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THREE MODEL-THEORETIC CONSTRUCTIONS FOR
GENERALIZED EPSTEIN SEMANTICS
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Nicolaus Copernicus University in Toruń

Abstract. This paper introduces three model-theoretic constructions for generalized Epstein
semantics: reducts, ultramodels and S-sets. We apply these notions to obtain metatheoretical
results. We prove connective inexpressibility by means of a reduct, compactness by an ultramodel
and definability theorem which states that a set of generalized Epstein models is definable iff it
is closed under ultramodels and S-sets. Furthermore, a corollary concerning definability of a
set of models by a single formula is given on the basis of the main theorem and the compactness
theorem. We also provide an example of a natural set of generalized Epstein models which is
undefinable. Its undefinability is proven by means of an S-set.

§1. Semantics with syntactic relation. Besides algebraic semantics and closely
related matrix models, Kripke semantics constitute the traditional form of interpreta-
tion for most non-classical logics. Originating in the field of modal logic, its variously
modified versions expanded to other areas, such as intuitionistic or relevance logics.
The general idea behind Kripke structures is to define relation(s) based on some non-
empty domain, elements of which are often referred to as ‘worlds’. Valuations of such
structures (frames) are relativized to worlds, and thus, truth is defined in two variants:
locally—in a particular world, and globally—in all worlds. If we exclude the quite well-
known neighborhood structures (they share one of the basic ideas of possible-world
semantics: truth being relativized to members of the domain), it seems that the only
mainstream non-algebraic rivals of (generalized or modified) Kripke models are plain
valuations—either classical, or many-valued.

Another route has been set by Richard Epstein [3–5]. Having very specific goal in
mind, he introduced new types of models by enhancing a standard valuation with a
binary relation. Unlike Kripke, he chose not to define his relation on some arbitrary
domain, but on the fixed set of formulas. Thus he obtained semantics which enabled
him to interpret intensional connective (he focused solely on non-material implication).
His main philosophical motivation was to formalize the notion of content relation.
For this reason, he imposed various specific conditions on his relation. He indicated
two main classes of logics: dependence logics and relatedness logics. Epstein’s ideas
have been picked up by other researchers, to name a few, [7, 17, 18] for philosophical
exploration of Epstein logics, [11–13] for overall analysis of Epstein’s logics, [1, 2]
for proof-theoretical investigations into Epstein’s logics, [15] for alternative semantics
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for first degree relatedness logic and [16] for constructive proof of completeness (the
original one was given using the standard Henkin method; see [5]).

Epstein has outlined a research program in which his semantics are conjectured to
be an adequate interpretation for other non-classical logics. Following his plan, he has
used his semantics to obtain paraconsistent logic [6].

Recently, Epstein semantics were generalized [8] in a twofold way. First of all, no
restrictions have been put on a relation. Secondly, new connective has been introduced:
a special type of conjunction which was interpreted analogously as Epstein implication.
These simple generalizations opened new perspective on Epstein semantics: it can
be treated analogously as Kripke semantics, abstracting from specific applications
to relatedness and dependence. This way, both philosophical and mathematical
potential of Epstein semantics becomes even wider and Epstein program—easier to
achieve. Following the observation from [8], further philosophical applications of
Epstein semantics have emerged. It has been used in connexive logic [14] and deontic
logic [9].

Mathematical aspects of Epstein semantics remain vastly unexplored.1 The goal of
this paper is to add some technical sophistication to meta-theory of Epstein semantics
by introducing new model-theoretic constructions and applying them to prove some
theorems about Epstein semantics. We will focus on the extended language from [8].

§2. Language and semantics. Let Φ = {p0, p1, p2, ...} be the set of propositional
letters. We introduce one unary connective: the negation ¬ and binary connectives:
∨,∧,→,↔,�,�. The set of connectives will be denoted by con. The set of formulas
FOR is the least set such that:

• Φ ⊆ FOR,
• ϕ ∈ FOR implies ¬ϕ ∈ FOR,
• ϕ,� ∈ FOR implies ϕ ∗ � ∈ FOR where ∗ ∈ con \ {¬}.

A generalized Epstein model is an ordered pair M = 〈v,R〉, where v : Φ −→ {0, 1}
is a standard valuation and R ⊆ FOR× FOR is a binary relation defined on the set of
formulas. The domain of M is fixed in each case; it is the set of formulas FOR. This is
an important remark because—unlike in the case of first order or modal logic—we are
not impelled to the notion of a class when talking about objects the elements of which
are models. Actually, the set of all models is {0, 1}Φ × P(FOR× FOR). That is why we
can use the term ‘set of models’ without being involved in set-theoretical paradoxes.
Let ϕ ∈ FOR, M = 〈v,R〉. We say that ϕ is true in M, symbolically M � ϕ iff:

• v(ϕ) = 1 for ϕ ∈ Φ,
• M � � for ϕ = ¬�,
• M � � and M � � for ϕ = � ∧ �,
• M � � or M � � for ϕ = � ∨ �,
• M � � or M � � for ϕ = � → �,
• M � � iff M � � for ϕ = � ↔ �,

1 It should be mentioned that some research have been made on the language with additional
intensional connectives: intensional disjunction and equivalence in [10]. This dissertation
focuses mainly on axiomatization of logics obtained from certain classes of generalized
Epstein models.
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• [M � � and M � �] and 〈�, �〉 ∈ R for ϕ = � � �,
• [M � � or M � �] and 〈�, �〉 ∈ R for ϕ = � � �.

The last two connectives will be called intensional conjunction and intensional impli-
cation respectively. Notice that in order for an intensional conjunction/implication
to be true, the standard condition for the classical conjunction/implication has to
be fulfilled, as well as both conjuncts/the antecedent and the consequent have to
remain related by relation R. The intended reading of those formulas differs from the
philosophical interpretation, e.g., ϕ � � may be read as ‘ϕ causes �’, if one wants to
analyze causality,ϕ � � as ‘ϕ and (then)�’, if we want to use conjunction in a manner
that respects temporal succession (see [8]). A possible spectrum of applications seems to
be much wider—the general idea being that Epstein semantics provide the framework
within which behavior of some connectives mirrors the intensional character of the
words like ‘if..., then’ or ‘and’ from natural language.

When for some ϕ,� ∈ FOR, 〈ϕ,�〉 ∈ R we will often write shortly ϕR�. Let Σ ⊆
FOR. We say that M � Σ iff for any � ∈ Σ we have M � �. By M we will denote the set
of all generalized Epstein models (shortly: models). The symbol � ϕ will mean that
for any M ∈ M we have M � ϕ. Let K ⊆ M be a set of models. We say that Σ ⊆ FOR
is satisfiable in K iff there is M ∈ K such that M � Σ; if K = M we will simply say that
Σ is satisfiable.

We shall also specify the notion of definability of models which is crucial in the main
theorem we prove in the latter parts of the paper.

Definition 2.1 (Definability). Let Γ ⊆ FOR, and let K be some set of models. We say
that Γ definesKwhen for any modelM = 〈v,R〉 the following holds: M � Γ iffM ∈ K.
We say that a set of models K is definable iff there is some Γ ⊆ FOR that defines K.

Since we will use induction on the complexity of formulas in latter proofs, let us
state the definition of the formula-complexity function.

Definition 2.2. Let N be the set of natural numbers. The formula-complexity function
c : FOR −→ N is given by the following conditions:

c(ϕ) = 1 iff ϕ ∈ Φ,

c(¬ϕ) = 1 + c(ϕ),

c(ϕ ∗ �) = 1 + c(ϕ) + c(�), where ∗ = ∨,∧,→,↔,�,� .
Later on, we will not state the induction hypothesis explicitly in our proofs. When

referring to induction hypothesis in inductive step which shows that the result holds
for ϕ, we will assume that the hypothesis says that the result holds for any � such that
c(�) < c(ϕ).

§3. Reducts and inexpressibility of connectives. It is a common practice in classical
or modal logic to restrict its presentation to a chosen set of connectives and treat the
remaining ones as secondary notions by means of certain definitions, e.g., {¬,∧} plus
� if one is concerned with modal logic. In this section we will show why we need to
maintain all the connectives introduced in the previous section in case of JarmuŻek–
Kaczkowski logic (contrary to what is stated in their paper; see Fact 3.1.5. [8, p. 57]).
It will be achieved by means of a reduct—our first model-theoretic construct. We shall
start from some conventions. Let a ⊆ con be some set of connectives. By FORa we will
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denote the set of formulas generated from Φ and a. In this sense, FORcon is just FOR.
Now, let us define the notion of a reduct.

Definition 3.3 (Reduct). LetM = 〈v,R〉, and a ⊆ con. We say thatMa = 〈v′,R′〉 is a
reduct of M to a iff v = v′ and R′ = R \ {〈ϕ,�〉 ∈ FOR2 : ϕ /∈ FORa or � /∈ FORa}.

We can prove the following reduct lemma, which will be used in the proof of
inexpressibility.

Lemma 3.4 (Reduct lemma). Let a ⊆ con, M = 〈v,R〉 and Ma = 〈v′,R′〉 be its reduct
to a. For any ϕ ∈ FORa we have M � ϕ iff Ma � ϕ.

Proof. The result obviously holds for propositional letters since v = v′. In case
of connectives of a that are among the set con \ {�,�} the result is an immediate
consequence of inductive hypothesis. Now, let us assume that �∈ a. Letϕ = � � � ∈
FORa . Assume M � � � �. Hence�R� and M � � or M � �. Both�, � ∈ FORa , so
�R′�. Furthermore, by inductive hypothesis we know that Ma � � or Ma � �. This
means that Ma � � � �. For the other direction, assume Ma � � � �. Hence �R′�
and Ma � � or Ma � �. By inductive hypothesis, M � � or M � �. Obviously, R′ ⊆
R, so �R�, which means M � � � �. Let ϕ = � � � ∈ FORa . Assume M � � � �.
Hence M � �, M � � and �R�. By inductive hypothesis, Ma � � and Ma � �. We
also know that �, � ∈ FORa , so �R′�. This means that Ma � � � �. For the other
direction, assume that Ma � � � �. Hence Ma � �, Ma � � and �R′�. By inductive
hypothesis,M � � andM � �. We also know that�R�, sinceR′ ⊆ R. This means that
M � � � �.

Definition 3.5. Let a ⊆ con. We say that a is con-expressible iff for any ϕ ∈ FOR there
is � ∈ FORa such that � ϕ ↔ �.

In the light of the remark from the beginning of this section, we can say that we can
restrict ourselves to some proper subset of con, only when this subset is con-expressible.
Now we will show that such subset does not exist.

Theorem 3.6 (Inexpressibility). Let a ⊆ con. a is con-expressible iff a = con.

Proof. The right to left direction is trivially true. For the left to right assume that
a �= con. Then there is ∗ ∈ con such that ∗ /∈ a. Either 1) ∗ = ¬ or 2) ∗ is one of
the binary connectives. Assume that ∗ = ¬. Let ϕ = ¬p0 � ¬p0 ∈ FOR. Assume for
reductio that a is con-expressible. Let� ∈ FORa be such that � ϕ ↔ �. LetM = 〈v,R〉
be such that R = {〈¬p0,¬p0〉}. Obviously, M � ϕ. Hence, by the assumption we have
M � �. Let Ma = 〈v′,R′〉 be a reduct of M to a, i.e., v = v′ and R′ = ∅, because
¬p0 /∈ FORa . By Lemma 3.4 we obtain: Ma � �. But Ma � ϕ. Contradiction, so a is
not con-expressible. Now, assume that ∗ is a binary connective. Let ϕ = (p0 ∗ p0) �
(p0 ∗ p0). Let M = 〈v,R〉 be such that R = {〈p0 ∗ p0, p0 ∗ p0〉}. Assume further that
a is con-expressible. Let � ∈ FORa be such that � ϕ ↔ �. We know that M � ϕ.
Hence also M � �. Let Ma = 〈v′,R′〉 be such that v = v′ and R′ = ∅. By Lemma 3.4,
Ma � �. But Ma � ϕ. Contradiction, so a is not con-expressible.

To sum up the theorem just proven, it can be said that the only set of connectives
that is capable of expressing con is the set con itself. Or in other words: any proper
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subset of con is con-inexpressible. Observe that in the face of Theorem 3.6, Fact 3.1.5.
from [8] is false.2

§4. Ultramodels and compactness. Before moving to the next definition, we shall
quickly recall the notion of an ultrafilter. Let W be a non-empty set. By P(W ) we shall
denote the power set of W. F ⊆ P(W ) is a filter over W if the following conditions are
fulfilled: i)W ∈ F , ii) X,Y ∈ F implies X ∩ Y ∈ F , and iii) if X ∈ F and X ⊆ Y ⊆
W , then Y ∈ F . Filter F over W is said to be proper iff F �= P(W ). An ultrafilter U
over W is a proper filter that meets the following stipulation: for any X ⊆W we have
X ∈ U iffW \ X /∈ U .

LetA ⊆ P(W ). We say that A has the finite intersection property iff the intersection
of any finite number of elements of A is non-empty. The filter generated by A is the set⋂
{F ⊆ P(W ) : A ⊆ F and F is a filter over W }. It can be easily proven that such

set is indeed a filter. We shall also recall the well-known fact about ultrafilters often
referred to as the ultrafilter theorem.

Theorem 4.7. If A ⊆ P(W ) has the finite intersection property, then it can be extended
to an ultrafilter.

Now we shall introduce the construction which is inspired by the well-known
ultraproduct.

Definition 4.8 (Ultramodel). Let (Mi)i∈I be a non-empty family of models where for
each i ∈ IMi = 〈vi ,Ri〉, U an ultrafilter over I. We define the ultramodel of (Mi)i∈I
modulo U to be �

i∈I
Mi /U = 〈v,R〉, where:

for any ϕ ∈ Φ define: v(ϕ) = 1 iff {i ∈ I : vi(ϕ) = 1} ∈ U,
for any ϕ,� ∈ FOR define: ϕR� iff {i ∈ I : ϕRi�} ∈ U.

Since there is no product of any domain within our construction, we named it simply
‘ultramodel’. We obtain the result completely analogous to Łoś’s theorem.

Lemma 4.9 (Ultramodel lemma). Let I be the non-empty set and U an ultrafilter over I.
For any ϕ ∈ FOR, Mi = 〈vi ,Ri〉

�
i∈I

Mi /U � ϕ iff {i ∈ I : Mi � ϕ} ∈ U.

Proof. Let I be a non-empty set and U an ultrafilter over I. Let (Mi)i∈I be
a family of models where Mi = 〈vi ,Ri〉 for each i ∈ I . �

i∈I
Mi /U = 〈v,R〉. Let

ϕ ∈ FOR be an arbitrary formula. For the base case assume ϕ ∈ Φ. �
i∈I

Mi /U � ϕ

iff v(ϕ) = 1 iff {i ∈ I : vi(ϕ) = 1} ∈ U iff {i ∈ I : Mi � ϕ} ∈ U . Now assume that
ϕ = ¬�. �

i∈I
Mi /U � ¬� iff �

i∈I
Mi /U � � iff (from hypothesis) {i ∈ I : Mi � �} /∈ U

iff I \ {i ∈ I : Mi � �} ∈ U iff {i ∈ I : Mi � �} ∈ U iff {i ∈ I : Mi � ¬�} ∈ U .
Assume thatϕ = � ∨ �. �

i∈I
Mi /U � � ∨ � iff �

i∈I
Mi /U � � or �

i∈I
Mi /U � � iff (from

2 It states the following: Let FOR be the set of formulas built from {¬,∨,�} (so FOR ⊂ FOR).
For any ϕ ∈ FOR there is � ∈ FOR such that � ϕ ↔ �; see Fact 3.1.5 [8, p. 57].
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hypothesis) {i ∈ I : Mi � �} ∈ U or {i ∈ I : Mi � �} ∈ U . In either case {i ∈ I :
Mi � �} ∪ {i ∈ I : Mi � �} ∈ U , which means {i ∈ I : Mi � � ∨ �} ∈ U . For the
other direction, assume that {i ∈ I : Mi � � ∨ �} ∈ U . This means that {i ∈ I :
Mi � � and Mi � �} /∈ U . This means that {i ∈ I : Mi � �} ∩ {i ∈ I : Mi � �} /∈
U . So {i ∈ I : Mi � �} /∈ U or {i ∈ I : Mi � �} /∈ U . This means that {i ∈ I : Mi �
�} ∈ U or {i ∈ I : Mi � �} ∈ U . By hypothesis: �

i∈I
Mi /U � � or �

i∈I
Mi /U � �,

which means �
i∈I

Mi /U � � ∨ �. The remaining Boolean cases are analogous. Let

ϕ = � � �. Assume �
i∈I

Mi /U � � � �. �
i∈I

Mi /U � � and �
i∈I

Mi /U � � and �R�.

From the earlier results we know that {i ∈ I : Mi � � and Mi � �} ∈ U and {i ∈
I : �Ri�} ∈ U . But then intersection of those two sets belongs to U, meaning
{i ∈ I : Mi � � � �} ∈ U . For the other direction, assume {i ∈ I : Mi � � � �} ∈
U . Note that: {i ∈ I : Mi � � � �} ⊆ {i ∈ I : Mi � � and Mi � �} ⊆ I and {i ∈
I : Mi � � � �} ⊆ {i ∈ I : �Ri�} ⊆ I . So, {i ∈ I : Mi � � and Mi � �} ∈ U and
{i ∈ I : �Ri�} ∈ U . Hence �

i∈I
Mi /U � � and �

i∈I
Mi /U � � and �R�, which means

�
i∈I

Mi /U � � � �. Let ϕ = � � �. Assume that �
i∈I

Mi /U � � � �. This means that

�
i∈I

Mi /U � � → � and�R�. We know that {i ∈ I : Mi � � → �} ∈ U from previous

results for Boolean connectives and {i ∈ I : �Ri�} ∈ U . Hence the intersection of
those sets is in U meaning that {i ∈ I : Mi � � � �} ∈ U . For the other direction
assume that {i ∈ I : Mi � � � �} ∈ U . Hence both {i ∈ I : Mi � � → �} ∈ U and
{i ∈ I : �Ri�} ∈ U since {i ∈ I : Mi � � � �} ⊆ {i ∈ I : Mi � � → �} and {i ∈
I : Mi � � � �} ⊆ {i ∈ I : �Ri�}. From the previous results we also know that
�
i∈I

Mi /U � � → � and �R� meaning �
i∈I

Mi /U � � � �.

An important remark about our construction which differentiates it from the
ultraproduct construction is that an ultramodel of identical models (analogous to
an ultrapower in terms of an ultraproduct) always comes down to a single component
(does not produce any new entity)3, i.e.:

Proposition 4.10. Let (Mi)i∈I be such that for each k, l ∈ I we have Mk = Ml and let
U be an ultrafilter over I. Then �

i∈I
Mi /U = Mj where j is an arbitrary index from I.

Proof. For the proof, it is enough to observe the following: either {i ∈ I : v(ϕ) =
1} = I , or {i ∈ I : v(ϕ) = 1} = ∅ depending whether vj(ϕ) = 1 or vj(ϕ) = 0 for any
ϕ ∈ Φ. Similarly {i ∈ I : ϕRi�} = I ifϕRj� and {i ∈ I : ϕRi�} = ∅ if 〈ϕ,�〉 /∈ Rj .
For vj(ϕ) = 1 iff {i ∈ I : v(ϕ) = 1} = I ∈ U for any ϕ ∈ Φ and ϕRi� iff {i ∈ I :
ϕRi�} = I ∈ U for any ϕ,� ∈ FOR.

Now, we can move on to prove the next theorem. Compactness has been also proven
in [8]. However, our method will be completely different than the one employed by the
authors.

Theorem 4.11 (Compactness). Let Σ ⊆ FOR. If all finite subsets of Σ are satisfiable,
then Σ is satisfiable.

3 Unlike an ultrapower, although it always gives an elementary equivalent model. An
ultrapower itself can be non-identical to a component: domains can have different
cardinalities.
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Proof. Let I be the set of all finite subsets of Σ. For each i ∈ I let Mi be the model
satisfying i. Let E = {�̂ : � ∈ Σ}, where for each � ∈ Σ we have �̂ = {i ∈ I : � ∈ i}. E
has the finite intersection property since for any �0, ... , �n ∈ Σ{�0, ... , �n} ∈ �̂0 ∩ ··· ∩
�̂n. By Fact 4.7 E can be extended to an ultrafilter. Let U be such ultrafilter. For any
� ∈ Σ, �̂ ∈ U and �̂ ⊆ {i ∈ I : Mi � �}. So {i ∈ I : Mi � �} ∈ U . By Lemma 4.9 we
know that �

i∈I
Mi /U � � for any � ∈ Σ. Hence �

i∈I
Mi /U � Σ.

§5. S-sets and (un)definability. Our last model-theoretic notion is the S-set
construction, which ascribes the whole set of models to a single generalized Epstein
model.

Definition 5.12 (The S-set). Let M = 〈v,R〉 be a model. We define the set ΩM =
{〈ϕ,�〉 : M � ϕ → �}. We define the S-set of M as follows:

SM = {〈v′,R′〉 : v′ = v, R \ ΩM ⊆ R′ ⊆ R ∪ ΩM}.
If we were to define the S construction as an operation, it would beO : M −→ P(M)

where O(M) = SM for any M = 〈v,R〉 ∈ M.
In order to prove Theorem 5.16, we shall first state some definitions and prove some

lemmas. Let us start with the definition of model equivalence.

Definition 5.13. Let M be a model. By Th(M) we understand the theory of M, i.e.,
Th(M) = {ϕ ∈ FOR : M � ϕ}. Given the modelsM = 〈v,R〉,N = 〈v′,R′〉 letM ≈ N

iff Th(M) = Th(N). Obviously, ≈ is an equivalence relation, hence for arbitrary model
by |M|≈ we shall denote the equivalence class: {N : M ≈ N}.

Lemma 5.14 (S-lemma). For any M = 〈v,R〉 we have SM = |M|≈.

Proof. Let M = 〈v,R〉. For the left to right inclusion assume N = 〈v′,R′〉 ∈ SM.
We will show that for any ϕ ∈ FOR we have M � ϕ iff N � ϕ, which means M ≈ N.
For the base case assume that ϕ is atomic: ϕ ∈ Φ. By Definition 5.12 we know that
v′ = v, so we get the result immediately. Assume further that ϕ = ¬�. M � ¬� iff
M � � iff (from hypothesis) N � � iff N � ¬�. For ϕ = � ∧ � we have the following:
M � � ∧ � iff M � � and M � � iff (from hypothesis) N � � and N � � iff N � � ∧ �.
The proof for the rest of the Boolean connectives goes in a similar way. Now assume that
ϕ = � � �. Assume further that M � � � �. Hence M � � or M � �. By inductive
hypothesis, we obtain that also N � � or N � �. We also know that 〈�, �〉 ∈ R. Since
it is not the case that M � � → �, we know by Definition 5.12 that 〈�, �〉 /∈ ΩM.
Then 〈�, �〉 ∈ R \ ΩM and R \ ΩM ⊆ R′, so 〈�, �〉 ∈ R′, which means N � � � �.
For the other direction, assume that N � � � �. This means that N � � or N � �.
From inductive hypothesis we get M � � or M � �. Also 〈�, �〉 ∈ R′. Since R′ ⊆
R ∪ ΩM we know that 〈�, �〉 ∈ R ∪ ΩM. But again M � � → �, so 〈�, �〉 /∈ ΩM,
which means 〈�, �〉 ∈ R. This means that M � � � �. Now let ϕ = � � �. Assume
M � � � �. Hence M � � and M � �. By inductive hypothesis N � � and N � �. We
also know that 〈�, �〉 ∈ R. Since M � � ∧ �, it is not the case that M � � → �. Hence
〈�, �〉 /∈ ΩM. Then 〈�, �〉 ∈ R \ ΩM and R \ ΩM ⊆ R′, so 〈�, �〉 ∈ R′ which means
N � � � �. For the other direction, assume that N � � � �. This means that N � �
and N � �. From inductive hypothesis we get M � � and M � �. Also 〈�, �〉 ∈ R′.
Since R′ ⊆ R ∪ ΩM, we know that 〈�, �〉 ∈ R ∪ ΩM. But again M � ϕ ∧ �, so also
M � ϕ → �. Then 〈�, �〉 /∈ ΩM which means 〈�, �〉 ∈ R. This means thatM � � � �.
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Now, for the right to left inclusion assume N = 〈v′,R′〉 /∈ SM. Then at least one of
the following holds: i) v �= v′, ii) R \ ΩM � R′ or iii) R′ � R∪ ΩM. If i) holds, then
we immediately know thatM �≈ N. If ii) is true, then there is 〈ϕ,�〉 ∈ R \ ΩM such that
〈ϕ,�〉 /∈ R′. We already know that N � ϕ � �. But since 〈ϕ,�〉 /∈ ΩM, we know that
M � ϕ → �. We also know that 〈ϕ,�〉 ∈ R, so M � ϕ � �. The desired result holds:
M �≈ N. Finally, let us consider iii). There is 〈ϕ,�〉 ∈ R′ such that 〈ϕ,�〉 /∈ R ∪ ΩM.
Since 〈ϕ,�〉 /∈ ΩM, we know that M � ϕ → �. We also know that M � ϕ � �, for
〈ϕ,�〉 /∈ R. Either N � ϕ → � or N � ϕ → �. If the first one holds we obtain the
result: M �≈ N. If the second one holds, then N � ϕ � �, which also means that
M �≈ N.

We say that a set of models K is closed under S-sets when the following holds for
M = 〈v,R〉, N = 〈v′,R′〉:

if M ∈ K and N ∈ SM, then N ∈ K.

K is closed under ultramodels when for any non-empty I and any ultrafilter U over I
we have:

if ∀i∈IMi ∈ K, then �
i∈I

Mi /U ∈ K.

Let K be a set of models. By K we shall denote K’s complementation, that is: {M =
〈v,R〉 : M /∈ K}. Note that the following is true about closure under S-sets:

Proposition 5.15. Let K be a set of models. K is closed under S-sets iff K is.

Proof. Assume that K is closed under S-sets but K is not. Then there is M ∈ K
and N /∈ K such that N ∈ SM. Hence N ∈ K and N ≈ M so M ∈ SN, which means
M ∈ K—contradiction.

Now we are ready to state and prove our main theorem:

Theorem 5.16. Let K be a set of models. K is definable iff K is closed under S-sets and
ultramodels.

Proof. For the left to right direction, let K be a definable set of models. Let Γ ⊆ FOR
define K. Assume M ∈ K and N ∈ SM. M � Γ. But also N � Γ by Lemma 5.14, so
N ∈ K. Now assume that for each i ∈ IMi ∈ K for some non-empty I. Let U be an
ultrafilter over I. Since for each � ∈ Γ we have {i ∈ I : Mi � �} = I , we know from
Lemma 4.9 that �

i∈I
Mi /U � Γ. Hence �

i∈I
Mi /U ∈ K.

For the right to left, assume that K is closed under S-sets and ultramodels. Let
Γ = {ϕ ∈ FOR : for all N ∈ K N � ϕ}. We will show that Γ defines K. Obviously,
M ∈ K impliesM � Γ. For the opposite direction, letM = 〈v,R〉be an arbitrary model
such that M � Γ. Each finite subset of Th(M) is satisfiable in K. For otherwise there
would be finite Σ0 = {�0, ... , �n} such that for each N ∈ K we would have N � Σ0. This
would mean that¬�0 ∨ ··· ∨ ¬�n ∈ Γ and soM � ¬�0 ∨ ··· ∨ ¬�n. Contradiction. Let I
be the set of all finite subsets of Th(M). For each i ∈ I let Mi be the model satisfying
i. LetE = {�̂ : � ∈ Th(M)}, where for each � ∈ Th(M)�̂ = {i ∈ I : � ∈ i}. E has the
finite intersection property since for any�0, ... , �n ∈ Th(M){�0, ... , �n} ∈ �̂0 ∩ ··· ∩ �̂n.
By Fact 4.7 E can be extended to an ultrafilter. Let U be such ultrafilter. For any
� ∈ Th(M)�̂ ∈ U and �̂ ⊆ {i ∈ I : Mi � �}. So {i ∈ I : Mi � �} ∈ U . By Lemma 4.9
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we know that �
i∈I

Mi /U � � for any� ∈ Th(M). Hence �
i∈I

Mi /U � Th(M). By Lemma

5.14 we know that M ∈ §
�
i∈I

Mi /U

. Moreover, �
i∈I

Mi /U ∈ K so M ∈ K.

As a corollary of the definability theorem, compactness and Fact 5.15, we can state
the following:

Corollary 5.17. Let K be a set of models. K is definable by a single formula iff K is
closed under S-sets and ultramodels and K is closed under ultramodels.

Proof. Let K be a set of models defined by a single formula. Let ϕ ∈ FOR be such
formula. By Theorem 5.16 we know that K is closed under S-sets and ultramodels. In
order to show that K is closed under ultramodels, it is easy to notice that K is defined
by ¬ϕ. For otherwise there would be M ∈ K such that M � ϕ or M ∈ K such that
M � ¬ϕ. Both disjuncts immediately lead to contradiction with the assumption that
ϕ defines K. Hence ¬ϕ defines K. This enables us to state that K is also closed under
S-sets (which we knew already) and ultramodels. For the other direction, let K be
closed under S-sets and ultramodels and K be closed under ultramodels. By Fact 5.15,
K is also closed under S-sets, so from 5.16 we know that both K and K are definable. Let
Γ ⊆ FOR define K and Σ ⊆ FOR define K. We know that there is no model M = 〈v,R〉
such that M � Γ ∪ Σ because this would mean that M belongs to K as well as K, which
is impossible. For this reason, Γ ∪ Σ is not satisfiable. By compactness, there is a finite
subset Δ ⊆ Γ ∪ Σ such that Δ is not satisfiable. We know that there are finite Γ0 ⊆ Γ,
Σ0 ⊆ Σ such that Δ = Γ0 ∪ Σ0. If one of those sets is empty, then either K = M or
K = M which means that the defining formula is p0 ∨ ¬p0 for M. Let us now
assume that both Γ0 and Σ0 are non-empty. Let Γ0 = {�0, ... , �k}, Σ0 = {�0, ... , �j}.
We know that �0 ∧ ··· ∧ �k � ¬�0 ∨ ··· ∨ ¬�j . Let ϕ = �0 ∧ ··· ∧ �k . We conclude that
ϕ defines K.

Up to this point, the reader may have an impression that the notion of an S-set
seems to be some ad hoc construction introduced only to prove definability theorem
5.16. To prove him wrong, let us present some more concrete application. We will use
S-lemma 5.14 to prove undefinability of some naturally emerging set of models, e.g.,
models with symmetric relation.

Proposition 5.18. LetMs be the set of symmetric models, i.e.,Ms = {〈v,R〉 : ϕR� =⇒
�Rϕ}. Ms is not definable.

Proof. Assume that Ms is definable. Let Γ ⊆ FOR define Ms . Let M = 〈v,R〉,
where v(p0) = 0 and for each ϕ ∈ Φ such that ϕ �= p0 we have v(ϕ) = 1. Let
R = {〈p0, p1〉, 〈p1, p0〉}. R is symmetric so M ∈ Ms . This means that M � Γ.
Observe that 〈p1, p0〉 ∈ ΩM since M � p1 → p0. Let N = 〈v′,R′〉 where v′ = v and
R′ = {〈p0, p1〉}. Notice that R′ = R \ ΩM so N ∈ SM which by 5.14 means M ≈ N.
This means that N � Γ. But R′ is not symmetric, so N /∈ Ms ! Contradiction. Ms is not
definable.

§6. Conclusion. The main results of the paper are 1) the inexpressibility of
connectives by any of its proper subsets, 2) purely model-theoretic proof of
compactness and 3) (un)definability theorems. Those results were achieved by means
of the three novel constructions introduced in the paper: reducts, ultramodels and
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S-sets. The author believes that the potential of the S-set construction reaches beyond
the theorems just proven. These investigations will be subject of the future work.
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