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We consider a stochastic input—output system with additional total clearings at cer-
tain random times determined by its own evolutiand specified by a controllgr
Between two clearingshe stock level process is a superposition of a Brownian
motion with drift and a compound Poisson process with positive jyunefiected at

zera We introduce meaningful cost functionals for this system and determine them
explicitly under severaclassical and nejclearing policies

1. INTRODUCTION

We consider a storage system with a clearing mechafiiea model characterized
by stochastic inputs and outputs and an additional total “clearing” at certain random
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times determined by its own evolutiphe associated content process is assumed
to be regenerativestarting anew at level zero at every clearing tiffilee examples
of real-world applications we have in mind are queues with triggered bulk services
and/or with “catastrophic” clearings of their workload and various other demand-
responsive service systenas well as inventory systems with backlog removal pol-
icies In order to assess the functioning of such an inventory madede types of
cost are essenttahe setup cost for the clearingbe holding cost for the stocknd
the cost due to unsatisfied demaiithe main objective of this article is to develop
techniques to compute meaningful measures of these costs for several clearing mech-
anisms For background on clearing modgkee Stidhanj22-24], Serfozo and
Stidham[21], Whitt [25], and Kella[15]. Further uses of these models include the
control of epidemicsin which the quantity of interest is the number of “suscepti-
bles” and clearing corresponds to mass vaccinatowl the quality control in in-
dustrial processe#n which one is interested in some measure of deviation from a
norm for the process and clearing corresponds to resetting the process to the norm
Another point of view on clearing models has been recently developed in the queu-
ing literature in whichin addition to regular customerso-called negative arrivals
are considered\ negative arrival has the effect of deleting some custorfersome
amount of the workloadfrom the queuglhese queues were first studied by Gelenbe
et al [11] and Harrison and Pit¢ll3,14]. Recently Boucherie and Boxmg6] and
Boucherie Boxma and Sigmar{7] generalized this concept by allowing the re-
moval of random amounts of workr indeed of all workas is the case at a time of
clearing The asymptotic distribution of the workload in 8YG/1 clearing system
was studied by Boxm#erry and Stadj¢8]. Further ramifications can be found in
Kim and Seild17], Chao[10], and Artalejo and Gomez-Corrgl].

In our mode)we assume that the stock level process (W(t)).~q Starts anew
from zero after each clearing and has two components

1. There are continuous “small” inflows and outflows whjtbgetheyform a
Brownian motion with drift

2. In addition batches of random size arrive at random tipfesming a Pois-
son process of instantaneous big inflows

We model this situation by taking/ between clearings as an independent super-
position of a Brownian motiofBM ) with drift and a compound Poisson proceEs
deal with unsatisfied demande use the local time processghich is the minimal
process that has to be added in order to keep the underlying process from becoming
negative so that the stock level process is reflected at zero

The inflow and the demand never stop and all arriving batches are admitted to
the system so tharom the operational research point of vighe clearing policy is
the only decision variabldn earlier modelsthe clearing times are taken as the
instances when the stock level process crosses some criticabléweich is then
taken as the decision varialpl&Ve also consider this traditional polidy = inf{t =
0|W(t) =g} (q> 0 fixed) for our modej Figure 1 shows a typical sample pativgf
underT,,.
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I,

Ficure 1. Atypical sample path ofV under the clearing policy,.

Additionally, we study some other useful clearing policiéshe controller who
clears the system is not continuously availalgelicy T, is not possibleIn our
second core modglve assume that the clearing times form a Poisson process which
is independent ofV so that the clearing policy for the first cycle is an éXjp-
distributed random timesay T(¢), which can for example be interpreted as the
waiting time for the controller’s first arrival or the time of the first “catastrophic”
clearing due to exogeneous causéf also deal with combinations of the above
clearing policies

(@ T4+ T(£),apolicy with lead timél (£), meaning that once levglis reached
or exceededat timeT,), the controller arrived (¢) time units latey

(b) min(Ty, T(£)), with the interpretation that clearing takes place at tinie)
unless the leveq) is reached beforén which case the controller gets an
emergency callarrives immediatelyand clears the system

Our objective is to obtain tractable formulas for the appropriate cost functionals
under all of these clearing policied/e consider cost for setupolding and unsat-
isfied demand and a large class of phase-type distributions for the jump Bizes
derive the functionals fof,, T(¢), and their combinationst is required to solve a
system of linear equations whose coefficients depend on the roots of a certain poly-
nomial The number of equations and unknowns and the degree of this polynomial
are both equal tiN + 2, whereN is the total number of phases involvethus
already for exponential jumpthe polynomial is cubigin this casethe linear equa-
tions canhoweverbe solved in closed forpwe will discuss these derivatiofiand
the special distributions involvedn some detaillf more than two phases are pos-
sible no fully explicit solutions are availahl# is clear that closed-form expressions
will be intricate and some numerical and algebraic work needs to be done in any
concrete exampléJsing a second approac¢hpplicable toT,), the functionals of
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interest turn out to be expressible in terms of a complete system of linearly inde-
pendent eigenvectors of a certain generating matrix
Diffusion models have often been used successfully as approximations of clas-
sical discrete models of random-walk type in various applications under conditions
of heavy traffic As exampleswe mention Browne and Zipkif@], Bar-llan and
Sulem[5], Asmussen and Perfy], Kella[15], and Perry and Stad[d.9,20]. Our
specific problem is similar to buffer flow applications in Harrigdr2, Chap 5] and
in Newell[18, Chap 2]. The basic process in this article lweveya combination
of a BM diffusion and a compound Poisson jump procAsswill be seenour entire
approachthe techniqueghe problemsand the resultsare different
In this article no optimization issues are treatafle only determine the cost
functionals as explicitly as possibl§tarting from this analysjgne can minimize
the cost of the system with respect to the parameters of the feasible clearing policies
The article is organized as follows Section 2we define the clearing process
and the cost functionals in a formal mann&he crucial tool of the analysis is a
martingale introduced by Kella and WHfit6] and extended to a multivariate setting
by Asmussen and Kellg8]. The basic technique is expounded in Sectiom®Bec-
tions 4 and Swe present two approaches to clearing unigibased on the one-
dimensional and the multidimensional martingalespectivelyln Sections 5-8
we derive all cost functionals under the different clearing policies

2. THE STOCK LEVEL PROCESS AND THE COST FUNCTIONALS

Let7,, n=1, be the length of theth cycle(i.e., the time between thegn — 1) st and
thenth clearing. LetW;, = (W, ())<= be the stock level process for thi cycle We
assume that the paifs,,W,), n = 1, are independent and identically distributed
(ii.d).Let%=0,S,=7,+ --- +ryforn=1, andN(t) =supiln € R, |S, = t}.
Then the stock level processd/ = (W(t)),~¢ is defined byW(0) = 0 and

Wit)=W,(t—S,) IfneZ,,5<t=5...

Clearly, Wis a regenerative process with respect to the clearing tf)&%, S,, . ...
Within each cyclewe assume that the stock level process is a Lévy process reflected
at zero and composed of a BM with drift and a compound Poisson process with
positive phase-type distributed jumpgs that the only negative jump in a cycle is the
clearing at its endlhe paths oW are right-continuous within each cydl§,, S, ;1].
Note thatN(t) is the number of cycles completed[ity t].

Using regenerative theory we can express all cost functionals in terms of
(W(t))i=,, = (Wi(t)).=,,, the stock level process in the first cydlfer all clearing
policies under consideratipnFort =< 7, = T, the procesdV can be written as

W(t) = X(t) +J(t) + L(1), 0=t=T,

whereX = (X(1))=pandJ = (J(t))=o are independepX is a Brownian motion with
drift « and variancer?, Jis a compound Poisson process with ratand positive
phase-type jump sizeX(0) = J(0) = 0, andL(t) = —ming=s=;(X(s) + J(9)) is
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the local time proces¥Vithout loss of generalitywe assume that? = 2. Note that
X+ Jis a Lévy process with drift + (A/»), »~* being the mean jump sizand that
W = 0 is its reflection at zero

Let us now introduce meaningfdiscounted functional® measure the main
cost factors of the clearing system

(a) Setup cost for clearingfkecall thatN(t) is the number of clearings up to

timet. Thus
Ci(B) = KE(foo eﬁth(t))

is an appropriate clearing cost functiortdére K is the cost of one clearing
andp > 0 is a discount factoClearly, C,(8) can be expressed in terms of
one cycle

0(B)
1-60(B)
whered(B) = E(e #7) is the Laplace—Stieltjes transforthST) of the
clearing timeT.

(b) Holding cost.The total expected discounted holding cost can be expressed
as

C,(B) = KE( i em) =K (2.1)

n=1

C,(B) = hEUOOO eB‘W(t)dt>,

whereh dtis the holding cost for a unit of stock during a time interval of
lengthdt. In terms of the first cyclewe have

Co(B) = hE<J e AW(t) dt + efﬁflf e PW(r, +t)dt + )
0 0

E (fT e P'W(t) dt)

=h . 2.2
1= 0(p) 22)
(c) Unsatisfied demand&he local time procesk is nondecreasing and in-
creases only whew = 0. Therefore an appropriate functional for the cost
of unsatisfied demands is

Ca(B) = pE< f ) e-ﬁtdut)),

where we consider dL(t) as the penalty for the unsatisfied demand that oc-
cursinthe time intervdl, t + dt). The constanp > 0 is the penalty per unit
of unsatisfied demandin terms of the first cyclewe can writeCs(3) as
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pE<f0T e Pt dL(t))

1-6(B)

The simplest way to combine the functionalgai-(c) in one cost measure is to
add them and consider

C(B) = Ci(B) + Ca(B) + C3(B).

If one is interested in the long-run average cagpossible indicator could be

Cs(B) = (2.3)

_ K
C = lim BC(B) = hE(W,) + pE(L,) + ——. 2.4
l;ggﬁ(ﬁ) (We) + pE(Le) E(T) (2.4)
Here E(T) is, of coursethe expected cycle length aidW,) andE(L.) denote the
expected values of the steady-state stock level and amount of unsatisfied demands
respectively

Let
rp) = E<fTeB‘W(t)dt>, n(B) = (fTeﬁtdL(t))

In the following, we will compute the three functiows 8), I'(B3), andn(B) for the
different clearing policiesin (2.1)—(2.3), the discounted cost functionals are ex-
pressed in terms @f(B), I'(B), andn(B). RegardingC in (2.4), we note that

E(T) = —6"(0), 2.5)

- E<f0 eBtW(t)dt> . E<fo W(t)dt) o .

(We) = lim E(T) T Em oo @9
g

L EU © Lm) CELT) 70 -

(Le) = lim E(T) “TEM 60 2.7)

3. THE BASIC IDENTITY

A central tool of our analysis is a martingale which was introduced by Kella and
Whitt [16]. If (X(t) + J(t))=0iS a Lévy process with no negative jumps angbo-
nente(a) = log E(e XMWY (Y(t))~o is an adapted process with bounded
expected variation on finite intervalendZ (t) = X(t) + J(t) + Y(t), then the process

t t
M(t) = so(a)f e 49 ds+ e @x0 — g — aj e ?9dY(s)  (3.1)
0 0
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is a martingaleln our casewe takeX(t) andJ(t) as in Section 2 and sdf(t) =

L(t) + (B/a)t for arbitraryB = 0. Clearly, Y is adapted and has paths of bounded
expected variatigrsincelL (t) is nondecreasing and bounded above by the local time
of a Brownian motionwhich is known to have a finite expected value for eveBy
(3.1), we obtain the martingale

t
M(t) = go(a)f e W =hsdg 4 @ aW(O
0

— e aWn-Bt _ af e—a""(S)‘ﬁ'sd(L(s) + <E)s> (3.2)
) o

(Recall thair? = 2)) Itis straightforward to see that the conditions of the martingale
stopping theorem are satisfied for all clearing timi@sider consideratiohus we
haveE(M(T)) = E(M(0)) or, equivalently

T
qo(a)E(f eaW(s)Bst> — _E(efaW(O)) + E(efaW(T)fﬁT)
[0]

+ aE<fT e“""(S)ﬁSd(L(s) + <§>s>> (3.3)

SincelL increases only wheW = 0, it is clear that

E<f0Te“W(S)BSdL(s)) = E(fOTeBSdL(s)> =n(p). (3.4)

Now, usingW(0) = 0 andd(L(s) + (B/a)s) = dL(s) + (B/a) ds and insertind3.4)
in (3.3), we find that

(p(a) — B)E(f g aW(S)—ps dS) = —1+ E(e WM £T) + an(B). (3.5)

Inthe sequelthe cost functionals of all proposed clearing times are derived using the
basic identity(3.5).

In Sections 47, and 8 we assume that the distribution functi@mof the jumps
has a LST of the form

n ki ;
G =3p Il 3.:6)

i-1 j=1 My ta
wheren, Ky, ...,k, EN, py,..., p, are positive >, p; =1, andy; > 0. This class
covers a wide range of phase-type distributidher example Coxian and hyper-
exponential distributions have LSTs of this tyfsee Asmussef2, p. 74]). For
simplicity, we assume that gli; are distincotherwise we obtain the desired func-
tionals ofWby taking a simple limit. As a LST G*(«) is defined fora € (0,00), but
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we will consider it{unique analytic extensiont@\{y; | j=1,...,k andi=1,...,n},
which is simply given by the right-hand side (&6).
The exponent oK + Jis, in this case

ki

¢<a>=a2—ua—A<1—2piH & ) 3.7)

-1 sl ta

For values ot satisfyinge (a) — 8 = 0, the left-hand side of3.5) becomes zerdt
turns out that there are exaclty + --- + k, + 2 solutions all of them real To see
this, note thatby (3.7), the equationrp () = 8 can be written in the form

ki

A+B-attpa =23l

S tal

(3.8)

SetN=k; + --- + k,and let0< m; < ... <my be they; in ascending ordeBince
(3.8) is equivalent to a polynomial equation of deghte- 2 for «, there are exactly
N + 2 solutions each counted with its multiplicity

First, consider > 0. Equation(3.8) has a real solution in every interval
(—=m¢,—me_1),€£=2,...,N, because the function on the right-hand sidéd) runs
from oo to —oo, and it has one solution if-m,;,0) and one in(0,c0), because the
right-hand function decreases 6nm;,cc) from oo to 0 and is smaller than + B at
a = 0, whereas the left-hand function is equalita- 8 ata = 0. Finally, there is a
solution in(—oc0, —my), since the left-hand function runs fromeco to some real
value(to A + 8 — mg — umy) on this interval and the right-hand function from 0 to
—oo. Thus there are exactly + 2 rootsa;(B),...,an2(B) of (3.8); they are real
and can be ordered so as to satigf{8) > 0 > ax(B) > —my, a,1(B) €
(=me,—my_1), € = 2,...,N, anday, »(B) € (—oo,—my).

Now, let 8 = 0. The above arguments again yield negative regt8) > --- >
ant2(B) in (—oo,—my). Clearly, a = a,(0) = 0 is also a solutionOn (0,c0), the
right-hand function in3.8) decreases and has the raf@e\), whereas the parabola
a+— A — a? + pa on(0,00) increases until it reaches its maximunuA®? and then
decreases te-co. Hence there is one more roat = «,(0) of (3.8) in (W/2,00).

In the following we will insert these roots ir{3.5) and derive the desired
LSTs and functionals from the resulting equatioRer this it is required that all
terms in(3.5) be well defined atlw = «;(B), i = 1,...,N + 2. First, note that
¢(a) — B is an analytic function ofr on C\{—mq,...,—my} (for fixed 8 > 0).
For T = T,, the integralf, e “W~#sdsis bounded byel*!9T, and thus the ex-
pected vaIueE(foTe*“"‘“s)*‘*S ds) is an analytic function ot for all « € C. For
T = T(¢), the clearing rule studied in Section this expected value is shown to
be equal to£ 1E(e WTE)-AT). see(7.1). In both casesE(e “W(T~AT) is
analytic ina for Re @ > 0, which, by (3.5), coincides with a meromorphic func-
tion onC, which has no poles ia(B),...,an2(B). By the identity theorem for
meromorphic functionshe analytic continuation dE (e~ *W(T)~£T) satisfies(3.5)
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ata = «;(B),i =1,...,N + 2. The reasoning for the clearing rules analyzed in
Section 8 is similar

4. THE DISCOUNTED FUNCTIONALS UNDER 7,

In this sectiopwe use the basic identi{d.5) to derive all of the discounted func-
tionals for the system und&, assuming that the jumps have L&I6). By the struc-
ture of G*(-), any jump ofW can be thought of as being generated by first selecting
anindex € {1,...,n} according to the probability distributidmp;, ..., p,) and then
carrying outk; successive phases which are independent and exponentially distrib-
uted with means A4, ..., 1/l . Let C; be the event that the levalis first crossed

by the phase with distribution exp; ). At time T, there is of coursealso the pos-
sibility to hit g exactly due to the Brownian componelgt C be the event that this
happengi.e., thatW(T,) = q]. Letn(8) = E([y e #*dL(s)), h(B) = E(e #Tlc),

and hj(B) = E(e‘Bqucij), i=1...,nj=1.. k. Given Cj, the overshoot
W(T,) — qis exp(l;) distributed and independent @f. Using the formula of total
probability we can rewrite the right-hand side &5) as

n ki B
‘4+22P@we”uﬂaae%mw+mmewae%mwmmm

i=1j=1 i

n o ki Wi
=-1+3>Jea—

i=1j=1 Wy +a

hj (B) + e “9h(B) + an(B). (4.1)

Inserting theN + 2 real zerosy,(B), ..., an.2(B) of the equatiorp(a) — 8 =01in
(3.5) and using(4.1) yields

n K
2 3 et B e h(B) + a(B)m(B) = 1

k=1...N+2  (42)

Equation(4.2) is a system ofN + 2 linear equations for th&l + 2 unknowns
n(B), h(B), andh;(B),i=1,...,n,j=1,...,k. By (42), we obtainy(B), h(B),
andh;(B) as rational functions of the rootg() and the exponential functions
exp(ax(B)). Now, we can express all functionals of interest in termsndf3),
h(B), andh;(B). First, note that

ki

0(B) = Ee#%) = 3 3 hy(8) + h(B) 4.3)
i=1j=1
and
n ki
E(Ty) = =X 2 hj(0) — h'(0). (4.4)
i=1j=1

https://doi.org/10.1017/5026996480317101X Published online by Cambridge University Press


https://doi.org/10.1017/S026996480317101X

10 O. Kella, D. Perry, and W. Stadje

The derivatives;(8) can be computed in terms of thg(3), noting thatw(B) =

1/¢"(aw(B)).
The LSTA(a, B) = E(e *W#ATe) of the steady-state joint distribution of the
stock level and the time elapsed since the last clearing is

Tq
E <f efaW(S)fBS ds>
0

Ala, B) = =T (4.5)
By (3.5), (4.1), (4.3), and(4.4), we find that
S S e o hy(8) + e h(p) + an(p) -1
Ala,B) = —— . (4.6)

n o ki
(B~ so(a))<2 > hi(0) + h'<0)>

i—1j=1

SettingB = 0 in (4.6), we obtain the LST of the stationary stock level distribution

n k .

ST e al h; (0) + e 2 (0) + an(0) — 1
i—1j-1 My +

E(e~eWe) = — L@

n ki
¢(a)<2 > hy(0) + h’<0>>
i=1j=1

Finally,

d
F(B) = _E(Tq) @ A(a9:8)|a=0

Hij
Mj + o

9 n ki
= _£<(¢(0)_3)1[229aq hi (B)
i=1j=1

(4.8)

a=0

+ e *h(B) + an(B) — 1])
We have computed all three functional&s), n(8), andT'(3).

5. AN ALTERNATIVE APPROACH TO T,

In this sectionwe present a second approach to the cost functionals relafggd to
which uses a detour to the multivariate version of the martinga® introduced in
Asmussen and Kell@3]. The jumpsU,;,U,,... of J are now assumed to have a
general phase-type distribution of the foR(lJ; > t) = we”'1 for t = 0, wherer is

a strictly positiven-dimensional probability row vectpA is a(n X n) rate transition
matrix of a terminatingfrom any statgMarkov chain andl is a column vector of
nones Let W, be a random variable whose distribution is the stationary lawW.of
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The LST of W, underT, is, by the ergodic theorem for regenerative processes

given by
Tq
E<f g oW dt)
0

E(e—aW) = T . (5.1)

Attime T, the process may either hjt(due to the Brownian paror jump above it
(due to the phase-type jumpin order to avoid dealing with directly computing the
distribution of the overshoot abowg we will use a trick that was also used in
Asmussen and Kellg3] and first change the jumps into slopes of ratdtus if
there is a jump of sizg at timet, the modified process increases at rate lyfime
units. Figure 2 shows how the sample path depicted in Figure 1 looks after this
modification

The new process becomes a Markov additive pro¥éss{X’(t)|t = 0}, which
has continuous sample pattts characteristics are easily derived from those of the
original processthat is if the modulating states argX)...,n, then when at state
zerq the process behaves like the Bfand when in any of the other statéshas
slope 1 The underlying modulating process= (I (t)|t = 0) is a continuous-time
Markov chain with the rate transition matrix

—A AT
= . 5.2
Q=|_r A (5.2)
Because we assumed thais terminating from any state and thats strictly pos-

itive, Q is irreducible As in Asmussen and Kellg8], it is seen that the generating
matrix for this process is

F1GURE 2. Sample path o¥V'.
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1,
Fa—o+|Mt2e 0 (5.3)

0 al,

wherel,, is then-dimensional identity matrix

LetL'(t) = —infoesey X'(S), W'(1) = X'(t) + L'(t), andW’ = (W'(t))=0. By 1;
we denote afn + 1)-dimensional row vector with 1 in coordinatand 0 elsewhere
It follows from Theorem 21 in Asmussen and Kellg8] that

t

t
J eV o dsF(a) +eW' @1 o —eWM + af 1dl'(s) (5.4)
0 0

is an(n + 1)-dimensional martingalé&ow, considerT; = inf{t = 0|W/’ = q}; due to
sample path continuify will be hit exactly byW’. Note that’(t) can increase only
whenl (t) = 0 (i.e., during Brownian phaségthatl (0) = 0, and that the proces4§’

is bounded o0, T,]. By the optional stopping theorem and bounded convergence
we have that

-
E(f ! eV dS) Fla) = e*979 — 15— alyly, (5.5)
0

wherew9 = E(1, (Tq)) and{y = E(L'(Ty)). Thus it is clear that if we are able to
compute the(n + 1) vector79 and the positive constardt,, then we also have

E(fqu/ e*V'91,  ds). Obviously the processe#/andW’ and the stopping timeF,
andTg are related by

Tq Tq' )
E(f geW(s ds) = E(f eW's)q, (S)_Ods> (5.6)
0 0

E(T,) = E(fo 190 ds). (5.7)

T '
E f e W' 91, g _ods
0

E(exW) = . (5.8)

Tq
E(f 1 s-0 ds)
0

The determinant of («) is a polynomial of degrer + 2 in a. Let ag, ..., a1 be
such that def(e;) = 0 and letH.q,...,H. 1 be (n + 1)-dimensional nonzero
column vectors such th&t(a;)H.; = 0. It is clear that one of the roatsayay, is
zero(since deQ = 0) with corresponding eigenvectét., = 17 (1 now being an

and

In particulay we obtain
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(n+ 1)-dimensional column vector of oneset us assume that 4,...,H. .., are
linearly independent vectarSetH = (H 4,...,H. 1) andA = diag(ay, ..., apni1)-
Then from (5.5), we have that

mIHe = 14H + 1,HAY, (5.9)
so that
79 =1, He "H ™! + 1,HAe "H ¢, (5.10)

wherg for a given matrixC, e denotes the matrix exponential 6f(which in our
case is a diagonal matpixThus we need one more equatiomhich is

7917 = 1. (5.11)

Equation(5.11) follows from the definition of79 and is also precisely what we
obtain if we substituter = ag = 0 in (5.5) and multiply byH., = 17. Hence mul-
tiplying (5.10) by 17, we obtain
1-1,He MH 1T L H( —e M)H 1T
9 1,HAe MH 11T 1 HAe MH 11T

(5.12)

Having computed’, we also haver9 via (5.10). Now, we can usé5.5) to obtain
E(fy eV 1, ds) for all « satisfying deF(«) # 0. Then (5.6) yields
E(fy¢e™® ds). To computeE(T,), we would like to setx = 0 in (5.6). However
this is not viable as def~(0) = 0. Instead we have to ug&.5) to conclude that

T/
(eCVQﬂ'q — 10 - alofq)F(a)*l —> E<f ! 1I(S) dS>, (513)
0

asa — 0 through values for which d&t(«) # 0. Relation(5.13) amounts to apply-
ing L'Hopital’s rule in order to determinE(foTQ' 1,5 ds) and in particulay the first
component of this row vectpwhich isE(T,). Equation(5.1) now yields the LST of
the stationary distribution oiv.

There is also a direct method for derividda) = E(f° V' 1,  ds) for
values ofa such that deff(«) = 0. First, note that fore # «;, we have

F(a) - Flay) L ara
Ala) ————2H, = Aa) ™5 H.
o [e4] 0 In
eaq_eaiq
- (—ﬂ— 10€q)H.i. (5.14)
a — Q;

In particular by continuity this holds for alkx. Thus settinga = «; for a given, this
gives a system of equations from which we can #id; ). In particular this can be
done fore; = 0, so that
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A(0) =E < fo K s ds) (5.15)

is computableClearly,
T
E(Ty) = A(0) = E(J 1, (90 ds). (5.16)
0

6. EXAMPLE: EXPONENTIAL JUMPS

We now consider in some detail the important special case of exponential jumps
(i.e.,, G*(a) = v/(v + «)) using the technique of Section®hen there is only one
(exp(v)-distributed type of phase for a possible overshddte three values,(3) >

0= a,(B) > asz(B) are the roots of the cubic polynomial

pla) =a®+a?(v— W —a(w + A+ B) — Br. (6.1)

Recall thatw,(8) < 0 for all 8 > 0 anda,(0) = 0. There exist closed-form expres-
sions or the roots af6.1) via Cardano’s formulathey are however rather compli-
cated and not given here

The transform&h(B) = E(e*Bqu{W(Tq):q}), h(B) = E(e’ﬂqu{W(Tq)>q}), and
7(B) are found using some straightforward algebra to sGha):

(azy1 — ar1Ys)(ap — ag) — (apyr — agYo) (a3 — ay)

h = , 6.2
(B) (azy1 — ar1Ys)(ax Xy — a1 Xp) — (@Y — a1 Yo) (@zXy — a1 X3) ©-2)
(agXy — ayX3) (ap — ag) — (@xX; — a1 %) (az — ay)
h = , 6.3
1(B) (azXy — a1 X3) (a1 — ayYs) — (ap Xy — @y Xp) (azyr — aqYs) ©3)
(X2 = X)) (XaY1 — X1 Y3) — (X3 — X) (X2 Y1 — X1 Y2)
= , 6.4
n(B) (a1 Xp = apX1)(XgY1 — X1Y3) — (@1 X3 — axXq) (X2 Y1 — X1 Y2) (64)
where fori =1, 2, 3, we have sety; = «;(8),
X =x(B)=e P9
e @By
Yi =VYi(B)= vt aB)
From (4.8), we obtain(after some algebja
_ _ 4,1 -1 _
r(g) = Bln(B) —ad(B) —v *hy(B)]+ (u+r N1 9([3)). 6.5)

BZ
By (4.2), 0(B) = h(B) + hy(B). From(2.1)—(2.3) we obtain closed-form expres-
sions for the discounted cost function&lg 8), C,(8), andCs(B).
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We will now compute several quantities of intereésfe start with the hitting
probability P(W(T,) = ). As this probability is equal tb(0), we needy; (0),i =1,
2, 3. Clearly

1
@u(0) = 5 (v =+ [(v = 2 + 4w + N]¥2) > 0,

ap (O) = 07

1
a3(0) = E(V_ H=[(r — W2+ 4(w + H)]Y?) <O.

Thus
P(W(Ty) = q) = h(0)

_ v ag(0)(1— e u@9) — ¢ (0)(1— e ©9)
- al(o) 013(0) e~ 1(0)d _ g—a3(0)q .

The long-run average cost functiond$T,), E(L.), and E(W,) are obtained by
lengthy calculations

v + h(0)a,(0)
v + a4(0)

1— e*al(o)q

= w,(0) <q N 1 +Vh(0)>

Fl = 20o= PXCIITE ’
_ 70 _hOa+1-hO@+r) A

=T T Ty he
_TO _gh0)+(+ v Hhy0)

=i E(T,)

It is interesting that the stationary law of the stock level process can be determined
explicitly. Its LST is obtained by setting = 0 in (3.5) and then dividing both sides
by E(Ty) ¢ (). We find that

—1+ E(e" W) + aE(L(T,))

B(e™) = H@E(Ty)
~1+ h(0)e™*@ + hy(0)e~*@ —— + ah(0)q + hy(0) (q + l) - a<u+ ﬁ) E(To)
v+a v v
E(T,) ala — 01(1/02(;1 — a3(0)

(6.6)

We can even derive the corresponding distribution functionVgf Note
that E(L(Ty)) = E(W(Ty)) — E(X(Ty)) and by Wald’s equationE(X(Ty)) =
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(u+ vflA)E(Tq). Recall thatr,(0) anda3(0) are the positive and the negative root
respectivelyof @? — a(u—») — (L + A) = 0 so that

a1(0)]as(0)] = w + A. (6.7)
Therefore
a v+«
e(a) (@ — ay(0)(a— as0)
_ vta a0 |as(0) 1 ©.5)

v a;(0)—a a+|ag(0)] u+ (A/v)
From the first equation i6.6) it follows that
1-E(e W)  aE(L(Ty))
@(a)E(Ty) @(a)E(Ty)

__a | 1-E(e™W) EW,) = EW) — E(X(y)
e(a) aE(W(Ty)) E(Tq) E(Tq)

E(e W) = —

(6.9)
We need the distribution functioh of W(T,). Clearly,
P(W(T) — q=x) =P(W(T,) = q)
+ P(W(Ty) > q)P(W(T,) — g = x|W(T,) > 0), x=0.

Given thatW(T,) > g, the overshooWV(T,) — qis exp(») distributed It follows that

0 ifx<q
A(X) ={ Cean
h(0) + h,(0)(1— e "> 9) ifx=q.

The functionH*(a) = [1— E(e"*W@))]/aE(W(T,)) is the LST of the distribution
functionH having the density — [E(W(T,))] (1 — A(x)). Let

ANt
a= [E(Tq)<u+ ;)] E(W(T,)).

From(6.9), we obtain the remarkable relation

14

E(e V)

v+ a

a;(0) |013(0)‘ —(a-1) a;(0) |a3(0)
a;(0) — «a |013(O) ta a:(0) —«a |a'3(0)| +a

= aH*(a) (6.10)
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Let F be the distribution function of\,. Then (6.10) states that the probability
measure exfy) * F.is a linear combination dfl = (exp(—a4(0)) * exp(| a5(0)|) and
exp(—a;(0)) * exp(| a3(0)|), wheres denotes convolution and eipa), o > 0, is
the distribution function1 — e**)1_., 0)(X), the “exponential distribution” on the
negative real numberblote thata > 1, so that the right-hand side (6.10) is nota
convex combination of probability measurésterms of random variables/e can
rephras€6.10) as follows LetW,, Y, E,, ..., Es, Zbe independent random variahles
Y~ H, El’ E4 ~ eXp(—a), Ez, E5 -~ eXp(|a3(0)|), E3 ~ eXp(V), P(Z = 1) = ail, and
P(z=0)=1—a ' Then

Y+E +E 2 (1-2)(W,+E;) + Z(E, + Ey). (6.11)

7. INDEPENDENT EXPONENTIAL CLEARING
We now consider the clearing process with exponential clearing times, ...
~exp(£¢), which are independent of the proces§@4(s))s—o, N = 1. In general if

Y = (Y(1))=o is @ measurable and nonnegative proc&ss an exp¢)-distributed
random variable independent¥fandY(T) is measurablghen

ECY(T)) =f0 E(Y(t))ge‘ftdt=§fo ECY(1)E(Lfr=y) dt

- gE(LwY(t)l{T>t}dt> = gE(fOTY(t)dt).

Thus
T(&)
E(efaW(T(f))fBT(é)) — fE(f e aW(s)—Bs dS). (7.1)
[0]
Inserting(7.1) in (3.5), we arrive at
EMe(a) = (B+§))E(eWTOATO) = —1 + an(B). (7.2)

Let 8 = B + &. Settinga = a;(B8) > 0in (7.2), we obtain

n(B) = (7.3)

1
al(ﬁ).

Therefore

e WW(S)—Bs _ a = al(.é)
EU e ds) " wBel@ - B (7.4
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From(7.4), we can comput&(B):

T(¢)
rg) = (e( [ e ds>>

a=0

N n i
B+ Zg

- Bzal([?) ' (7.5)

The LST of T(¢) is, of course

&

0 7.6

B =7 (7.6)

Relations(7.3), (7.5), and(7.6) provide closed-form expressions for the cost func-
tionals under the clearing policl(¢).

Example: Let G(x) =1 — e ", x= 0. Then by (7.1) and(7.4),
(a—a(B)(v+ a)é
al(:é)(a - al(B))(a - az(,é))(oz - 013(,@))

B lasB) vta g
a+\a2(ﬁ)|a+|a3([§’)| v ,é”

the second equation {i7.7) follows from e () az(B) as(B) = Br, az(B) < 0 and
a3(B) < 0. Furthermorewe find that

r'(p) = & ( ! + : —£> (7.8)
E+B\lai(B+é)] |ax(B+E| v ) '
For the long-run average coste haveE(T(¢)) = 1/¢ by definition and

0O [ £ &
Blo) = g7y - <al</§>> oo

= . 7.9
al(f) ( )
For the stationary stock leveke find from(7.4) and(7.7) (settingB = 0) that
|az(§)‘ |013(§)| v+ a
E(e W) = . 7.10
&) = @) a+ @) v (7.10)

Note that(7.10) can be written in the form

E(e *W(TE@)-BTE)) =

7.7)

W,+E, 2 E,+Es, (7.11)

whereE,, E,, andE; are independent exponential random variables that are also
independent o\, and satisf\E; ~ exp(v), E; ~ exp(|a,(£)|), andE; ~ exp(| as(£)]).
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Remark: As a by-product of our approagim the case of exponential jumps we can
extend the known result that in the case 0; that is for a reflected BMW(T(£))
andL(T(¢)) are independeriseg e.g., Asmussen and Perfy]). To see thistake
Y(t) =L(t)(1+ (B/a)) in (3.1). Then Z(t) = W(t) + (B/a)L(t), and

t t
M(t) = qo(a)f g WEALE dg+ 1 — @ WAL — (o + B)f e P dL(s)
0] [0]
is a martingaleThe basic identity becomes
T()
¢(a)E<J e @W(s)—BL(s) dS) = —1+ E(e eWTE)-ALTED)
0

+(a+pB)0(B), (7.12)

where?(B) = E(f; “’ e A dL(s)). Let (W,,L.) be a pair of random variables
whose joint law is the stationary distribution of the two-dimensional regenerative
process(W(t),L(t)). We can use PASTA and the limit theorem for regenerative
processes to obtain

E(e *W(T@)-BLTE)) = E(g e Ble)

T(£)
= E(T(f))1E< fo g AWO=ALS) ds). (7.13)

Thus
(¢(a) — E)E(e”*WTEALTE)) = —1+ (a + B)7(B). (7.14)
Insertinga4(¢) for a in (7.14) yields
71(B) = (B + ai(é) ™ (7.15)

Now, factorizee () — £ in (7.14). From(7.14) and(7.15), we obtain after some
algebra(usinga, (&) az(€) as(§) = v¢),

|a2(§)| |013(§)| v+a ay(f)
a+laé)| atlaz(é)] v B+ al(f).
Equation(7.16) is tantamount to saying that the steady-state random varisitjles

andL.are independeribecause their joint LST factorize$ . ~ exp(a4(£)), andW,
satisfies

E(e~Wehle) = (7.16)

W+ E 2 E+E,

whereW,, E,, E,, andE; are independenE; ~ exp(v), E, ~ exp(| az(£)]), andEg ~
exp(|as(£)]). Inthe special cask= 0, the underlying process is a reflected Bive
havea,(£) = —v, so thatW, ~ exp(| as(£)|). This latter result was given in Asmus-
sen and Perr{4].
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8. EXTENSIONS AND RAMIFICATIONS

Itwould be interesting to extend the analysis in Section 7 to nonexponential clearing
times This can be done in a straightforward manner for hyperexponential and Er-
lang clearing timeswhich are independent of the underlying procesdisFor
examplelet T = Tz ~ Erl(£&,n) for somen € N. Then Tg = Ty(¢) + --- + T (&),
where theT;(¢) are independent and e distributed and we can treat tha
phases recursivelyThe stationary behavior during the first phd€eT,(£)) was
studied in Section. et V(t) = W(Ty(¢) +t), t = 0. By (7.4) and(7.1), we obtain

for the initial valueV(0) of the second phaséhe LST

§la — ay(§))
ay(é)(p(a) — &)

E(e2V©) = (8.1)

The basic identity3.5) for the second phase 3t (i.e., for the proces¥ ) condi-
tional onV(0) = v becomes

T2(£)
(¢(a) - ,B)E<fo e VA dgV(0) = 0>

= —e @ 4 E(e”®V(R&)-BTE)|V(0) = v) + ag(B|v), (8.2)

wherey (B|v) = E(f32¢) e #*dLy(s)|V(0) = v), Ly(-) being the local time process
of V = (V(t))=o. Clearly ¢ (B|v) = e B9/, (B + &), and we can determine
explicitly all expected values if8.2). To derive the functionals for the second phase
we have to integrate the conditional expected values with resp&i®) € dv).
Then we proceed to the third phasend so onFinally, one has to take a mixture
over then phasesThe details are left to the reader

As already explained in Sectiondeveral combinations @, andT (¢) are also
clearing policies of practical intereste will finally show how their analysis can be
reduced to that of, andT(¢).

Let us first considell = T, + T(¢). Under this policy once levelq has been
reachedit takes an exf¢)-distributed time until the clearing operatidffe can split
the time until clearing in the two phasf3 T,] and(T,, Ty + T(£)]. Clearly,

T Tq
E < f g aW(©—ps ds> =E < f g aW(©~=ps ds)
0 0

T()
+ E(e Ph)E (f e Wa(9—ps ds), (8.3)
0

whereW,(t) is the stock level process starting\s§(0) = g. In (8.3), the expected
values involvingT, have been determined in Sectioyafd the functional o¥\(-)
can be computed as earlier for the second phase in the Erlang case
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Now, let us turn to the more difficult case = min[T,, T(£)]. Under thisT,
clearing takes place after an exponential tonat the next crossing of the threshold
g, whichever occurs firsiWe start from the decomposition

E(e WM ~AT) = E(e_aW(T)_BTl{Tq<T(§)}) + E(e_QW(T)_BTl{quT(g)})- (8.4)
The first term on the right-hand side (8.4) is given by
E(eww(T)fﬁTl{TfT(g)}) = ((eww(T“)fﬁT“l{TfT(g)}|Tq))
= E(E(e” "W Flag™¢Ta|Ty))
— E(efaW(Tq)f(BJrf)Tq)’ (8.5)

and the right-hand side ¢8.5) has been computed in Sectionl4e second term on
the right-hand side of8.4) is equal to

E(eWT@)-BT@) _ E(g aWE)BTO] . ). (8.6)
q

The LSTE(e W) -AT()) has already been derived in SectiarRegarding the
second term i{8.6), note that by the memoryless property of the distribution of
T(£), the conditional distribution of the paiW(T (¢£)), T(£)), given thatW(T,) =w
andT, =t < T(&), is equal to the unconditional distribution QV(T (£)), t + T(£)),
whereW(-) starts atwv. Hence

E(e“WTETE) 10 1))

= P(Ty < T(§))E(e™WTEFTEOIT, < T(¢))
= foo e7§t dPTq(t)
0

X f E(e"WT@=ATE ITq < T(£€), W(Ty) =w, Ty =1) dP(W(Tq),Tq)(W’ t)
R

2
= E(e €M) E(e «WTE=AETENW(0) = w) dPyyr, )., (W, 1). (8.7)
R%

We have shown above how to compute the joint distributiowot,) andT, as well
as the integrand ifB.7). Once we knovE (e~ *W(M~£T) we obtaimy () from (3.5)
by settinger = a4(B). Then E(f, e *W(®~#sds) is given by(3.5), and all cost
functionals undef are available
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