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SUMMARY
Robotic manipulators mounted on spacecraft experience a
number of kinematic, dynamic, and control problems
because the motion of the spacecraft is affected by the robot
motion. In this paper, the general three dimensional
equations of motion are derived for an n link manipulator
mounted on a non-fixed base object. Instead of performing
a single inverse kinematic calculation at the beginning of a
movement to determine the required joint setpoints, multi-
ple inverse kinematic updates are done throughout a
movement. The updating sequence is determined by an
optimal inverse kinematic updating algorithm. This motion
control algorithm is based on experimental simulation
results performed in Matlab and a set of performance
indices that are used as guidelines. Simple PD joint
controllers and a special joint trajectory generator are used
for servoing the manipulator joints for a planar robot
application. The derived motion control techniques incorpo-
rate the base motion without base motion control.

KEYWORDS: Robot, control; Non-fixed base; Inverse kine-
matics.

1. INTRODUCTION
Most robotic manipulators can be considered to have a base
fixed in an inertial frame. There are, however, manipulators
for which this is not the case. Two examples would be
manipulators mounted on free flying-satellites or subma-
rines. In such cases, the commanded arm motions required
to produce a given robot end-effector position (for grasp-
ing), calculated assuming a fixed base, will result in position
error of the end effector because of the dynamic coupling
between the robot and base.

The dynamic coupling that occurs in a moving base robot
manipulator system has not been extensively studied until
comparatively recently. Early studies1–3 in this field
neglected the dynamic coupling between the robot and the
base. One of the first approaches to consider coupling was
formulated by Longman, Lindberg, and Zedd.4 In this work
it was assumed the orientation of the spacecraft could be
kept constant by using gyroscopes to negate the torques
being transmitted at the base. The holonomic conservation
of momentum principle was then used to eliminate the
remaining three translational degrees of freedom. Modified

inverse kinematics and dynamic equations in closed form
for a spacecraft with a spherical polar-coordinate manip-
ulator were derived. A new method, termed the Virtual
Manipulator Approach, was introduced by Vafa and
Dubowsky.5 In this approach, constant spacecraft orienta-
tion is also assumed. The Virtual Manipulator can be
considered to be in a fixed inertial frame that uses the center
of mass of the system as a Virtual Ground. The position of
the Virtual Ground is calculated at the start of each
movement and is invariant as long as the system mass
properties do not change. The inverse kinematics solution is
then found using the holonomic conservation of momentum
principle. The problem with these methods is that the center
of mass of the system must be accurately calculated to
achieve good results.

Some studies6,7 have demonstrated that when the mass of
the base or spacecraft is relatively large compared to that of
the manipulator, decoupling between the end-effector
motion and the spacecraft motion can be assumed. Using
feedforward compensation from the satellite forces and
torques, a special feedback control scheme can be used to
give approximate results. Various groups8–10 have researched
the scenario of a small, high bandwidth manipulator
mounted on a larger, slow bandwidth manipulator
(macro/micro manipulator systems). Another spacecraft/
manipulator study11 proposed a control scheme that
decoupled end-effector motion and total system momentum.
Using the augmented task-space approach, recursive for-
mulations of the kinematic and dynamic equations are
performed, and a kinematic redundancy resolution scheme
is used to achieve a solution. In the same paper, the
manipulator end-effector tracked a desired reference trajec-
tory and a slow gross positioning was used for the satellite.
Unfortunately, the satellite, repositioning uses fuel. One
paper12 discusses attitude control of space-craft/manipulator
systems using internal joint motions for control. First, the
controllability of the system is discussed and proven. Then
a basis algorithm for near optimal solutions is formulated
for non-holonomic motion planning systems. This approach
yields an approximate optimal solution that minimizes the
control inputs (energy required).

Unlike singularities for fixed base manipulators that are
solely a function of kinematics, space manipulators without
base motion control encounter dynamic singularities.13

These singularities occur when the end-effector cannot
move in some inertial direction, and are a function of the
dynamic properties of the manipulator and base. The
manipulator workspace therefore is a function of the
kinematic and dynamic parameters.

In this research, a motion control technique based on
multiple inverse kinematic updating was developed. By
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updating the manipulator inverse kinematic solutions
throughout the motion, the requirement for attitude servoing
can be eliminated. The dynamic parameters of the system
need not be known but if they are known approximately, the
algorithm performance can be further improved. The only
kinematic quantities required are the orientation and
position of the base relative to the desired end effector
position at certain points during a movement. Such
quantities are measureable, for example, by cameras
mounted on the space vehicle or the manipulator.

2. MANIPULATOR AND BASE DYNAMICS MODEL
The configuration of the manipulator and non-fixed base is
as shown in Figure 1.

In 3 dimensions, the base has 6 degrees of freedom and
the robot n degrees of freedom, one for each link. This gives
the system 6+n degrees of freedom or one degree of
freedom for each generalized coordinate. The frames,
matrices, and vectors used are identified in the list below.

Reference Frames:

FI Inertial frame of manipulator – base system.

FB Base coordinate frame located at the centre of
mass of the base.

FO Zeroth coordinate frame origin on degree of
freedom axis at 1st manipulator link.

F1 Coordinate frame on outboard end of the first
link of the manipulator.

Fi Coordinate frame on outboard end of the ith link
of the manipulator.

Matrices and Vectors:

H(i, j) Homogeneous transformation from the jth frame
to the ith frame.

H(I,B) Homogeneous transformation from the Bth
frame to the I th frame.

H(B, 0) Homogeneous transformation from the Zeroth
frame to the Bth frame.

H(0, 1) Homogeneous transformation from the first
frame to the zeroth frame.

H(0, i) Homogeneous transformation from the ith frame
to the zeroth frame.

R Position of frame FB relative to and projected
onto frame FI.

F Rotation matrix of the base in frame FI.

rB Position of frame FO relative to and projected
onto frame FB.

di Position of frame Fi relative to and projected
onto frame FO.

ri Position of point on link i relative to and
projected onto frame Fi.

ri Position of point on link i relative to and
projected onto frame F0.

The generalized coordinate for each link will be denoted
as qi. If a link is revolute or prismatic, qi is represented by
either ui or di respectively. The homogeneous matrix for a
link will reflect whether the link is either translational or
rotational. The translational coordinates of the base are
defined as R=(Rx, Ry, Rz, 1)T. This corresponds to transla-
tions along the X, Y, and Z axes in the FI frame. The
rotational coordinates are defined as F=(F1, F2, F3). The
generalized coordinate for each d.o.f. of the base will be
denoted as zs. The equations of motion of the system are
derived using Lagrange’s equations. The kinetic energy for
the base and the links will first be derived.

Referring to Figure 1, the position of a point on link i
relative to and projected onto frame FI is

ri =H(I, B)H(B, 0)H(0, 1)H(1, 2) . . . H(i21, i) ri (1)

H(I,B) is a function of the six base generalized coordinates zs,
and H(0, i) is a function of the ith link generalised coordinate
(note ri is a vector). Since each generalised coordinate is
also a function of time, we can write the velocity as

ṙi =vi = O6

s=1

­H(I, B)

­zs

H(B, 0)H(0, i)riżs

+ Oi

j=1

H(I, B)H(B, 0)

­H(0, i)

­qj

riq̇ j (2)

Knowing that the velocity squared of a vector is

S dri

dt D 2

= trace(ṙṙT) (3)

Fig. 1. Robot configuration.
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we can write the kinetic energy of a particle of mass dm on
link i at ri as

dKi =
1

2
trace(ṙiṙ

T
i )dm (4)

The total kinetic energy of the links is given by integrating
over the mass for each link and then summing as follows:

KL = On

i=1

Ki = On

i=1
E dKi (5)

The integral of the term r ir
T
i over link i is termed the pseudo

inertia matrix

Ji = E
linki

r ir
T
i dm (6)

Similarily, the kinetic energy of the base is summarized for
each of the six translational and rotational coordinates, zw,
as

KB = O6

w=1

Kw = O6

w=1
E dKw (7)

At this point we assume no gravity, and therefore the
Lagrangian is simply the system total kinetic energy, and
can be written as

L=KS =KL +KB (8)

To obtain the dynamic equations of motion, the Lagrangian
is substituted into the Lagrange’s equations as below

d
dt S ­L

­ṗi
D2

­L
­pi

=ti (9)

where pi is the generalized coordinate and ti is the
generalized force and torque at joint i.

For the link dynamic equations, we will let the manip-
ulator link generalized coordinates be represented as qp and
the generalized force or torque as tp. After many cancella-
tions and index substitutions we obtain the dynamic
equations for the manipulator links as below

On

i=p
O6

s=1

tr F ­H(I,B)

­zs

H(B,0)H(0,i)Ji

­HT
(0,i)

­qp

HT
(B,0)H

T
(I,B)Gz̈s

+ On

i=p
Oi

k=1

tr FH(I,B)H(B,0)

­H(0,i)

­qp

Ji

­HT
(0,i)

­qk

HT
(B,0)H

T
(I,B)Gq̈k

+On

i=p
O6

s=1
O6

t=1

tr F ­H(I,B)

­zt­zs

H(B,0)H(0,i)Ji

­HT
(0,i)

­qp

HT
(B,0)H

T
(I,B)Gżsżt

+ On

i=p
Oi

k=1
Oi

m=1

tr FH(I,B)H(B,0)

­H(0,i)

­qp

Ji

­2HT
(0,i)

­qm­qk

HT
(B,0)H

T
(I,B)Gq̇kq̇m

+On

i=p
O6

s=1
On

i=p

(2)

tr F ­H(I,B)

­zs

H(B,0)

­H(0,i)

­qm

Ji

­HT
(0,i)

­qp

HT
(B,0)H

T
(I,B)Gżsq̇m =tp

(10)

• p=1 gives the equation for link 1 in q1

• p=x gives the nth equation for link x ibn qx

• zi are the generalized coordinates for the base.

The derivation of the dynamic equation for the base follows
similar algebra as for the links, and after simplifications
becomes

On

i=1
O6

t=1

tr F ­H(I,B)

­zw

H(B,0)H(0,i)JiH
T
(0,i)H

T
(B,0)

­HT
(I,B)

­zt

+
­H(I,B)

­zw

JB

­HT
(I,B)

­zt
G z̈t

+ On

i=1
Oi

j=1

trF ­H(I,B)

­zw

H(B,0)H(0,i)Ji

­HT
(0,i)

­qj

HT
(B,0)H

T
(I,B) G q̈j

+ On

i=1
O6

t=1
O6

s=1

tr F ­H(I,B)

­zw

H(B,0)H(0,i)JiH
T
(0,i)H

T
(B,0)

­2HT
(I,B)

­zs­zt

+
­H(I,B)

­zw

JB

­2HT
(I,B)

­zs­zt
G żsżt

+ On

i=1
Oi

j=1
Oi

m=1

tr F ­H(I,B)

­zw

H(B,0)H(0,i)Ji

­2HT
(0,i)

­qm­qj

HT
(B,0)H

T
(I,B)G q̇jq̇m
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+ On

i=1
Oi

j=1
O6

s=1

(2)

tr F ­H(I,B)

­zw

H(B,0)H(0,i)Ji

­HT
(0,i)

­qj

HT
(B,0)H

T
(I,B)zs G q̇jżs =0 (11)

• w=1 gives the 1st equation for zw

• w=6 gives the 6th equation for z6

The above manipulator dynamic equations have been
developed in three dimensions for an n link manipulator on
a 6 degree of freedom base. These dynamic equations can
also be written in matrix form as

M(q)q̈+V(q,q̇)=t (12)

where M is the inertia matrix, V is the Coriolis-centripetal
matrix, t is the generalized force (torque) vector, and q is
the generalized coordinate. If a disturbance term, F(q̇), is
added to the above equation the manipulator dynamic
equation becomes

M(q)q̈+V(q,q̇)+F(q̇)=t (13)

or more compactly

M(q)q̈+N(q,q̇)=t (14)

where N(q,q̇) represents all the non-linear terms.
The non-fixed base control algorithms in this work were

developed initially for a 2 dimensional case of base and
manipulator motion. In 2 dimensions, the base is capable of
moving in 2 translational directions as well as one rotational
direction. Therefore the base possesses 3 degrees of
freedom and has 3 generalized coordinates. A 2 link
revolute manipulator is used and has 2 degrees of freedom,
bringing the total number of degrees of freedom to 5 for the
planar case. The symbolic algebra program Maple was used
for equation expansion and rearrangement into state space
form. The state vector q for the system, referring to Figure
1, is defined below

q=[Rx Ry F1 U1 U2]
T (15)

The state space form of the system dynamics equations for
the simulations is achieved by rearranging equation (14) so
that it is in first order form. The Maple command C[eqn]
converts the Maple output into C code which is identical to
Matlab code except for the line breaking. The result is that
the dynamic equations of motion are in state space form,
ready to be used in the Matlab simulations. The complete
statement of the equations of motion is given in Carter.14

3. FIXED BASE INVERSE KINEMATICS
When a robot is mounted on a fixed base the joint
parameters are calculated and passed to the controller which
servos the joints to produce the desired end-effector
position. The desired parameters or angles are calculated
once at the beginning of the movement and they do not
change throughout a movement. This is in contrast to the
moving base case where the desired endpoint parameters are

changing as the base moves (relative to the robot frame). For
a 2 link manipulator the Geometric Approach is used to
calculate the endpoint joint parameters. In this simple case
the solution reduces to simple trigonometric equations. Let
(x, y) be the desired end-effector position in the X-Y plane
and let the 2 revolute links have lengths l1 and l2 as seen in
Figure 2. The following equations then yield the necessary
joint angles:

r2 =x2 +y2 (16)

C=cos(u2)=r2 2 l2
1 2 l2

2 (17)

D=±Ï12C2 (18)

u2 =arctan 2(D, C) (19)

u1 =arctan 2(x,y)2arctan 2(l2 sin(u2), l1 + l2 sin(u2)) (20)

It is clear that there are two solutions as long as

l2
1 + l2

2 <x2 +y2 (21)

If this is not true then the desired point is not in the robot
workspace, and a singularity occurs. Note that the ± in
Equation (18) above reveals that the solution is not unique.
For this simple 2-D case there are two solutions, each of
which corresponds to an elbow up or elbow down
configuration. In the elbow up configuration both robot links
lie above the vector r. In the elbow down configuration the
links lie below the vector r. This shows that the inverse
kinematics problem generally has a non-unique solution, the
number of possible solutions increasing as the robots
degrees of freedom increases. This property can be
beneficial for collision avoidance where any number of
solutions can provide correct end-effector positioning. The
drawback is determining which solution to use if many
solutions are possible.

4. INVERSE KINEMATICS UPDATING
ALGORITHM FOR MOVING BASE
For the moving base problem, if the required joint angles are
calculated at the start of the movement, dynamic coupling

Fig. 2. Inverse kinematics for 2-link robot.
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will produce motion of the base resulting in an end-effector
position error. In the algorithm proposed herein, the
required joint angles are updated at specified times through-
out the movement taking into account the translation and
rotation of the base that has occurred since the last update or
the start of the movement. These updates are done on-line,
assuming the desired end-effector position in the manip-
ulator frame can be measured relatively quickly. Fast
measurement feedback would mean that the base does not
translate or rotate much during this delay. It is then assumed
that the base is fixed at this position for the inverse
kinematics calculation which gives new endpoint angles. A
new joint trajectory is then calculated (one for each link)
and the robot joints are servoed to the new desired final
setpoints. This new trajectory has matching boundary
conditions to the previous one. If the desired end-effector
position is no longer in the local robot workspace (kine-
matic singularity), the movement is terminated.

At the end of the movement, if the end-effector is not
within the allowable error of the desired position, further
end-point servoing is done to complete the movement.
When the desired position is reached, the movement is
complete.

Computationally, the updating algorithm is fairly simple
and could probably be done at several kHz on a fast digital
signal processor. The computational time depends upon the
speed at which a manipulators inverse kinematics and
trajectory generation can be completed in. For a planar 2
link robot on a 3 degree of freedom base, the CPU time
between the start of an update (measurement of end-effector
position in manipulator frame), and the time when the joints
begin servoing to the new angular setpoints, was measured.
The time was 0.0078 seconds for all required calculations in
a Matlab simulation (inverse kinematics, updating sequence,
trajectory generation). The PC used was a Pentium 100 with
32 MB or RAM. In the computer simulations the updates
take only one control cycle or one simulation step to
complete. In this sense the update time is instantaneous in
the simulation. This is because the inverse kinematics and
update algorithm calculations are done before the next
integration step starts.

5. JOINT TRAJECTORY UPDATING
To move a robotic end-effector from point A to point B in
Cartesian space, each robot joint degree of freedom must
follow a prescribed trajectory in joint space. In this work we
are not concerned with obstacles and hence can use smooth
interpolating polynomials for joint space trajectory genera-
tion which satisfy the given boundary conditions. A number
of polynomial trajectories were evaluated, and a simple
type, a quintic polynomial trajectory was chosen. A
polynomial of this order is the minimum required to satisfy
the endpoint boundary conditions that match continuously
the joint angle, angular velocity, and angular accelerations.
A discussion of polynomial trajectories can be found in An,
Atkeson, and Hollerbach.15 The quintic trajectory is of the
form

cd
i =a0 +a1t+a2t+a3t

3 +a4t
4 +a5t

5 (22)

The desired velocity trajectory is of the form

ċd
i =a1 +2a2t+3a3t

2 +4a4t
3 +5a5t

4 (23)

and the desired acceleration trajectory is of the form

c̈d
i =2a2 +6a3t+12a4t

2 +20a5t
3 (24)

These equations satisfy the boundary conditions

cd
i (t0)=c0; cd

i (tf)=cf (25)

ċd
i (t0)= ċ0; ċd

i (tf)= ċf (26)

c̈d
i (t0)= c̈0; c̈d

i (tf)= c̈f (27)

where c0 is the initial trajectory angle and cf is the final joint
angle. For example, if at the start of a movement the original
joint angle required for joint i is calculated to be 120
degrees, the robot link begins following a trajectory that will
complete this. If at 80 percent of the way through the
movement the trajectory is updated and a new final angle of
175 degrees is required, the controller then servos the link
along the new trajectory to achieve this. The new endpoint
joint angles require that the trajectory polynomials be
pieced together with matching boundary conditions. An
example of these angle and angular velocity trajectories (u1,
u̇1) for joint 1 can be seen in Figure 3 and Figure 4.

Joint trajectory velocity time scaling is used to satisfy the
joint velocity constraints. Each robotic joint has an upper
velocity and torque limit that the motor can produce,
regardless of whether there is a gear reduction. If the desired
joint velocity trajectory exceeds the maximum joint velocity
the movement may not result in the desired final setpoint. In
the simulations the user may specify a maximum joint
velocity that must not be exceeded so that the end-effector
velocity or acceleration will not be exceeded. There may
also be a minimum specified velocity so that the movement
is completed in a specified time. Actual space manipulators
typically can move extremely large payloads but at very
slow velocities. The CANADARM, for example, can move
a payload many times heavier than itself but with maximum

Fig. 3. Single joint trajectory update – u1 vs. time.
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joint velocities of less than 5 deg/sec. To make the
simulations as realistic as possible time scaling was
implemented.

6. JOINT SERVO CONTROL
For robot joint control it is necessary to determine the
control algorithms to servo all the joints of the manipulator
to allow accurate tracking of a time-based trajectory. The
simplest type of robot joint control is independent or
classical joint control. In this type of joint control the n joint
manipulator to be controlled will be controlled by n
decoupled individual joint controllers whose control input is
based on the locally measured joint variables (errors).
Independent error driven joint control has long been popular
since there is no need to solve complicated nonlinear robot
inverse dynamics on-line. It also allows a decoupled
analysis of the closed loop system using single-input single-
output classical techniques. It has been proven that this type
of control is very suitable for following a desired trajectory
if the manipulator motion is relatively low speed and in fact
is representative of how many industrial robots are con-
trolled today.16 It has been proven17 that if PD control is
applied to each joint and e(0)=0 and ė(0)=0 that the
position and velocity errors are bounded within a circle
whose radius decreases approximately (for large Ky) as
1/ÏKv. However, Ky cannot be increased without reaching
the actuator torque limits. If we define the tracking error of
the ith joint variable to be

ei(t)=qdi
(t)2qi(t) (28)

where qd is the desired joint trajectory and q is the actual
trajectory of the ith joint, we can define the velocity error to
be

ėi(t)= q̇di
(t)2 q̇i(t) (29)

For PD control we would then select our control signal u(t)
as proportional-plus-derivative feedback or

ui =2Kyi
ėi 2Kpi

ei (30)

To account for external disturbances an integral control term
of the form KI« is added where

«̇i =ei (31)

A robot link control torque then becomes

ti =2ui =Kyi
ėi +Kpi

ei +KIi
«i (32)

If each joint actuator were modelled as having lumped
inertia and damping values of J and B, the closed loop
characteristic polynomial obtained from the error dynamics
is

s2 +Kyi
s+Kpi

=0 (33)

The standard form for the characteristic polynomial is

s2 +2zni
vni

s+v2
ni

=0 (34)

where vni
is the joint error natural frequency and zni

is the
damping coefficient. Therefore the desired joint control
performance can be achieved by selecting the appropriate
gains. Equating the two polynomials gives

Kpi
=v2

ni
(35)

and

Kyi
=2zni

vni
(36)

To obtain critical damping (no overshoot) for example then

zni
=1 (37)

and the gains would be related by

Kyi
=2ÏKpi

(38)

The upper limit of the gains are related to the structural
frequency of the link, vr. The first flexible resonant mode of
the link is given as

vri
= Î kri

Jri

(39)

where Jri
and kri

are the link inertia and stiffness respectively.
Therefore to avoid exciting the links resonant mode the joint
error frequency should be chosen to be less than half the
maximum link frequency (configuration dependent usually)
or

vni
<

vri

2
(40)

Of course the joint torque upper limit will also limit the
gains.

A PD position controller was implemented as developed
above for each link in the simulations, ignoring the integral
term because gravity was not used and no disturbance terms
were introduced into the system (when the integral term was
incorporated, as verification, it made virtually no difference
in the tracking). The PD controller is very effective in
trajectory tracking, with large gains. Equations (35) to (40)
were used for setting the gains. A block diagram of the
controller can be seen in Figure 5. Torque limits are

Fig. 4. Single joint trajectory update – u̇1 vs. time.
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incorporated to simulate actuator constraints present in all
robot actuators.

One thing to note is the torque added to the error torque
labelled tupdate in the block diagram. This torque is added to
the torque term immediately after a trajectory update
occurs. This is because at the beginning of an update (and at
t=0) the joint errors are zero. At the first update step the
actual joint trajectories are equal to the (new) desired
trajectories and hence there is no torque. Prior to the update
there were joint errors since the controller is not perfect and
no system can realize infinite gains. What this update torque
does is add a constant torque term (for the rest of the
movement) equal to the last torque value before the update.
The closed loop controller takes care of this offset. If this
torque offset is not added, immediately after the torque
being zero, there is a very large correction torque which
results in trajectory discontinuities.

7. SPACE MANIPULATOR WORKSPACES AND
DYNAMIC SINGULARITIES
Unlike singularities for fixed-base manipulators that are
solely a function of kinematics, space manipulators without
base motion control encounter dynamic singularities.13,18

These singularities occur when the end-effector cannot
move in some inertial direction, and are a function of the
dynamic properties of the manipulator and base. Dynamic
singularities occur when the system generalized Jacobian,
J* becomes rank deficient or non-invertible. The Jacobian
for a manipulator-base system relates the end-effector’s
linear and angular velocities in inertial space, to the
controlled manipulator joint angles. Unlike fixed-base
Jacobians, this generalized Jacobian depends upon dynamic
parameters as well as kinematic ones.

Dynamic singularities are path dependent, depending
upon the history of the spacecraft attitude. And because of
the dynamic coupling in the system, the spacecraft attitude
depends upon the history of the manipulator motion. This
path dependence is due to the non-integrability of the
angular momentum of the system. Physically, each point in

the manipulator workspace can be reached with an infinite
number of system configurations. Therefore a point may or
may not be singular depending upon the path used to get
there.

The workspace for a space manipulator is therefore
related to the system’s dynamic singularities. When the
spacecraft attitude is controlled (e.g. with gyroscopes), the
manipulator workspace is termed the Reachable Work-
space,13,18 and is a sphere centered at the system centre of
mass. This represents a maximum workspace for the
manipulator-base system. The workspace in which dynamic
singularities can occur is termed the Path Dependent
Workspace (PDW). Points in this space can only be reached
if a suitable path is taken. The difference between the
Reachable Workspace boundary and Path Dependent Work-
space is termed the Path Independent Workspace (PIW).
Points in this workspace can always be reached, and can
never lead to dynamic singularities. Graphical examples of
these terms are illustrated in Figure 6.

To illustrate these terms, points A through D are labelled
in Figure 6. This figure and the following example are taken
from Papadopoulos and Dubowsky.13 Because points B and
D both lie in the PIW, either point can be reached from the
other, or from any point found in the region labelled PIW.
Point A or C can also be reached from any point
(movement) in the PIW. But a point such as A in the PDW
may or may not be reachable directly from point C, or from
another point in the PDW. When the term directly is used
here, it means directly as in a straight line or direct type
path. But this does not mean that the point can never be
reached. The manipulator may have to perform repetitive
movements (i.e. where the end-effector traces out a closed
loop path repetitively) to re-orient the base. The manipulator
may then be able to move to point A directly from this new
configuration. At a dynamic singularity, the end-effector
may still be able to move, just not in certain directions. To
maximize the PIW, manipulator redundancy may be utilized
if it exists.

Fig. 5. Position controller.

Fig. 6. Space manipulator workspaces.
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Because calculation of the dynamic singularities and the
various workspaces depend upon all the dynamic parame-
ters of the system, these concepts were not incorporated into
the motion control algorithm or the trajectory generator
developed in this thesis. The main principle behind
developing the motion control or updating algorithm in this
work, is that the dynamic parameters of a system need not
be known. This is true, except for the problem of dynamic
singularities. And as discussed previously, for many systems
in space, values for these parameters may be very difficult to
obtain.

The one type of singularity that is implemented in this
thesis, is the standard fixed-base manipulator kinematic
singularity. If this type of singularity is reached, the
movement is terminated. When a dynamic singularity is
encountered, this is not explicitly known by the algorithm.
Consequently, joint servoing continues until a kinematic
singularity is reached. The point may still be reachable
using a suitable path in conjunction with the workspace
principles discussed in this section.

8. DYNAMIC SIMULATION RESULTS

8.1 Base-Manipulator Mass Ratio
For the simulations presented herein, the robot links are
both 2 meters long, have masses of 100 kilograms each, and
are modeled as solid bars for inertia matrix calculations.
The base is 2 meters by 2 meters square. The mass of the
base varies in the simulations, but is set to 600 kilograms in
most of the simulations. The entire system is assumed to be
at rest at the beginning of the simulations, and therefore
comes to rest at the end of the movement (link velocities of
zero). Non zero robot or base initial conditions can be
specified but were not used in any simulations shown in this
paper. The simulations were performed using SI units, but
for the results plots, the lengths are shown in cm.

When a movement occurs without any trajectory updat-
ing, the end-effector of the robot will (if the controller is
tuned properly) reach the desired position in the robot
coordinate frame (fixed) but not in the inertial frame. The
amount by which the end-effector misses the desired
position (inertial frame) will depend on the size of the
commanded joint movements and the base-arm mass (and
inertia) ratio, amongst other things. If the mass ratio of the
base to arm (termed RM) is very large then the system is
essentially a fixed base system. The amount of base
disturbance will depend on the RM as well as on how fast the
movement is completed. Figure 7 shows the end-effector
trajectories for mass ratios, RM, varying between 3 and 100.

8.2 Multiple updates and update frequency
If updating is done throughout a movement the variables to
be chosen are when to begin updating and how frequently
should updates be performed. A large number of simula-
tions were done and several observations were made. One
observation was that early updating yielded better results.
Another observation was that frequent updating was better
than infrequent updating. Figure 8 shows the system for a
movement with and without multiple updating, the fre-

quency being 2.5% of total time starting at 80% (two
updates). Without an update, the robot achieves its com-
manded position in the robot frame but in the inertial frame
misses the desired point by approximately 190 cm. If
updating begins at 80% of the total movement time, the
error is reduced to 12 cm as opposed to 100 cm for a single
update at 80%. Clearly there is a significant improvement in
even two updates (over one) if performed near the end of the
movement.

Figure 9 shows end-effector trajectories of movements at
80%, 60%, and 0% (no update). It is observed here that
when updating was started at 60% of the movement the end-
effector error dropped to 23 cm, in contrast to an error of
41 cm with multiple updates starting at 80%. This shows

Fig. 7. End-effector trajectories – variable mass ratio.

Fig. 8. Multiple update end-effector trajectories.
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that early updating results in less error. This is the opposite
of single updates, where a later update is better.

Figure 10 shows the joint angles for the different update
times. In this plot at each update the final desired angle
increases. Figure 11 and 12 show the joint angular velocity
and torque for joint 1 only. The earlier the updating the
smaller the required velocities and torques (the opposites of
single updates) and hence less base disturbance. This is
because there is no requirement for a large error correction
at the last moment.

Performing multiple updating may give acceptable end-
effector accuracy depending on the requirements. An
example of this is shown in the next plots for a desired

position of (0,0) cm. Figure 13 shows the end-effector error
for 10%, 5%, and 2.5% frequency updating on a single plot.
Each circle represents one 30 second simulation. The most
important observation inferred from this (and many other)
plots is that there is an optimum time to start updating.
Since all the curves are relatively flat between 20% and
60%, updating any earlier than 60% results in very little
change in the final end-effector error. And because the
curves (2.5, 5, or 10%) begin increasing sharply after about
75%, it is now possible to conclude that the optimum time
to begin updating is approximately between 50 and 65% of
the total movement time depending on the distance between
the desired and initial end-effector positions. This can be

Fig. 9. Multiple update end-effector trajectories close up.

Fig. 10. Multiple update u1 vs. time.

Fig. 11. Multiple update u̇1 vs. time.

Fig. 12. Multiple update joint 1 torque vs. time.
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thought of as when the robot begins closing in on the
desired position.

If the desired accuracy is less than say 2 cm, beginning
updating at 65% with a 2.5% frequency will result in the
desired accuracy. For some desired points however using
frequent updating starting at an optimum time may still not
yield sufficient accuracy. Then one of the methods, endpoint
over-compensation and/or endpoint servoing, will have to
be incorporated.

8.3 Endpoint overcompensation and endpoint servoing
If the accuracy obtained by performing an optimum set of
multiple updates during a movement is not high enough,
endpoint overcompensation (EOC) can be performed during
the last part of the movement. In this method the desired
end-effector position is moved slightly beyond the original
one for the inverse kinematics recalculation. This is done
linearly, such that if the desired position was (0,0) and the
end-effector was at (1,1), if the update occurred at this point,
the algorithm would attempt to servo to (21, 21) (or some
smaller distance in the direction of (21, 21)). This could
be done for each update or only for the last couple of
updates. In one simulation, endpoint error was 42.6 cm
without EOC and 8.7 cm with EOC enabled. It should be
noted that endpoint overcompensation appears to improve
performance in only a few configurations, particularly when
the desired point is almost but not quite out of the
manipulator’s workspace.

If further accuracy is required after multiple updates and
possibly end-point overcompensation, then one or more
smaller manipulator movements are performed and are
referred to as endpoint servoing (EPS). At this point the
manipulator end-effector will be relatively close to the
desired position. With the system now at rest, another
movement will be performed not unlike the one that
previously occurred in that multiple updating. But this
movement will take less time to complete than the first large

movement, and the end-effector can be positioned where
desired with as high a precision as required. If very close
positioning is necessary, then multiple movements may be
required. It should be noted that since the manipulator is
already close to the desired point thereby requiring small
joint angular movements, there will be much less base
disturbance than with the first large movement. As an
example, in one simulation end-effector error was 24.2 cm
without EPS at the end of a 30 second multiple updating
movement. After the first 6 second EPS, the error was
6.3 cm, and after the second 6 second servo, the error is
reduced to 1.9 cm (total movement 12 cm). The algorithm is
set up so either a set number of EPS will be performed or
alternatively, a maximum allowed error can be specified and
EPS will continue until the error is less than this value.

9. INVERSE KINEMATICS GUIDELINES AND
PERFORMANCE INDICES
To evaluate the performance for the results of a manipulator
movement, certain criteria must be specified with which to
judge the inverse kinematics updating algorithm perform-
ance. Some typical specifications that are listed when
describing a (fixed base) robot are maximum payload,
maximum joint and/or Cartesian speed, end-effector accu-
racy and repeatability, and Cartesian tracking error
(adherence to a straight line). Specifications such as
maximum joint velocity, payload, and repeatability are
functions of the mechanical properties of the manipulator in
question. Cartesian tracking error and accuracy (and
repeatability) are dependent not only upon the mechanical
properties of the robot but also on the performance of the
control system. But because the manipulator is simulated
and controller gains are chosen large enough to result in
very accurate joint angular control, the manipulator is
assumed perfect. Therefore manipulator end-effector accu-
racy in the inertial frame, as opposed to in the manipulator
base frame, is used as a performance index in this thesis.
Another performance index often used is the energy
expended by the manipulator during a movement. This is a
variable to be minimized or optimized when a movement is
performed. Obviously performing manipulator – base
positioning without the use of thrusters or gyroscopes is
pointless if more energy is consumed by the manipulator
using an updating algorithm than with thrusters or gyro-
scopes. Energy consumed will not be used as a performance
index, but it was shown in Carter14 that performing multiple
updates throughout a movement uses less energy than
performing one movement without updating, then another
without updating, etc.

Base disturbance or the robot base dynamic coupling
factor is another criteria by which a particular manipulator
movement can be related to system performance. The lower
the base acceleration and movement the better the move-
ment is judged to be. An extreme example would be a very
large, fast movement with a heavy payload performed by the
CANADARM attached to Space Station Alpha. If this type
of movement were possible and a large base disturbance
resulted it would disturb and possibly be detrimental to
people and equipment on board. Because of the nature of
the on-line updating that this algorithm uses, the only way

Fig. 13. Multiple update end-effector errors – x=0, y=0.
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in which base disturbance can be minimized is by
specifying low joint velocities and hence time scaling,
which will result in minimal base disturbance. To actually
use this as a variable, pre-movement off-line calculations
that require all manipulator and base dynamic parameter are
required. A good discussion and application of this is given
by Xu.19 Here the author discusses the use of a performance
index in planning robot motion, evaluating robot trajectories
in minimizing base motion, and for optimizing the robot
configuration design and robot base location on the base.
The number of updates required to complete a movement
with the desired accuracy can also be viewed as a type of
performance index. Each time an update is performed there
are inverse kinematics and possibly time scaling calcula-
tions to be done. These require CPU time and take some
length of time to complete. Therefore the number of updates
should be minimized, although accuracy is higher priority
than update minimization. And for expended joint power
minimization as discussed in the previous section, it was
shown that more updates are preferred. Therefore the
number of updates will be minimized if reducing the
number has no effect on (primarily) accuracy and (secon-
darily) energy expended.

9.1 Guidelines for inverse kinematics updating sequences
To determine the sequence of events that should occur
during a movement, the desired results (i.e., accuracy) and
the variables which affect accuracy should be stated. As
discussed in the last section, the main system performance
index will be the inertial frame end-effector accuracy. Other
performance indices that will be considered but not strictly
adhered to are the number of updates, manipulator energy
expended, and manipulator-base dynamic coupling or
disturbance. The fixed system factors on which accuracy
depends on are the base-arm mass ratio and the total
endpoint movement. The total endpoint movement is also
related to joint angular displacements. The algorithm factors
that are varied to produce the required accuracy are the time
that the update occurs, the frequency of the updates or the
update sequence, endpoint overcompensation, and endpoint
servoing. The secondary performance indices that can be
minimized with no effect on accuracy are joint energy
expended and dynamic coupling as these depend on total
movement time. As discussed in the section on time scaling,
the movement time can be lengthened to minimize the
energy consumed and the base disturbance, and will have no
effect on accuracy. To devise an algorithm that will produce
the desired accuracy for any system initial configuration and
properties, a sub-algorithm or equation is written that shows
the dependencies of these factors. It will be used as a
guideline for determining the updating sequence. First all
the variables are assigned a notation and their dependencies
shown in the general equation below

(ACCe, ENj, NUMu, DISTb)

=func(RM, De, Tu, Su, EOC, EPS, Ttotal,Vj,tj) (41)

where

• ACCe: Accuracy of the end-effector position in the
inertial frame

• ENj: energy expended by a manipulator during a
movement

• NUMu: number of updates
• DISTb: base disturbance during movement

• RM: base-manipulator mass ratio
• De: total required end-effector movement distance
• Tu: time during a manipulator movement when an

update is performed
• Su: Update sequence during a manipulator move-

ment
• EOC: endpoint over compensation
• EPS: endpoint servoing at the end of a movement
• Ttotal: total movement time

• Vj: maximum joint velocities
• tj: maximum joint torques

The variables that will be incorporated into the algorithm
for general cases are shown in the equation below.

(ACCe)=function(RM, De, Tu, Su, EOC, EPS) (42)

Based on the results of the previous sections, we know that
end-effector accuracy and therefore when the updating
should start depends largely on the RM. We write a general
analytical equation of updating start time determined
through experimentation as a function of RM as follows:

Tu =55+35(1222
RM

15) (43)

A graph of this function is seen in Figure 14.
The coefficients are varied so that the curve fits the

previously determined observations. Updating in any case
should not begin sooner than 55% of the way through the
movement and no later than approximately at 90% of the
way through the movement. The factor of 15 in the decaying
exponential component was chosen so that the update time

Fig. 14. Update start time vs. mass ratio.
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would be most “sensitive” for low mass ratios, and less
sensitive for higher mass ratios (larger slope at smaller mass
ratios). Tu can also be related to De or total required end-
effector distance knowing that regardless of the mass ratio,
if the manipulator end-effector is to move only a small
distance relative to the total manipulator length, then
updating could start a little later than would be justified by
Equation (43). If a very large distance is required (max-
imum 200% or twice manipulator length) then updating
should start sooner. Therefore Tu will be multiplied by a
factor kT related to the end-effector distance. This factor will
vary between 0.8 and 1.2 depending on De, the equation
being a linear one and written as

kT =S1.220.002S De

200 DD (44)

This equation was derived to give the desired function slope.
A graph of this function is seen in Figure 15.

The new update time is then given by

Tu =kTTu (45)

It has been determined that the higher the update frequency
the better the final accuracy. And to reduce the total number
of updates required a function will be chosen so that the
update frequency increases as the movement progresses. As
a guideline for an updating sequence function, a decaying
exponential curve is used similar to the one used to
determine Tu. The sequence should begin approximately at
Tu, and the latest an update should occur is approximately
96% of the total movement time. If time and velocity
scaling are enabled an update can occur later and excessive
torques and velocities will not result due to the increased
movement time. The experimental function is written as

Su =TuS2222
kstep2Tu

cf D (46)

where cf is given as

cf =25+(Tu 260) (47)

and kstep is a linear sequence used as a reference sequence
starting at Tu and increasing in steps to approximately the
time of the last update or Tlast. A step size for this sequence
is obtained using

Dkstep =
Tu

20
(48)

and is an average size of the actual update sequence interval.
The number of steps (Nk) performed is given by result of the
following equation rounded up to the next integer value

Nk =
Tlast 2Tu

Dkstep

(49)

Because of the rounding up of the number of steps, if
starting at Tu and adding steps of size Dkstep to Tu Nk times,
the final update time will be slightly larger than Tlast.
Therefore the difference between these values is subtracted
from each element in the updating sequence so that the step
size is Dkstep and so that the last step occurs at Tlast. The
result is that Tu is smaller so that updating begins a little
sooner than the original value. The new Su updating
sequence is calculated as shown below

Su =Su 2 (Sold(last))2Tlast) (50)

where Sold(last) is the last value of the original updating
sequence. A graph of this updating sequence is shown in
Figure 16. Curves for sequences starting at different Tu

values are shown. As stated previously, the updates occur
more frequently as the movement progresses.

If further accuracy is required after this sequence, which
may or may not incorporate endpoint overcompensation,

Fig. 15. Update factor vs. end-effector total distance. Fig. 16. Updating sequence vs. reference sequence.
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then servoing is continued until the desired accuracy is
achieved.

10. FURTHER EXAMPLES AND ALGORITHM
VERIFICATION
In this section simulations to test the previous algorithms
were performed with systems having different mass ratios,
desired end-effector locations, and accuracy requirements.
From these results an overall performance rating for the
updating algorithm can be obtained. The result from a series
of simulations with RM equal to 25 are shown in Table I.

For this mass ratio there were 25 different (x, y) positions
that the end-effector was commanded to servo to. The
algorithm was set up to use multiple updating for the first
movement and up to 5 endpoint servos to achieve a desired
end-effector accuracy of 1.0 cm or less. Where there is only
one value shown, this is the ACCe after the first 30 second
movement. Where there are 2 values separated by a semi-
colon (:), the first element is the error after the initial
movement and the second value is the error after one 6
second endpoint servo. For a fairly large RM such as 25,
most of the movements achieve the desired accuracy after
only one movement, and the others after one endpoint servo.
The results from a series of simulations with RM equal to 3
are shown in Table II.

Clearly the smaller the RM, the greater the number of
iterations that must be performed to obtain the desired
accuracy. Of the 25 desired points, only 1 point was
achieved on the first iteration, and 19 others movements
were successfully completed in less than five endpoint
servos. For 2 points, the desired positions were achievable
after a few more iterations, and 3 points cannot be achieved.
This is because the desired point is no longer in the
manipulator kinematic workspace (standard, fixed base type
singularity), due to manipulator-base reorientation around

the system centre of mass. There is code in the algorithm
that detects this singularity condition, and no more move-
ments are performed. If joint range limits are incorporated
(± 180 degrees), and a joint angle exceeding the limit is
required, then the movement is terminated as the desired
point cannot be achieved. Simulations were performed with
RMs other than presented in the Tables I and II, but are not
shown as similar conclusions can be inferred from the
previous discussion. In Figure 17 a system movement
(desired point 200, 2200) is shown in which 5 iterations
are required to achieve an accuracy of less than 1 cm. In
Figure 18 a system movement (desired point 0–200) is
shown in which the desired point is no longer reachable
after 4 iterations. The manipulator is in a singular
configuration.

To achieve the desired end-effector setpoint and required
accuracy with a minimum number of endpoint servos,
endpoint overcompensation is utilized for movements with
large De such as (100, 200) and (200, 200). These two points
required more than five iterations to achieve the desired
accuracy. If the end-effector error is greater than 25% of the
total manipulator length after the first movement, EOC is
used for the remaining iterations. For points that are no
longer in the manipulator kinematic workspace, no differ-
ence is seen using EOC. The results comparing the final
error for movements with and without EOC are shown in
Table III.

Endpoint servoing in conjunction with endpoint over-
compensation results in less iterations to achieve the desired
accuracy.

From the results presented and from numerous other test
simulations performed, it is evident that as long as the
desired point is in the manipulators kinematic workspace
and the joint range limits are not reached, a point can be
reached to any desired accuracy. The updating algorithm
also enables the manipulator to achieve this with a high

Table I. End-Effector Error – RM =25

X desired position, cm

2200 2100 0 100 200

200 6.6:0.5 5.7:0.5 5.5:0.5 4.9:0.5 4.6:0.5
Y desired 100 2.4:0.1 2.2:0 2.8:0.3 0.9:0 0.3:0
position, 0 0.8 0.4 0.9 0.3 0.9
cm 2100 0.1 0.0 0.1 0.2 1.0

2200 0.2 0.2 0.3 0.8 1.7:0.20

Table II. End-Effector Error – RM =3

X desired position, cm

2200 2100 0 100 200

200 99:72:67:67 80:44:41:41 61:30:17:12:1 50:25:14:8:4 42:24:15:10:6
Y 100 51:11:2:0.6 27:5:1.6:0.5 24:6:1.9:0.6 14:7:4:2:1 1.9:0.8
cm 0 17:11:2:0.6 6:0.7 7:0.1 2:0.2 8:1.3:0.3

2100 4:0.3 1.0 1.3:0.1 0.8 9:4:1.9:0.6
2200 11.8:1.6:0.4 5:0.5 6:0.8 10:2:0.6 18:7:3:1.5:0.7
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degree of stability and a minimal amount of energy
expended.

11. CONCLUSIONS
A motion control algorithm was developed for enabling a
manipulator mounted on a non-fixed base to achieve a
desired position in inertial space. The algorithm is imple-
mented without base control, and the exact dynamic
parameters of the system are not required. A joint trajectory
generator utilizing velocity time scaling and quintic polyno-
mials was developed and a simple PD position controller
was used for controlling the manipulator and was shown to
provide good servoing performance. Multiple inverse kine-
matic updates are done throughout a movement based on the
motion control algorithm. The algorithm takes into account
such factors as manipulator – base mass ratio, total required
end-effector movement, and required accuracy and gen-
erates an updating sequence that starts at an optimal time.
Updates are performed as specific times that result in better
accuracy than multiple single inverse kinematic calculation
movements.
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