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Abstract Let (X,1) be a projective klt (standing for Kawamata log terminal) three-dimensional pair

defined over an algebraically closed field k with char(k) > 5. Let L be a nef (numerically eventually free)

and big line bundle on X such that L − K X −1 is big and nef. We show that L is indeed semi-ample.

1. Introduction

Throughout the paper, the ground field will be an algebraically closed field k of

characteristic p > 0. The main purpose of this paper is to prove the following theorem.

Theorem 1.1. Assume k to be an algebraically closed field of characteristic p > 5. Let

(X,1) be a three-dimensional klt pair which is projective over a quasi-projective variety

U . Assume that L is a relatively big and nef Q-divisor such that K X +1+ L is big and

nef over U . Then K X +1+ L is semi-ample over U .

For k = Fp, this is proved by Keel in [16]. In fact, Keel proved that in general K X +

1+ L is endowed with a map (EWM), i.e., there exists a morphism f : X → Z to an

algebraic space Z such that a curve vertical over U is contracted by f if and only if its

intersection with K X +1+ L is 0. Furthermore, to check that K X +1+ L is semi-ample

over U , it suffices to show that the restriction (K X +1+ L)|Ex( f ) is semi-ample over U
where Ex( f ) is the exceptional locus of f : X → Z .

Besides using Keel’s results, our approach also relies heavily on the recent results on

the minimal model program (MMP) in dimension 3 in positive characteristic (see [5, 15]).

More precisely, when p > 5, by combining with Shokurov’s idea (cf. [22]) of reduction to a

special MMP and the recent development of lifting sections coming from Frobenius image

initiated in [13] (see [21] and references therein), it is proved that an MMP sequence can

be run in a generalized sense in [15] (cf. Section 3), where the coefficients are also assumed

to be contained in the standard set {
n− 1

n
|n ∈ N

}
.

Later, using Shokurov’s reduction technique again, [5] removes the restriction on the
coefficients by reducing the general case to the one in [15]. Using this existence of a
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sequence of a generalized MMP, after passing to an étale covering of the algebraic space
Z given by [16], a standard trick of running an MMP can change the model X over Z
such that the exceptional locus Ex( f ) is contained in b1c for a plt (purely log terminal)
pair K X +1. Then Theorem 1.1 follows from Keel’s theorem in the semi-ample case and
the abundance for surfaces.

Now we want to apply Theorem 1.1 to get the standard consequences on birational
contractions when we run an MMP for a klt pair (X,1). Let R be a (K X +1)-negative
extremal ray over U , and L = K X +1+ H be a nef divisor for some ample Q-divisor H
such that

L⊥ ∩ N E(X/U ) = R.

Assume that L is big over U ; then it follows from [16] that L is relatively EWM (see
below) over U with a birational contraction f : X → Z to an algebraic space.

By Theorem 1.1, we obtain the contraction theorem, i.e., we can run the minimal model
program (MMP) in the original sense.

Theorem 1.2. Under the above notation. Assume that k is an algebraically closed field
of characteristic p > 5. Assume h : (X,1)→ U to be a klt pair projective over a
quasi-projective variety U . Then

(1) Z is a quasi-projective variety, ρ(X)− ρ(Z) = 1, and

(2) if f is small, then there exists a flip f + : X+→ Z .

Therefore, we see that the concept of a ‘generalized MMP’ is no longer needed. But
it is still conceptually important as an intermediate step. In other words, unlike in
characteristic 0, where the base-point-free theorem was established much earlier than the
existence of flips, to prove the base-point-free theorem in characteristic p > 0, experience
suggests that we might need to first establish everything for the MMP of ‘special type’
in the sense of Shokurov.

The note is organized in the following way. We discuss some preliminary results in § 2;
in particular, we state Keel’s theorems in [16] for the relative case. Then in § 3, we survey
the results of [5, 15] on running a generalized MMP that we will need. Finally, we finish
the proof of Theorem 1.1 in § 4.
Notation and conventions: We follow the notation as in [20]. For any divisor 0 on a
normal variety X and birational map X 99K X ′ to a normal variety X ′, we will denote by
0X ′ its birational transform on X ′. For f : X → Z a birational morphism, we denote by
Ex( f ) or Ex(X/Z) the exceptional set.

2. Preliminaries

In this section, we discuss some background. We note that the resolution of singularities
is known in dimension 3 in arbitrary characteristic (see [1, 6, 7, 9]).

2.1. Basic facts

Lemma 2.1 (The Negativity Lemma). Let f : X → X ′ be a proper birational morphism
from a quasi-projective normal variety to a normal algebraic space. Let E be an effective
f -nef Q-divisor which is exceptional over X ′; then E = 0.
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Proof. It suffices to observe that the usual argument (see [20, 3.39]) of cutting X by
hyperplanes still holds in this situation. 2

Lemma 2.2. Let (X, D) be a simple normal crossing pair, and |H | a very ample linear

system. Then there exists a prime divisor A ∈ |H | such that (X, D+ A) is simple normal

crossing.

Proof. Write D =
∑N

i=1 Di , where D1, . . . , DN are prime divisors. For any I ⊂
{1, 2, . . . , N }, let

D j
I ⊂

⋂
i∈I

Di

be an irreducible component of positive dimension. We denote by |H |D j
I

the restricted

linear system, i.e., the one corresponding to the image of the restriction map

h j
I : H0(X, H)→ H0(D j

I , H |D j
I
).

By Bertini’s theorem (see [12, II 8.18]), we know that there exists an open subset V j
I ⊂

|H |D j
I

such that any element A j
I ∈ V j

I corresponds to a smooth hypersurface of D j
I . For

any D j
I , by definition

f j
I : |H | \ Z j

I → |H |D j
I

is surjective, where Z j
I is the proper linear subsystem given by the kernel of h j

I . Thus,

we can take

H ∈
⋂
I, j

( f j
I )
−1(V j

I ). 2

Proposition 2.3 (The Bertini Theorem). Let (X,1) be a quasi-projective klt pair and A an

ample Q-divisor. Assume that f : Y → (X,1) is a log resolution such that the exceptional

locus Ex( f ) supports a relatively anti-ample divisor E. Then there exists a Q-divisor 1′

such that 1′ ∼Q 1+ A and (X,1′) is klt. Furthermore, in dimension 3, we can show the

same result only assuming A to be big and nef.

Proof. By the negativity lemma (see [20, 3.39]), we know that E > 0. Since it is relatively
anti-ample, we have Supp(E) = Ex( f ).

Write f ∗(K X +1) = KY +1Y (1Y may not be effective). Then by the assumption we

know that (Y,Supp(1Y +Ex( f ))) is simple normal crossing. Since (X,1) is klt, if we write

1Y =
∑

i ai Ei , then ai < 1. There exists a sufficiently small ε > 0 such that f ∗A− εE is

ample on Y and the coefficients of 1Y + εE are strictly less than 1.

Then we can choose H ∼Q f ∗A− εE such that the coefficients of 1Y + εE + H are

strictly less than 1 and (Y,Supp(1Y + E + H)) is simple normal crossing (cf. Lemma 2.2).

Thus for any divisorial valuation v of K (X), its discrepancy a(v, Y,1Y + εE + H) > −1.

Therefore, we can choose 1′ = f∗(1Y + εE + H).
In dimension 3, the log resolution of any pair exists and as it is obtained by a sequence of

blow-ups with smooth centers, we know that the exceptional locus of such a log resolution
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always supports a relatively anti-ample divisor E . We can write A ∼Q A′+G for an ample

Q-divisor A′ and a sufficiently small effective Q-divisor G such that (X,1+G) is still

klt. Then we only need to apply the case of A being ample. 2

Proposition 2.4. Let X be a connected variety. If π : X1 → X is a finite flat morphism,

and π∗L is trivial for a line bundle L on X , then L is a torsion in Pic(X).

Proof. Since by our assumption π∗N is locally free on X for any line bundle N on X ,

then we can define (see [10, 6.5.1, hypothesis I])

Nm : Pic(X1)→ Pic(X),

with the property that Nm ◦π∗(L) = L⊗d , where d = deg(π). As Nm(OX ′) = OX , we

conclude that L is a torsion in Pic(X). 2

2.2. The relative version of Keel’s theorem

For the relative setting of a proper morphism between quasi-projective varieties, we

can take a projectivization and then work in the category of projective varieties. For

our purpose, we would like to directly treat it, which requires us to generalize Keel’s

theorems to the relative case for X → Z a proper morphism between quasi-projective

varieties. The argument is essentially verbatim.

Definition 2.5. Let f : X → Z be a proper morphism between quasi-projective schemes.

Let L be a relatively nef line bundle. For a subvariety W ⊂ X , we denote the Stein

factorization as W → V → Z . We say that W is relatively exceptional (for L) if

Ldim Wη |Wη = 0, where η is the generic point of V . We denote by E(L/Z) the Zariski

closure of the union of all relatively exceptional varieties (with reduced structure).

Definition 2.6. With the above notation, we say that L is endowed with a map over Z (or

EWM over Z), if there is a morphism g : X → Y to an algebraic space over Z with the

property that a subvariety W is contracted by g if and only if it is relatively exceptional.

Then we have the following relative version of Keel’s theorem.

Proposition 2.7. Let f : X → Z be a proper morphism between quasi-projective schemes.

Let L be a nef line bundle on X . Then L is EWM (resp. semi-ample) over Z if and only

if L|E(L) is EWM (resp. semi-ample) over Z .

Proof. The proof just follows Keel’s original one. We will briefly sketch it for the reader’s

convenience. First, as the natural morphism Xred → X can factor through the iterated

geometric Frobenius

Fq
: X → X (q)red → X (q)

for some q = pr (r � 0) (see [18, 6.6]) and (Fq)∗(L) = L⊗q , we can assume that X is

reduced.
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We write X = X1 ∪ X2, where X1 = E(L/Z) and X2 is the union of components of X
on which the restriction of L is big. If X2 6= X , from the induction, we can assume that

L|X2 is EMW (resp. semi-ample). Now the proof of [16, 2.6] also works in this relative

setting.

Therefore, we can assume that L is big on X , i.e.,

nL ∼Z A+ D

for some n ∈ N, an ample divisor A and an effective divisor D. As in the proof of [16,

1.6], we can use [3, 3.1, 6.2] to construct an algebraic space Z such that f : X → Z is

the endowed map for L.

In the case of L|E(L) being semi-ample, the same argument as in [16, 1.10] implies that

L is also semi-ample. 2

Remark 2.8. When Z is an algebraic space, the part for concluding that f is EWM if

f |E(L) is EMW follows from a standard descent argument. But we do not know whether

the statement for semi-ampleness holds or not.

We need the following statement.

Corollary 2.9. Let X and Y be quasi-projective normal varieties which are projective over

a quasi-projective Z with a birational morphism f : X → Y over Z . Let 1 be a Q-divisor

on X such that (X,1) is a dlt (divisorial log terminal) pair. Let S ⊂ b1c be a normal

prime divisor such that −(K X +1)|S is f -ample and C · S < 0 for any contracted curve

C. If L is a line bundle on X such that L ·C = 0 for any contracted curve C, then

L ∼Q f ∗LY for some Q-line bundle LY on Y .

Proof. As we assume S to be normal, we can write (K X +1)|S = KS +DiffS1. Thus

L|S − S−DiffS1

is ample over Y and (S,DiffS1) is dlt. Since S→ f (S) has connected fibers, we know

that the normalization morphism f (S)n → f (S) is a finite and universal homeomorphism.

Therefore, it follows from the abundance theorem for log canonical surfaces (see e.g [23,

15.2]) that L|S ∼Q, f (S)n 0, which implies that L|S ∼Q, f (S) 0 by [18, 6.6]. Thus by

Proposition 2.7, L is Q-linearly equivalent to 0 over Y , i.e.

L ∼Q f ∗(LY )

for some Q-line bundle on LY . 2

Remark 2.10. We also remark that Keel’s cone theorem [16, 5.5.2] holds for the relative

setting X/U , where X → U is a projective morphism to a quasi-projective variety. His

original proof can be directly applied without any change.

3. Running a generalized MMP for 3-folds

In this section, we assume k to be an algebraically closed field with char(k) > 5. We

provide a short sketch of the proof for the results from [5, 15] that we will need. Since we
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still need to prove the base-point-free theorem now, a priori we cannot run the MMP in

the original sense. In [15], a notion called the generalized MMP was invented. In fact, for

a three-dimensional klt pair (X,1), using Shokurov’s idea in [22] of reducing the MMP

to a ‘special’ MMP, it is proved (see [5, 15]) that we can always run a generalized MMP

over Z in one of the following two cases:

(I) when X is projective over some quasi-projective variety U , and X → Z is the

relative endowed map for some big and nef divisor L over U ;

(II) when Z is quasi-projective.

Definition 3.1. For a dlt pair (X,1)/U , let S = b1c. We call an extremal birational

contraction X → Y induced by a (K X +1)-negative ray R of N E(X/U ) of special type if

R · Si < 0 for some component Si ⊂ S.

If follows from [16] (and Proposition 2.7) that if (X,1) is a three-dimensional dlt pair

projective over a quasi-projective variety U and K X +1 ∼Q,U E > 0, then there exists

an ample divisor H such that

(K X +1+ H)⊥ ∩ N E(X/U ) = R.

If we assume that X is Q-factorial, then each component Si of b1c is normal by [15, 4.1].

Furthermore, if R · Si < 0, Proposition 2.7 and the arguments used in Corollary 2.9 imply

that the extremal contraction X → Z exists and we get Z as a quasi-projective variety.

If X → Z is small, then it follows from [15, Theorem 1.1] that the flip X+→ Z exists.

Thus, if we start from a Q-factorial dlt three-dimensional pair (X,1)/U , and we assume

that we run a sequence of an MMP of special type such that each time the contraction

is birational, e.g., X → U is birational, then we will have a sequence of models

(X,1) = (X0,10) 99K (X1,11) 99K (X2,12) · · · 99K (Xn,1n),

where Corollary 2.9 can be applied to show that each model X i is Q-factorial. Special

termination (see [11, 4.2.1] or [5, 4.7]), which holds in this case, implies that the MMP

will end with a relatively minimal model Xn over Z .

Let first introduce the definition of a generalized MMP.

Definition 3.2. Let (X,1) be a klt pair which is projective over a quasi-projective

variety U and R an extremal ray. Let f : X → Z be the birational extremal contraction

corresponding to a (K X +1)-negative extremal ray

R = R>0[C] ⊂ N E(X/U )

with the target space possibly being an algebraic space, i.e., Z is a normal algebraic space

and f : X → Z is the endowed map (by Proposition 2.7) for a big and nef line bundle

L = K X +1+ H satisfying

L⊥ ∩ N E(X/U ) = R.

We say that (X+,1+) is a step of the generalized MMP if X 99K X+ is birational, 1 =

φ+∗ 1 and K X+ +1
+ is nef over Z . When φ+ : X 99K X+ is isomorphic in codimension 1,

we call it a generalized flip.
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Theorem 3.3 ([5, 15]). Let k be an algebraically closed field with char(k) > 5. Assume X
to be a Q-factorial 3-fold. Let (X,1)→ U be a klt pair projective over a quasi-projective

variety U . Assume that f : X → Z is given as in Definition 3.2; then a step of the

generalized MMP always exists, i.e., we can always find X+ as in Definition 3.2.

Proof. If the coefficients of 1 are contained in { n−1
n |n ∈ N} ∪ {1}, then this follows

from [15, 5.6]. We remark that since we have the relative cone theorem 2.10, the relative

contraction theorem 2.7 and the special flip, then the argument in [15, 5.6] holds in this

relative setting.

In general, we repeat the argument of [5], which reduces the general case to the above

case of standard coefficients as follows.

Write 1 =
∑m

i=1 ai1i , where 11, . . . ,1m are distinct prime divisors. We will show

that if we can run a generalized MMP for any klt pair (X ′,1′) birational over Z with

coefficients in

I0 :=

{
n− 1

n
|n ∈ N

}⋃
{a1, . . . , am−1}

⋃
{1},

then we have a step of the generalized MMP for K X +1; hence the theorem follows from

the induction.

As part of our induction, we also assume that a step of the generalized MMP for the

coefficients in I0 is given by a sequence of birational models:

X = X0 99K X1 99K X2 · · · 99K Xn = X+,

where X i 99K X i+1 is one of the following two operations:

(1) X i+1 → (X i ,1i ) is a log resolution for some divisor 1i ;

(2) X i 99K X i+1 is a sequence of the special MMP with standard coefficients, which can

be run by [15].

Write 1 = 11+12, where 11 =
∑m−1

i=1 ai1i and 12 = am1m .

Assume that 1m · R > 0. Then we know that 12 ≡Z −t (K X +11) for some t ∈ [0, 1).
By induction, we can run a generalized MMP for (X,11) over Z , which provides a

sequence of birational models:

X = X0 99K X1 99K X2 99K · · · 99K Xn = X+.

Using induction, we also know that X i 99K X i+1, where X i 99K X i+1 is either a log

resolution for some divisor 1i or a sequence of the special MMP with standard

coefficients.

In particular, by repeatedly applying Corollary 2.9, we see that if there is a Q-line

bundle L on X such that L ≡Z 0, then there is a Q-line bundle L+ on X+ such that if

we pull back L and L+ to a common resolution, we get two Q-line bundles which are

relatively Q-linear equivalent to each other. Thus

K X+ + (11)X+ + (12)X+ ≡ (1− t)(K X+ + (11)X+),

which is nef.
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Now we assume that 12 · R < 0. We can apply the argument of [15, 5.6] by choosing

T = 1m . Then we get a model W such that KW + (11)W + EW + TW is nef over Z , where

EW is the divisorial part of the exceptional locus Ex(W/Z). Now we run a generalized

MMP of KW + (11)W + EW with scaling of TW over Z , which exists by our induction

assumption. As argued in [15, 5.6], this is of special type. In particular, it terminates. By

the definition of the MMP with scaling, we know that it provides a model

W 99K Wr = X+

such that

K X+ + (11)X+ + EX+ + am TX+

is nef, where EX+ is the push-forward of EW on X+. Then the negativity lemma implies

that EX+ = 0.

In each case, we also see that the map X 99K X+ can be decomposed into maps of type

(1) and type (2). 2

Remark 3.4. As we already pointed out in the argument, by Corollary 2.9, we know that

if we have a Q-line bundle L on X such that L ≡Z 0, then there is a Q-line bundle L+ on

X+ such that the pull-backs of L and L+ to a common resolution are Q-linear equivalent

to each other.

As a standard consequence of running a generalized MMP and special termination, we

know the following:

Lemma 3.5. Assume that k is an algebraically closed field with char(k) > 5. If (X,1) is

a log canonical three-dimensional pair, then a Q-factorial dlt modification exists.

If we assume that K X +1 is effective over U , the termination of the generalized MMP

is proved in [5] following an idea from [4]. It is shown that the termination of a sequence of

generalized flips in this case is implied by the three-dimensional ascending chain condition

(ACC) of log canonical thresholds. Then the ACC of three-dimensional log canonical

thresholds is a corollary of the two-dimensional global ACC (cf. [17, 18.21] or [14, Section

5]). The latter was proved by Alexeev in [2].

To summarize, we have the following result which we need later.

Theorem 3.6 ([5, 15]). Assume k to be an algebraically closed field with char(k) = 5. Let

(X,1) be a klt three-dimensional quasi-projective pair with a proper morphism to Z such

that one of the following cases holds:

(I) X is projective over some quasi-projective variety U , and X → Z is the relative

endowed map for some big and nef divisor L over U ;

(II) Z is quasi-projective and K X +1 ∼Q,Z E > 0.

Then we can run a generalized MMP of (X,1) over Z to obtain a minimal model

(Xm,1m) of (X,1) over Z .
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Furthermore, if L is a Q-line bundle on X such that L ≡Z 0, then there exists a Q-line
bundle L Xm on Xm such that the pull-backs of L and L Xm to a common resolution are
Q-linearly equivalent.

4. Proof

In this section, we always assume that k is an algebraically closed field with char(k) > 5.

Let (X,1) be a klt pair and L be a big and nef Q-divisor such that K X +1+ L is also

big and nef. By a theorem of Bertini type, Theorem 2.3, after replacing 1+ L by 1′,

we can indeed assume that K X +1 is big and nef, and we aim to show that K X +1 is

semi-ample. Let X → Z be the endowed map for K X +1 provided by [16].

Lemma 4.1. Assume the above notation. There is a birational contraction f : X 99K Y
over Z such that (Y,1Y = f∗(1)) is klt and dimE(KY +1Y ) = 1.

Proof. Let S be the sum of divisorial components dimE(K X +1). Let ε > 0 be sufficiently

small that K X +1X + εS is klt. By Theorem 3.6, we can run a generalized MMP of

(X,1+ εS) over Z to obtain a birational model f : X 99K Y such that KY +1Y + εSY is

nef over Z , where 1Y and SY are the push-forwards of 1 and S.

From the assumption that S ⊂ dimE(K X +1), we know that S is exceptional over Z .

By the negativity lemma, Lemma 2.1, we know that the components of S are precisely

the divisors contracted by X 99K Y . 2

Proof of Theorem 1.1. Replacing X by Y , we can assume that dimE(K X +1) = 1.

Replacing X by its Q-factorialization, we can then assume that X is Q-factorial. By Keel’s

theorem, if we define L = K X +1, then it suffices to show that L|E(K X+1) is semi-ample,

i.e., for any closed point p ∈ Z , assume that C = f −1(p) is a connected curve; then L|C
is semi-ample.

We first assume that p ∈ Z is contained in a quasi-projective open neighborhood of Z .

After possibly replacing Z by a neighborhood, we can assume that Z is quasi-projective

and C is the exceptional locus Ex(X/Z).
The following construction is standard in characteristic 0, and is a combination of

running an MMP after using the X -method.

Proposition 4.2. Assume Z to be quasi-projective. Locally over Z , we can find an effective
Q-divisor H ∼Q L such that if we define

c = lct(X,1; H)

to be the log canonical threshold along C, then:

(1) (X,1+ cH) is plt along C.

(2) There exists a Q-factorial model W/Z and a prime divisor E on W such that

(W, E +1W + cHW ) is plt where 1W and HW are the birational transforms of 1

and H on W , and if p : U → X and q : U → W is a common resolution, then

p∗(K X +1+ cH) = q∗(KW +1W + cHW + E).

(3) −EW is nef over Z .
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Proof. As L is big, we can write it as A+ B where B > 0 and A is ample. It is standard

that after using A in order to tie-break (see e.g. [14, 3.2.3]), we can find a Q-divisor

H ∼Q L such that for

c = lct(X,1; H)

the log canonical threshold along C , the pair (X,1+ cH) is log canonical with precisely

one divisorial valuation v such that the discrepancy a(v; X,1+ H) = −1.

After possibly shrinking Z , applying Lemma 3.5, we can find h : V → X which is a

Q-factorial dlt modification of (X,1+ cH), i.e., V is Q-factorial and (V,1V + cHV + E)
is dlt where E is the divisorial part of Ex(h) which corresponds to the valuation v. Hence

h∗(K X +1+ cH) = KV +1V + cHV + E .

Then by Theorem 3.6, we can run a generalized MMP for

KV +1V + cHV ≡Z −E

over Z as in § 3, and we end up with a relatively minimal model fW : W → Z . Since each

step of the generalized MMP is E-positive, E is not contracted in V 99K W . Then we

define EW to be the push-forward of E on W . 2

It follows from Remark 3.4 that KW +1W + cHW + EW is numerically trivial over Z .

By [15, 4.1] and the fact that W is Q-factorial, we know that EW is normal as (W, EW )

is plt. Thus, restricting on EW , we have that

KW +1W + cHW + EW |EW = KEW +DiffEW (1W + cHW )

is numerically trivial and (EW ,DiffEW (1W + cHW )) is klt. Therefore it follows from the

abundance for surfaces (cf. e.g. [23]) that

KEW +DiffEW (1W + cHW ) ∼Q 0.

Since −EW is nef over Z we know that

EW = f −1
W ( fW (EW )) ⊃ Ex( fW ),

and hence KW +1W + cHW + EW is Q-linearly trivial over Z by Proposition 2.7, i.e.,

KW +1W + cHW + EW ∼Q f ∗W (A)

for some Q-line bundle A on Z . By Theorem 3.6, we know that

KY +1Y + cHY + E ∼Q K X +1+ cH ∼Q f ∗(A).

Thus (K X +1)|C ∼Q 0.

Now let us consider the general case. For p = f (C) ⊂ Z , let π : Z̃ → Z be the étale

map from a quasi-projective étale neighborhood of p. Let

π X
: X ×Z Z̃ → X

be the étale morphism. We define C1 = (π
X )−1(C) which is finite étale over C . Thus it

follows from Proposition 2.4 that φ∗nL is trivial for n sufficiently divisible. 2
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Proof of 1.2. (1) The assertion that Z is an algebraic variety follows from Theorem 1.1.

In particular, we conclude that L = f ∗L Z for some ample divisor L Z . We also have the

exact sequence

0→ Pic(Z)Q→ Pic(X)Q→ Q→ 0,

where the last morphism is given by the intersection with a curve class [C] in R. In fact,

if L ′ is a line bundle on X such that L ′ · [C] = 0, then it follows from the cone theorem,

for sufficiently small ε > 0, that L + εL ′ is still big and nef over U and

(L + εL ′)⊥ ∩ N E(X/U ) = R.

Thus we conclude that L + εL ′ is semi-ample, and its multiple will be a pull-back of an

ample Q-divisor on Z .

For (2), we know that there exists a generalized flip f ′ : X ′→ Z such that K X ′ +1
′

is nef over Z where 1′ is the push-forward of 1 to X ′. It follows from the cone theorem

that we can find a sufficiently ample divisor HZ on Z such that K X ′ +1
′
+ f ′∗HZ is

big and nef and for which all (K X ′ +1
′
+ f ′∗HZ )-trivial curves are vertical over Z . So

K X ′ +1
′
+ f ′∗HZ is base-point-free by Theorem 1.1. Therefore, we can take

X+ := Proj
⊕
m=0

f ′∗OX ′(m(K X ′ +1
′
+ f ′∗HZ )),

which admits a morphism f + : X+→ Z yielding the flip. 2

Remark 4.3. The base-point-free theorem in characteristic 0 is proved for nef L, which

can be written as L ∼Q K X +1+ A for a klt pair (X,1) and a big and nef Q-divisor

A. However, in characteristic p > 0, due to the existence of inseparable morphisms, it is

still not known how one would deal with the case of L not big. There are partial results

(κ(L) = 1 or 2) in [8] with more restrictive assumptions.
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