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Abstract. This paper critically examines two arguments against the generic multiverse, both
of which are due to W. Hugh Woodin. Versions of the first argument have appeared a number
of times in print, while the second argument is relatively novel. We shall investigate these
arguments through the lens of two different attitudes one may take toward the methodology
and metaphysics of set theory; and we shall observe that the impact of these arguments depends
significantly on which of these attitudes is upheld. Our examination of the second argument
involves the development of a new (inner) model for Steel’s multiverse theory, which is delivered
in the Appendix.

Since the advent of forcing with Cohen’s [4], there has been a recurring concern that
the language of set theory may not have a unique interpretation. While philosophers
and mathematicians had been familiar with unintended independence since Gödel’s
[9], the limitations drawn out by forcing appeared more confronting and challenging.
Initial forays exploring this concern led to a vague idea of bifurcation in themeaning of
the membership relation [13, 16, 21]. However, this initial wave arguably deteriorated
into metaphysical pessimism and a species of formalism [5]. Nevertheless, as set theory
matured through the last quarter of the twentieth century and into the twenty-first,
this idea has persisted in a number of forms. While much of this remained below the
surface in the form of philosophical conversations rather than published papers, more
recently a number of set theorists have laid their pluralistic cards on the table.
This paper is concerned with a species of pluralism tailored very specifically to the

problem of forcing: the Generic Multiverse. Versions of this idea have been discussed
in a number of places [23, 24, 28–30]. I will discuss these later, however, the underlying
motivation should be familiar to philosophers: in the face of the purported semantic
indeterminacy exposed by forcing, we supervaluate over the diversity in search of
common ground. The coherence of the resulting picture is controversial and it presents
a radical departure from the usual metaphysical accounts of set theory presented in
philosophy and mathematics classes.
I am going to present critical analyses of two arguments against the generic

multiverse, both of which are due to W. Hugh Woodin. The first argument centres
around a fascinating corollary of the Ω-conjecture and the second emerges out of
considerations related to Ultimate-L. While the underlying mathematics of both
arguments involves sophisticated mathematical techniques belonging to long-standing
traditions in set theory, my goal here is to focus on the high-level structure of these
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348 TOBY MEADOWS

arguments, rather than getting too mired in the details. This strategy has certain
limitations as an appreciation of the strength of some of the claims seems to demand a
more meticulous understanding of the mathematical details. However, my contention
is that a more superficial survey of the arguments—with appropriately selected black
boxes—will be of sufficient philosophical interest for our purposes.
The first of these arguments has been discussed a number of times byWoodin, while

the second receives its first outing here. As such, I will spend more time delivering
the second argument. However, my ultimate purpose in this paper is to highlight an
interesting feature emerging out of the practice of contemporary set theory: its wide
diversity of underlying philosophical agendas and the effects these have on the direction
of its research. This will be illustrated by considering who the intended audiences of
our target arguments are and how effective they are in those forums. The results are,
I think, somewhat surprising and provide a fascinating case study highlighting the
challenges of philosophical persuasion.
The paper is divided into three main sections. In the first, we provide some

introductory discussion to contemporary set theory with a view to understanding why
the generic multiverse could be appealing. In the second, we deliver a schematic version
of Woodin’s argument via the Ω-conjecture. Here we find that the generic multiverse
is—in a certain sense—unfaithful to our intuitions about the cumulative hierarchy
of sets. And in the third section, we deliver an argument leaning on considerations
arising from the Ultimate-L project. Here we find that the theory of the generic
multiverse is—in a certain sense—practically the same theory asZFC or its appropriate
augmentations.

§1. Motivating the generic multiverse. In order to demonstrate the effect of the
philosophical diversity I claim exists in set theory, I want to start by carving our a
couple of philosophical attitudes one could take. They are not intended to be in any
way exhaustive, but they are particularly pertinent to the discussion below.

• Univerism—a hard commitment to ZFC being a theory with a unique intended
interpretation.

• Pragmatism—a commitment to ZFC or something like1 it being the best way
to understand and organize strong mathematical theories.

I’m going to assume that universism is relatively familiar. It’s the standard picture in
that this is what one is taught when one initially learns set theory and it is probably
safe to say that most philosophers and mathematicians sit on this side of the fence.
Pragmatism, on the other hand, might seem a little vague and unfamiliar. The ensuing
discussion of contemporary set theorymotivating theGenericMultiverse is intended to
alleviate this. That said, it would probably be fair to say that it lies somewhere between
the poles of thin realism and arealism as introduced in Maddy’s [18]. The key point is
that the pragmatist selects their foundation on the basis of mathematical expediency
rather than claiming some kind primal grasp of the underlying subject matter.
I should also note that these attitudes aren’t mutually exclusive. One can be a

universist and a pragmatist; for example, one might argue that ZFC is the most

1 By “like” here, I mean something like theories that are mutually interpretable withZFC , but
I don’t want to be too specific for now. See the discussion in §3.1.
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expedient foundation of mathematics and believe the language of set theory has a
unique interpretation. One might place Maddy pretty close to this box [18]. Or, one
might be neither a pragmatist nor a universist. For example, Hamkins claims to be a
platonist with regard to a multiverse conception of sets [10].2 In this paper, we won’t be
concerned so much with those positions. Rather, we shall be interested in the universist
who is open to appeals that go beyond pragmatic considerations. The effectiveness of
the argument from §2 seems to require this attitude. We shall also be interested in the
pragmatist who is not a universist. They might not be a multiversist either: they could
be on the fence. For the remainder of this section, we’ll explore some reasons why
such a swinging pragmatist could be swayed toward the multiverse. Then in §3, we’ll
examine an argument which aims to deflate those reasons.
Our discussion will now proceed in three stages:

(1) Deep incompleteness.
(2) Large Cardinals: successes and shortcomings.
(3) Turning the tables toward the Generic Multiverse.

In the interests of brevity and accessibility, I will tell an extremely abridged and
simplified version of the history that brings the road to the generic multiverse
into clear focus. This approach is loosely based on Steel’s [23], but for a more
detailed account of the relevant points the reader is recommended to consult
Kanamori’s [14].

1.1. Deep incompleteness. Sometime near the dawn of set theory, Georg Cantor
showed:

Theorem 1. There is no surjection from the natural numbers onto the real numbers.

There are different sizes of infinity and the reals are larger than the naturals. This
surprising discovery and others opened up the realm of the transfinite andwhat became
known as Cantor’s paradise. But as soon as one understands the meaning of the
theorem above a natural and obvious question emerges:

If the reals are larger than the naturals, is there any size which fits
strictly between them?

A negative answer to this question is, of course, the Continuum Hypothesis (CH ).
While Cantor showed thatCH holds—in some sense—for the closed sets of reals, little
initial progress was made on this question.
Sometime later, Hilbert—a convert to Cantor’s paradise—wondered ambitiously

whether all mathematical questions could be settled. Indeed, in response to Bois-
Reymond’s pessimistic maxim ignoramus et ignorabimus (we do not know and we will
not know), Hilbert famously retorted, wir mossen wissen—wir werden wissen (we must
know—we will know).

2 I’d like to stress that neither of these examples is perfect. Maddy would likely object to
my talk of interpretations as a means of distinguishing the universist from the multiversist.
Hamkins would likely object that his form of platonism has a distinctively naturalistic and
perhaps pragmatic flavor. Nonetheless, I hope I have illustrated to the reader that the while
the scope of this paper is quite circumspect, there are other positions to occupy. For a more
thorough picture of the conceptual landscape here see [15].
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Alas, a short while later Gödel showed that:

Theorem 2. If T is a reasonable theory of mathematics, then there is a sentence ã such
that:

T 0 ã and T 0 ¬ã.

At first blush, this result seems devastating to even the possibility of completing
mathematics. However, after a while a common feature of almost all the undecidable
questions became clear: they were cooked up by logicians [1]! Given this, mathemati-
cians might suspect that undecidability is just an aberration that will eventually be
ironed out and as such, these questions can be mostly ignored for they hardly ever
arise in ordinary mathematical inquiry.

1.2. Large cardinals: successes and shortcomings. There is, however, a problemwith
this workaround. While this—ignore the problem—approach might seem to operate
relatively well for number theory, there were plenty of seemingly natural questions
of analysis that remained unanswered (and were indeed, undecidable). Moreover,
these questions did not appear to bear the usual stamps of the dark arts of logic:
self-reference, coding trickery or some clever transformation of those tricks into a
seemingly combinatorial question.
At this point, the Large Cardinals enter our story. In a nutshell, a Large Cardinal

is a cardinal such that claiming its existence strengthens our set theoretic foundation.
For our purposes, we shall concentrate on three tasks addressed by them:

(1) solving more problems;
(2) dissolving disagreement; and
(3) the Continuum Problem.

The Large Cardinals have been extremely successful in the first two tasks, yet failed in
the final one.

1.2.1. Solving more problems. In the field of analysis, the Large Cardinals solved
more problems. To take a classic and early example:

Theorem 3 (Martin). If there is a measurable cardinal, then every Σ12 set A⊆ R is such
that:

(1) A has the size of either the reals or the naturals; and
(2) A is Lebesgue measurable.

With (1), we see that with respect to the Σ12 sets there is no size strictly
between that of the naturals and the reals.3 So these sets satisfy the Continuum
Hypothesis. With the Lebesgque measurability of (2), we obtain an important
mathematical property for the Σ12 sets, which makes them amenable to integration and
probability.

3 A Σ12 set is a set of reals Z that can be defined by a formula of second order arithmetic
which is of the form ∃X∀Yϕ(Z,X,Y,A) where A ⊆ ù is a parameter. See [12] for detailed
definitions.
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Moreover,with strongerLargeCardinals, these results canbe extended.For example:

Theorem 4 (Martin, Steel). If there are infinitely many Woodin cardinals, then every
set A⊆ R definable in the theory of analysis is such that:

(1) A has the size of either the reals or the naturals; and
(2) A is Lebesgue measurable.

and

Theorem 5 (Woodin). If there are unboundedly many Woodin caridnals, then every set
A⊆ R definable in L(R) is such that:4

(1) A has the size of either the reals or the naturals; and
(2) A is Lebesgue measurable.

The mechanism behind the proofs of these theorems lies in establishing the
determinacy of infinite games played on the relevant subsets of the real numbers.
If all the games on the sets definable in analysis are determined, there are no known
problems—beyond Gödelian questions—that remain undecided. In light of this, it has
been argued that Large Cardinals have been able to provide the complete theory of the
real numbers, albeit in this restricted sense.
Beyond the ability to solve more problems, the Large Cardinals are well-ordered

according to their strength. For example, a measurable cardinal is smaller than a
strong cardinal, which is smaller than a Woodin cardinal, which is smaller than a
supercompact cardinal, and so on.5 This makes them an ideal measuring stick for
the strength of other natural extensions of set theory; and indeed, we find that all
natural extensions ofZFC appear to be calibrated by the hierarchy of Large Cardinals
according to their consistency strength. For example,

Theorem 6. (1) (Solovay, Shelah)Con(ZFC + there is an inaccessible cardinal) iff
Con(ZFC +All sets definable in analysis are Lebesgue measurable);

(2) (Martin, Steel,Woodin)Con(ZFC +there is a Woodin cardinal) iffCon(ZFC+
games on Π12 sets are determined).

6

The upshot of this might be described informally as follows:

The road beyond ZFC is the one with Large Cardinals marking out the
way.

1.2.2. Dissolving disagreement. With regard to the project of strengthening ZFC
to solve more problems, the Large Cardinals are not the only show in town. However,
they do have another trick up their sleeves when it comes to comparing their wares

4 L(R) is—very briefly—the class of sets which are naturally constructible from the reals, R,
and the ordinals. The definition relies on a relativisation of Gödels constructible hierarchy.
See [7] for further detail.

5 See Kanamori’s [14] for a detailed discussion of underlying mathematics here. For a quick
overview, see the diagram on page 473.

6 For discussion of the first result see Chapter 11 of [14]; and for the second, see Chapter 32.
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with that of other approaches. To introduce this, we start with the following theorem
template:

Theorem template A: For all natural theories, T and U extending ZFC , we have:

T ⊆Σ12
U or U ⊆Σ12

T

whereT ⊆Σ12
U means that {ϕ ∈Σ12 |T ⊢ϕ}⊆ {ϕ ∈Σ

1
2 |U ⊢ϕ}; i.e., theΣ

1
2 consequences

of T are a subset of those of U.

Remark. I’m calling this a theorem template rather than a theorem as it is not
articulated with sufficient mathematical precision to be called a theorem. In particular,
we have not said what a natural theory is. A full discussion of this is outside the scope of
this paper, however, wemight think of a natural theory extendingZFC as an extension
which appears combinatorial (rather than syntactic) in content and provides fruitful
consequences for outstanding set theoretic problems.7

The intuitive upshot of this is that natural theories extending ZFC cannot disagree
about Σ12 sentences. This means that they are forced to agree upon a significant chuck
of the theory of analysis.
Using Large Cardinals, this phenomenon can be generalised significantly as the

following illustrates:

Theorem template B:

ZFC+ 1 measurable T ⊆Σ13
U U ⊆Σ13

T

For any two
natural
theories
extending

ZFC+ infinite
Woodins

we
have

T ⊆Σ1ù U or U ⊆Σ1ù T

ZFC+ infinite
Woodins & a
measurable above

them

T ⊆Th(L(R)) U U ⊆Th(L(R)) T

So as we increase the strength of our mathematical theory using Large Cardinals
more and more concrete mathematics is removed from the realm of controversy.
Putting this together with the first task we might say:

Not only is the road beyond ZFC marked out by the large cardinals,
there is less and less room for theories to disagree as we move along that
road.

These facts provide evidence for an interesting argument for the use of the Large
Cardinals over other alternatives. The Large Cardinals provide natural benchmarks
for the measurement of alternative strengthenings of ZFC . Moreover, with regard to

7 Natural theories are introduced in [23]. See [20], for a detailed discussion.
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an increasing domain of problems, the diversity of strengthenings beyond are forced
into agreement. Now suppose we ask ourselves the question: what strengthenings of
ZFC should I use? The answer seems obvious. Use the Large Cardinals. No practical
advantage will come from taking up the alternatives. In other words, by the lights of
this argument, large cardinals are intended to be maximally mathematically expedient.

1.2.3. The continuum problem. From the discussion so far, the prospects for the
Large Cardinal programme look bright indeed. However, at this point we must return
the problemof the continuum. ThroughGödel andCohen, we learned thatZFC would
offer no help.

Theorem 7. If ZFC is consistent, then

ZFC 0 ¬CH and ZFC 0 CH.

The discussion above might cause us to think that the Large Cardinals could assist
us. But for quite elementary reasons, the following can be seen to hold.

Theorem template C: Let Φ be a Large Cardinal assumption.8 Then if ZFC +Φ is
consistent, we have

ZFC +Φ 0 ¬CH and ZFC +Φ 0 CH.

Thus, despite the successes ofZFC in the theory of analysis and restricted questions
beyond, the Large Cardinals are of no help at all for the solution of the Continuum
Hypothesis. Moreover, the Continuum Hypothesis also lies outside the region of
agreement that can be wrought via the Large Cardinals.

1.3. Turning the tables into the Generic Multiverse. Taking stock, it looks like the
initial promise of the Large Cardinal programme has turned out disappointing. While
the Large Cardinals succeeded impressively in solving more problems and removing
disagreement between natural theories, they have no effect at all on our core problem,
the Continuum Hypothesis.
This is the point at which the Generic Multiverse enters the story. I think the easiest

way to motivate this position is through a question:

What if the Continuum Hypothesis is left undecided by the Large
Cardinals, not because the Large Cardinals have failed, but because
the Continuum Hypothesis was a faulty question?

If we take seriously the success of the Large Cardinals in addressing the tasks of
solving problems and obtaining agreement between natural theorems, then perhaps
the reason that the Continuum Hypothesis can be disagreed upon by natural theories,
is that natural theories have nothing to say about the Continuum Hypothesis. And
if natural theories have nothing to say on the matter, then perhaps there is nothing
sensible to say.

8 This is also a theorem template as the term, “Large Cardinal,” cannot be given a
mathematically precise definition.
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Taking this line of thought seriously, we might then think that ZFC is somehow
defective in that it allows questions beyond the ken of natural theories to be treated
as worthwhile. As such we might search for a theory which respects the limits of what
natural theories can agree upon. TheGenericMultiverse presents one way of achieving
this.
There are two main versions of this idea in play: Steel’s and Woodin’s [23, 30]. Here

is the axiomatisation provided by Steel. First we move into a language with two sorts
of variables: sets and worlds. We then say:

(1) Every axiom of ZFC is true at every worldW.
(2) Any two worldsW and U have the same ordinals.
(3) (Generic Extension) If P ∈W is a poset, then there is a world U =W [G ]
where G is P-generic overW.

(4) (Generic Refinement) If W = U [G ] where G is P-generic over U for some
poset P ∈U , then U is a world.

(5) (Generic Amalgamation) If W and U are worlds, then there exist P ∈W ,
G P-generic overW, Q ∈U andHQ-generic over U such thatW [G ] =U [H ]
is a world.

Call this theory GMV . Informally speaking, the idea is to form a multiverse of worlds
that are closed under forcing extensions and the inverse of that operation.
Woodin’s approach is a little different. Rather than providing an axiomatisation,

he externally defines a generic multiverse based on a countable transitive model M
of ZFC . He then keeps adding worlds until every generic extension and refinement
of every world N in the multiverse is also a world in the multiverse. Woodin denotes
this VM and the overall effect is a little different. For a worldW in Woodin’s generic
multiverse, every generic extension of W via P ∈W is added; but for Steel, we only
require a witness for each P ∈W . This means that Woodin’s system cannot satisfy
Generic Amalgamation.9

1.3.1. Why does this do the job? The obvious question that emerges is why GMV
provides a good representation of what natural theories agree upon. This is a large
question that requires a paper in itself to properly explain and then defend. Moreover,
in the context of the subsequent arguments, this may now be of limited value. However,
we can say something which should be sufficient to complete our motivating picture.
Theorem Template C showed us that Large Cardinals cannot solve the Continuum

Hypothesis. The proof of that theorem involves two facts:

(1) Large Cardinals are not affected by (small) forcings;10

(2) (Small) forcings are all that is required to make CH either true or false.

So the impotence of Large Cardinals on the Continuum Hypothesis is brought on
by their imperviousness to (small) forcing; indeed this fact is also crucial for their
ability to resolve disagreement between natural theories. Given this, we start to see a
picture in which Large Cardinals—while they can solve many problems and remove
much disagreement—are powerless in the face of the forcings they leave open. As
such, a multiverse which contains all of the worlds accessible by forcing and its inverse

9 See [20] for a detailed discussion on this matter.
10 By a small forcing we mean a poset P with |P|< κ where κ is the Large Cardinal in question.
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may provide the key to neutralising the effects of forcing and removing the apparent
limitations of the Large Cardinals. For example, following Woodin we might consider
the multiverse truth (or the worthwhile questions) to be those which have a single
answer across the multiverse. In a nutshell, we may be tempted by a picture in which
the Large Cardinals and forcing are two sides of much the same coin.

1.4. Revisiting philosophical motivations. Before we move on to the arguments
against this position, I want to put a little more meat on the bones of the position
I described as pragmatism and try to link it up with the Generic Multiverse. I want to
claim that a pragmatist could easily come to accept something like GMV as their best
theory for the foundations of mathematics.
Recall that our pragmatist is less wed to a preexisting view of the ontology of set

theory and is more committed to developing the best theory for the organization
and understanding of strong mathematical theories. As such, the ontological revision
required by GMV is not necessarily a major hurdle. Now when we look at the
Large Cardinal program, we see an extremely effective tool for developing stronger
mathematical theories and understanding them. However, we also see a significant
limitation. GMV provides a way of turning the tables on this scenario: we revise the
ontology and obtain a theory which suggests a completed picture in which Large
Cardinals provide the right way to understand strong mathematical theories and the
apparent limitations are removed as involving improper questions.
Of course, this isn’t a compelling argument that every pragmatist should adopt

GMV , but the appeal to at least some pragmatists should now be clearer.

§2. Argument 1: Transfinite fidelity. Our first argument against the generic
multiverse comes from W. Hugh Woodin. Versions of it have been presented in a
number of places [28–30]. A full presentation of the argument is mathematically deep
involving a tour of universally Baire sets, generic invariance and Ω-logic. However,
we shall content ourselves with a relatively superficial version of the argument which
highlights its over-arching structure and which will suffice for our purposes.

2.1. The strategy. The underlying strategy of the argument can be described as
follows:

(1) LetM be a countable transitive model of ZFC .
(2) Let VM be Woodin’s generic multiverse as generated fromM.
(3) Find a sentence ϕ ∈ L∈ such that:

(a) M |= ¬ϕ;
(b) VM |=ϕ

† whereϕ† is the adaptation ofϕ into themultiverse framework.
(c) If VM is reasonable, then we have

M |= ¬ϕ ⇒ VM |= ¬ϕ
†.

Thenwe see that given 3(a) to (c)VM cannot be reasonable. This is the target conclusion
of Woodin’s argument. The key point is that we have a sentence whose falsity in the
ground universe should be preserved into the multiverse, but this does not happen.
The two italicized terms in the template above are a little loose. We’ll first do a

little tidying of the notion of adaptation and we’ll come back to what a reasonable
representation is toward the end of the section.
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2.1.1. Tidying “adaptation.”. LetM and VM be as above:

(1) Find some formula Φ(·) ∈ L∈ such that:

(a) ¬Φ({M});
(b) Φ(VM ); and
(c) If VM is reasonable, then

¬Φ({M})⇒¬Φ(VM ).

The idea here is that with 1(a), we use {M} as a singleton multiverse, so that we can
use the same formula to talk aboutM andVM without having to make any adaptation.

2.1.2. A problematic example. Let’s first consider an example of this strategy that
does not work. After that we’ll be ready for Woodin’s argument. Let V be a variable
representing an arbitrary multiverse and let

Φ(V) := ∃W1 ∈ V∃W2 ∈ V(W1 |= CH ∧W2 |= ¬CH ).

Then we clearly have:

(i) ¬Φ({M}) since there is only one worldM ∈ V; and
(ii) Φ(VM ) since CH can always be forced on and off.

This gives us (a) and (b) of our template strategy, but now consider (c). If it were
correct, we’d be have it that if VM is reasonable, then

¬Φ({M})⇒¬Φ(VM ).

Given (i) and (ii) immediately above, thiswould then tell us thatVM is not reasonable.
But this cannot be right. It would be question begging to reject the generic multiverse
on the basis that it did exactly what it was intended to do; i.e., make questions like
the Continuum Hypothesis true in some worlds and false in others. This tell us that
whatever reasonablenessmeans in this context it cannot work like this: we are going to
need some independent reasons to justify (c).

2.2. Woodin’s argument. We need a little terminology and a few facts to get things
moving. However, I’ll try to provide some intuitive explanation of what is going on in
the black boxes.
Let X,Y ⊆ ù. We shall say that X is Turing reducible to Y, X ≤T Y if there is a

Turing machine ø : ù⇁ù that draws on information from Y as an oracle and which
decides X ; i.e., computes its characteristic function. The intuitive idea is that given the
set Y there is a simple way of figuring out if something belongs to X ; so in this sense
Y is at least as complex as X.
Given that sets of sentences in the language of set theory can be represented by

natural numbers, we can ask whether theories are Turing reducible to each other. Here
is an example that will be useful for Woodin’s argument.

Fact 8. If α is definable by a Σ2 formula, then
11

{ϕ ∈ L∈ | Vα |= ϕ} ≤T {ϕ ∈Π2 | ϕ}.

11 The right hand side is a little sloppy. Strictly, we should write something like {ϕ ∈Π2|V |=Π2
ϕ}. This is well-defined since we may define the Π2 truth predicate for V within V.
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Informally, this tells us that the truths aboutVα can be calculated from the Π2 truths
of the universe. In essence, this works because being true in Vα is just a Π2 fact. Thus
the set of Π2 facts on the right hand side is sufficient to calculate the truths of Vα . We
might then wonder whether the other direction holds. But we have the following:

Fact 9. If α is definable by a Σ2 formula, then

{ϕ ∈Π2 | ϕ} 6≤T {ϕ ∈ L∈ | Vα |= ϕ}.

The intuitive reason why this fails is that the Π2 truths of the universe are not
only strong enough to calculate the truths of Vα but they can also calculate its truth
predicate. This would allow us to define the truth predicate of Vα in Vα which is
impossible by Tarski’s theorem.
Now using Fact 9 we can define our formula Φ(·). We let Φ(V) :=

{ϕ ∈Π2 | ∀W ∈ VW |= ϕ} ≤T {ϕ ∈ L∈ | ∀W ∈ VW |= (ϕ)
Vä0+1}

where ä0 is a term denoting the first Woodin cardinal in any world.
The basic idea here is that we generalise the statement from Fact 9 into a multiverse

setting. We then see that since the statement that a Woodin cardinal exists is Σ2, Fact 9
straightforwardly gives us (a) from our template strategy. With regard to (b), we have
the following:

Theorem 10. Suppose there is a proper class of Woodin cardinals and that the
Ω-conjecture holds. Then we have12

{ϕ ∈Π2 | ∀W ∈ VM W |= ϕ} ≤T {ϕ ∈ L∈ | ∀W ∈ VM W |= (ϕ)
Vä0+1}.

The proof of this is quite technical. However, we can say a little something about
why it holds. In essence given the assumptions of the theorem, Vä0+1 has enough room
to calculate which Π2 sentences will be true in every model in the generic multiverse. In
a simpler context, we see thatVù has enough room to calculate which sentences of first
order logic will be true in every model. An analogous, although more sophisticated
phenomenon is conjectured to be occurring here.
It should now be clear that we have (a) and (b) which leaves us with (c): this time

we can make a more compelling case. Let’s consider what Theorem 10 tell us a little
more informally. We might put it as follows:

The Π2 truths across the multiverse can be calculated in the Vä0+1 of
any world in that multiverse.

According to our motivations for the Generic Multiverse, this means that the
meaningful Π2 questions about the entire universe can be established in a mere initial
segment of any universe. So why would this be a bad thing? This is the point at which
philosophy makes its entrance. Here is what Woodin says:

12 The Ω-conjecture is—very briefly—the claim that the Π2 sentences true across the generic
multiverse (the Ω-validities) can be witnessed by proofs in the form of universal Baire sets.
For an excellent introduction to these notions, see [2].
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This amounts to a rejection of the transfinite beyond Hä+0
and

constitutes in effect the unacceptable brand of formalism alluded
to earlier. ([30], p18)13

The underlying problem is that VM seems to promote a kind of unfaithfulness to
our fundamental understanding of the transfinite. But why does it do this? Woodin
continues:

It is a fairly common (informal) claim that the quest for truth about
the universe of sets is analogous to the quest for truth about the
physical universe. However I am claiming there is an important
distinction. While physicists would rejoice in the discovery that the
conception of the physical universe reduces to the conception of some
simple fragment or model, in my view the set theorist must reject the
analogous possibility for truth about the universe of sets. By the very
nature of its conception, the set of all truths of the transfinite universe
(the universe of sets) cannot be reduced to the set of truths of some
explicit fragment of the universe of sets. ([30], p17)

SoWoodin claims that unlike physics our understanding of the universe of sets leads
us to the belief that the truths of the universe cannot be obtained from amere fragment
of that universe. He summarizes:

The essence of the argument against the generic-multiverse position is
that assuming the Ω Conjecture is true (and there is a proper class of
Woodin cardinals) then the position is simply a brand of formalism
that denies the transfinite by reducing truth about the universe of sets
to truth about a simple fragment such as the integers or, in this case,
the collection of all subsets of the least Woodin cardinal. ([30], p17)

The breed of formalism alluded to here is certainly an exotic one, however, the point
is well taken. Under the assumptions of Theorem 10, a complex class of truths about
the universe are reduced to truth about some restricted fragment of the universe.

Remark. At this point it’s worth mentioning a common confusion regarding this
argument. It is well-known that if ë is a supercompact cardinal, then Vë is a Σ2
elementary submodel of V. Thus, the Π2-truths are Turing reducible to those of such
a Vë (see Proposition 22.3 in [14]). Given this, we may be tempted to try to run an
analogous argument using this reduction instead of that of Theorem 10. However, this
will not work. The statement that there is a supercompact cardinal is Σ3 and thus does
not fit the requirements of Fact 9. Thus, we do not get (a) from our template strategy
and this analogy cannot get off the ground.

2.3. Evaluating this argument. Let’s take a little stock:

• Woodin claims that an intrinsic fact about set theory is that the truths (even
the Π2 truths) cannot be obtained in simple fragments of the universe.

13 Here Woodin uses Hä+0
the set of sets whose transitive closure has cardinality less that ä+0 ,

but for our purposes it is much the same as Vä0+1.
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• But the generic multiverse allows the (worthwhile) Π2 truths to be calculated
in Vä0+1 (assuming Woodin cardinals and the Ω-conjecture).

• So the generic multiverse is unreasonable in the sense that it is unfaithful to our
understanding of the transfinite.

But how seriously should we take this argument? Our intuitions certainly have limited
traction in this territory, perhaps this is a bullet we can bite.
I think this is a juncture where our distinction between the universist and the

pragmatist can be brought to bear. If one has universist sympathies, as I believe
Woodin does, then clearly bullets are off the menu. Rather the universist should see
this argument as providing further evidence for their own view. They might claim that
their belief in a unique interpretation for the language of set theory has opened up the
insight that the truths of the universe should not be accessible in restricted fragments
of that universe. The fact that the Generic Multiverse view appears to challenge that
insight is then another reason to reject that view.
The pragmatist, on the other hand, can view these matters from quite a different

perspective. Given that they see set theory as the study of strongmathematical theories,
they might—as we have seen—be attracted by the Generic Multiverse approach. As
such, they are able to vindicate the successes of the Large Cardinal program and use
them to delimit the worthwhile mathematical questions by removing disagreement.
They might then argue that GMV provides the right framework for this approach
to set theory. Given this, the pragmatist might be tempted to turn the tables again.
Rather than seeing Woodin’s argument as short drive off a tall cliff, we might take
this as a fascinating result: the logic of the Π2 truths across the generic multiverse
can be calculated in Vä0+1! We have a deep and interesting feature rather than a
pathological bug.

§3. Argument 2: Pragmatic indifference. Our second argument against the generic
multiverse emerges from considerations arising fromWoodin’sUltlimate-L programme
[31]. This is an extremely technical programme, however, we shall be able to extract
a couple of salient features which are sufficient to mount an argument against the
Generic Multiverse. This argument has not appeared in print before, however, I think
it’s fair to say that it’s been part of the folk-knowledge among set theorists for some
time.
Here is a rough version of the argument. We start with the following fact:

Fact 11. If V = Ultimate-L, then the Generic Multiverse has a unique core; i.e.,
there is some world in the Generic Multiverse which has no generic refinements and such
that every world is a generic extension of it. Moreover, Ultimate – L itself is that core.

Remark. It is worth noting that multiverses based on more ordinary L-like models
like L, L[0♯] and L[ì] also have cores, so this feature is not unexpected.

Now given that Ultimate-L is the core of its multiverse, one might argue that this is
where all the action is really taking place. So why bother with the generic multiverse?
Why not just stick with Ultimate-L?
Of course, it’s the phrase “where the action is really taking place” that is doing all

the work here, but how should we unpack it? Here’s one way of doing this. Given
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that Ultimate-L is the core of its multiverse, we might be able to show that—assuming
V =Ultimate – L—anything we could do in the Generic Multiverse could already be
done in Ultimate-L. In this way, we would be arguing that the Generic Multiverse is
superfluous. But how do we substantiate this claim? We might argue that the theories
GMV + ∃W (V = Ultimate – L)W and ZFC +V = Ultimate – L are equivalent in
some salient sense. If we could show that the two theories are sufficiently close then we
could well be in a position to argue that the Generic Multiverse is redundant.
In the remainder of this section, I want to elucidate some useful senses in which

theories can be equivalent; and then show that the theories above are equivalent in a
particularly natural one of these senses. I will proceed by:

(1) providing a hierarchy of different ways in which theories could be considered
equivalent;

(2) discussing some problems for fitting our theories into this picture; and
(3) isolating the principles required for the target equivalence and describing the
result.

A proof of themain result will be deferred until theAppendix.We shall close the section
with a critical examination of the philosophical force of the resultant argument.

3.1. A hierarchy of theoretic equivalences. Let’s start with the the most commonly
used form of relationship between theories in set theoretic research—relative
consistency; and let’s dig a little more deeply into the underlying ideas. We shall
make heavy use of Visser’s work on interpretability in setting out a framework for
this discussion [26]. Given two theories T and S we say that T is consistent relative
to S, abbreviated T ≤Con S, if we can show—often using a weaker theory—that
Con(S)→ Con(T ). So in a loose sense we are saying that T is no more risky than S
in terms of their consistency. We then say that T and S are equiconsistent, abbreviated
T ≡Con S, if T ≤Con S and S ≤Con T . Intuitively speaking, we are saying that T and S
are as risky as each other. Here is a classic example:

Theorem 12 (Gödel, Cohen). ZFC ≡Con ZFC +V = L≡Con ZFC +¬V = L.

Equiconsistency can be seen as a kind of equivalence between theories, but it
isn’t very strong. As the Theorem above shows—even though these theories are
equiconsistent, they don’t even agree on whether or not there is a constructible set.
Equivalence of this kind would be too weak for the purposes of our main argument
above.

3.1.1. Relative interpretability. To get a better understanding of the weakness of
relative consistency it will help to consider more closely how we establish part of
result above: ZFC +V = L ≤Con ZFC .14 To do this we define a translation function
ô : L∈→L∈ from the language of set theory to itself such that for all ϕ ∈ L∈ we have

ZFC +V = L ⊢ ϕ ⇒ ZFC ⊢ ô(ϕ).

The translation in question is, of course, just the relativisation of all the quantifiers
in ϕ to L. To complete the proof, we then suppose ZFC +V = L is inconsistent; i.e.,

14 Note that the other direction is trivial.
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ZFC +V = L ⊢ ⊥. Then our translation tells us that ZFC ⊢ ô(⊥) where ô(⊥) is just
⊥; hence ZFC is inconsistent and the result is established.
More generally, this kind of translation is known as a relative interpretation. Given

theories T and S in languages LT and LS , we say that T can be interpreted by S,
abbreviated T ≤Int S, if there are formulas of LS defining a domain and counterparts
for the non-logical vocabulary of LT such that the resultant translation, ô : LT →LS ,
yields for all ϕ ∈ LS

S ⊢ ϕ ⇒ T ⊢ ô(ϕ).

We then say that two theories T and S aremutually interpretable, abbreviated T ≡Int S,
if T ≤Int S and T ≤Int S. We say that T faithfully interprets S if there is a some relative
interpretation ô : LT →LS such that

S ⊢ ϕ ⇔ T ⊢ ô(ϕ).

Given that relative interpretability is used to establish parts of the results above, we
see thatmutual interpretability is also quite a weak form of equivalence.We’ll be able to
enrich this picture soon, however, there is an alternative—more semantic—perspective
which will make this much clearer.
Observe that when we have T ≤Int S as witnessed by some ô : LT →LS we are—in

essence—using the translation, ô, to define a model of S within any model of T. We’ll
call this an inner model although we shall take care to distinguish this from the notion
of inner model employed in set theory; a definable inner model whose membership
relation is just a restriction of the actual membership relation and which contains all
of the ordinals.15

We describe this more formally below.
Let Mod (T ) and Mod (S) denote the classes of models of T and S respectively.

Then

Theorem 13. Let T ≤Int S as witnessed by ô : LT → LS . Then there is a function
ô∗ :Mod (S)→Mod (T ).16

So intuitively speaking, we see that a relative interpretation from T to S gives rise to
a function from models of S to models of T. We shall call this the mod-functor. This
gives us a more picturesque idea of what occurs in relative interpretation and we shall
use this to enrich our taxonomy of theoretical equivalences.

3.1.2. A hierarchy of equivalences. Suppose T and S are mutually interpretable as
witnessed by mod-functors ô∗ :Mod (S)→Mod (T ) and ó∗ :Mod (T )→Mod (S). It
is interesting to consider what happens when we compose them. We then get ô∗ ◦ó∗ :
Mod (T )→Mod (T ) and ó∗ ◦ ô∗ :Mod (S)→Mod (S). Just considering the first of
these, we now have a new mod-functor which takes us from models of T back to
models of T. This raises an interesting question: is there any relationship between the

15 In ordinary set theoretic parlance an inner model is a transitive class defined by a formula
which (inwardly) restricts the domain and retains the ordinary membership relation therein.
I will write “Inner Model” for the set theoretic interpretation of this term; and “inner model”
for the interpretation of the term used in the relative interpretability literature.

16 See §2.3 of [26]. Note that the converse does not hold in general.
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initial model and the model that results? Different answers to this question will yield
our hierarchy of equivalences.
The most obvious relationship is identity. It would be ideal if we were able to take a

model of T turn it into a model of S and then turn it back the same model of T that we
started with. If this happens in both directions—i.e., ô∗ ◦ó∗ = id and ó∗ ◦ ô∗ = id—
then we say that the theories are synonymousor definitionally equivalent, which we shall
abbreviate T ≡Syn S. Intuitively speaking, when we have this relationship between
theories they are so close as to be identical. We might think T and S as merely two
different ways of describing the same stuff which are such that anything said by one
can be said—via translation—by the other.
For a simple example, we might consider two axiomatisations of group theory in

two different languages: L0 = {e, ◦ ,·
–1} and L1 = {S} where S is a ternary relation.

The obvious translations between these theories yields mod-functors whose respective
compositions are just the identity. This is because there is nothing substantively
different between these theories, they are equivalent ways of describing the same class
of structures.
There are other relationships which also provide significant degrees of closeness.

For example, we might suppose that the compositions of the mod-functors give us
isomorphism or elementary equivalence. In the former case, where ô∗ ◦ó∗(M) ∼=M
and ó∗ ◦ ô∗(M)∼=M, we say T and S are bi-interpretable, abbreviated T ≡Bi–Int S. In
the latter case, where ô∗ ◦ó∗(M) ≡M and ó∗ ◦ ô∗(M) ≡M,17 we say that T and S
are sententially equivalent, abbreviated T ≡Sent S.
We summarize this information in the following table:

T ≡Syn S
⇓

T ≡Bi–Int S
⇓

T ≡Sent S
⇓

T ≡Int S
⇓

T ≡Con S

The downward arrows, “⇓” represent implications which hold because the notions
of equivalence between the models are stronger. The implications do not work in the
opposite directions.

Theorem 14. There exist theories T and S such that:

(1) T ≡Con S but T 6≡Int S;
(2) T ≡Int S but T 6≡Sent S;
(3) T ≡Int S but T 6≡Bi–Int S; and
(4) T ≡Bi–Int S but T 6≡Syn S.18

17 Here we use “ ≡” to mean elementary equivalence not a relation between theories.
18 For (1), GBN and ZFC suffice using a reflection argument. For (2), consider ZFC and
ZFC +V = L recalling the comments above. For (3), we may use ZF and ZFC recalling
results from Cohen’s [6]. A proof can be found at [8]. And for (4), see Friedman and Visser’s
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3.2. Fitting forcing into this picture. In the previous section we outlined a hierarchy
of refinements of relative interpretability which give us some measure of how close two
theories are. Crucial to this account is the ability of the stronger theory to be able to
define an inner model of the weaker theory. In set theory, we can easily apply this story
to arguments for interpretability based on Inner Models—in the strong set-theoretic
sense of that term. However as we have seen, many arguments for relative consistency
in set theory depend on a different technique: generic extension. Moreover, given our
target is a comparison between the Generic Multiverse theory and the standard set
theory, it is clear that we need to be able to account for this technique too.
Unfortunately, generic extensions cannot yield Inner Models in the strong sense. In

fact, the generic object from which the generic extension is constructed cannot exist
in the actual universe, V. Thus, if per impossible we could find such a model it would
have to be an outer model. From the universist perspective this is, of course, absurd.
One way around this is to use small models M—known as countable transitive

models—inside V which are small enough that although they cannot contain their
own generic elements, the generic elements can still be found in V. This allows us to
define the generic extension M [G ] in V and is sufficient for the purposes of relative
consistency arguments. It will not, however, be sufficient to facilitate the comparisons
we want in the framework we have outlined above. Fortunately, there is a way around
this, which I will now outline.

3.2.1. Boolean valued ultrapowers. The remainder of this subsection will be
somewhat technical, however, I will endeavour to sign-post the salient high-points
that are pertinent to the main philosophical discussion. Recall the Boolean valued
model approach to forcing. Rather than using a poset, we use a complete Boolean
algebra, B, and define a class of B-names V B. For standard resources on this, see [3],
[12] or [19].
Following [11], we may use an ordinary ultrafilter U ⊆ B rather than a generic

ultrafilter in order to define a class model V B/U which is a model of ZFC . Such
ultrafilters exist in V by the ultrafilter theorem which is slight weakening of the Axiom
of Choice. Moreover, we can define another model V̌U as the class of B-names, ô, such
that there is some u ∈U for which the set

D = {b ∈ B | ∃x ∈ V b  ô = x̌}

is dense below u. V̌U has some pleasing properties:

Theorem 15 (Hamkins and Seabold). There is an elementary embedding jU : V →Σù
V̌U such that jU (x) = [x̌]U . Moreover, if we let G = [Ġ ]U then

(1) G is jU (B)-generic over V̌U ; and
(2) V B/U is the generic extension of V̌U by G; i.e., V

B/U = V̌U [G ].
19

Given that such an ultrafilter exists in V, this means that each of these models can
be defined in V via the ultrafilter. Putting this together, this theorem then tells us that,

[27]. I’m not aware of an example of two theories where we have sentential equivalence but
bi-interpretability fails.

19 Here Ġ = {〈b̌,b〉 | b ∈ B}.
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although we cannot define a real generic extension of V, we can define the generic
extension of an elementary extension of V.
Pertinently, for our current goals this means that we can define an inner model (in

the weaker sense) which behaves very much like a generic extension of V. In terms of
the the theory of relative interpretability, this tells us that forcing extensions can be
understood as interpretations in a parameter [26].

3.3. The result and its requirements. With this in hand, we are almost ready to show
how to move between our theories. Recall our goal is provide definitions giving rise to
inner models and the following mod-functors:

• ô∗ :Mod (GMV+?)→Mod (ZFC+?); and
• ó∗ :Mod (ZFC+?)→Mod (GMV+?).20

For the first of these, we’ll make use of the results described in the previous subsection.
The latter is a little trickier.WithGMV we have a plurality ofZFC models but nothing
to distinguish them. In fact, we don’t really have a way of comparing these two theories
as they are. We shall need to extend them with the following principles:

(1) The universe has no generic refinements; and
(2) The universe has a definable well-ordering.

(1) is arguably the crux of the argument here. It tells us that the universe is the core
of any generic multiverse generated from it. Without this principle, we just have an
ocean of different set theoretic universes and no natural way to return to a particular
universe. We require (2) to make the appropriate generalisation of the results in the
previous section.
We then need a way to expand our theories in order to obtain these principles. This

is where Ultimate-L comes in.

Theorem 16 ([31]). Ultimate-L is the core of its generic multiverse and it has a definable
well-ordering.

We shall write V =UL for the sentence stating that the universe is Ultimate-L. We
now proceed to define the required mod-functors.

3.3.1. ô∗ :Mod (GMV +∃W (V = UL)W )→Mod (ZFC +V = UL). Given the
existence of a core, the translation ô giving rise to the appropriate mod-functor is easy
to describe. Given a sentence ϕ ∈ L∈ we let

ϕ
ô
7−→ ∀W (W =UL→ ϕW ).

The translation just tells us to ask what is going on at the core of the multiverse:
where the real action is taking place. The resultant mod-functor, ô∗, takes a Generic
Multiverse and returns the inner model consisting of just its core: it forgets the other
worlds.

20 I’ve added the “ +?” as we are going to need a little extra to get the result beyond mere
equiconsistency, which is easier to obtain.
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3.3.2. ó∗ :Mod (ZFC +V = UL)→Mod (GMV +∃W (V = UL)W ). Our goal
here is to show how to define a model of GMV within an arbitrary model of
ZFC . We saw above that given a model V of ZFC and some B ∈ V we can—
with the help of an ultrafilter, U, define an elementary extension V̄ of V and a
generic extension V̄ [G ] of V̄ . We’d like to be able to take this further and define an
elementary extension V̄ ofV fromwhich every complete Boolean algebra has a generic
extension.
There is, however, a hurdle. Suppose we have complete Boolean algebras B0

and B1 with ultrafilters U0 and U1 on each of them respectively. Then although
we have V̌U0 [G0] generically extending V̌U0 and V̌U1 [G1] generically extending V̌U1 ,

we do not—in general – have V̌U0 [G0] extending V̌U1 . There is a way around
this too:

Theorem 17 (Hamkins and Seabold). Let B0 be a complete subalgebra of B1 with U1
an ultrafilter on B1. Then U0 = U1 ∩B0 is an ultrafilter on B. Letting V0 = V̌U0 and

V1 = V̌U1 let k : V0[G0]→ V1[G1] be such that for ô ∈ V
B0

k([ô]U0) = [ô]U1 .

Then:

• V1[k(G0)] is the set of [ô]U1 for ô ∈V
B1 such that there is some u ∈U1 for which

the set

D = {b ∈ B1 | ∃ó ∈ V
B0 b  ô = ó}

is dense below u.
• k : V0[G0]→Σù V1[k(G0)].

This can be nicely summarized in the following diagram.

V1 V1[k0,1(G0)] V1[G1]

V V0 V0[G0]
jU0

jU1

⊆

⊆ ⊆

k0,1 k0,1

Informally speaking, this gives us a partial solution to the problem described above.
Provided B0 is a complete subalgebra of B1 and U0 is the restriction of U1 to B0 we
can use V1 = V̌U1 as the ground model from which we can can produce both generic
extensions V1[k(G0)] and V1[G1] which are respectively jU1(B0)-generic and jU1(B1)
generic over V1.
Moreover, we can generalise this to longer finite chains as illustrated in the following

diagram.
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V2 V2[k0,2(G0)] V2[k1,2(G1)] V2[G2]

V1 V1[k0,1(G0)] V1[G1]

V V0 V0[G0]
jU0

jU1

jU2

⊆

⊆ ⊆

⊆ ⊆ ⊆

k0,1 k0,1

k1,2 k1,2 k1,2

So for any finite amount of forcing we can always find a ground model—provided
each of the complete Boolean algebras are all sub-algebras of one among them.
Of course, this is not enough either. A generic multiverse will need to be closed under

an infinite amount of forcing not merely a finite amount. The theorem above does not
help us here but the diagram above provides the crucial hint. The full proof will be
provided in the Appendix, but I give a rough sketch here. In the diagram above we
see that as we go higher we get better and better ground model in the sense that the
higher we go the more generic extensions can be accommodated. So if we want to get
a model that can accommodate enough forcing to satisfy theGMV axioms, we want a
kind of limit of this tower construction. The standard construction of a direct limit of
these models provides this. Looking at the diagram above, we are – loosely speaking—

taking the limit of the tower of models V0
k0,1
−−→ V1

k1,2
−−→ V2

k2,3
−−→ to form our universal

ground model. The key to our construction is our use of a definable well-ordering of
the universe to design a sequence of ultrafilters ensuring that the amalgamation axiom
is satisfied.
Using the same technique we can define each of the worlds in our generic multiverse

uniformly in an ordinal indexing the ultrafilter used to give the world in question.
A little more formally, each world is a generic refinement of something of the form:

V(∞)[kα,∞(Gα)] = lim−→
{〈V(â)[kα,â(Gα)]〉â∈[α,Ord ),〈kã,â〉α≤ã≤â<Ord}.

3.3.3. The result. We may now state the result.

Theorem 18. There exist translations giving rise to mod-functors:

• ó∗ :Mod (ZFC +V =UL)→Mod (GMV +∃W (V =UL)W ); and
• ô∗ :Mod (GMV +∃W (V =UL)W )→ZFC +V =UL

such that

(1) M - ô∗ ◦ó∗(M ) forM ∈Mod (ZFC +V =UL);
(2) M ≡ ó∗ ◦ ô∗(M ) forM ∈Mod (GMV +∃W (V =UL)W ).

Proof. See Appendix. �

3.3.4. Summary and philosophical commentary. This tells us that the theories
ZFC +V =UL and GMV +∃W (V =UL)W are very close. While not synonymous,
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we see that they give us essentially the same first order theories modulo their respective
translations. Their equivalence fits in between that of sentential equivalence and bi-
interpretability. To emphasize the importance of this proximity we note the following
result:

Proposition 19. Let T and S be sententially equivalent via translations ô : LS →LT
and ó :LT →LS . And suppose T ∪Γ is a consistent extension of T. Then S∪ó

′′Γ is also
consistent.

Proof. Suppose T ∪Γ is consistent, but S ∪ó′′Γ is inconsistent. Then we may fix
ϕ a conjunction of sentences from Γ such that S ⊢ ¬ó(ϕ). From this we see that
T ⊢ ¬ô ◦ó(ϕ). Since T ∪Γ is consistent, we see that T ∪{ϕ} is consistent, so we may
fix a modelM of T such thatM |= ϕ. Since T and S are sententially equivalent, we
see that ó∗ ◦ ô∗(M) |= ϕ. From this we see that ô∗(M) |= ó(ϕ) and soM |= ô ◦ó(ϕ).
But this means T 0 ¬ô ◦ó(ϕ), which is a contradiction. �

The upshot here is that if we are invested in the project of extending our foundations
to solve more problems, then nothing about that project will give us a reason to choose
between the two options. If we want to add something to one theory, we can always
add appropriate counterpart to the other theory using the translations. Let us say that
such theories are co-extendible. For a situation where this breaks down, consider the
theories ZFC and ZFC +V = L and the usual translations between them: ϕ 7→ ϕL;
and ϕ← [ ϕ. They are then equiconsistent and indeed mutually interpretable. However,
while it is thought that we can consistently extend ZFC with the assumption of the
existence of a measurable cardinal, we know that we cannot extendZFC +V =Lwith
this assumption. Thus, these theories are not on a par with the project of exploring
stronger foundational theories. We might say that ZFC +V = L is restrictive with
respect to ZFC .
So practically speaking this tells that GMV and ZFC 21 are about even with regard

to the considerations of our pragmatist position. Nonetheless, there is a sense in which
the evidence being provided here is weaker than that of our first argument. There it
was claimed that the acceptance of GMV violated a fundamental principle about the
transfinite realm of set theory. Whereas here we are merely arguing that there is little
to be gained from taking up GMV instead of ZFC .
Thismight give us reason to think that our second argument should be less persuasive

to the generic multiverse adherent. I think this is misleading. Recall that we motivated
our acceptance of the generic multiverse on what we called pragmatic grounds. We did
not take up the theory on the basis of its faithfulness to our philosophical conceptions
about the membership relation or infinity. Rather we selected the theory on the basis
of its ability to account for the existing data. So at this point it could seem that our
theories are on the same wicket.
But recall our defence of the Large Cardinal hierarchy. We did not argue that there

are no other strengthenings ofZFC which could address its incompleteness.Wemerely
argued that the Large Cardinals provided the most convenient means of achieving this.
Given that the Large Cardinals provide a natural way of ordering strong foundational
theories and that they force agreement with regard to concrete questions, we might as

21 Strictly, we must add something like the Ultimate-L assumption to both theories.
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well use them to strengthenZFC . But this is where a problem emerges for the pragmatic
defence in that the same argumentative strategy seems to apply here. If we come to
accept Ultimate-L, then we should also accept that Ultimate-L is a very convenient
place to work. But if that’s the case, why don’t we just stick work stick with ZFC and
work inside Ultimate-L. We can always consider what’s happens in generic extensions
via our inner model, but really UItimate-L is where the action is! Despite the fact that
this argument could look weaker that our first argument, I think it is ultimately more
persuasive for the pragmatist.

3.3.5. What if we don’t have a definable well-ordering of the universe? This all said,
Ultimate-L is a relative newcomer to the world of set theory. There are number of
open questions whose answers could see it cut off at the knees. Perhaps this could give
succor to theGMV enthusiast. This section provides some discussion of what happens
without Ultimate-L. A recent result by Toshimichi Usuba demonstrates that there may
still be cause for concern [25].

Theorem 20 (Usuba). If there is a hyper-huge cardinal, then the generic multiverse has
a core.

This gives us one of the ingredients required for our translations. It allows us to
define a particular world within any generic multiverse. In the other direction, we don’t
have a definable well-ordering of the universe, which we can use to define a generic
multiverse within any universe. This means that we cannot get the full result above,
although we can get something very close to it. For this we need the following result
of Steel from [23].

Theorem 21. There a recursive ñ : LGMV →L∈ such that:

GMV ⊢ ϕ ⇔ ZFC ⊢ ñ(ϕ).

This is not the function ó described above. Rather than exploitingHamkins’ work on
Boolean valued ultrapowers, we simply use the syntactic forcing relation. The resultant
translation is not a genuine relative interpretation. It is not compositional in the sense
that we do not define domains and relations. As such, the translation does not fit easily
into our hierarchy of relative interpretations for the simple reason that it does not
yield one. There is, however, a syntactic counterpart to sentential equivalence as the
following Fact illustrates:

Fact 22. The following are equivalent:

(1) There are relative translations ô : LS →LT and ó : LT →LS such that:

• S ⊢ ϕ↔ ó ◦ ô(ϕ);
• T ⊢ ϕ↔ ô ◦ó(ϕ).

(2) S and T are sententially equivalent.

We might then have hoped that to retain the syntactic version of sentential
equivalence in this new scenario, but this is not available. First note the following
facts from Steel’s [23]:
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Fact 23 (Steel). (1) For ϕ ∈ L∈, ZFC ⊢ ϕ iff GMV ⊢ ∀U ϕ
U .

(2) For all ϕ ∈ LGMV , GMV ⊢ ∀U (ϕ↔ ñ(ϕ)
U ).

Theorem 24. Let Φ say that a proper class of hyper-huge cardinals exists and letΨ say
that this universe is not the core. Then,
(1) if ϕ ∈ LGMV and GMV ∪{∀WΦ

W ,ϕ} is consistent, then ZFC ∪{Φ,ñ(ϕ)} is
consistent; but
(2) if the existence of unbounded hyper-huges is consistent, then ZFC ∪ {Φ,Ψ} is

consistent, while GMV ∪{∀WΦW ,ô(Ψ)} is inconsistent.

Proof. (1) Suppose not. Then ZFC +Φ ⊢ ¬ñ(ϕ). Thus using (1) from Fact 23 and
working in GMV +∀WΦW we have

∀U (¬ñ(ϕ))U

⇔∀U ¬ñ(ϕ)U

⇔¬∃U ñ(ϕ)U

⇔¬ϕ

where the first⇔ follows by relative interpretation, the second follows from logic and
the third⇔ follows from (2) of Fact 23. Thus, GMV ∪{∀WΦW ,ϕ} is inconsistent.
(2) LetM |= ZFC +Φ. Then force to add a Cohen real thus obtainingM[G ] |=

ZFC +Φ andM[G ] |=Ψ sinceM[G ] cannot be the core. Then working in GMV +
∀WΦW , note that for ÷ ∈ L∈, ô(÷) says that ÷ is true at the core. Thus ô(Ψ) says,
“I’m not the core” is true at the core. Laver’s theorem22 shows that a model of ZFC is
correct about whether or not it is a generic extension, so we have a contradiction. �

Part (2) tells us that even in the presence of hyper-huge cardinals coextendibility is
lost using these translations. So while the theories are still close, it is possible to drive
a wedge between them.

Corollary 25. ZFC +Φ and GMV +∃WΦW are not sententially equivalent via ô
and ñ.

Proof. This follows from Proposition 19 and Theorem 24. �

Given we’ve now jettisoned the project of providing a genuine relative interpretation,
we might go even further and avoid hyper-huge cardinals. This means we lose the
existence of a core, however, we can get around this issue by employing a simpler
translation ð : L∈ → LGMV . Given a sentence ϕ ∈ L∈, we just let ð(ϕ) = ∀W ϕW ;
i.e., we translate it to saying that ϕ is true in every world. So rather than checking
a particular world, we supervaluate over all of them. We then see that this gives us
another faithful interpretation:

Lemma 26. For ϕ ∈ L∈, we see that

ZFC ⊢ ϕ ⇔ GMV ⊢ ð(ϕ).

22 See Reitz’s [22] for an excellent discussion of this theorem and its consequences.
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Proof. (→) Suppose ZFC ⊢ ϕ. Then letW be a model of GMV . Since every world
inW is a model of ZFC , we see thatW |= ∀W ϕW . Thus, GMV ⊢ ð(ϕ).
(←) Suppose ZFC 0 ϕ. Fix M |= ZFC ∪ {¬ϕ}. Let W be a generic multiverse

containingM. ThenW |= ¬∀W ϕW and so GMV 0 ð(ϕ). �

There is a sense in which ñ is a better translation than ô was in the context of hyper-
huge cardinals.With ô we lacked faithfulness: the⇐ direction failed sinceGMV proves
that “I’m the core” is true at the core, but ZFC doesn’t prove “I’m the core.” Despite
this, we still do not get co-extendibility between ZFC and GMV .

Theorem 27. If ZFC is consistent, then there is a sentence ϕ such that ZFC +ϕ is
consistent, but GMV +ð(ϕ) is inconsistent.

Proof. Let ϕ beCH . Then by our assumption and Theorem 7, we see thatZFC +ϕ
is consistent. Now letW be an arbitrary model ofGMV . LetM be an arbitrary world
in W . SupposeM |= CH . Then we may fix a generic extension N ofM in W such
that N |= ¬CH . Similarly, ifM |= ¬CH there will be a generic extension N ofM in
W such that N |= CH . Thus, we see thatW 6|= ∀W CHW and soW 6|= ð(ϕ). Thus we
see that GMV +ð(ϕ) is inconsistent. �

3.3.6. Summary and discussion. We have offered three ways of translating between
theories extending ZFC and GMV :

(1) Mutual, faithful, relative interpretation via ó (the ultrafilter construction) and
ô (the core finder) using Ultimate-L.

(2) Mutual, faithful, non-relative interpretation via ñ (the Steel translation) and ô
(the core finder) using hyper-huge cardinals.

(3) Mutual, faithful, non-relative interpretation via ñ (the Steel translation) and ð
(the supervaluator) using no extension.

Given that the project of the pragmatist is to explore stronger theories of mathematics,
we see that co-extendibility is important: we don’t want to be bound unnecessarily.
Moreover, given that our default theory is ZFC or some extension thereof, it is
important that if we extend ZFC by a corresponding extension of GMV can also
be offered. This is only available using the first approach. The latter two only allow us
to take a GMV extension and find a corresponding ZFC extension.23

3.3.7. What is the cost of abandoning relative interpretation? The issues in the
previous sections stemmed from facets of the translation fromGMV toZFC .However,
we also offer alternative translations in the other direction. They were contrasted
by the fact that the ó translation gives a genuine relative translation while Steel’s ñ
translation does not. Thus, we now consider the costs associated with abandoning
relative interpretation. We consider two responses:

(1) Nothing substantive is lost;
(2) Something important is lost.

23 Indeed the results above show that if we use the latter approaches, we might even think of
GMV as restrictive with respect to ZFC as is discussed with regard to ZF +V = L above
(§3.3.4).
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In support of (1), wemake the following argument. First we note that Steel’s translation
gives up on trying to describe a particular model of GMV using ordinary set theory.
Rather we exploit the forcing relation to give partial information about a family of
possible ways the GMV multiverse could be. Rather than pinning down a particular
multiverse, we end up describing a family of them. The underlying reason for this is
that the forcing relation is not negation complete. I.e., we do not have  ϕ or  ¬ϕ for
all ϕ ∈ L∈: completeness is the property we get from a generic set or ultrafilter.
At this point, it could appear that something substantial has been lost and we have

been relegated to a realm of partial information and indeterminacy. However, the
following fact about our translations reveals an alternative perspective.

Fact 28. (i) If ZFC ⊢ ñ(ã) for all ã ∈ Γ and Γ |= ϕ, then ZFC ⊢ ñ(ϕ).
(ii) ZFC ⊢ ñ(ã) for all ã ∈GMV .

This tells us that although our translations don’t give us specific models, logical
consequence is still preserved through each of them. Moreover, both translations give
us the the theories that we are trying to emulate. This means that if we are using ñ
to describe what happens in the generic multiverse, then we can just reason within
the context of what ZFC can prove about ñ and lose nothing; i.e., we just do we set
theory inside the context: ZFC ⊢ ñ(·). So even though we cannot procure the generic
multiverse, we can behave—to to speak—as though there is one.24 A similar story
works for ð in the other direction.
This then leaves the question: howbig a problem is the inability to procure the generic

multiverse? For the universist, I think this is a serious issue. The generic multiverse
cannot be procured for the simple reason that it contains universes that are bigger
than the universe itself. As such, these kinds of worlds can be—at best—instrumental
fictions. But for the pragmatist, the issue is more subtle. The pragmatist is inclined
to accept the ontology of set theory on the basis that set theory gives them their best
theory of mathematics and infinity. As such, pre-theoretic commitments to notions
about membership and the transfinite play a much smaller role. Given that we can
reasonwithin the context of translation functions in exactly the samewaywe ordinarily
reason about set theory, the pragmatist might take the plunge and accept that there are
interpretations which fit with what is described within those contexts.
This brings us back around to (2). Although the pragmatist could indulge in a

commitment to the generic multiverse without the use of Ultimate-L, something may
still be lost in the move away from relative translation. In particular, we note that
the mod-functors ô∗ used in the Theorem 18 give use more information than the
translation functions ñ from Theorem 24. Beyond sentential equivalence, we also
obtain elementary embeddings between models of one theory and the other. Following
Steel, we might be tempted to say that these embeddings preserve meaning in the sense
that we are able to move between models of one theory and the other and identify
objects across that interface.25 In more philosophical terms, we have established a de re

24 This kind of virtual account is closely related to that provided in §IV.5.2 in [17]
25 Given the nature of the ultrapower model described in the Appendex, I suspect it is likely
that Steel would not endorse the claim that this translation is meaning preserving. However,
in the absence of a thoroughgoing account of meaning preservation in these contexts, I think
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connection between models of these theories. This connection is absent in our second
version.

§4. Conclusions. In this paper, we have critically examined two arguments against
the GenericMultiverse. To motivate these arguments, we first described the underlying
motivations that could lead someone toward a multiverse interpretation of set theory.
In so doing, we exploited two different attitudes toward the content of set theory. The
first was the traditional universe view that is familiar to anyone with elementary set
theory training. The second pragmatic view could appear a little unorthodox, but was
ultimately a variation on broadly Quinean themes. Interestingly, the pragmatic view is
compatible with and arguably even a good fit with the Generic Multiverse discussed
in §1.3.
Our first argument against the Generic Multiverse relied on antecedent—or at least

extra-theoretical—intuitions about the nature of the transfinite. As such, it provided a
kind of bolstering evidence for adherents of the universe view. However, for Generic
Multiverse proponents the argument fell somewhat flat since the antecedent intuitions
required for the argument fell into the pot of revisable propositions left open by our
ongoing struggles with incompleteness.
The second argument pushed for a more modest conclusion: that ZFC and GMV

(appropriately augmented) are for all practical purposes the same theory. As such,
there is little to be gained from moving from ZFC to GMV . Although the argument’s
conclusion is weaker, its underlying strategy is pragmatic in nature.Moreover, it makes
far less use of extra-theoretical intuitions about the nature of sets and infinity. The result
is—perhaps ironically—a more serious argument for the Generic Multiverse adherent
to address.

Appendix.

Theorem 29 (ZFC ). Suppose there is a definable, set-like, well-ordering of the universe.
Then there is a definable inner model of GMV .

Proof. The proof proceed in three stages:

(STAGE-1) Defining a sequence of ultrafilters which form the spine of the model.
(STAGE-2) Defining the inner model through a direct limit of the corresponding

ultrapowers.
(STAGE-3) Showing that GMV is satisfied in the model.

(STAGE-1) First we make a few definitions to lighten the notation burden. For S ⊆
Ord , let

• PS = Col(ù,S);
26 and

• BS = ro(Col(ù,S)) .

it is worthwhile proposing this analogy even if only to lead to a more refined analysis of this
idea.

26 For our convenience when S ⊆Ord , we let Col(ù,S) be

{p : S×ù⇁ S | |p|< ù∧∀〈α,n〉 ∈ dom(p)p(α,n)< α}.

This ensures that Col(ù, ≤ â) is a complete subposet of Col(ù, ≤ α) whenever â ≤ α.
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Let S ⊆ T ⊆ Ord . Then we see that Col(ù,S) is a complete subposet of Col(ù,T ).
Moreover, this (trivial) embedding can be lifted to an embedding of the regular open
algebras of these posets as follows. Let rS,T : ro(Col(ù,S))→ ro(Col((ù,T )) be such
that for all b ∈ ro(Col(ù,S) we have

rS,T (b) = int(cl(b))

where the right hand side is calculated in ro(Col((ù,T )). This is a complete embedding.
Moreover, it should be clear that whenever we have S ⊆ T ⊆U ⊆Ord , then

rT,U ◦ rS,T = rS,U .

For collapses of initial segments of the ordinals we’ll write P≤α and P<α for P[0,α]
and P[0,α) respectively. We define B≤α and B<α similarly.
We now define a sequence 〈Uα | α ∈ Ord 〉 of ultrafilters without recourse to

parameters.

Claim. We may uniformly define a sequence of ultrafilters 〈Uα | α ∈Ord 〉 such that
for all α ∈Ord :

(1) Uα is an ultrafilter on B≤α ; and
(2) for all â < α, Uα extends Uâ ; i.e., for all â < α, we have

Uâ = r
–1
≤â,≤αUα .

Proof. Let ≺ be a definable set-like, well-ordering of the universe. Suppose that
we’ve established the claim for all â < α. Let

B
†
<α = lim−→

〈〈B≤â | â < α〉,〈r≤ã,≤â | ã < â < α〉〉.

Note that when α = â+1, B†
<α
∼= Bâ ; and if α is a limit, then ro(B

†
<α)∼= ro(P<α).

Let

U †
<α = {r

†

â,α(u) | â < α∧ u ∈Uâ}

where r†â,α is the canonical embedding from B≤â into B
†
<α given by the direct limit. It

can be seen the U †
<α is a ultrafilter on B

†
<α ; and that r

†

â,α is a complete embedding for

all â < α.
In order to obtain part (2) of the theoremwe shall define some embeddings andmake

use of Lemma 30 below. First we let f : B†
<α → B<α be such that for all r

†

â,α(b) ∈ B
†
<α

f(r†â,α(b)) = r≤â,<α(b).

where â < α and b ∈ B≤â . It can be seen that f is a complete embedding; moreover see

that f ◦ r†â,α = r≤â,<α for all â < α.

Let k :B†
<α→B≤α be the complete embeddingwhere k= r<α,≤α ◦f. LetF = k“U

†
<α

which is a filter on B≤α . Let Uα be the ≺-least ultrafilter on B≤α such that Uα ⊇ F .
Then using Lemma 30, we see that:

(1) U †
<α = k

–1Uα ; and
(2) Uâ = (r

†

â,α)
–1U †

<α for all â < α;
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Thus we see that for all â < α,

Uâ = (k ◦ r
†

â,α)
–1Uα

= (r<α≤α ◦ r≤â,<α)
–1Uα

= r–1≤â,≤αUα

(STAGE-2) Before we define our inner model we recall few definitions and results
from [11]. For B a complete Boolean algebra,U an ultrafilter on B and ó,ô ∈V B we let:

[ó]BU be the set of B-names ô of least rank such that [ó = ô]
B ∈U .

We then define the model V B/U as the model:

• whose domain is the class of [ó]BU for ó ∈ V
B; and

• whose membership relation is defined such that

[ó]BU ∈
B

U [ô]
B

U ⇔ [ó ∈ ô]
B ∈U.

We then let V̌(B)/U be the submodel of V
B/U consisting of those [ô]BU for which

∨

x∈V

[ô = x̌] ∈U.

Then if we let i : V → V̌(B)/U be such that

i(x) = [x̌]BU ,

it can be seen that i is a cofinal elementary embedding.27

For each α ∈ Ord , let iα be the embedding given above where we use B≤α and Uα
for B and U.
Let V(0) = V and V(α) = V̌(B≤α)

/Uα for all α.

Let Gα = [ĠB≤α
]Uα where ĠB≤α

= {〈b̌,b〉 | b ∈ B≤α}. Then it can be seen that:
28

(V(α)[Gα] = V
B≤α/Uα)

V
B≤α/Uα

.

Given this, we shall denote V B≤α/Uα as V(α)[Gα].
Let â ≥ α. Then using Theorem 31, we see that there is an elementary embedding.

kα,â : Vα[Gα]→ Vâ [Gâ ∩ i0,â(r≤α,≤â“B≤α)]

where for ô ∈ V B≤α we have

kα,â([ô]
B≤α

Uα
) = [ôr≤α,≤â ]

B≤â

Uâ

and where r≤α,≤â is the canonical complete embedding of B≤α into B≤â . Moreover,
we see that Gâ ∩ i0,â(r≤α,≤â“B≤α) = kα,â(Gα).
For â ≥ α, let V(â)[kα,â(Gα)] be defined using kα,â ; i.e., we let V(â)[kα,â(Gα)] be the

generic extension of V(â) by kα,â(Gα) according to V(â)[Gâ ].

27 See Theorem 15 of [11].
28 See Lemma 13(3) of [11].
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Let

V(∞) = lim−→
〈〈V(α)〉α∈Ord ,〈kα,â〉α≤â∈Ord 〉

and we let i∞ be the elementary embedding associated with this direct limit.
For all α ∈Ord , let

V(∞)[kα,∞(Gα)] = lim−→
〈〈V(â)[kα,â(Gα)]〉â∈[α,Ord ),〈kã,â〉α≤ã≤â∈Ord 〉;

and for all α ∈Ord , we let

kα,∞ : V(α)[Gα]→ V(∞)[kα,∞(Gα)]

be the elementary embedding associated with this direct limit.

Claim. For all â < α ∈Ord , we have: �

(1) (V(α)[kâ,α(Gâ)] is a generic extension of V(α) over iα(B≤â))
V(α)[Gα ];

(2) (V(∞)[kâ,∞(Gâ)] is a generic extension of V(∞) over i∞(B≤â))
V(∞)[kα,∞(Gα)].

Proof. (1) This follows from Theorem 31 since B≤â is completely embedded in B≤α

and r–1
≤â,≤αUα =Uâ . (2) By elementarity. �

We now define our inner model. A world in our multiverse is a generic refinement of
some V(∞)[kα,∞(Gα)]. So using Theorem 32 (below) a world is something of the form

(Wr)
V(∞)[kα,∞(Gα)] for some α ∈Ord and r ∈ V(∞)[kα,∞(Gα)].

It should be clear that each world is uniformly definable from some 〈α,r〉 ∈Ord×V .
(STAGE-3)

Claim. MV holds in this model. �

Proof. (Refinement) Trivial.

(Extension) SupposeQ is a poset in someworld (Wr)
V(∞)[kα,∞(Gα)] for someα ∈Ord

and r ∈ V(∞)[kα,∞(Gα)].
Work in V(∞)[kα,∞(Gα)]. Let ã be the least ordinal such that

i∞(ã)> |Q|.

Now working in V(∞)[kã,∞(Gã)], we see that this universe thinks it is a generic
extension of V(∞)[kα,∞(Gα)] by

t–1(kã,∞(Gã))

over the poset

(B(i∞(α),i∞(ã)]) )
V(∞)[kα,∞(Gα)]

where t = (r(i∞(α),i∞(ã)]),≤i∞(ã))
V(∞)[kα,∞(Gα)] is the canonical embedding from

(B(i∞(α),i∞(ã)])
V(∞)[kα,∞(Gα)] into (B≤i∞(ã))

V(∞)[kα,∞(Gα)].

Thus V(∞)[kã,∞(Gã)] thinks it is

V(∞)[kα,∞(Gα)][t
–1(kã,∞(Gã))].

https://doi.org/10.1017/S1755020319000327 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000327


376 TOBY MEADOWS

Then we observe that since V(∞)[kα,∞(Gα)] thinks

i∞(ã)> |Q|

there is a complete embedding s ∈ V(∞)[kα,∞(Gα)] from Q into

(B(i∞(α),(i∞(ã)] )
V(∞)[kα,∞(Gα)]. Thus t ◦ s : Q→ i∞(Bã) is a complete embedding in

V(∞)[kα,∞(Gα)].

Working in V(∞)[kα,ã(Gã)], if we let H = (t ◦ s)
–1(kã,∞(Gã)), we see that

V(∞)[kã,∞(Gã)] thinks that H is Q-generic over V(∞)[kα,∞(Gα)]. Clearly H is also

Q-generic over (Wr)
V(∞)[kα,∞(Gα)]. Thus since (Wr)

V(∞)[kα,∞(Gα)][H ] is a generic
refinement of V(∞)[kã,∞(Gã)], we see that it is a world.
(Amalgamation) Consider the worlds:

• (Wr0)
V(∞)[kα0,∞(Gα0 )] for some α0 ∈Ord and r0 ∈ V(∞)[kα0,∞(Gα0)]; and

• (Wr1)
V(∞)[kα1,∞(Gα1 )] for some α1 ∈Ord and r1 ∈ V(∞)[kα1,∞(Gα1)].

Let ä = ({α0,α1}). Then we see that V(∞)[iä,∞(Gä)] is a generic extension of
both:

V(∞)[kα0,∞(Gα0)] and V(∞)[kα1,∞(Gα1)],

which in turn means that it is a generic extension of both (Wr0)
V(∞)[kα0,∞(Gα0 )] and

(Wr1)
V(∞)[kα1,∞(Gα1 )] as required. �

Lemma 30. Suppose k : P→ Q is a complete embedding and U ⊆ P is an ultrafilter.
Let F ⊆Q be a filter such that F ⊇ k“U . Then

k–1F =U.

Proof. Clearly U ⊆ k–1F since F ⊇ k“U . So suppose there is some p ∈ k–1F such
that p ∈ (k–1F )\U . Then since U is an ultrafilter of P, we may fix u ∈ U such that
u ⊥ p. But since k is complete this means that k(u)⊥ k(p) which is impossible, since
k(u),k(p) ∈ F and F is a filter on Q. �

Theorem 31. Suppose r : B0→ B1 is a complete embedding between complete Boolean
algebras. Let ô 7→ ôr be the standard translation of B0-names into B1-names via r. Then
U0 = r

–1U1 is an ultrafilter on B0. For j ∈ 2, let

• Vj = V̌(Bj )/Uj ;

• ij : V → Vj be the elementary embedding where ij(x) = [x̌]
Bi
Ui
; and

• Gj = [ĠBj
]
Bj

Uj
where ĠBj

= {〈b̌,b〉 | b ∈ Bj}.

Then k : V0[G0] → V1[i1(r“B0) ∩G1] is an elementary embedding which make the
following diagram commute:
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V1 V1[k(G0)] V1[G1]

V V0 V0[G0].
i1

i0

⊆

⊆ ⊆

k k

Moreover, in V1[G1] we have k(G0) = i1(r“B0)∩G1.

Remark. This is an elementary generalization of Theorem 46 from [11].

Theorem 32 ([22]). There is a class term W(·) ∈ L∈ such that the following are
equivalent:

(1) N is an inner model whose generic extension is the universe; and
(2) N =Wr for some r.

Finally, we prove the main translation theorem, which we restate here for
convenience.

Theorem 18. There exist translations giving rise to mod-functors:

• ó∗ :Mod (ZFC +V =UL)→Mod (GMV +∃W (V =UL)W ); and
• ô∗ :Mod (GMV +∃W (V =UL)W )→ZFC +V =UL

such that

(1) M - ô∗ ◦ó∗(M ) forM ∈Mod (ZFC +V =UL);
(2) M ≡ ó∗ ◦ ô∗(M ) forM ∈Mod (GMV +∃W (V =UL)W ).

Proof. (1) Let M |= ZFC +V = UL. Then ó∗(M ) |= GMV + ∃W (V = UL)W .
Moreover, there exists (i∞)

M an embedding fromM into (V(∞))
M . Then since (V(∞))

M

is the core of ó∗(M ), we see that ô∗ ◦ ó∗(M ) = (V(∞))
M . Thus (i∞)

M gives us the
elementary embedding we were looking for.
(2) Suppose W |= GMV + ∃W (V = UL)W . Then we see that ô∗(W) |= ZFC +

V = UL and ó∗ ◦ ô∗(W) |= GMV + ∃W (V = UL)W . Let N ∈ ó∗ ◦ ô∗(W) be the
world at which V = UL is true. Then since N is the core of ó∗ ◦ ô∗(W), we see that
N = (V∞)

ô∗(W) and so there exists an elementary embedding j : ô∗(W)→N . Thus
we see that

ô∗(W) ∈W, N ∈ ó∗ ◦ ô∗(W), and ô∗(W)≡N ;

then we see by Lemma 33 thatW ≡ ó∗ ◦ ô∗(W) as required. �

Lemma 33. SupposeM0 ∈W0 andM1 ∈W1 where bothW0 andW1 are models of
GMV . Then ifM0 ≡M1, we haveW0 ≡W1.

Proof. Suppose we haveM0,W0,M1 andW1 are as described, and assume without
loss of generality that bothW0 andW1 are countable. Then for all ϕ ∈ LGMV we see,
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from Fact 23(2), that:

W0 |= ϕ⇔M0 |= ñ(ϕ)

⇔M1 |= ñ(ϕ)

⇔W1 |= ϕ.
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Critical Essays. Cambridge, UK: Cambridge University Press.
[24] ———. (2004)Generic absoluteness and the continuumproblem.Unpublished

handout.
[25] Usuba, T. (2017). The downward directed grounds hypothesis and very large

cardinals. ArXiv e-prints.
[26] Visser, A. (2004). Categories of theories and interpretations. Utrecht Logic

Group Preprint Series, 228, 284–341.
[27] Visser, A. & Friedman, H. M. (2014). When bi-interpretability implies

synonymy. Logic Group preprint series, 320, 1–19.
[28] Woodin, H. W. (2004). Set theory after Russell; the journey back to Eden. In

Link, G., editor, 100 Years of Russell’s Paradox. Berlin, Germany: De Gruyter.
[29] ———. (2011). The realm of the infinite. In Heller, M. & Woodin, H. W.,

editors, Infinity: New Research Frontiers. Cambridge, UK: Cambridge University
Press.
[30] ———. (2012). The Continuum Hypothesis, the Generic Multiverse of Sets, and

the Ω Conjecture. Cambridge, UK: Cambridge University Press.
[31] ———. (2017). In search of Ultimate-L the 19th Midrasha mathematicae

lectures. The Bulletin of Symbolic Logic, 23(1), 1–109.

DEPARTMENT OF LOGIC AND PHILOSOPHY OF SCIENCE

UNIVERSITY OF CALIFORNIA, IRVINE

https://doi.org/10.1017/S1755020319000327 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000327

	1 Motivating the generic multiverse
	1.1 Deep incompleteness
	1.2 Large cardinals: successes and shortcomings
	1.2.1 Solving more problems
	1.2.2 Dissolving disagreement
	1.2.3 The continuum problem

	1.3 Turning the tables into the Generic Multiverse
	1.3.1 Why does this do the job?

	1.4 Revisiting philosophical motivations

	2 Argument 1: Transfinite fidelity
	2.1 The strategy
	2.1.1 Tidying ``adaptation.''
	2.1.2 A problematic example

	2.2 Woodin's argument
	2.3 Evaluating this argument

	3 Argument 2: Pragmatic indifference
	3.1 A hierarchy of theoretic equivalences
	3.1.1 Relative interpretability
	3.1.2 A hierarchy of equivalences

	3.2 Fitting forcing into this picture
	3.2.1 Boolean valued ultrapowers

	3.3 The result and its requirements
	3.3.1 τ*:Mod(GMV+W(V=UL)W)→Mod(ZFC+V=UL)
	3.3.2 σ*:Mod(ZFC+V=UL)→Mod(GMV+W(V=UL)W)
	3.3.3 The result
	3.3.4 Summary and philosophical commentary
	3.3.5 What if we don't have a definable well-ordering of the universe?
	3.3.6 Summary and discussion
	3.3.7 What is the cost of abandoning relative interpretation?


	4 Conclusions

