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Airborne-Pseudolite (A-PL) systems have been proposed to augment Global Navigation Satel-
lite Systems (GNSSs) in difficult areas where GNSS-only navigation cannot be guaranteed due
to signal blockages, signal jamming, etc. One of the challenges in realising such a system is to
determine the coordinates of the A-PLs to a high accuracy. The GNSS Precise Point Position-
ing (PPP) technique is a possible alternative to differential GNSS techniques such as those that
generate Real-Time Kinematic (RTK) solutions. To enhance the A-PL positioning performance
in GNSS challenged areas, it is assumed that inter-PL range measurements are also used in
addition to GNSS measurements. When processing these new measurements, cross-correlations
among A-PL estimated states introduced during measurement updates need to be accounted
for so as to obtain consistent estimated states. In this paper, a distributed algorithm based on a
Split Covariance Intersection Filter (SCIF) is proposed. Three commonly used means of imple-
menting the SCIF algorithm are analysed. Another challenge is that real-time GNSS PPP relies
on the use of precise satellite orbit and clock information. One problem is that these real-time
orbit and satellite clock error corrections may not be always available, especially for moving
A-PLs in challenging environments when signal outages occur. To maintain A-PL positioning
accuracy using GNSS PPP, it is necessary to predict these error corrections during outages.
Different prediction models for orbit and clock error corrections are discussed. A test was con-
ducted to evaluate the A-PL positioning based on GNSS PPP and inter-PL ranges, as well as
the performance of error prediction modelling. It was found that GNSS PPP combined with
inter-PL ranges could achieve better converged positioning accuracy and a reduction in con-
vergence time of GNSS PPP. However, the performance of GNSS PPP with inter-PL ranges
was degraded by observing A-PLs with limited positioning accuracy. Although the performance
improvement achieved by the SCIF-based distributed algorithms was smaller than that by the
centralised algorithm, greater robustness in dealing with deteriorated observed A-PLs’ trajectory
data was demonstrated by the distributed algorithms. In addition, short-term prediction models
were analysed, and their performance was shown to reduce the effect of error correction outages
on A-PL positioning accuracy.
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1. INTRODUCTION. Pseudolite, or “pseudo-satellite” (PL) systems are intended to
provide suitably equipped users with position, velocity or timing information, based on
measurements made on Global Navigation Satellite System (GNSS)-like signals transmit-
ted by the PLs. By either augmenting GNSS with extra GNSS-like signals, or operating
independently of GNSS with sufficient PL signals, such systems have been proposed in
order to address Position, Navigation and Timing (PNT) requirements for a number of
application areas, such as underground or indoor positioning, construction machine and
port automation, deformation monitoring, operations in deep open-cut mines and wherever
GNSS-derived PNT is not available due to poor satellite visibility and/or bad signal recep-
tion conditions (Kim et al., 2008). There are two basic types of PL systems: terrestrial PL
(T-PL) systems and airborne PL (A-PL) systems.

With PLs mounted on aircraft, balloons, airships or unmanned aerial vehicles (UAVs)
A-PL systems have better vertical observability and suffer less significant multipath effects
as well as fewer “near-far” problems compared with T-PL systems (Chandu et al., 2011;
Lee et al., 2016). The A-PLs are generally configured to be either station-keeping (that
is, hovering or keeping a near-stationary position in the sky) or flying around the service
area (for example, following some pre-defined trajectory) (Garcia-Crespillo et al., 2015;
He et al., 2016; Lee et al., 2017). To realise such an A-PL system, one of the challenges is
to precisely determine the positions of the A-PLs on a continuous basis. A number of posi-
tioning methods based on GNSS have been proposed. For example, based on the “Inverted
GNSS” (IGNSS) principle, the A-PLs could be monitored by a network of ground sta-
tions (Tsujii et al., 2001). To accurately position the A-PL in a real-time continuous mode,
the Real-Time Kinematic (RTK) technique with one or more reference stations would be
typically used (Lee et al., 2016). As an alternative approach, real-time Precise Point Posi-
tioning (PPP) has also been proposed for continuous positioning (Gross et al., 2016). This
method does not have stringent requirements for simultaneous measurements made by the
A-PLs and ground-based reference stations, or limitations on maintaining a comparatively
short baseline to ground reference stations (typically of the order of several tens of kilo-
metres). Furthermore, the PPP method is able to deliver comparable positioning accuracy,
with lower computational burden and better long-term repeatability than RTK-based meth-
ods (Bisnath and Gao, 2009). However, there are some problems in using real-time GNSS
PPP when there is GNSS signal degradation or blockage, such as longer convergence time,
loss of precise orbit and clock correction data, etc. To reduce the convergence time, a num-
ber of methods have been proposed, augmenting GNSS PPP with additional information.
For example, commonly used GNSS PPP augmentations add more observations, using
multiple frequency and/or GNSS constellations, including BeiDou (BDS), Galileo, mod-
ernised Global Positioning System (GPS) and Globalnaya Navigazionnaya Sputnikovaya
Sistema (GLONASS) (Tegedor et al., 2014), or tightly integrating with an Inertial Naviga-
tion System (INS) (Gao et al., 2017; Liu et al., 2016). Another strategy is to enable integer
ambiguity resolution with precise (externally provided) atmospheric corrections to realise
rapid convergence (de Oliveira et al., 2017; Geng et al., 2010; Teunissen and Khodabandeh,
2015).

In this paper, the real-time GNSS PPP method is proposed for A-PL positioning.
To enhance PPP performance for the A-PL in GNSS challenged areas, inter-PL range
measurements could be combined with GNSS measurements. To process such relative
measurements, cross correlations among the A-PL estimated states introduced during the
measurement updates have to be accounted for in order to obtain consistent estimated
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states. There are two commonly used strategies to address this problem: centralised and
decentralised approaches. The centralised algorithm is implemented with a master A-PL or
a Fusion Centre (FC) or central processor, gathering and processing information from all
A-PLs in the network at every time instant (Howard et al., 2002). Then the FC broadcasts
back the estimated positions to each A-PL. This approach suffers from high computational
and communication costs. Moreover, it is susceptible to a single point of failure. To avoid
communicating with a master A-PL or FC, and reducing the communication bandwidth,
decentralised algorithms have been developed. The decentralised algorithms can also be
divided into two categories (Kia et al., 2016). One is the tightly-coupled class of algorithms,
often referred to as the centralised-equivalent approach, which has the computational load
of the centralised algorithm distributed among the entire network and accurately tracks
the cross correlations. However, such algorithms still suffer from relatively high computa-
tional, communication and/or data storage costs, as a synchronous communication network
for information exchange is required (Kia et al., 2016). The other category is the loosely-
coupled class of algorithms. Although the exact cross correlations are not maintained for
this type of decentralised algorithm, the drawbacks in the tightly-coupled decentralised
algorithms can be addressed. To obtain estimation consistency, Covariance Intersection
Filter (CIF) and Split CIF (SCIF) algorithms can be used (Li and Nashashibi, 2013; Wanas-
inghe et al., 2014; Wu et al., 2017). The SCIF algorithm is able to maintain the known
independent information in the estimates, which is treated as correlated with all estimates
among the network by the CIF. Therefore, the decentralised algorithm based on the SCIF
is more suitable to use for the A-PL distributed positioning in this paper, as only the states
involved in the inter-PL ranges are known to be correlated with each other.

Real-time GNSS PPP depends on receiving Real-Time Service (RTS) products such as
precise orbit and satellite clock corrections transmitted continuously using, for example,
the Network Transport of Radio Technical Commission for Maritime Services (RTCM) by
Internet Protocol (NTRIP). Unfortunately, the availability of these real-time corrections is
often not 100% (Hadas and Bosy, 2015). It can be worse for moving A-PLs in challenging
environments where an outage of a caster connection is often likely to occur. To maintain
the A-PL positioning accuracy based on GNSS PPP during periods of interruption, the
real-time orbit and clock corrections can be predicted using appropriate models. The orbit
prediction models are generally based on polynomial models with different orders (Hadas
and Bosy, 2015; El-Mowafy et al., 2017). It has been demonstrated that this type of fitting
model is able to predict short-term International GNSS Service (IGS) RTS orbit corrections
with better than 10 cm accuracy. For long-term orbit predictions it has been proposed to use
IGS Ultra-rapid (IGU) orbit corrections as a substitute for RTS orbit corrections, as these
two IGS products are numerically compatible with each other (El-Mowafy, 2017). Unlike
the orbit corrections characterising a polynomial pattern, the satellite clock corrections have
more complex characteristics, including both periodic and stochastic variations (Heo et al.,
2010; Huang et al., 2014). The clock prediction models generally consist of two parts. One
part represents linear or nonlinear coupling characteristics of the clock corrections using
a polynomial model. The other part is often in sinusoidal form and describes the periodic
variation behaviour of the clock. These models can be used for long-term clock predictions
over a few hours and even for a day. However, these models need long-term fitting data.
In this paper only short-term predictions of orbit and satellite clock corrections are studied
with fitting data less than 15 min, as this can be implemented online with A-PL positioning
without storing the long-term fitting data.
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The remainder of this paper is organised as follows. In Section 2, the SCIF algorithm
is first reviewed and then the A-PL positioning method based on GNSS PPP combined
with inter-PL ranges using the SCIF algorithm is described. In Section 3, the short-term
predictions of orbit and satellite clock corrections using different models are introduced. To
evaluate the A-PL positioning performance, the results of a semi-simulation are analysed
in Section 4. Finally, some concluding remarks are presented.

2. A-PL DISTRIBUTED POSITIONING. All the A-PLs in the proposed A-PL sys-
tem are assumed to be time-synchronised. The time synchronisation can be realised by
chronologically synchronising the positioning signals of all the A-PLs to the time base of
a designated reference transmitter with a kinematic Time Lock Loop (TTL) (Small, 2017).
The reference transmitter can be synchronised to an A-PL or a GPS satellite. The kine-
matic TTL is implemented by repeatedly adjusting frequency and time differences between
the A-PL of interest and the reference transmitter with the self-monitored trajectory data,
including location, velocity and acceleration. The time synchronisation among all the A-
PLs can also be realised using the Two-Way Time and Frequency Transfer (TWTFT)
method by calculating the clock difference of ranging differential delay and error compen-
sating between the A-PL of interest and one master A-PL as the reference without the need
for A-PL accurate positions (He et al., 2016). In this paper, the A-PL system is assumed
to be able to maintain time synchronisation during the entire mission. Each A-PL can be
positioned using a GNSS receiver for receiving and processing signals from satellites, and
a PL receiver for receiving and processing signals from other PLs.

2.1. SCIF algorithm. Consider a pair of state estimates {x̂i, Pi}, where i = {1, 2}, and
x̂i and Pi represent the estimated state vector and the corresponding error covariance matrix,
respectively. If the two estimates are independent from one another, the fused state and its
corresponding error covariance can be derived from the general Kalman filter relations
(Julier and Uhlmann, 1997):

P =
(
P−1

1 + P−1
2

)−1

x̂ = P
(
P−1

1 x̂1 + P−1
2 x̂2

) (1)

When there is correlation between these two estimates, the fused results in Equation (1)
would be inconsistent and would have optimistic measures of their quality (Carrillo-Arce
et al., 2013). To deal with the correlation between two estimates, CIF can be used (Julier
and Uhlmann, 1997). CIF uses a convex combination of the means and covariances of the
two estimates, which theoretically yields a consistent estimate for any degree of correlation
between two input estimates:

P−1 = ωP−1
1 + (1 − ω)P−1

2

x̂ = P
[
ωP−1

1 x̂1 + (1 − ω)P−1
2 x̂2

] (2)

where ω ∈ [0, 1] is a scalar parameter, which can be optimised with respect to different
criteria, such as minimising the trace or the determinant of P.

Consider two PLs, PLi and PLj, in a network of N PLs with states at time instant k
denoted as xi

k and xj
k, and their corresponding covariance Pi

k and Pj
k, respectively. The
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relative measurement between the two PLs can be expressed as (Carrillo-Arce et al., 2013):

zi,j
k = Hi,j

k

(
xi

k − xj
k

)
+ ni,j

k (3)

where zi,j
k denotes the measurement, Hi,j

k is an orthogonal matrix which enables the state
of either PL to be expressed in terms of the other PL state and ni,j

k is the zero-mean
white Gaussian measurement noise with covariance Ri,j

k . PLi is assumed to be the one
of interest and has the prediction state x̂i

k|k−1 and corresponding covariance Pi
k|k−1 derived

using standard Kalman Filter (KF) methods such as the Extended Kalman Filter (EKF).
When the relative measurement from PLj is received by PLi the information on state x̂j

k|k−1

and covariance Pj
k|k−1 of PLj is also shared with PLi. With the received relative informa-

tion, PLi can directly generate an estimate and corresponding covariance from the relative
measurement:

⎧⎨
⎩

x̂i∗
k = x̂j

k|k−1 +
(

Hi,j
k

)T
zi,j

k

Pi∗
k = Pj

k|k−1 + Hi,j
k Ri,j

k

(
Hi,j

k

)T (4)

At this instant two pairs of state and corresponding covariance of PLi, one from the time
update and one from the relative measurement update, are derived. The fusion of these
two pairs of estimates can then be performed using Equation (2). However, the relative
measurement cannot always be expressed as in Equation (3) with an orthogonal matrix
Hi,j

k , which is often in a nonlinear form. When Hi,j
k is in any other form it is not possible

to directly calculate x̂i∗
k in Equation (4). To use the relative measurement to update the

propagated state and covariance, a transformation of the relative measurements needs to be
implemented. xi

k,m = Hi,j
k xi

k + ni,j
k can be derived from Equation (3) using the transformation

(Li and Nashashibi, 2013):

xi
k,m = Hi,j

k x̂j
k|k−1 + zi,j

k (5)

The covariance corresponding to xi
k,m is given by Pi

k,m = Hi,j
k Pj

k|k−1(Hi,j
k )T + Ri,j

k . The fusion
can be performed after the relative measurement update in KF methods as follows:

K∗
k = Pi

k|k−1

(
Hi,j

k

)T
[

Hi,j
k Pi

k|k−1

(
Hi,j

k

)T
+ Pi

k,m

]−1

x̂i,∗
k|k = x̂i

k|k−1 + K∗
k

(
xi

k,m − Hi,j
k x̂i

k|k−1

)

Pi,∗
k|k =

(
I − KkHi,j

k

)
Pi

k|k−1

(6)

where x̂i,∗
k|k and Pi,∗

k|k are the updated state of the PLi and its corresponding covariance with-
out considering the correlation introduced by PLj. Then, as in Equation (4), the propagated
and updated states can be fused using Equation (2). This fusion can also be performed
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during the relative measurement update in a standard KF-based algorithm (Goel et al.,
2017):

Kk = Pi,sca
k|k−1

(
Hi,j

k

)T
[

Hi,j
k Pi,sca

k|k−1

(
Hi,j

k

)T
+ Pi,sca

k,m

]−1

x̂i
k|k = x̂i

k|k−1 + Kk

(
xi

k,m − Hi,j
k x̂i

k|k−1

)

Pi
k|k =

(
I − KkHi,j

k

)
Pi,sca

k|k−1

(7)

where Pi,sca
k|k−1 = Pi

k|k−1/ω and Pi,sca
k,m = Pi

k,m/ (1 − ω) are two scaled covariances. Another
way of performing the fusion during the relative measurement update is given by
(Mokhtarzadeh and Gebre-Egziabher, 2014):

Pi
k|k =

[
ω

(
Pi

k|k−1

)−1 + (1 − ω)
(

Hi,j
k

)T (
Pi

k,m

)−1 Hi,j
k

]−1

Kk = (1 − ω) Pi
k|k

(
Hi,j

k

)T (
Pi

k,m

)−1

x̂i
k|k = x̂i

k|k−1 + Kk

(
xi

k,m − Hi,j
k x̂i

k|k−1

)
(8)

These two ways of accounting for the correlations have less computational cost than
the one with fusion performed after the relative measurement update. Since the relative
measurement used in this paper is in the form of inter-PL ranges, the correlated covariance
components are limited to the states involved in the inter-PL ranges. To incorporate known
independent information in the estimates based on the above described algorithms, they
need to be modified using the following theory (Li and Nashashibi, 2013):

P1 = P1d/ω + P1i

P1 = P2d/(1 − ω) + P2i

P−1 = P−1
1 + P−1

2

x̂ = P
[
P−1

1 x̂1 + P−1
2 x̂2

]
(9)

where P1i and P2i are covariance components with known absolute independence and P1d
and P2d are two correlated covariance components. Therefore, to use the SCIF algorithm,
the scaled covariances in Equations (7) and (8) have to be added with the independent
component before the measurement update. For example, Equation (7) can be changed to:

Kk = Pi,all
k|k−1

(
Hi,j

k

)T
[

Hi,j
k Pi,all

k|k−1

(
Hi,j

k

)T
+ Pi,all

k,m

]−1

x̂i
k|k = x̂i

k|k−1 + Kk

(
xi

k,m − Hi,j
k x̂i

k|k−1

)

Pi
k|k =

(
I − KkHi,j

k

)
Pi,all

k|k−1

(10)

where Pi,all
k|k−1 = Pi,sca

k|k−1 + Pi,id
k|k−1 and Pi,all

k,m = Pi,sca
k,m + Pi,id

k,m both consist of two covariance com-
ponents Pi,sca

· and Pi,id
· representing correlated and independent covariance components,

respectively.
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Figure 1. A-PL positioning scheme.

2.2. GNSS PPP combined with inter-PL range. GNSS PPP using the dual-frequency
Ionosphere-Free (IF) measurement combination is used for the proposed A-PL absolute
positioning algorithm. Since these GNSS measurements are independent of the A-PL’s
previous state estimates they are processed using standard KF methods.

Figure 1 is a schematic diagram for the A-PL positioning scheme proposed in this paper.
PLi makes GNSS measurements at time tk−1,A and tk,A, and obtains relative measurements
from PLj at time tk−1,R and tk,R. During tk−1,R, tk−1,A, tk,R and tk,A, the state of PLi is propa-
gated with its corresponding dynamic model, that is, via the time update. In addition, other
sensors such as an INS, barometer or magnetometer can be integrated to enhance the prop-
agated state solution. For simplicity, the estimated parameters in this paper only consider
the PL position, velocity, acceleration, and other unknowns that need to be estimated for
GNSS PPP. The unknown parameters that need to be estimated are:

xi =
[
ri vi ai dti Tri Ni

]
(11)

where ri =
[
xi yi zi

]
is the PLi position, vi =

[
vxi vyi vzi

]
is the corresponding veloc-

ity, ai =
[
axi ayi azi

]
is the corresponding acceleration, dti is the PLi receiver clock error,

Tri is the tropospheric zenith total delay and Ni =
[
N s1

i N s2
i · · · N sm

i

]
denotes the PL-

to-satellite carrier phase ambiguities, which are preserved as “float” values in the estimation
process. The velocity and acceleration parameters are used to establish the A-PL dynamic
model. The A-PL acceleration parameters are modelled as a first-order Gauss-Markov pro-
cess, while the other unknown parameters are modelled as random walk processes (Jiang
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et al., 2015). The discrete A-PL dynamic model can be expressed as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri,k+1 = ri,k + T · vi,k + wri,k

vi,k+1 = vi,k + T · ai,k + wvi,k

ai,k+1 =
(

1 − T
Tc

)
ai,k + wai,k

dti,k+1 = dti,k + wdti,k

Tri,k+1 = Tri,k + wTri,k

Ni,k+1 = Ni,k + wNi,k

(12)

where T and Tc are the sampling time and correlation time constant, respectively. w·k is
the corresponding parameter white noise model. If the A-PL in the network with no GNSS
signal access only propagates its positions using the motion Equation (12), the state esti-
mate error drifts due to the noise w·k which grows with time without bound. To reduce the
error growth, relative measurements between the A-PLs can be used. When the relative
measurements are obtained the propagated state of the A-PL can be updated. The relative
measurements for the A-PL positioning are the inter-PL ranges:

zi,j
k,R =

√(
xi − xj

)2 +
(
yi − yj

)2 +
(
zi − zj

)2 + ni,j
k (13)

where
[
xj yj zj

]
is the PLj position. To perform the relative measurement update for

PLi, PLj has to share its propagated position and the corresponding covariance x̂j
k|k−1 and

Pj
k|k−1 with PLi. Since it may be possible that the bandwidth of data component for the A-

PL positioning signal is insufficient to carry all the information, the A-PL could broadcast
the data via a separate data link. Therefore, PLi has to predict the position of PLj at the
transmitting time of relative range signal according to the dynamic model in Equation (12).
Assuming that the shared trajectory data of PLj at time tk,j is received by PLi at tk,R along
with the relative measurement zi,j

k,R, the predicted position for PLj is:

rj
tk,R

= rtk,j + t · vtk,j (14)

with t = tk,R − tk,j . The corresponding covariance Pj
k|k−1 is updated according to

Equation (14). If PLi and PLj are separated by a large distance it is desirable to also take
into account the signal travel time, and then t can be calculated as:

t = tk,R − tk,j − zi,j
k,R/c (15)

where c is the speed of electromagnetic radiation in a vacuum.
With all the necessary information PLi then updates its propagated state using the SCIF

algorithm. On the other hand, the GNSS measurements are processed using standard KF
methods.

Since each A-PL determines its position in a distributed way, there is no requirement
for continuous all-to-all communications, as would be necessary using the centralised
approach, to keep track of the cross-correlations between different A-PLs state estimates,
even when there is no relative measurement. The A-PL can update its state based on SCIF
whenever the inter-PL relative measurement is made. The detailed steps to realise the
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Figure 2. A-PL positioning based on SCIF approach.

distributed localisation algorithm for A-PL positioning are illustrated in Figure 2. In this
algorithm two independent updates are involved, one from the relative measurement update
and the other from the absolute positioning measurement update. The fusion is performed
after the relative measurement update.

3. PREDICTIONS OF ORBIT AND SATELLITE CLOCK CORRECTIONS. Real-
time GNSS PPP is dependent on precise and available orbit and satellite clock corrections.
An A-PL moving in a GNSS-challenged environment may suffer from disruptions of com-
munication links carrying the required messages. To maintain GNSS PPP positioning
performance, the orbit and clock corrections can be predicted using appropriate models
when there is a disrupted connection.

3.1. Real-time orbit and clock corrections. IGS RTS correction streams are transmit-
ted to users via NTRIP. They are formatted according to the RTCM Services-State Space
Representation (RTCM-SSR) message format. The RTS orbit corrections δO are expressed
as radial (δOr), along-track (δOa) and cross-track (δOc) components. Each component has
a correction term δO along with its rate-of-change δȮ. The orbit correction at time t can be
calculated as (El-Mowafy et al., 2017):

δO =
[
δOr δOa δOc

]T +
[
δȮr δȮa δȮc

]T
(t − t0) (16)

where t0 is the reference time included in the RTS message. To apply the corrections
to the broadcast orbit Xb, the raw RTS corrections have to be transformed to geocentric
corrections by using the radial, along-track and cross-track unit vectors (er, ea, and ec):

Xp = Xb +
[
er ea ec

]
δO (17)
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where Xp are the precise orbits. The RTS clock correction δC is provided as a correction
to the broadcast satellite clock offset. This consists of the correction quantity and its rate-
of-change:

δC = C0 + C1 (t − t0) + C2 (t − t0)2 (18)

where C0, C1 and C2 are polynomial coefficients. Then, the corrected satellite clock offset
tsat is computed as:

tsat = tsat
b +

δC
c

(19)

where tsat
b is the broadcast satellite clock offset.

3.2. Prediction of orbit and clock corrections. The availability of the RTS corrections
has a significant influence on GNSS PPP positioning. When a correction communication
link break occurs, the orbit and satellite clock corrections can be predicted using appropri-
ate models. Since the time series of orbit corrections between each Issue Of Data Ephemeris
(IODE) change often exhibit a polynomial pattern, it is possible to represent (and predict)
the orbit corrections by using polynomial models (Hadas and Bosy, 2015). For a short
period of less than ten minutes, the polynomial models of order two to four with a few
minutes of fitting data are able to achieve orbit prediction accuracy of the order of 10 cm.
For a period of longer than one hour, it is practical to use the most recent IGU orbit cor-
rections, which are compatible with RTS orbit corrections (El-Mowafy, 2017). However,
the IGU clock correction is not good enough to be used as an alternative for the RTS clock
correction during RTS outages (Nie et al., 2018). The RTS clock corrections are often pre-
dicted as a time series with both polynomial and periodic terms (Heo et al., 2010). The
commonly used models for clock prediction are often in the following form (Huang et al.,
2014):

δt = a0 + a1t + a2t2 +
k∑

i=1

Ai sin (ωit + φi) (20)

where t is the time since start of modelling; a0, a1 and a2 represent the bias, drift and drift-
rate of the clock corrections, respectively; k is the number of periodic terms and Ai, ωi and
φi denote the amplitude, frequency and phase of the corresponding periodic term, respec-
tively. a0, a1, a2, Ai and φi are parameters that can be estimated. The quadratic polynomial
term can be neglected for current GPS satellites (Nie et al., 2018). Four main sinusoidal
periods, including 15 min, 30 min, 3 h and 12 h, are found with fast Fourier transform (FFT)
analysis (El-Mowafy et al., 2017). Therefore, Equation (21) can be changed to:

δt = a0 + a1t +
4∑

i=1

Ai sin
(

2π

Ti
t + φi

)
(21)

where Ti is the period. In this paper the scenario of short-term prediction of orbit and clock
corrections with fitting data less than 15 min is considered, only one sinusoidal term is used
for the clock prediction model. To account for the phase φi within the sinusoidal term, a
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transform can be implemented as follows:

δt = a0 + a1t + As sin
(

2π

T1
t
)

+ Ac cos
(

2π

T1
t
)

(22)

where As = A1 cos (φ1) and Ac = A1 sin (φ1). To predict the orbit and clock corrections,
the fitting data used for building the prediction models have to be free of outliers. To
detect outliers in the orbit fitting data, one simple strategy is to check the differences
between the orbit corrections and corresponding values calculated with the polynomial
fitting model (El-Mowafy et al., 2017). The outlier can be iteratively detected and removed
if the corresponding difference satisfies the following condition:

|�δO − μ| > f · σ (23)

where μ and σ represent the average and Standard Deviation (STD) of the orbit difference
�δO, respectively, and f is a scalar threshold, which is recommended to be set to the
value of 3 with a 99.7% confidence level. However, this strategy is not suitable for outlier
detection of clock correction because the RTS clock correction suffers from abrupt jumps
resulting from changes in reference time used by different analysis centres (Chen et al.,
2017; El-Mowafy, 2017). To detect the jumps in the clock fitting data, epoch-differenced
RTS clock corrections can be used. As with the exclusion condition for orbit corrections,
the average and STD of the epoch-differenced RTS clock corrections are calculated. The
epoch-differenced RTS clock correction �δt is flagged as an outlier if the absolute deviation
around the average is larger than three times the STD. An outlier is detected if the �δt of
two consecutive epochs tn−1 and tn both satisfy the condition and have opposite signs.
Then the clock correction at tn−1 is removed from the clock fitting data. However, if the
clock correction at tn does not meet the exclusion condition, a jump may exist at tn−1. To
identify the jump, the �δt with an extended period of time from tn+1 to tn+T needs to be
further examined. T is recommended to be set as 120 s (Chen et al., 2017). If all �δt does
not satisfy the exclusion condition, a jump is identified. Then the fitting data for clock
prediction model have to be reinitialised from tn−1.

4. SEMI-SIMULATION RESULTS AND ANALYSIS. To validate the A-PL position-
ing performance based on GNSS PPP, a semi-simulation test was performed on the Univer-
sity of New South Wales (UNSW) campus “Village Green” using a handheld user terminal
MagicUT. This device was designed to be used on the Australia-New Zealand Space-Based
Augmentation System (SBAS) Testbed. This is a second generation SBAS with Dual Fre-
quency Multi Constellation (DFMC) capability. It is able to perform positioning using a
PPP service in real-time. More information can be found at http://www.ga.gov.au/scien
tific-topics/positioning-navigation/positioning-for-the-future/satellite-based-augmentation-
system. The A-PL trajectory was simulated by walking, as shown in Figure 3. Raw L1 and
L2 dual-frequency GPS measurements were collected for post-processing.

The MagicUT system has several positioning modes: SBAS L1-only, SBAS DFMC,
and carrier phase-based PPP. The PPP mode was chosen for the analysis reported here.
There are two modes of PPP positioning: ColdStart and QuickStart. The ColdStart needs at
least 10 min for the PPP solution to converge to within 40 cm, while the QuickStart uses a
precisely surveyed point to ensure almost instantaneous convergence. The QuickStart mode
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Figure 3. A-PL trajectory for the UNSW test.

was used for the PPP initialisation at a pre-surveyed point. To provide the “ground truth” for
the A-PL trajectory, the Piksi Multi, a multi-band multi-constellation RTK GNSS receiver
capable of centimetre-level accuracy, was set up alongside the MagicUT so as to use the
same antenna, as shown in Figure 4. Approximately 30 min of 1 Hz GPS measurements
were collected. The data was post-processed in a float ambiguity PPP solution with real-
time IGS combined corrections (IGC), IGC01.

4.1. Simulation Assumptions. It is assumed that there were four A-PLs, designated
A-PL 1, 2, 3 and 4, moving along predefined paths. The initial positions of the A-PLs were
such that they were evenly distributed on a circular trajectory. Each A-PL can measure
inter-PL ranges from other A-PLs, as well as make GNSS measurements. For this simula-
tion the data rate of inter-PL ranges was assumed to be 10 Hz. The inter-PL ranges were
generated with the “ground truth” provided by the Piksi Multi. The accuracy of the inter-
PL range was assumed to be 5 cm and simulated by adding the corresponding magnitude
of white noise.

4.2. A-PL Positioning Performance. To evaluate the influence of inter-PL ranges on
A-PL GNSS PPP positioning, two scenarios for A-PL positioning were simulated. The first
scenario was that the A-PL of interest was able to retain the converged GNSS PPP posi-
tioning accuracy after the initial setup through the entire mission. Since the experiment
was performed on the university campus with some trees impacting the simulated A-PL
trajectory, some GNSS signals were intermittently disrupted. To obtain steady converged
GNSS PPP positioning accuracy for this scenario, the altitudes provided by the Piksi Multi
(with 10 cm accuracy) were used to constrain GNSS PPP positioning accuracy. The second
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Figure 4. MagicUT and Piksi Multi hardware setup.

scenario was that A-PL GNSS PPP positioning has to converge to the desired accuracy dur-
ing the movement. To simulate this scenario, the PPP initialisation with the pre-surveyed
point was not used. The A-PL of interest is referred to as A-PL 1 in the following simula-
tion. The influence of the observed A-PL trajectory data on A-PL GNSS PPP positioning
with inter-PL ranges was also investigated. As was the case for A-PL 1, the other three A-
PLs were simulated with two GNSS PPP positioning scenarios, referred to as scenario 1 and
2. In the simulation, the transmitted trajectory data of the observed A-PLs were assumed
to be estimated positions at the previous instant of the received relative measurements.
The positions of observed A-PLs were predicted with the state dynamic model before the
relative measurement update. A-PL 1 and the other three A-PLs’ GNSS PPP position-
ing performance for the two scenarios are shown in Figure 5. The converged accuracies
calculated from 600 s with Root Mean Squared Error (RMSE) are listed in Table 1.

To process the inter-PL range measurements, the SCIF-based distributed positioning
algorithms were evaluated and compared with the centralised algorithm. All three forms
of SCIF algorithm with the fusion implemented during and after relative measurement
update based on Equations (6), (7) and (8) are referred to in the following simulations as
SCIF1, SCIF2 and SCIF3, respectively. An EKF was implemented locally on each A-PL
to estimate the A-PL positions for the SCIF-based distributed algorithms. The optimum
values of ω used in the distributed algorithms were determined by minimising the trace
of the fused covariance. In addition, the centralised algorithm was operated with the same
simulation conditions as the distributed algorithms. This estimates a joint state composed of
states of all the A-PLs and tracks the cross-correlations among all the states. The estimated
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Figure 5. A-PL GNSS PPP positioning results.

Table 1. A-PL GNSS PPP positioning accuracy.

Positioning Errors (m)

Scenarios A-PL 1 Observed A-PLs

1 0·39 0·40
2 0·51 0·55

positioning error and corresponding variances, represented by the diagonal components of
matrix P calculated during the EKF, for the two positioning scenarios for A-PL 1 with
two different observed A-PLs scenarios are shown in Figure 6. The estimated positioning
variances in theory reflect the real positioning error. However, it could be affected by the
inaccurate predefined covariances of process and measurement noises. Table 2 lists the
corresponding converged accuracies and STDs of the estimated positioning errors for all
simulated scenarios.

From the positioning performance comparison of scenario 1 for A-PL 1, it can be seen
that the A-PL with both GNSS and inter-PL range measurements has almost the same per-
formance in terms of positioning accuracy and smoothness as that for GNSS PPP when
the A-PLs with 0.4 m GNSS PPP accuracies are observed. However, when the observed
A-PLs’ transmitted trajectory data deteriorates, utilising the inter-PL ranges could degrade
the A-PL GNSS PPP positioning performance, as can be seen in the right figure of sce-
nario 1 for A-PL 1. Both the centralised and distributed algorithms have to re-converge at
the beginning and give slightly worse converged positioning accuracy than in the GNSS
PPP-only case. The influence of inter-PL ranges on A-PL GNSS PPP positioning is further
demonstrated by the comparison in scenario 2 for A-PL 1. It can be seen that by observing
A-PLs with 0.4 m GNSS PPP positioning accuracies the algorithms combining GNSS PPP
with inter-PL ranges achieved better converged accuracies than for the GNSS PPP-only
case. There is also a tendency for a reduction in GNSS PPP convergence time, as indicated
by the positioning results and estimated variances. When the trajectory data of the observed
A-PLs degrades, the algorithms with both GNSS and inter-PL range measurements reduce
the convergence time of GNSS PPP, except that they converge to worse positioning accu-
racies. Therefore, to ensure the enhancement of inter-PL ranges in practical applications,
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Figure 6. A-PL positioning accuracy of UNSW trial using different algorithms.

Table 2. A-PL positioning accuracy using different algorithms.

Scenario 1 for A-PL 1 Scenario 2 for A-PL 1

Observed A-PLs Observed A-PLs Observed A-PLs Observed A-PLs
scenario 1 scenario 2 scenario 1 scenario 2

RMSE STD RMSE STD RMSE STD RMSE STD
Algorithms (m) (dm) (m) (dm) (m) (dm) (m) (dm)

GNSS PPP-only 0·39 0·27 0·39 0·25 0·51 0·71 0·51 0·71
Centralised algorithm 0·39 0·28 0·40 0·26 0·40 0·82 0·59 0·72
SCIF1 0·39 0·27 0·40 0·31 0·45 0·92 0·55 0·70
SCIF2 0·39 0·27 0·40 0·30 0·45 0·92 0·55 0·71
SCIF3 0·39 0·27 0·40 0·31 0·45 0·91 0·55 0·71

it is necessary to first check the integrity of the transmitted trajectory data. Interested read-
ers are referred to Goel et al. (2017) for methods of monitoring transmitted information
integrity. Furthermore, when more observed A-PLs with good Geometric Dilution Of Pre-
cision (GDOP) could be assessed, there will be a reduction in convergence time for GNSS
PPP when adding inter-PL range measurements.
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Table 3. Mean prediction error of RTS corrections for G17.

Prediction error (cm)

Models Mean STD

3D orbit Poly with order 1 10·3 5·9
Poly with order 2 5·8 4·1
Poly with order 3 22·8 15·9

Clock Linear and sinusoidal terms 12·2 7·7
Only a linear term 13·2 8·8

By comparing the positioning and estimated variance results of the centralised and three
SCIF-based distributed algorithms as shown in Figure 6, it can be seen that the centralised
algorithm generates a smoother positioning result and has faster convergence due to the
precisely tracked cross-correlations among the A-PL states. The left figure of scenario 2
for A-PL 1 illustrates this performance difference. As listed in Table 2, compared with the
GNSS PPP-only case, around 20% and 10% improvement in converged positioning accu-
racy is achieved by the centralised and SCIF-based distributed algorithms, respectively.
However, when the observed A-PLs could not provide the trajectory information with sat-
isfactory accuracy as shown in the right figure of scenario 2 for A-PL 1, the converged
accuracy of the centralised algorithm is even worse than that of the distributed algorithms.
In this case, the distributed algorithms tend to be more robust in dealing with the deteri-
orated trajectory data of the observed A-PLs. The difference in positioning performance
between the centralised and SCIF-based algorithms with scenario 1 for A-PL 1 is much
smaller than that with scenario 2 for the A-PL 1. The SCIF-based algorithms can achieve
almost the same positioning performance as the centralised algorithm when the GNSS PPP-
only is generated by a converged solution. In the case of the three different SCIF-based
distributed algorithms, all achieve almost the same positioning performance as shown by
all the simulated scenarios. In principle, any one of the three SCIF-based algorithms can
be used for A-PL positioning, if the slightly higher computational cost of SCIF1 is not an
issue.

4.3. Analysis of predictions of orbit and satellite clock corrections. To evaluate the
fitting models for short-term RTS correction predictions, the accuracy of IGC predictions
with a sliding time window was investigated. The prediction errors were derived from the
difference between the predicted values and their known IGC correction values during the
prediction period. The periods of the fitting and prediction data were set as 10 min and
30 min, respectively. Three polynomial models with different orders including first, second
and third order were investigated. The clock corrections were predicted using the model
with linear and sinusoidal terms or only a linear term. For the clock prediction model, the
period of the sinusoidal term was first estimated using the FFT. Other parameters involved
in the prediction models for the orbit and clock corrections were estimated with a built-in
“fittype” function in Matlab.

Table 3 shows one example of the prediction performance for GPS satellite PRN17.
The mean and STD prediction errors represent the mean and STD value of all the prediction
errors calculated with a sliding window. Since the IGC corrections are not always available,
the amount of fitting data in the sliding window may vary, which has to be at least larger
than five. The prediction errors only include those calculated before each IODE change or
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Figure 7. Correction prediction comparison.

Figure 8. A-PL positioning performance.

Table 4. A-PL positioning accuracy.

Modes Positioning Errors (m)

PPP with predictions 0·54
PPP without breaks 0·53
PPP without predictions 0·58

clock jump. Figure 7 shows the variation of all prediction errors. It can be seen that the
worst model for orbit prediction is the one with order three. The second-order polynomial
model achieves the best orbit prediction performance with the minimum mean and STD
prediction errors. For satellite clock corrections, the model with linear and sinusoidal terms
could obtain slightly better performance than that with only a linear term.
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To investigate the effect of correction prediction on A-PL positioning, it was assumed
that there was one break in receiving the correction messages added to the A-PL measure-
ments, which lasted around 10 min. The second-order polynomial and linear and sinusoidal
models were used for orbit and satellite clock predictions, respectively. The A-PL posi-
tioning performance with the correction prediction was compared with the results of PPP
positioning without predictions and without breaks, as shown in Figure 8. Table 4 sum-
marises these results. The PPP positioning results obtained with correction predictions
are almost the same as those without breaks, which demonstrates the effectiveness of the
correction prediction models.

5. CONCLUDING REMARKS. In this paper an A-PL positioning concept based on
real-time GNSS PPP has been proposed. The inter-PL ranges are used to enhance A-PL
positioning. These relative measurements are processed using SCIF algorithms to account
for cross-correlations of all A-PL estimated states. SCIF algorithms implemented in three
forms were described and investigated. In addition, the short-term prediction of precise
orbit and satellite clock corrections with different prediction models was analysed and
compared when the correction message communication links was assumed to have been
disrupted. Simulations have been performed to study the A-PL positioning performance.
The simulation results demonstrate that the A-PL using GNSS PPP combined with inter-
PL range measurements is able to achieve better positioning performance in terms of speed
of convergence and positioning accuracy than that using the GNSS PPP-only approach.
However, the degree of enhancement due to inter-PL ranges is influenced by the transmit-
ted trajectory data of the observed A-PLs, which have to be provided with well-converged
accuracy. Although the SCIF-based distributed algorithms indicate limited improvement
compared with the centralised algorithm, they are more robust in dealing with degraded
transmitted trajectory data of the observed A-PLs. In addition, the second-order polynomial
model is preferable for short-term orbit correction predictions compared with the first- or
third-order models. The satellite clock corrections can be predicted using either the linear
model or one with linear and sinusoidal terms. The prediction models have been shown to
be able to effectively reduce the influence of disruption of communication links, and hence
to maintain PPP accuracy.
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