionals in~a!–~c! in one cost measure is to
add them and consider

C~b! 5 C1~b! 1 C2~b! 1 C3~b!+

If one is interested in the long-run average cost, a possible indicator could be

OC 5 lim
bf0

bC~b! 5 hE~We! 1 rE~Le! 1
K

E~T !
+ (2.4)

Here, E~T ! is, of course, the expected cycle length andE~We! andE~Le! denote the
expected values of the steady-state stock level and amount of unsatisfied demands,
respectively+

Let

G~b! 5 ESE
0

T

e2btW~t ! dtD, h~b! 5SE
0

T

e2bt dL~t !D+
In the following, we will compute the three functionsu~b!, G~b!, andh~b! for the
different clearing policies+ In ~2+1!–~2+3!, the discounted cost functionals are ex-
pressed in terms ofu~b!, G~b!, andh~b!+ Regarding OC in ~2+4!, we note that

E~T ! 5 2u '~0!, (2.5)

E~We! 5 lim
bf0

ESE
0

T

e2btW~t ! dtD
E~T !

5

ESE
0

T

W~t ! dtD
E~T !

5 2
G~0!

u '~0!
, (2.6)

E~Le! 5 lim
bf0

ESE
0

T

e2bt dL~t !D
E~T !

5
E~L~T !!

E~T !
5 2

h~0!

u '~0!
+ (2.7)

3. THE BASIC IDENTITY

A central tool of our analysis is a martingale which was introduced by Kella and
Whitt @16# + If ~X~t ! 1 J~t !!t$0 is a Lévy process with no negative jumps andexpo-
nent w~a! 5 log E~e2a~X~1!1J~1!! !, ~Y~t !!t$0 is an adapted process with bounded
expected variation on finite intervals, andZ~t !5X~t !1J~t !1Y~t !, then the process

M~t ! 5 w~a!E
0

t

e2aZ~s! ds1 e2aZ~0! 2 e2aZ~t ! 2 aE
0

t

e2aZ~s! dY~s! (3.1)
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is a martingale+ In our case, we takeX~t ! andJ~t ! as in Section 2 and setY~t ! 5
L~t ! 1 ~b0a!t for arbitraryb $ 0+ Clearly, Y is adapted and has paths of bounded
expected variation, sinceL~t ! is nondecreasing and bounded above by the local time
of a Brownian motion,which is known to have a finite expected value for everyt+By
~3+1!, we obtain the martingale

M~t ! 5 w~a!E
0

t

e2aW~s!2bs ds1 e2aW~0!

2 e2aW~t !2bt 2 aE
0

t

e2aW~s!2bs dSL~s! 1 Sb

a
DsD+ (3.2)

~Recall thats2 52+! It is straightforward to see that the conditions of the martingale
stopping theorem are satisfied for all clearing timesT under consideration+ Thus,we
haveE~M~T !! 5 E~M~0!! or, equivalently,

w~a!ESE
0

T

e2aW~s!2bs dsD 5 2E~e2aW~0! ! 1 E~e2aW~T !2bT!

1 aESE
0

T

e2aW~s!2bs dSL~s! 1Sb

aDsDD+ (3.3)

SinceL increases only whenW5 0, it is clear that

ESE
0

T

e2aW~s!2bs dL~s!D 5 ESE
0

T

e2bs dL~s!D5 h~b!+ (3.4)

Now, usingW~0!50 andd~L~s!1 ~b0a!s!5dL~s!1 ~b0a! ds, and inserting~3+4!
in ~3+3!, we find that

~w~a! 2 b!ESE
0

T

e2aW~s!2bs dsD 5 211 E~e2aW~T !2bT! 1 ah~b!+ (3.5)

In the sequel, the cost functionals of all proposed clearing times are derived using the
basic identity~3+5!+

In Sections 4, 7, and 8, we assume that the distribution functionG of the jumps
has a LST of the form

G*~a! 5 (
i51

n

pi )
j51

ki µij

µij 1 a
, (3.6)

wheren, k1, + + + , kn [ N, p1, + + + , pn are positive, (i51
n pi 5 1, andµij . 0+ This class

covers a wide range of phase-type distributions+ For example, Coxian and hyper-
exponential distributions have LSTs of this type~see Asmussen@2, p+ 74# !+ For
simplicity, we assume that allµij are distinct~otherwise we obtain the desired func-
tionals ofWby taking a simple limit!+As a LST,G*~a! is defined fora [ ~0,`!, but
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we will consider its~unique! analytic extension toC \$µij 6 j 51, + + + , ki andi 51, + + + ,n% ,
which is simply given by the right-hand side of~3+6!+

The exponent ofX 1 J is, in this case,

w~a! 5 a2 2 µa 2 lS12 (
i51

n

pi )
j51

ki µij

µij 1 aD+ (3.7)

For values ofa satisfyingw~a! 2 b 5 0, the left-hand side of~3+5! becomes zero+ It
turns out that there are exactlyk1 1 {{{ 1 kn 1 2 solutions, all of them real+ To see
this, note that, by ~3+7!, the equationw~a! 5 b can be written in the form

l 1 b 2 a2 1 µa 5 l (
i51

n

pi )
j51

ki µij

µij 1 a
+ (3.8)

SetN5 k11 {{{ 1 kn and let 0, m1 , {{{ , mN be theµij in ascending order+ Since
~3+8! is equivalent to a polynomial equation of degreeN1 2 for a, there are exactly
N 1 2 solutions, each counted with its multiplicity+

First, considerb . 0+ Equation~3+8! has a real solution in every interval
~2m,,2m,21!, ,52, + + + ,N, because the function on the right-hand side of~3+8! runs
from ` to 2`, and it has one solution in~2m1,0! and one in~0,`!, because the
right-hand function decreases on~2m1,`! from` to 0 and is smaller thanl 1 b at
a 5 0, whereas the left-hand function is equal tol 1 b at a 5 0+ Finally, there is a
solution in ~2`,2mN !, since the left-hand function runs from2` to some real
value~to l 1 b 2 mN

2 2 µmN ! on this interval and the right-hand function from 0 to
2`+ Thus there are exactlyN 1 2 rootsa1~b!, + + + ,aN12~b! of ~3+8!; they are real
and can be ordered so as to satisfya1~b! . 0 . a2~b! . 2m1, a,11~b! [
~2m,,2m,21!, , 5 2, + + + ,N, andaN12~b! [ ~2`,2mN !+

Now, let b 5 0+ The above arguments again yield negative rootsa3~b! . {{{ .
aN12~b! in ~2`,2m1!+ Clearly, a 5 a2~0! 5 0 is also a solution+ On ~0,`!, the
right-hand function in~3+8! decreases and has the range~0,l!,whereas the parabola
a ° l 2 a2 1 µa on ~0,`! increases until it reaches its maximum atµ02 and then
decreases to2`+ Hence, there is one more roota 5 a1~0! of ~3+8! in ~µ02,`!+

In the following, we will insert these roots in~3+5! and derive the desired
LSTs and functionals from the resulting equations+ For this, it is required that all
terms in ~3+5! be well defined ata 5 ai ~b!, i 5 1, + + + ,N 1 2+ First, note that
w~a! 2 b is an analytic function ofa on C \$2m1, + + + ,2mN % ~for fixed b . 0!+
For T 5 Tq, the integral*0

T e2aW~s!2bs ds is bounded bye6a6qTq and thus the ex-
pected valueE~*0

T e2aW~s!2bs ds! is an analytic function ofa for all a [ C+ For
T 5 T~j!, the clearing rule studied in Section 7, this expected value is shown to
be equal toj21E~e2aW~T~j!!2bT~j! !; see ~7+1!+ In both cases, E~e2aW~T !2bT! is
analytic ina for Re a . 0, which, by ~3+5!, coincides with a meromorphic func-
tion onC, which has no poles ina1~b!, + + + ,aN12~b!+ By the identity theorem for
meromorphic functions, the analytic continuation ofE~e2aW~T !2bT! satisfies~3+5!

8 O. Kella, D. Perry, and W. Stadje
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at a 5 ai ~b!, i 5 1, + + + ,N 1 2+ The reasoning for the clearing rules analyzed in
Section 8 is similar+

4. THE DISCOUNTED FUNCTIONALS UNDER Tq

In this section, we use the basic identity~3+5! to derive all of the discounted func-
tionals for the system underTq,assuming that the jumps have LST~3+6!+By the struc-
ture ofG*~{!, any jump ofWcan be thought of as being generated by first selecting
an indexi [ $1, + + + , n% according to the probability distribution~ p1, + + + , pn! and then
carrying outki successive phases which are independent and exponentially distrib-
uted with means 10µi1, + + + ,10µiki

+ Let Cij be the event that the levelq is first crossed
by the phase with distribution exp~µij !+At time Tq, there is, of course, also the pos-
sibility to hit q exactly due to the Brownian component; let C be the event that this
happens@i+e+, thatW~Tq! 5 q# + Let h~b! 5 E~*0

Tq e2bs dL~s!!, h~b! 5 E~e2bTq1C !,
and hij ~b! :5 E~e2bTq1Cij

!, i 5 1, + + + , n, j 5 1, + + + , ki + Given Cij , the overshoot
W~Tq! 2 q is exp~µij ! distributed and independent ofTq+ Using the formula of total
probability, we can rewrite the right-hand side of~3+5! as

211 (
i51

n

(
j51

ki

P~Cij !e
2aq

µij

µij 1 a
E~e2bTq 6Cij ! 1 P~C!e2aqE~e2bTq 6C! 1 ah~b!

5 211 (
i51

n

(
j51

ki

e2aq
µij

µij 1 a
hij ~b! 1 e2aqh~b! 1 ah~b!+ (4.1)

Inserting theN 1 2 real zerosa1~b!, + + + ,aN12~b! of the equationw~a! 2 b 5 0 in
~3+5! and using~4+1! yields

(
i51

n

(
j51

ki

e2ak~b!q
µij

µij 1 ak~b!
hij ~b! 1 e2ak~b!qh~b! 1 ak~b!h~b! 5 1,

k 5 1, + + + ,N 1 2+ (4.2)

Equation~4+2! is a system ofN 1 2 linear equations for theN 1 2 unknowns
h~b!, h~b!, andhij ~b!, i 5 1, + + + , n, j 5 1, + + + , ki + By ~4+2!, we obtainh~b!, h~b!,
andhij ~b! as rational functions of the rootsak~b! and the exponential functions
exp~ak~b!!+ Now, we can express all functionals of interest in terms ofh~b!,
h~b!, andhij ~b!+ First, note that

u~b! 5 E~e2bTq ! 5 (
i51

n

(
j51

ki

hij ~b! 1 h~b! (4.3)

and

E~Tq! 5 2(
i51

n

(
j51

ki

hij
' ~0! 2 h '~0!+ (4.4)
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The derivativeshij
' ~b! can be computed in terms of theak~b!, noting thatak

'~b! 5
10w '~ak~b!!+

The LSTD~a,b! 5 E~e2aWe2bTe! of the steady-state joint distribution of the
stock level and the time elapsed since the last clearing is

D~a,b! 5

ESE
0

Tq

e2aW~s!2bs dsD
E~Tq!

+ (4.5)

By ~3+5!, ~4+1!, ~4+3!, and~4+4!, we find that

D~a,b! 5

(
i51

n

(
j51

ki

e2aq
µij

µij 1 a
hij ~b! 1 e2aqh~b! 1 ah~b! 2 1

~b 2 w~a!!S(
i51

n

(
j51

ki

hij
' ~0! 1 h '~0!D + (4.6)

Settingb 5 0 in ~4+6!, we obtain the LST of the stationary stock level distribution:

E~e2aWe! 5 2

(
i51

n

(
j51

ki

e2aq
µij

µij 1 a
hij ~0! 1 e2aqh~0! 1 ah~0! 2 1

w~a!S(
i51

n

(
j51

ki

hij
' ~0! 1 h '~0!D + (4.7)

Finally,

G~b! 5 2E~Tq!
]

]a
D~a,b!6a50

5 2
]

]aS~w~a! 2 b!21F(
i51

n

(
j51

ki

e2aq
µij

µij 1 a
hij ~b!

1 e2aqh~b! 1 ah~b! 2 1GD*
a50
+ (4.8)

We have computed all three functionalsu~b!, h~b!, andG~b!+

5. AN ALTERNATIVE APPROACH TO Tq

In this section, we present a second approach to the cost functionals related toTq,
which uses a detour to the multivariate version of the martingale~3+2! introduced in
Asmussen and Kella@3# + The jumpsU1,U2, + + + of J are now assumed to have a
general phase-type distribution of the formP~Ui . t ! 5 peAt1 for t $ 0, wherep is
a strictly positiven-dimensional probability row vector, A is a~n3 n! rate transition
matrix of a terminating~from any state! Markov chain, and1 is a column vector of
n ones+ Let We be a random variable whose distribution is the stationary law ofW+

10 O. Kella, D. Perry, and W. Stadje
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The LST of We underTq is, by the ergodic theorem for regenerative processes,
given by

E~e2aWe! 5

ESE
0

Tq

e2aW~t ! dtD
E~Tq!

+ (5.1)

At time Tq, the process may either hitq ~due to the Brownian part! or jump above it
~due to the phase-type jumps!+ In order to avoid dealing with directly computing the
distribution of the overshoot aboveq, we will use a trick that was also used in
Asmussen and Kella@3# and first change the jumps into slopes of rate 1: Thus, if
there is a jump of sizey at timet, the modified process increases at rate 1 fory time
units+ Figure 2 shows how the sample path depicted in Figure 1 looks after this
modification+

The new process becomes a Markov additive processX '5 $X '~t !6 t $ 0%,which
has continuous sample paths+ Its characteristics are easily derived from those of the
original process; that is, if the modulating states are 0,1, + + + , n, then when at state
zero, the process behaves like the BMX, and when in any of the other states, it has
slope 1+ The underlying modulating processI 5 ~I ~t !6 t $ 0! is a continuous-time
Markov chain with the rate transition matrix

Q 5 S 2l lp

2A1 A D+ (5.2)

Because we assumed thatA is terminating from any state and thatp is strictly pos-
itive, Q is irreducible+ As in Asmussen and Kella@3# , it is seen that the generating
matrix for this process is

Figure 2. Sample path ofW ' +
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F~a! 5 Q 1Sµa 1
1

2
a2 0

0 aIn

D, (5.3)

whereIn is then-dimensional identity matrix+
Let L'~t ! 5 2inf0#s#t X '~s!,W '~t ! 5 X '~t ! 1 L'~t !, andW '5 ~W '~t !!t$0+ By 1i

we denote an~n11!-dimensional row vector with 1 in coordinatei and 0 elsewhere+
It follows from Theorem 2+1 in Asmussen and Kella@3# that

E
0

t

eaW '~s!1I ~s! ds F~a! 1 eaW '~0!1I ~0! 2 eaW '~t !1I ~t ! 1 aE
0

t

1I ~s! dL'~s! (5.4)

is an~n11!-dimensional martingale+Now, considerTq
'5 inf $t $ 06Wt

'5 q% ; due to
sample path continuity, q will be hit exactly byW ' +Note thatL'~t ! can increase only
whenI ~t ! 5 0 ~i+e+, during Brownian phases!, thatI ~0! 5 0, and that the processW '

is bounded on@0,Tq# + By the optional stopping theorem and bounded convergence,
we have that

ESE
0

Tq
'

eaW '~s!1I ~s! dsDF~a! 5 eaqpq 2 10 2 a10,q, (5.5)

wherepq 5 E~1I ~Tq! ! and,q 5 E~L'~Tq!!+ Thus, it is clear that if we are able to
compute the~n 1 1! vector pq and the positive constant,q, then we also have
E~*0

Tq
'

eaW '~s!1I ~s! ds!+Obviously, the processesWandW ' and the stopping timesTq

andTq
' are related by

ESE
0

Tq

eaW~s! dsD 5 ESE
0

Tq
'

eaW '~s!1I ~s!50 dsD (5.6)

and

E~Tq! 5 ESE
0

Tq
'

1I ~s!50 dsD+ (5.7)

In particular, we obtain

E~eaWe! 5

ESE
0

Tq
'

eaW '~s!1I ~s!50 dsD
ESE

0

Tq
'

1I ~s!50 dsD
+ (5.8)

The determinant ofF~a! is a polynomial of degreen 1 2 in a+ Let a0, + + + ,an11 be
such that detF~aj ! 5 0 and letH{0, + + + ,H{n11 be ~n 1 1!-dimensional nonzero
column vectors such thatF~aj !H{j 5 0+ It is clear that one of the roots, saya0, is
zero~since detQ 5 0! with corresponding eigenvectorH{0 5 1T ~1 now being an
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~n 1 1!-dimensional column vector of ones!+ Let us assume thatH{1, + + + ,H{n11 are
linearly independent vectors+ SetH 5 ~H{1, + + + ,H{n11! andL 5 diag~a1, + + + ,an11!+
Then, from ~5+5!, we have that

pqHeLq 5 10H 1 10HL,q (5.9)

so that

pq 5 10He2LqH21 1 10HLe2LqH21,q, (5.10)

where, for a given matrixC, eC denotes the matrix exponential ofC ~which in our
case is a diagonal matrix!+ Thus, we need one more equation, which is

pq1T 5 1+ (5.11)

Equation~5+11! follows from the definition ofpq and is also precisely what we
obtain if we substitutea 5 a0 5 0 in ~5+5! and multiply byH{0 5 1T+ Hence, mul-
tiplying ~5+10! by 1T, we obtain

,q 5
12 10He2LqH211T

10HLe2LqH211T 5
10H~I 2 e2Lq!H211T

10HLe2LqH211T + (5.12)

Having computed,q we also havepq via ~5+10!+ Now, we can use~5+5! to obtain
E~*0

Tq
'

eaW '~s!1I ~s! ds! for all a satisfying detF~a! Þ 0+ Then, ~5+6! yields
E~*0

Tq eaW~s! ds!+ To computeE~Tq!, we would like to seta 5 0 in ~5+6!+ However,
this is not viable, as detF~0! 5 0+ Instead we have to use~5+5! to conclude that

~eaqpq 2 10 2 a10,q!F~a!21 r ESE
0

Tq
'

1I ~s! dsD, (5.13)

asa r 0 through values for which detF~a! Þ 0+ Relation~5+13! amounts to apply-
ing L’Hôpital’s rule in order to determineE~*0

Tq
'

1I ~s! ds! and, in particular, the first
component of this row vector, which isE~Tq!+ Equation~5+1! now yields the LST of
the stationary distribution ofW+

There is also a direct method for derivingA~a! [ E~*0
Tq
'

eaW '~s!1I ~s! ds! for
values ofa such that detF~a! 5 0+ First, note that fora Þ ai , we have

A~a!
F~a! 2 F~ai !

a 2 ai

H{i 5 A~a!Sµ1
a 1 ai

2
0

0 In

DH{i

5 Seaq 2 eai q

a 2 ai

pq 2 10,qDH{i + (5.14)

In particular, by continuity, this holds for alla+Thus, settinga5aj for a givenj, this
gives a system of equations from which we can findA~aj !+ In particular, this can be
done foraj 5 0, so that
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A~0! 5 ESE
0

Tq
'

1I ~s! dsD (5.15)

is computable+ Clearly,

E~Tq! 5 A1~0! 5 ESE
0

Tq
'

1I ~s!50 dsD+ (5.16)

6. EXAMPLE: EXPONENTIAL JUMPS

We now consider in some detail the important special case of exponential jumps
~i+e+, G*~a! 5 n0~n 1 a!! using the technique of Section 4+ Then, there is only one
~exp~n!-distributed! type of phase for a possible overshoot+The three valuesa1~b! .
0 $ a2~b! . a3~b! are the roots of the cubic polynomial

p~a! 5 a3 1 a2~n 2 µ! 2 a~µn 1 l 1 b! 2 bn+ (6.1)

Recall thata2~b! , 0 for all b . 0 anda2~0! 5 0+ There exist closed-form expres-
sions or the roots of~6+1! via Cardano’s formula; they are, however, rather compli-
cated and not given here+

The transformsh~b! 5 E~e2bTq1$W~Tq!5q% !, h1~b! 5 E~e2bTq1$W~Tq!.q% !, and
h~b! are found using some straightforward algebra to solve~4+2!:

h~b! 5
~a3 y1 2 a1 y3!~a2 2 a1! 2 ~a2 y1 2 a1 y2!~a3 2 a1!

~a3 y1 2 a1 y3!~a2 x1 2 a1 x2! 2 ~a2 y1 2 a1 y2!~a3 x1 2 a1 x3!
, (6.2)

h1~b! 5
~a3 x1 2 a1 x3!~a2 2 a1! 2 ~a2 x1 2 a1 x2!~a3 2 a1!

~a3 x1 2 a1 x3!~a2 y1 2 a1 y2! 2 ~a2 x1 2 a1 x2!~a3 y1 2 a1 y3!
, (6.3)

h~b! 5
~x2 2 x1!~x3 y1 2 x1 y3! 2 ~x3 2 x1!~x2 y1 2 x1 y2!

~a1 x2 2 a2 x1!~x3 y1 2 x1 y3! 2 ~a1 x3 2 a2 x1!~x2 y1 2 x1 y2!
, (6.4)

where fori 5 1, 2, 3, we have setai 5 ai ~b!,

xi 5 xi ~b! 5 e2ai ~b!q,

yi 5 yi ~b! 5
e2ai ~b!n

n 1 ai ~b!
+

From ~4+8!, we obtain~after some algebra!

G~b! 5
b@h~b! 2 qu~b! 2 n21h1~b!# 1 ~µ1 n21l!~12 u~b!!

b2 + (6.5)

By ~4+2!, u~b! 5 h~b! 1 h1~b!+ From ~2+1!–~2+3! we obtain closed-form expres-
sions for the discounted cost functionalsC1~b!, C2~b!, andC3~b!+
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We will now compute several quantities of interest+ We start with the hitting
probabilityP~W~Tq! 5 q!+As this probability is equal toh~0!, we needai ~0!, i 51,
2, 3+ Clearly,

a1~0! 5
1

2
~n 2 µ1 @~n 2 µ!2 1 4~µn 1 l!#102! . 0,

a2~0! 5 0,

a3~0! 5
1

2
~n 2 µ2 @~n 2 µ!2 1 4~µn 1 l!#102! , 0+

Thus,

P~W~Tq! 5 q! 5 h~0!

5
n

a1~0!a3~0!

a3~0!~12 e2a1~0!q! 2 a1~0!~12 e2a3~0!q!

e2a1~0!q 2 e2a3~0!q +

The long-run average cost functionalsE~Tq!, E~Le!, and E~We! are obtained by
lengthy calculations:

E~Tq! 5 2u '~0! 5

12 e2a1~0!q
n 1 h~0!a1~0!

n 1 a1~0!
2 a1~0!Sq 1

11 h~0!

n
D

a1~1!~µ1 n21l!
,

E~Le! 5
h~0!

E~Tq!
5

h~0!q 1 1 2 h1~0!~q 1 n21!

E~Tq!
2 µ2

l

n
,

E~We! 5
G~0!

E~Tq!
5

qh~0! 1 ~q 1 n21!h1~0!

E~Tq!
+

It is interesting that the stationary law of the stock level process can be determined
explicitly+ Its LST is obtained by settingb 5 0 in ~3+5! and then dividing both sides
by E~Tq!w~a!+We find that

E~e2aWe! 5
211 E~e2aW~Tq! ! 1 aE~L~Tq!!

w~a!E~Tq!

5

211 h~0!e2aq 1 h1~0!e2aq
n

n 1 a
1 ah~0!q 1 ah1~0!Sq 1

1

n
D2 aSµ1

l

n
DE~Tq!

E~Tq!
a~a 2 a1~0!!~a 2 a3~0!!

n 1 a

+

(6.6)

We can even derive the corresponding distribution function ofWe+ Note
that E~L~Tq!! 5 E~W~Tq!! 2 E~X~Tq!! and, by Wald’s equation, E~X~Tq!! 5
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~µ1 n21l!E~Tq!+ Recall thata1~0! anda3~0! are the positive and the negative root,
respectively, of a2 2 a~µ2 n! 2 ~µn 1 l! 5 0 so that

a1~0!6a3~0!6 5 µn 1 l+ (6.7)

Therefore,

a

w~a!
5

n 1 a

~a 2 a1~0!!~a 2 a3~0!!

5 2
n 1 a

n

a1~0!

a1~0! 2 a

6a3~0!6

a 1 6a3~0!6

1

µ1 ~l0n!
+ (6.8)

From the first equation in~6+6! it follows that

E~e2aWe! 5 2
12 E~e2aW~Tq! !

w~a!E~Tq!
1

aE~L~Tq!!

w~a!E~Tq!

5
a

w~a! F212 E~e2aW~Tq! !

aE~W~Tq!!

E~W~Tq!!

E~Tq!
1

E~W~Tq!! 2 E~X~Tq!!

E~Tq! G+
(6.9)

We need the distribution functionA of W~Tq!+ Clearly,

P~W~Tq! 2 q # x! 5 P~W~Tq! 5 q!

1 P~W~Tq! . q!P~W~Tq! 2 q # x6W~Tq! . q!, x $ 0+

Given thatW~Tq! . q, the overshootW~Tq! 2 q is exp~n! distributed+ It follows that

A~x! 5 H0 if x , q

h~0! 1 h1~0!~12 e2n~x2q! ! if x $ q+

The functionH *~a! 5 @12 E~e2aW~Tq! !#0aE~W~Tq!! is the LST of the distribution
functionH having the densityx ° @E~W~Tq!!#21~12 A~x!!+ Let

a 5 FE~Tq!Sµ1
l

n
DG21

E~W~Tq!!+

From ~6+9!, we obtain the remarkable relation

n

n 1 a
E~e2aWe!

5 aH*~a!
a1~0!

a1~0! 2 a

6a3~0!6

6a3~0! 1 a
2 ~a 2 1!

a1~0!

a1~0! 2 a

6a3~0!

6a3~0!61 a
+ (6.10)
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Let Fe be the distribution function ofWe+ Then, ~6+10! states that the probability
measure exp~n! * Fe is a linear combination ofH * ~exp~2a1~0!! * exp~6a3~0!6! and
exp~2a1~0!! * exp~6a3~0!6!, where* denotes convolution and exp~2a!, a . 0, is
the distribution function~12 eax!1~2`,0!~x!, the “exponential distribution” on the
negative real numbers+ Note thata . 1, so that the right-hand side of~6+10! is nota
convex combination of probability measures+ In terms of random variables, we can
rephrase~6+10! as follows+ Let We,Y,E1, + + + ,E5,Z be independent random variables,
Y; H, E1,E4 ; exp~2a!, E2,E5 ; exp~6a3~0!6!, E3 ; exp~n!, P~Z51! 5 a21, and
P~Z 5 0! 5 1 2 a21+ Then,

Y1 E1 1 E2 5
D

~12 Z!~We 1 E3! 1 Z~E4 1 E5!+ (6.11)

7. INDEPENDENT EXPONENTIAL CLEARING

We now consider the clearing process with exponential clearing timest1,t2, + + +
;exp~j!, which are independent of the processes~Wn~s!!s$0, n $ 1+ In general, if
Y5 ~Y~t !!t$0 is a measurable and nonnegative process, T is an exp~j!-distributed
random variable independent ofY, andY~T ! is measurable, then

E~Y~T !! 5E
0

`

E~Y~t !!je2jt dt 5 jE
0

`

E~Y~t !!E~1$T.t % ! dt

5 jESE
0

`

Y~t !1$T.t % dtD5 jESE
0

T

Y~t ! dtD+
Thus,

E~e2aW~T~j!!2bT~j! ! 5 jESE
0

T~j!

e2aW~s!2bs dsD+ (7.1)

Inserting~7+1! in ~3+5!, we arrive at

j21~w~a! 2 ~b 1 j!!E~e2aW~T~j!!2bT~j! ! 5 211 ah~b!+ (7.2)

Let Zb 5 b 1 j+ Settinga 5 a1~ Zb! . 0 in ~7+2!, we obtain

h~b! 5
1

a1~ Zb!
+ (7.3)

Therefore,

ESE
0

T~j!

e2aW~s!2bs dsD 5
a 2 a1~ Zb!

a1~ Zb!~w~a! 2 Zb!
+ (7.4)
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From ~7+4!, we can computeG~b!:

G~b! 5 2
]

]a SESE
0

T~j!

e2aW~s!2bs dsDD*
a50

5

Zb 1 µ1 l (
i51

n

(
k51

ki

µik
21

Zb2a1~ Zb!
+ (7.5)

The LST ofT~j! is, of course,

u~b! 5
j

j 1 b
+ (7.6)

Relations~7+3!, ~7+5!, and~7+6! provide closed-form expressions for the cost func-
tionals under the clearing policyT~j!+

Example: Let G~x! 5 1 2 e2nx, x $ 0+ Then, by ~7+1! and~7+4!,

E~e2aW~T~j!!2bT~j! ! 5
~a 2 a1~ Zb!!~n 1 a!j

a1~ Zb!~a 2 a1~ Zb!!~a 2 a2~ Zb!!~a 2 a3~ Zb!!

5
6a2~ Zb!6

a 1 6a2~ Zb!6

6a3~ Zb!6

a 1 6a3~ Zb!6

n 1 a

n

j

Zb
; (7.7)

the second equation in~7+7! follows froma1~ Zb!a2~ Zb!a3~ Zb! 5 Zbn, a2~ Zb! , 0 and
a3~ Zb! , 0+ Furthermore, we find that

G~b! 5
j2

j 1 b S 1

6a1~b 1 j!6
1

1

6a2~b 1 j!6
2

1

n D+ (7.8)

For the long-run average cost, we haveE~T~j!! 5 10j by definition and

E~Le! 5
h~0!

E~T~j!!
5 S j

a1~ Zb!D*b50

5
j

a1~j!
+ (7.9)

For the stationary stock level, we find from~7+4! and~7+7! ~settingb 5 0! that

E~e2aWe! 5
6a2~j!6

a 1 6a2~j!6

6a3~j!6

a 1 6a3~j!6

n 1 a

n
+ (7.10)

Note that~7+10! can be written in the form

We 1 E1 5
D

E2 1 E3, (7.11)

whereE1, E2, andE3 are independent exponential random variables that are also
independent ofWeand satisfyE1;exp~n!,E2;exp~6a2~j!6!,andE3;exp~6a3~j!6!+
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Remark: As a by-product of our approach, in the case of exponential jumps we can
extend the known result that in the casel 5 0; that is, for a reflected BM,W~T~j!!
andL~T~j!! are independent~see, e+g+, Asmussen and Perry@4# !+ To see this, take
Y~t ! 5 L~t !~11 ~b0a!! in ~3+1!+ Then, Z~t ! 5 W~t ! 1 ~b0a!L~t !, and

M~t ! 5 w~a!E
0

t

e2aW~s!2bL~s! ds1 1 2 e2aW~t !2bL~t ! 2 ~a 1 b!E
0

t

e2bL~s! dL~s!

is a martingale+ The basic identity becomes

w~a!ESE
0

T~j!

e2aW~s!2bL~s! dsD 5 211 E~e2aW~T~j!!2bL~T~j!! !

1 ~a 1 b! [h~b!, (7.12)

where [h~b! 5 E~*0
T~j! e2bL~s! dL~s!!+ Let ~We, Le! be a pair of random variables

whose joint law is the stationary distribution of the two-dimensional regenerative
process~W~t !, L~t !!+ We can use PASTA and the limit theorem for regenerative
processes to obtain

E~e2aW~T~j!!2bL~T~j!! ! 5 E~e2aWe2bLe!

5 E~T~j!!21ESE
0

T~j!

e2aW~s!2bL~s! dsD+ (7.13)

Thus,

~w~a! 2 j!E~e2aW~T~j!!2bL~T~j!! ! 5 211 ~a 1 b! [h~b!+ (7.14)

Insertinga1~j! for a in ~7+14! yields

[h~b! 5 ~b 1 a1~j!!21+ (7.15)

Now, factorizew~a! 2 j in ~7+14!+ From ~7+14! and~7+15!, we obtain, after some
algebra~usinga1~j!a2~j!a3~j! 5 nj!,

E~e2aWe2bLe! 5
6a2~j!6

a 1 6a2~j!6

6a3~j!6

a 1 6a3~j!6

n 1 a

n

a1~j!

b 1 a1~j!
+ (7.16)

Equation~7+16! is tantamount to saying that the steady-state random variablesWe

andLeare independent~because their joint LST factorizes!, Le;exp~a1~j!!, andWe

satisfies

We 1 E1 5
D

E2 1 E3

whereWe,E1,E2, andE3 are independent,E1;exp~n!,E2;exp~6a2~j!6!, andE3;
exp~6a3~j!6!+ In the special casel50, the underlying process is a reflected BM;we
havea2~j! 5 2n, so thatWe; exp~6a3~j!6!+ This latter result was given in Asmus-
sen and Perry@4# +
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8. EXTENSIONS AND RAMIFICATIONS

It would be interesting to extend the analysis in Section 7 to nonexponential clearing
times+ This can be done in a straightforward manner for hyperexponential and Er-
lang clearing times, which are independent of the underlying processesWn+ For
example, let T 5 TE ; Erl~j, n! for somen [ N+ Then, TE 5 T1~j! 1 {{{ 1 Tn~j!,
where theTi ~j! are independent and exp~j! distributed, and we can treat then
phases recursively+ The stationary behavior during the first phase@0,T1~j!! was
studied in Section 7+ Let V~t ! 5 W~T1~j! 1 t !, t $ 0+ By ~7+4! and~7+1!, we obtain
for the initial valueV~0! of the second phase, the LST

E~e2aV~0! ! 5
j~a 2 a1~j!!

a1~j!~w~a! 2 j!
+ (8.1)

The basic identity~3+5! for the second phase ofTE ~i+e+, for the processV ! condi-
tional onV~0! 5 v becomes

~w~a! 2 b!ESE
0

T2~j!

e2aV~s!2bs ds6V~0! 5 0D
5 2e2av 1 E~e2aV~T2~j!!2bT2~j! 6V~0! 5 v! 1 ac~b 6v!, (8.2)

wherec~b 6v! 5 E~*0
T2~j! e2bs dLV~s!6V~0! 5 v!, LV~{! being the local time process

of V 5 ~V~t !!t$0+ Clearly, c~b 6v! 5 e2a1~b1j!v0a1~b 1 j!, and we can determine
explicitly all expected values in~8+2!+To derive the functionals for the second phase,
we have to integrate the conditional expected values with respect toP~V~0! [ dv!+
Then, we proceed to the third phase, and so on+ Finally, one has to take a mixture
over then phases+ The details are left to the reader+

As already explained in Section 1, several combinations ofTq andT~j! are also
clearing policies of practical interest+We will finally show how their analysis can be
reduced to that ofTq andT~j!+

Let us first considerT 5 Tq 1 T~j!+ Under this policy, once levelq has been
reached, it takes an exp~j!-distributed time until the clearing operation+We can split
the time until clearing in the two phases@0,Tq# and~Tq,Tq 1 T~j!# + Clearly,

ESE
0

T

e2aW~s!2bs dsD 5 ESE
0

Tq

e2aW~s!2bs dsD
1 E~e2bTq !ESE

0

T~j!

e2aWq~s!2bs dsD, (8.3)

whereWq~t ! is the stock level process starting atWq~0! 5 q+ In ~8+3!, the expected
values involvingTq have been determined in Section 4, and the functional ofWq~{!
can be computed as earlier for the second phase in the Erlang case+
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Now, let us turn to the more difficult caseT 5 min@Tq,T~j!# + Under thisT,
clearing takes place after an exponential timeor at the next crossing of the threshold
q, whichever occurs first+We start from the decomposition

E~e2aW~T !2bT! 5 E~e2aW~T !2bT1$Tq,T~j!% ! 1 E~e2aW~T !2bT1$Tq$T~j!% !+ (8.4)

The first term on the right-hand side of~8+4! is given by

E~e2aW~T !2bT1$Tq,T~j!% ! 5 ~~e2aW~Tq!2bTq1$Tq,T~j!% 6Tq!!

5 E~E~e2aW~Tq!2bTqe2jTq 6Tq!!

5 E~e2aW~Tq!2~b1j!Tq !, (8.5)

and the right-hand side of~8+5! has been computed in Section 4+ The second term on
the right-hand side of~8+4! is equal to

E~e2aW~T~j!!2bT~j! ! 2 E~e2aW~j!!2bT~j!1$Tq,T~j!% !+ (8.6)

The LSTE~e2aW~T~j!!2bT~j! ! has already been derived in Section 7+ Regarding the
second term in~8+6!, note that, by the memoryless property of the distribution of
T~j!, the conditional distribution of the pair~W~T~j!!, T~j!!, given thatW~Tq! 5 w
andTq5 t , T~j!, is equal to the unconditional distribution of~W~T~j!!, t 1 T~j!!,
whereW~{! starts atw+ Hence,

E~e2aW~T~j!!2bT~j! !1$Tq,T~j!% !

5 P~Tq , T~j!!E~e2aW~T~j!!2bT~j! 6Tq , T~j!!

5E
0

`

e2jt dPTq
~t !

3 E
R1

2
E~e2aW~T~j!!2bT~j! 6Tq , T~j!,W~Tq! 5 w, Tq 5 t ! dP~W~Tq!,Tq!~w, t !

5 E~e2jTq !E
R1

2
E~e2aW~T~j!!2b~t1T~j!! 6W~0! 5 w! dP~W~Tq!,Tq!~w, t !+ (8.7)

We have shown above how to compute the joint distribution ofW~Tq! andTq as well
as the integrand in~8+7!+Once we knowE~e2aW~T !2bT!, we obtainh~b! from ~3+5!
by settinga 5 a1~b!+ Then, E~*0

T e2aW~s!2bs ds! is given by ~3+5!, and all cost
functionals underT are available+
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