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2Departamento de Análisis Matemático, Facultad de Matemáticas,

Universidad de Valencia 46.100, Burjasot-Valencia, Spain (galindo@uv.es)

(Received 6 March 2018; first published online 27 February 2019)

Abstract We present an infinite-dimensional version of Cartan’s theorem concerning the existence of a
holomorphic inverse of a given holomorphic self-map of a bounded convex open subset of a dual Banach
space. No separability is assumed, contrary to previous analogous results. The main assumption is that
the derivative operator is power bounded, and which we, in turn, show to be diagonalizable in some
cases, like the separable Hilbert space.

Keywords: automorphism; biholomorphic mapping; power-bounded operator

2010 Mathematics subject classification: Primary 46G20; 47A05

1. Introduction and preliminaries

H. Cartan’s theorem stating that a holomorphic self-map of a bounded domain in C
n with

a fixed point at which the derivative is the identity has to be the identity was widened
by Cima et al. [3] to separable Hilbert spaces and then to separable dual Banach spaces
by the authors of [2]. It is key in all these instances to still follow Cartan’s iteration idea
that the sequence of iterates of the derivative is bounded. Here we aim at getting rid of
the separability. Thus we are led to study power-bounded operators, which is the topic of
§ 2, while in § 3 we provide some sufficient conditions for a mapping to be biholomorphic
and show that the well-known group of automorphisms of the unit ball of a Hilbert space
is a connected topological group with respect to the uniform convergence.

All Banach spaces considered throughout this paper are complex. Let E be a Banach
space and V an open subset of E. We will denote by H(V,E) the space of all holomorphic,
that is, Fréchet differentiable, mappings from V into E. If f ∈ H(V,E), we denote the
derivative of f at the point p ∈ V by dfp. We refer to [15] for non-explained notation
regarding holomorphic mappings and to [4] for functional analysis background.

Let T ∈ L(E) be a bounded linear operator. As usual, σ(T ) denotes its spectrum and
σp(T ) its point-spectrum, that is, the set of eigenvalues. The immediate precedents of this
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research dealt with triangularizable derivative operators. We call T triangularizable if
there is a total, that is, with dense span, linearly independent sequence {e1, e2, . . . en, . . .}
of E such that for every n ∈ N

T (x) ∈ span{e1, e2, . . . , en} for all x ∈ span{e1, e2, . . . , en}.

In this case, T (ek) =
∑k

j=1 β
k
j ej , for all k = 1, 2, . . . , n. So, the matrix of T when restricted

to the subspace generated by {e1, e2, . . . , ek} is an upper-triangular matrix, whose main
diagonal is given by β1

1 , β
2
2 , . . . β

k
k . We shall refer to the sequence (βk

k ) as the diagonal
entries.

Notice that the existence of a triangularizable operator on E requires that E be
separable. As usual, IE denotes the identity operator on the Banach space E.

2. Power-bounded operators

Recall that an operator is said to be power bounded if supn∈N ‖Tn‖ <∞. If E is a Banach
space, this is equivalent to supn∈N ‖Tn(x)‖ <∞ for each x ∈ E according to the Uniform
Boundedness Principle.

Theorem 1. Let E be a Banach space. Let T ∈ L(E) be a power-bounded closed range
operator. Assume there is a subsequence (Tn(k))k ⊂ (Tn)n which converges pointwise to
an operator S ∈ L(E). If either S is onto and T is one-to-one, or S is invertible, then
T is an invertible operator and σ(T ) ⊂ S(0, 1). Further, if m(k) = n(k + 1) − n(k), then
(Tm(k))k converges pointwise to the identity mapping.

In particular, if E is a Hilbert space, then T is similar to a unitary operator.

Proof. First, notice that in the case where S is invertible, T is also injective, since if
T (x) = 0, Tn(k)(x) = 0, so S(x) = 0. Thus, T is an into isomorphism under any of the
assumptions.

Let y ∈ E be arbitrary and consider x ∈ E such that Sx = y. Then y = limTn(k)x =
limT (Tn(k)−1x). Now, for yk = Tn(k)−1x, the sequence (yk) is a Cauchy sequence
since T is an isomorphism. Let y0 ∈ E be the limit of (yk). Then T (y0) = limT (yk) =
limT ((Tn(k)−1)(x)) = limTn(k)(x) = y. Therefore, T is an onto mapping and thus is
invertible by the Open Mapping Principle.

We now prove that supm ‖T−m‖ <∞. Suppose that for some sequence, limk ‖T−l(k)‖ =
∞. Let x ∈ E, and pick y ∈ E such that Sy = x. So for every l(k) there is n(k) > l(k)
such that ‖Sy − Tn(k)y‖ < ‖T−l(k)‖−1. Therefore,

‖T−l(k)x‖ = ‖T−l(k)Sy‖
= ‖T−l(k)(Sy − Tn(k)y) + Tn(k)−l(k)y‖
≤ 1 + ‖Tn(k)−l(k)y‖ ≤ 1 +M‖y‖,
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where M ≥ supn∈N ||Tn||. Then supk ‖T−l(k)x‖ <∞, so by the Uniform Boundedness
Principle (T−l(k)) would be uniformly bounded, a contradiction. Therefore, we have

C := sup
n∈Z

‖Tn‖ <∞.

Then ||x|| ≤ C||Tm(x)|| for all m ∈ Z and x ∈ E.
Let m(k) = n(k + 1) − n(k). We check that limk T

m(k)x = x. Since S(x) =
limk T

n(k)(x), the sequence {Tn(k)(x)} is a Cauchy sequence. Thus, for given ε > 0, we
have ||Tn(k+1)(x) − Tn(k)(x)|| ≤ ε for k big enough. Hence, for k big enough,

ε ≥ ||Tn(k+1)(x) − Tn(k)(x)|| = ||Tn(k)(Tm(k)(x) − x)|| ≥ 1
C
||(Tm(k)(x) − x)||.

Thus limk T
m(k)(x) − x = 0.

Now, since ||Tn|| ≤ C for all n ∈ Z, we have r(T ) ≤ 1 and r(T−1) ≤ 1. So σ(T ) ⊂
Δ(0, 1) and σ(T−1) ⊂ Δ(0, 1) and, moreover, by the Functional Calculus for operators,
σ(T−1) = 1/σ(T ). Thus σ(T ) ⊂ S(0, 1).

If E is a Hilbert space it is proved in [16] that for every power-bounded operator T
there is an invertible self-adjoint operator Q such that QTQ−1 = U is unitary. �

Example 2. The backward shift operator B((xn)) := (x2, x3, . . .) acting on �2 is power
bounded since ‖B‖ ≤ 1 and the sequence of iterates Bm((xn)) = (xm+1, xm+2, . . .) con-
verges pointwise to a non-surjective operator, the null one. So in Theorem 1 some
assumptions about S are necessary.

Example 3. Let (λn)n ⊂ S(0, 1). Consider the Hilbert space E = �2(R). Put R ≡
I × N for an uncountable set I. For every element in the canonical basis {ei,n : I × N}
define T (ei,n) = λnei,n. Clearly, T ∈ L(E), ‖T‖ = 1 and hence ‖Tm‖ ≤ 1. According to
[2, Lemma 2.1.3], there is a sequence of positive integers (mk) such that limk λ

mk
n = 1

for all n ∈ N. It turns out that Tmk converges pointwise to Id|E since for all pairs (i, n),
limk T

mk(ei,n) = limk(λn)mkei,n = ei,n. Notice that T is not triangularizable, since E is
not separable.

Example 4. Let H∞ be the uniform algebra of bounded analytic functions on the
open unit disc Δ(0, 1) ⊂ C. Every analytic self-map ϕ of Δ(0, 1) leads to the composition
operator Cϕ : x ∈ H∞ → x ◦ ϕ ∈ H∞. Suppose ϕ is not constant. Since Cϕ is clearly
one-to-one and has norm not greater than 1, according to Theorem 1, if Cϕ has closed
range and there is a subsequence (Cϕ)n(k) = (Cϕn(k)) that converges pointwise to an onto
operator in L(H∞), then Cϕ is invertible. The same holds for the generalizationH∞(BE),
the uniform algebra of bounded analytic functions on the open unit ball of a Banach space
E. A similar situation occurs for the disc algebra A or its generalization A(BE).

Remark 5. In the above Theorem 1, the assumption of T having closed range may
be replaced by the weak compactness of T .

Indeed, let y ∈ E be arbitrary and consider x ∈ E such that Sx = y. Then y =
limTn(k)x = limT (Tn(k)−1x). Put yk = Tn(k)−1x = T (Tn(k)−2x). Since the sequence
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{yk} is contained in the relatively weakly compact set T (M ||x||BE), where M is such
that ||Tn|| ≤M , there is a subsequence (ykl

) = (Tn(kl)−1x) which weakly converges
to y0 ∈ E. Since T is weakly continuous, we have that T (y0) = ω − limT (Tn(kl)−1) =
ω − limTn(kl)(x) = y. Therefore, T is onto.

Proposition 6. Let E be a separable dual Banach space. If T is a triangularizable
operator with diagonal entries in S(0, 1) such that supn ‖Tn‖ <∞, then T is invertible
and σp(T ) ⊃ diag(T ).

Proof. According to [2, Lemma 2.3] there is a sequence (Tn(k))k that converges point-
wise to the identity IdE . By using [2, Lemma 2.7], we can find a subsequence such
that (Tn(ki)−1)i is compact-open-weak* convergent to some linear operator S ∈ L(E)
that is actually onto, because for y ∈ E, y = limTn(ki)y = limTn(ki)−1(T (y)) = w∗ −
limTn(ki)−1(T (y)) = S(T (y)). In addition, S ◦ T = IdE . We verify also that T ◦ S = IdE

by checking that (T ◦ S)(xn) = xn. This will follow from observing that such an iden-
tity holds on Ek := span{x1, . . . , xk} for all k ∈ N. Indeed, notice that since for T the
subspace Em is invariant, all iterates Tm also have Ek as an invariant subspace. That
is, for every x ∈ Ek, S(x) ∈ Ek

w∗
= Ek. This means that when restricting the equality

T ◦ S = IdE to the finite-dimensional space Ek, we have T|Ek
◦ S|Ek

= Id|Ek
and hence

also S|Ek
◦ T|Ek

= Id|Ek
.

In addition, the matrix representing the linear operator T|Ek
is a k × k triangular

matrix, thus the diagonal terms are characteristic values and hence eigenvalues for T . �

Without the power-boundedness, none of the conclusions of Proposition 6 hold. Let
T : �p → �p be given by

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 2 0 0 · · ·
0 −1 2 0 · · ·
0 0 −1 2 0

0 0 0
. . . . . .

...
...

...
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠
.

If (αi) ∈ �p, then for (βi) := T (αi), we have that βi = −αi + 2αi+1, (βi) ∈ �p and ‖(βi)‖ ≤
3‖(αi)‖. So T ∈ L(�p) and T (1, 1/2, 1/4, . . .) = (0, 0, . . .). Thus T is not one-to-one.
Further, the sequence ((−1)i/2i) is an eigenvector with eigenvalue −2.

Proposition 7. Let Y be a dense subspace of the Banach space E and Q ∈ L(E)
such that the orbit of every x ∈ Y is eventually constant. If supn∈N ‖(I +Q)n‖ <∞,
then Q = 0.

Proof. Let x ∈ Y and mx ∈ N be such that Qn(x) = v is constant for n ≥ mx. So

(I +Q)n(x) = x+
mx∑
j=1

(
n
j

)
Qjx+ v ·

n∑
j=mx+1

(
n
j

)
.
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Suppose that for some j ∈ {1, 2, ...,mx} we have that Qjx �= 0. Since the space generated
by {v,Q1x,Q2x, . . . ., Qmx} is finite dimensional, then

lim sup
n

∥∥∥∥
mx∑
j=1

(
n
j

)
Qjx+ v

n∑
j=mx+1

(
n
j

)∥∥∥∥ = ∞.

On the other hand,
∥∥∥∥

mx∑
j=1

(
n
j

)
Qjx+ v

n∑
j=mx+1

(
n
j

)∥∥∥∥ = ‖(I +Q)nx− x‖ ≤ C‖x‖ + 1 <∞.

This is a contradiction. So Qj(x) = 0 for j = 1, 2, . . .mx, and Q|Y = 0. As a consequence,
Q = 0 in E. �

We recall that an operator T ∈ L(E) is said to be nilpotent if Tn = 0 for some n ∈
N, and pseudonilpotent if for each x ∈ E there exists nx ∈ N such that Tnxx = 0. The
operator T is said to be quasinilpotent or topologically nilpotent if its spectrum σ(T ) =
{0} or, equivalently, if its spectral radius r(T ) = lim ‖T‖1/n = 0.

Obviously, Proposition 7 holds if Q is a nilpotent operator. We do not know whether
Proposition 7 is true if Q is a quasinilpotent operator.

It is known that if lim inf
√
n‖Qn‖1/n = 0, then Q is a pseudonilpotent and quasinilpo-

tent operator (see [1, Proposition 4.4]). Proposition 7 holds if Q is a projection, but it
is not true in general for compact operators. To see this, we take a compact operator
Q �= 0 with σ(Q) ⊂ [−2, 0] and observe that (I +Q)n is a self-adjoint operator for all n
and therefore ‖(I +Q)n‖ = sup{|1 + λ|n : λ ∈ σ(Q)} ≤ 1. So supn∈N ‖(I +Q)n‖ <∞.

In [3, Theorem 1.1], it is shown for a bounded convex domain Ω in a separable Hilbert
space H that if f : Ω → Ω is a holomorphic mapping with fixed point p ∈ Ω, such that
dfp is triangularizable and σ(dfp) ⊂ S(0, 1), then f is biholomorphic. In fact, under these
conditions, dfp is similar to a diagonal matrix. This is a consequence of the following
result.

Corollary 8. Let H be a separable Hilbert space and T ∈ L(H) a triangular operator
with respect to the basis {ei : i = 1, 2..} of H. If T is similar to a unitary U ∈ L(H), then
T is diagonalizable.

Proof. By hypothesis there is an operator M ∈ L(H) such that MTM−1 = U . This
implies that σ(T ) = σ(U) ⊂ S(0, 1) and U is also triangularizable with respect to the basis
{εi := Mei : i ∈ N}. Let {μi : i ∈ N} be the orthonormal basis of H obtained from {εi :
i ∈ N} by the Gram–Schmidt procedure. Then span[ε1, ε2, ...εk] = span[μ1, μ2 . . . ., μk]
for all k = 1, 2 . . .. This implies that the matrix representation of U with respect to the
orthonormal basis {μi : i ∈ N} is upper triangular, so we can write

MTM−1 = (D +Q),

where D is a diagonal matrix with entries in S(0, 1) and Q is a pseudonilpotent matrix in⋃
n≥1 span[μ1, μ2, . . . , μn]. Obviously, D ∈ L(H) is invertible and ‖Dx‖ = ‖D−1x‖ = ‖x‖
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for all x ∈ H. So ‖D−1‖ = 1. Moreover,

‖(I +D−1Q)n‖ = ‖(D−1U)n‖ ≤ 1,

hence, by Proposition 7, D−1Q = 0, so Q = 0. Therefore, T = M−1DM is
diagonalizable. �

In general, for Banach spaces with unconditional basis we get a similar result; however,
it is more restrictive.

Corollary 9. Let E be a Banach space with unconditional Schauder basis {ei : i ∈ N}
and basis constant 1. Suppose that U ∈ L(E) is a triangularizable isometry with respect
to {ei : i ∈ N}. Then U is diagonal.

Proof. Put Ek := span{e1, . . . , ek}. Since U|Ek
⊂ Ek and U is one-to-one, we have

U|Ek
= Ek. Thus U has dense range, hence it is an isometric isomorphism. Observe also

that U−1 is an isometric isomorphism and that U−1(Ek) = Ek for all k = 1, 2, .... So the
matrix representation of U−1 with respect to the basis {ei : i ∈ N} is upper triangular.
We write U = D +Q, where D is an infinite matrix with diagonal entries θi ∈ S(0, 1),
because they are eigenvalues of the invertible isometry U|Ei

. By [14, Proposition. 1.c.8]
we have that D ∈ L(E) and ‖D‖ ≤ ‖U‖ ≤ 1. In fact, we show that D is invertible and
‖D‖ = ‖D−1‖ = 1. Consider U−1 = D̄ + Q̄ where D̄ is diagonal with entries in S(0, 1)
and Q̄ is upper triangular with null diagonal entries. Then

I = UU−1 = (D +Q)(D̄ + Q̄) = DD̄ +DQ̄+QD̄ +QQ̄.

As DQ̄+QD̄ +QQ̄ is an upper triangular matrix with null diagonal, DQ̄+QD̄ +
QQ̄ = 0 and DD̄ = I. So D is invertible and D−1 = D̄. Observe that 1 ≤ ‖DD−1‖ ≤
‖D‖‖D−1‖ ≤ ‖D−1‖. Now using again [14, Proposition 1.c.8], we have that ‖D−1‖ ≤
‖U−1‖ = 1. So ‖D−1‖ = 1.

Since D−1Q is pseudonilpotent in Y :=
⋃

n≥1 span[e1, e2, . . . , en] and

sup
n∈N

‖(I +D−1Q)n‖ = sup
n∈N

‖(D−1U)n‖ ≤ ‖D−1‖n‖U‖n ≤ 1,

we may apply Proposition 7 to get that D−1Q = 0, so Q = 0. �

3. Biholomorphic functions

Recall that an open set A ⊂ E has the separation property if for every u ∈ A \A, there
is an analytic function h in a neighbourhood of A such that h(u) = 1 and |h(x)| < 1 for
all x ∈ A. Any convex domain Ω has the separation property. Other examples of open
sets with the separation property can be found in [2].

The coming Theorem 10 yields and extends [2, Theorem 2.9] because of Proposition 6
and because no separability is assumed. Although the proof is very similar, we include it
for the reader’s convenience.

Theorem 10. Let E be a Banach dual space and let Ω ⊂ E be a bounded domain
with the separation property such that its weak* closure coincides with its norm closure.
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Let f ∈ H(Ω,Ω) and p ∈ Ω such that f(p) = p. Assume that dfp is a one-to-one closed

range operator such that there is a subnet (dfn(k)
p ) which converges pointwise to an onto

operator. Then f is a biholomorphic mapping.

Proof. By [2, Lemma 2.1(2)] there is a constant C > 0 such that
∥∥dfn

p

∥∥ < C for all
n. Theorem 1 shows that dfp is invertible, which implies that df−1

p does exist, and also

that there is a subsequence (dfn(k)
p ) pointwise convergent to the identity.

Let A = {fn(k) : k ∈ I}. By [2, Lemma 2.7] there is a subnet (fn(ki))i compact-open-
weak∗ convergent to some function, say g ∈ H(Ω, E). Then g(z) ∈ Ω

w∗
= Ω for all z ∈

Ω and g(p) = p. Using [2, Proposition 2.6] we have that g(Ω) ⊂ Ω. Moreover, we have
that ((dfp)n(k))k is compact-open-weak∗ convergent to dgp. Therefore dgp = IE . Using
Cartan’s theorem, g = IΩ.

Again by [2, Lemma 2.7], the bounded subnet (fn(ki)−1)i has a subnet that con-
verges to a holomorphic function h ∈ H(Ω, E) in the compact-open-weak* topology; there
is no harm in assuming that it is the subnet (fn(ki)−1)i itself. Clearly, h(p) = p and
h(z) ∈ Ω

w∗
= Ω for all z ∈ Ω, so, again by [2, Proposition 2.6], we have that h ∈ H(Ω,Ω).

Moreover, for z ∈ Ω,

z = lim f(fn(ki)−1)(z) = lim fn(ki)−1(f(z)) = h(f(z)),

which shows that h ◦ f = IΩ.
Finally, we show that f ◦ h = IΩ. Since h ◦ f = IΩ, we have dhp ◦ dfp = IH and, since

df−1
p exists, it follows that dhp = df−1

p . Therefore, dfp ◦ dhp = IH , and using Cartan’s
theorem we obtain f ◦ h = IΩ. �

Remark 11. Observe that Theorem 10 does not provide a necessary condition for f to
be biholomorphic: Consider E = l2(Z) and f the shift operator in E, f((xn)) = (xn+1).
Clearly, f is an automorphism of the unit ball, f = df0, and fm(en) = en+m, so the
sequence (fk(en))k does not have a Cauchy subsequence, and therefore (fk)k cannot have
a pointwise convergent subsequence. In addition, f is known not to be a triangularizable
operator.

Corollary 12. Let E be a reflexive Banach space and let Ω ⊂ E be a convex bounded
domain. Let f ∈ H(Ω,Ω) and p ∈ Ω such that f(p) = p. If dfp is a one-to-one operator
and there is a subsequence ((dfp)mk)k that converges pointwise to an onto operator in
L(E), then f is biholomorphic.

Proof. Since dfp is weakly compact, the result follows from Remark 5 and
Theorem 10. �

Theorem 13. Let Ω ⊂ �p (p > 1, p �= 2) be a bounded convex subset and f : Ω → Ω,
holomorphic with a fixed point a. Suppose that dfa is an isometric isomorphism and that
there is an eigenvector v = (v1, v2, . . . , vi, ...) ∈ �p such that vi �= 0 for all i ∈ N. Then f
is biholomorphic.
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Proof. Denote T = dfa ∈ L(�p). Since p �= 2, by [14, Proposition 2.f.14] or [18, Lemma
3.1], there is a permutation π of N and a sequence (θi) ∈ S(0, 1) such that

T

(∑
i≥1

aiei

)
=

∑
i≥1

θiaπ(i)ei. (1)

Let μ ∈ σp(T ) such that T (v) = μv.
Now T (

∑
i≥1 viei) =

∑
i≥1 θivπ(i)ei and for each n ∈ N we have

Tn

( ∑
i≥1

viei

)
=

∑
i≥1

θiθπ(i)θπ2(i) · · · θπn−1(i)vπn(i)ei. (2)

So
μn

∑
i≥1

viei =
∑
i≥1

θiθπ(i)θπ2(i) · · · θπn−1(i)vπn(i)ei. (3)

As |μn| = |θi| = 1 for all i, n ∈ N, the identity (3) implies that for every i, |vi| = |vπn(i)|
and, further, that for every i, the orbit {πn(i) : n ∈ N} is finite; indeed, if it were not,
the set {πn(i) : |vπn(i)| = |vi|} would be infinite and this would imply that ‖v‖ = ∞. It
is easy to show that π restricted to the orbit Fi = {πn(i) : n ∈ N} is a cycle and, that if
Fi ∩ Fj �= ∅, then Fi = Fj . By the identity (2), it follows that T (ei) = θπ−1(i)eπ−1(i) for all
i ∈ N. Therefore, if ni is the permutation order of π restricted to Fi, then the representing
matrix of T restricted to the subspace Mi = span{ej : j ∈ Fi} is a matrix in Mni×ni

(C),
all of whose row and column entries are null, except in a position where the entry is in
S(0, 1). In particular, T restricted to the subspace Mi is an isometric isomorphism. To
use Corollary 12, we need to show that there is a sequence of powers of T that converges
pointwise to an invertible operator.

Observe that T|Mi
is an isometry and dim(Mni×ni

(C)) = n2
i <∞ for each i ∈ N.

Therefore, we have that the set {Tn
|Mi

: n ∈ N} ⊂Mni×ni
(C) is relatively compact with

respect to the norm of L(�p) restricted to Mni×ni
(C). Thus, for i = 1 there is a subse-

quence (m1(n)) such that limT
m1(n)
|M1

= S1 exists. Furthermore, if x ∈M1, we have that
‖Tnx‖ = ‖x‖ and so ‖S1(x)‖ = lim ‖Tnx‖ = ‖x‖. Therefore, the operator S1 : M1 →M1

is also an isometric isomorphism. Now, for i = 2 the set {Tm1(n)
|M2

: n ∈ N} is also relatively
compact in Mn2×n2(C) and therefore there is a subsequence (m2(n)) ⊂ (m1(n)) such that
limT

m2(n)
|M2

= S2 exists and S2 is also an isometry in M2. Proceeding inductively and by a
diagonalization process, we obtain a sequence (mk(k)) such that for each fixed i we have
limk T

mk(k)
|Mj

= Sj for all 1 ≤ j ≤ i. Define U ∈ L(�p) according to U(ej) = Siej if j ∈ Fi.

Since Fi ∩ Fj �= ∅ implies Fi = Fj , U is well defined and ‖U(x)‖ = ‖x‖. Obviously, U is
invertible. If x ∈ span{e1, e2, . . . , ei}, then x ∈ ⋃i

j=1Mj , and so limk T
mk(k)x = Ux. The

equicontinuity of the family {Tmk(k)}k and the density of span{⋃i=1Mi} in �p lead to
limk T

mk(k)(x) = Ux for all x ∈ �p, as we wanted. �

Among the spaces of biholomorphic mappings, the group of automorphisms Aut(B�n
2
)

of the Euclidean n-dimensional space is a prominent one. For general Hilbert spaces H
we consider the group Aut(BH) of the automorphisms of BH . There has been extensive
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research on Aut(BH) when endowed with the topology τb of the local uniform convergence
or, equivalently, of the uniform convergence on balls strictly contained in BH . We refer
to the survey [12] or the book [10] for this matter and much more. Here we consider
Aut(BH) endowed with the (stronger) topology of uniform convergence on BH given by
the sup-norm ‖ · ‖∞ naturally inherited from H∞(BH ,H) and directly related to the
uniform topology in L(H).

The group I(H)0 of automorphisms of BH that fix the origin, called (see for instance
[6]) the isotropy group of 0 for BH , coincides with the subspace U of unitary operators
in L(H). Such isotropy groups have been used to prove that the Euclidean n-ball is not
biholomorphically equivalent to the n-polydisc (see [13]).

It is known that the subspace U ⊂ L(H) is an arcwise connected set. We sketch a
proof along the lines of [17, 12.37 Theorem] for the reader’s convenience. Given a unitary
operator U , its spectrum σ(U) lies on the unit circle, so there is a real bounded Borel
function f on σ(U) that satisfies exp(if(λ)) = λ , λ ∈ σ(U). Put Q = f(U). Then Q is
self-adjoint and U = exp(iQ). From this it follows easily that U is connected, for if Ur is
defined, as 0 ≤ r ≤ 1, by Ur = exp(irQ) the mapping r ∈ [0, 1] �→ Ur ∈ U is continuous
and Ur ∈ U as a consequence of the Spectral Theorem [17, 12.22 (b) Theorem] (see also
[4, Exercise 22, Chapter IX]).

Recall [6] that every automorphism of BH is of the form U ◦ ϕa, where U is a unitary
operator in L(H) and

ϕa(x) = (saQa + Pa)(ma(x))

for some a ∈ BH . Here, sa =
√

1 − ‖a‖2, ma : BH → BH is the analytic mapping

ma(x) =
a− x

1 − 〈x, a〉
and Pa = 1/‖a‖2a⊗ a, where u⊗ v(x) = 〈x, u〉v, and Qa = Id− Pa are the orthogonal
projection on the one-dimensional subspace generated by a and on its orthogonal com-
plement, respectively. Denote for simplicity La = saQa + Pa for a �= 0 and L0 = IdH . If
a �= 0, ϕa is holomorphic on the ball B(0, 1/‖a‖). Thus, in all cases, every ma and every
automorphism is a bounded holomorphic mapping on a ball of radius greater than 1
where it is uniformly continuous as well.

Lemma 14. The subgroup I(H)0 ⊂ (Aut(BH), ‖ · ‖∞) is connected. Consequently,
{ψ ∈ Aut(BH) : ψ(a) = a} is connected as well for each a ∈ BH .

Proof. The additional statement follows from the fact that for a given a, there is an
automorphism ϕa such that ϕa(a) = 0. Then the mapping U ∈ I(H)0 �→ ϕ−1

a ◦ U ◦ ϕa is
a homeomorphism between I(H)0 and {ψ ∈ Aut(BH) : ψ(a) = a}. �

Theorem 15. The group (Aut(BH), ◦, ‖ · ‖∞) is a connected topological group. The
inversion mapping Φ ∈ Aut(BH) �→ Φ−1 ∈ Aut(BH) is an isometry.

Proof. Let (fn, gn) ⊂ Aut(BH) ×Aut(BH) be a sequence converging to (f, g) ∈
Aut(BH) ×Aut(BH). Fix ε > 0. The uniform continuity of f on BH leads us to δ > 0
such that ‖f(u) − f(v)‖ ≤ ε if u, v ∈ BH and ‖u− v‖ < δ.
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Next, we find n0 such that ‖gn(x) − g(x)‖ ≤ δ for n ≥ n0 and x ∈ BH . Now, we pick
n1 ≥ n0 such that ‖fn(y) − f(y)‖ ≤ ε for n ≥ n1 and y ∈ BH . Therefore, if x ∈ BH and
n ≥ n1, we have

‖fn(gn(x)) − f(g(x))‖ ≤ ‖fn(gn(x)) − f(gn(x))‖ + ‖f(gn(x)) − f(g(x))‖ ≤ ε+ ε.

Thus the composition operation is continuous.
If Φ = U ◦ ϕa, then Φ−1 = ϕa ◦ U−1 = ϕa ◦ U∗ because U is unitary and ϕa ◦ ϕa =

IdH . Also, (U∗ ◦ ϕa) ◦ Φ−1 = IdH . Further, notice that

‖Φ − IdH‖ = ‖U ◦ ϕa − IdH‖ = ‖U∗ ◦ U ◦ ϕa − U∗‖ = ‖ϕa − U∗‖
= sup

x∈BH

‖ϕa(ϕa(x)) − U∗(ϕa(x))‖

= sup
x∈BH

‖x− U∗(ϕa(x))‖ = ‖IdH − U∗ ◦ ϕa‖

= sup
x∈BH

‖Φ−1(x) − U∗ ◦ ϕa(Φ−1(x))‖ = ‖Φ−1 − IdH‖, (4)

and that

‖Ψ−1 − Φ−1‖ = sup
x∈BH

‖Ψ−1(Ψ(x)) − Φ−1(Ψ(x))‖

= sup
x∈BH

‖x− (Φ−1 ◦ Ψ)(x)‖ = ‖IdH − Φ−1 ◦ Ψ‖. (5)

Therefore, using (4) for the second equality and (5) for the third,

‖Ψ − Φ‖ = ‖IdH − Φ ◦ Ψ−1‖ = ‖IdH − Ψ−1 ◦ Φ‖ = ‖Φ−1 − Ψ−1‖.
This shows that the inversion mapping is an isometry.

The first step in the proof of the connectedness is to show that the mapping

a ∈ BH �→ ma ∈ H∞(BH ,H)

is continuous. Indeed, for x ∈ B(H),∥∥∥∥ x− a

1 − 〈x, a〉 −
x− a′

1 − 〈x, a′〉
∥∥∥∥ =

∥∥∥∥a− a′ − a〈x, a′〉 + 〈x, a〉a′ − 〈x, a〉x+ x〈x, a′〉
(〈x, a′〉 − 1)(〈x, a〉 − 1)

∥∥∥∥
=

∥∥∥∥ (a− a′) + x(〈x, a′〉 − 〈x, a〉) + 〈x, a〉(a′ − a) + a(〈x, a〉 − 〈x, a′〉)
(〈x, a′〉 − 1)(〈x, a〉 − 1)

∥∥∥∥ .
We also have that |(〈x, a′〉 − 〈x, a〉)| = |〈x, a′ − a〉| ≤ ‖a′ − a‖, and |〈x, a〉 − 1| ≥ 1 −

‖a‖, |〈x, a′〉 − 1| ≥ 1 − ‖a′‖. Thus∥∥∥∥ x− a

1 − 〈x, a〉 −
x− a′

1 − 〈x, a′〉
∥∥∥∥ ≤ ‖a− a′‖ + ‖a− a′‖ + ‖a‖‖a′ − a‖ + ‖a‖‖a− a′‖

(1 − ‖a‖)(1 − ‖a′‖)

≤ 2(1 + ‖a‖)
(1 − ‖a‖)(1 − ‖a′‖)‖a− a′‖.

Thus, we have shown the claimed continuity.
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Next, we see that the mapping a ∈ BH �→ La ∈ L(H) is also continuous because for a �=
0, limb→a Pb = Pa, hence also limb→a(sbQb + Pb) = (saQa + Pa), while it is immediate
that limb→0(sbQb + Pb) = IdH .

Now, we appeal to the fact that ma is a bounded mapping and to

Lb ◦mb − La ◦ma = Lb ◦mb − Lb ◦ma + Lb ◦ma − La ◦ma

= Lb ◦ (mb −ma) + (Lb − La) ◦ma

to see that the mapping a ∈ BH �→ La ◦ma ∈ Aut(BH) is also continuous.
Finally, since Aut(BH) is a topological group, the mapping

(U, a) ∈ I(H)0 ×BH �→ U ◦ La ◦ma ∈ Aut(BH)

is continuous. Moreover, this is an onto mapping, hence Aut(BH) is connected as the
continuous image of the connected set I(H)0 ×BH . �

This theorem immediately yields Kaup’s earlier result [11] that (Aut(BH), τb) is a
connected group.
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