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Numerical simulations are used to investigate the effect of aspect ratio on the wake
topology and hydrodynamic performance of thin ellipsoidal flapping foils. The study
is motivated by the quest to understand the hydrodynamics of fish pectoral fins. The
simulations employ an immersed boundary method that allows us to simulate flows
with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the
vortex topology shows that the wake of low-aspect-ratio flapping foils is dominated
by two sets of interconnected vortex loops that evolve into distinct vortex rings as
they convect downstream. The flow downstream of these flapping foils is characterized
by two oblique jets and the implications of this characteristic on the hydrodynamic
performance are examined. Simulations are also used to examine the thrust and
propulsive efficiency of these foils over a range of Strouhal and Reynolds numbers as
well as pitch-bias angles.

1. Introduction
The term ‘flapping’ is usually applied in the context of the wing motion of birds and

insects and consists of an oscillatory rolling motion of the wing about the shoulder
joint with simultaneous change in the geometric pitch angle of the wing via a rotation
of the wing about its spanwise axis. Pectoral fins of fish also exhibit essentially similar
kinematics although large-scale passive as well as active deformation of these fins
can significantly increase the complexity of the fin kinematics. In many studies, this
so-called ‘pitching and rolling’ motion has been simplified to a ‘pitching and heaving’
motion wherein the rolling motion of the wing is replaced by a heaving motion. In
addition to serving as a model for flapping wing/fin kinematics, pitch-and-heave also
represents the essential kinematics of caudal-fin motion in carangiform propulsion
(Lighthill 1975).

Past studies have successfully employed pitching-and-heaving foils as models
of flapping wings and gained useful insight into the fluid dynamics of flapping
flight as well as carangiform propulsion. Most of these past studies have assumed
that the aspect ratio of the foils is large and have therefore restricted their
attention to two-dimensional flapping foil configurations. In experimental studies,
this has been accomplished through the use of high-aspect-ratio foils (Koochesfahani
1989; Triantafyllou, Triantafyllou & Grosenbaugh 1992) whereas numerical studies
accomplish this by explicitly performing two-dimensional simulations that ignore any
spanwise variability in the foil geometry and the flow field (Jones, Dohring & Platzer
1998; Isogai, Shinmoto & Watanabe 1999; Tuncer & Platzer 2000; Wang 2000;
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Mittal, Uttukar & Udaykumar 2002a; Mittal et al. 2003; Lewin & Haj-Hariri 2003;
Pedro, Suleman & Djilali 2003; Guglielmini & Blondeaux 2004).

The assumption of two-dimensionality has some validity for bird and insect flight
where wings of many species tend to be of a relatively large aspect ratio. For instance,
even a small bird such as a tree sparrow has a wing with an aspect ratio (denoted
by symbol AR and defined as (span)2/(area)) of about 5 (Azuma 1992). Aspect ratio
for soaring birds such as albatrosses can reach values as high as 18. Examples of
relatively high-aspect-ratio wings also abound in the insect world; for instance, the
aspect ratio of a bumblebee wing is about 6.3 (Usherwood & Ellington 2002) and that
of craneflies is about 11 (Ellington 1984). In contrast, the aspect ratio of fish pectoral
fins tend to be generally smaller. For instance, the aspect ratios of four species of
labrid fishes range from about 1.5 to 3.5 (Walker & Westneat 2002), whereas bluegill
sunfish and ratfish have pectoral fins with aspect ratios of about 2.4 (Drucker &
Lauder 1999) and 2.2 (Combes & Daniel 2001), respectively. Evolutionary pressure
towards these smaller-aspect-ratios in pectoral fins is probably due to a number of
different factors. Smaller fish that live in highly energetic habitats such as coral reefs
and near-shore regions make extensive use of pectoral fins for propulsion as well as
manoeuvring and station-keeping. As discussed extensively by Walker & Westneat
(2002), the pectoral fin kinematics adopted by these fish can range all the way from
a back-and-forth paddle-like motion (for braking, turning and fast starts) to flapping
motion (for cruising). It has generally been understood that propulsive forces in
paddling are drag-based for which low aspect-ratio fins are most appropriate. In
contrast, flapping motion is considered to be associated with lift-based propulsion
and this is expected to work best with higher-aspect-ratio wings/fins (Combes &
Daniel 2001; Walker & Westneat 2002). Thus, just from a hydrodynamic point of
view, fish pectoral fins would tend to be of a lower aspect ratio than insect and
bird wings. In addition, large-aspect-ratio fins would require a stiffer and therefore
heavier fin support structure since they would be subject to larger bending moments.

In this context, it might also be argued that the abundance of high-aspect-ratio
wings in flying animals and the contrasting paucity of high-aspect-ratio pectoral fins
in fish is primarily connected with water being three-orders of magnitude denser than
air. A flapping fish fin would therefore experience significantly higher added-mass
associated bending moments and a lower aspect ratio would tend to reduce this
bending moment for fish fins. However, many insects such as wasps, flies and
bubblebees routinely flap their wings at frequencies exceeding 150 Hz (Azuma 1992)
whereas flapping frequencies of fish pectoral fins seldom exceed 5 Hz (Drucker &
Lauder 1999; Walker & Westneat 2002). Since the added-mass force is proportional
to the square of the flapping frequency, it is easy to see that added-mass associated
moments experienced by the wings of many flying insects could be comparable with
those experienced by the pectoral fins of fish. Thus in our view, added-mass force
although important, is not the primary determining factor of fish-fin aspect ratio.

In addition to the above hydrodynamic factors, there are probably many non-
hydrodynamic factors that produce pressure towards smaller-aspect-ratio pectoral
fins. For instance, high-aspect-ratio fins have a larger visual signature and would also
be cumbersome to operate in tight spaces. The key question then becomes: how well
do these relatively low-aspect-ratio fins work when used during flapping and how
does their performance vary with aspect ratio and other key kinematic parameters?
These same questions are also relevant for underwater vehicles that are designed
to use flapping foil propulsors (Fish et al. 2003; Techet et al. 2005). Large-aspect-
ratio foils are cumbersome to operate in complex environments, are more prone
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to damage and also require a stronger and heavier support structure to withstand
the larger bending moments. Thus, it is of interest to assess the hydrodynamic
performance deterioration that is associated with the use of low-aspect-ratio foils.
Finally, many studies have shown that the wake structure is a critical determinant of
the hydrodynamic performance of flapping foils. However, relatively little is known
about the wake topology of finite and low-ratio foils. A systematic and comprehensive
examination of the hydrodynamics of small-aspect-ratio (AR � 5) flapping foils would
allow us to gain some insight into all these issues and this forms one motivation for
the current study.

A number of studies have examined the fluid dynamics and force production of
finite aspect-ratio flapping foils/wings. Usherwood & Ellington (2002) have studied
the fluid dynamics of a hawkmoth wing model of aspect ratio 6.34 and numerical
simulations of this same wing have been carried out by Liu et al. (1998). Dickinson
and co-workers (Dickinson, Lehmann & Sane 1999; Sane & Dickinson 2001) have
performed systematic experimental studies with a dynamically scaled fruitfly flapping
wing with aspect ratio of about 3.8 and Ramamurti & Sandberg (2002) and Sun &
Tang (2002) have used this same wing in their numerical simulations. Techet et al.
(2005) have examined the thrust performance of a three-dimensional flapping foil
with an aspect ratio of 4.5.

Detailed experiments of pectoral fin hydrodynamics in controlled experiments with
swimming fish have also been carried out (Walker & Westneat 1997; Drucker &
Lauder 2002). The comprehensive particle image velocimetry (PIV) measurements
carried out for a swimming bluegill sunfish (Drucker & Lauder 2002; Lauder et al.
2005) are of particular interest for the current study. In these experiments, the fish
swims almost steadily in an incoming stream using only its pectoral fins. That the fish
is swimming at very nearly a constant speed is confirmed by the fact that the body
of the fish maintains its position to within a few millimetres over many fin strokes
(Lauder et al. 2005). Thus, in this situation, the thrust produced by the fin is almost
exactly balanced by the drag on the body of the fish. In this mode, fin hydrodynamics
is primarily determined by the fin flapping frequency, fin amplitude and the flow speed
which can be expressed in terms of a fin Strouhal number, normalized amplitude and
fin Reynolds number. In general, for fish with different sizes and swimming speeds,
these three non-dimensional parameters can vary over a wide range. Because of this,
most studies that attempt to gain general insights into the performance of fins, flapping
foils or flapping wings find it convenient to examine the problem in terms of these non-
dimensional parameters (Freymuth 1988; Triantafyllou et al. 1992; Anderson et al.
1998; Walker & Westneat 2000; Wang 2000; Combes & Daniel 2001; von Ellenrieder,
Parker & Soria 2003; Lewin & Haj-Hariri 2003; Prempraneerach, Hover & Triantafyl-
lou 2003; Hover, Haugsdal & Triantafyllou 2004; Blondeaux et al. 2005a, b; Techet
et al. 2005) since this allows for the study of the flapping appendage without regard
to the associated body. We have adopted a similar approach in the current study.

In the particular case of labriform propulsion, since the very near wake of the
pectoral fin is not affected by the wake of the fish body, the fin near-wake can be
examined in order to assess the thrust production of the fin. The study of Drucker &
Lauder (2002) showed that the pectoral fins of the sunfish produce a train of vortex
rings which are associated with momentum addition in the fin wake and consequently
to a production of force on the fin. Through modification in the fin gait, the fish can
alter the axis and direction of travel of these vortex rings and through this, control
the direction and magnitude of the forces and moments on the fin. Ramamurti et al.
(2002) simulated the flow associated with the pectoral fin of a bird-wrasse which was
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the subject of the study by Walker & Westneat (1997) and examined in detail the
flow structure and force production of this fin.

Von Ellenrieder et al. (2003) examined the flow associated with a rectangular
flapping foil of aspect ratio 3.0 at a Reynolds number of 163. The Strouhal number
in this study varies from 0.2 to 0.35 and pitch angle amplitude from 0◦ to 20◦.
The dye visualization study of von Ellenrieder et al. (2003) was conducted over a
range of flapping amplitudes and frequencies and the effect of these parameters on
the vortex topology was elucidated. They found that the wake of these flapping
foils was dominated by sets of loops and rings and they describe the evolution of
these vortex structures. This configuration was studied numerically by Blondeaux and
co-workers (Guglielmini & Blondeaux 2004; Blondeaux et al. 2005a, b). Blondeaux
et al. (2005a, b) have examined the wake evolution at Strouhal numbers of 0.175 and
0.35 and the simulations show that a vortex ring is shed every half-cycle from the
flapping foil. Also, Blondeaux et al. (2005a, b) indicate that as the Strouhal number
is increased, there is an increased interaction between adjacent rings. The vortex
structures in the numerical study were found to be different from those observed in the
experiments of von Ellenrieder et al. (2003). In particular, Blondeaux et al. (2005a, b)
point out that in contrast to the experiments, the simulations do not show the presence
of distinct vortex loops in the wake associated with the trailing-edge vortex. Neither
the experiments nor any of these simulations have examined the force generation by
this flapping foil, therefore it is not clear if the foils are indeed generating thrust.

Buckholtz & Smits (2006) is also of relevance to the current study. In this study,
flow visualizations are used to examine the wake of a low-aspect-ratio pitching panel.
The Strouhal number of the panel was 0.23 and the chord-based Reynolds number
was 640. The experiments showed that the wake of the panel was dominated by vortex
loops of alternating sign and a vortex skeleton model was proposed for the wake
formation. Buckholtz & Smits (2006) also observe that despite the lack of a leading
edge, the wake behaviour is similar to that observed by Guglielmini & Blondeaux
(2004) for a pitching–heaving foil. This indicates that the underlying vortex dynamics
of these configurations is quite robust.

Despite all of these previous works on finite aspect-ratio flapping foils/wings, the
number of studies that have systematically examined the effect of aspect ratio on the
fluid dynamics and force production of low-aspect-ratio foils is limited. Ahmadi &
Widnall (1986) used a linearized low-frequency unsteady lifting line theory to examine
the energetics of wings undergoing a combined pitch-and-heave motion. Aspect ratios
in their study varied from 8 to 16. Cheng, Zhuang & Tong (1991) used an unsteady
vortex ring panel method to study the energetics and force production of undulating
plates with aspect ratios ranging from 0.5 to 8.0. A key finding in their study was
that the undulatory motion can reduce three-dimensional effects and lead to good
swimming performance. Usherwood & Ellington (2002) have examined the effect of
aspect ratio on the force generation by a rotating wing based on a hawkmoth wing.
The emphasis of this study was on insect and bird flight and the aspect ratios in their
study varied from 4.53 to 15.84. Mittal et al. (2003) used Navier–Stokes simulations
to examine the wake vortex topology for foils with aspect ratios of 1.27 and 2.55
undergoing a sinusoidal heaving motion at a Reynolds number of 100. They found
that the wake of these foils was dominated by two sets of interconnected vortex rings
that convect at an oblique angle to the wake centreline.

A study that requires special mention here is that of Combes & Daniel (2001)
who have examined the effect of aspect ratio and fin planform on the hydrody-
namic performance of fins modelled after ratfish pectoral fins. They employ unsteady
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potential theory to predict the thrust and efficiency of wings of aspect ratios ranging
from about 0.1 to higher than 10. The simulations do not include any tip effects since
the model employed does not account for spanwise flow variations, but nevertheless,
their calculation show that while thrust increases monotonically with aspect ratio,
efficiency has non-monotonic variation up to aspect ratios of about 2 and a monotonic
increase beyond that. Based on this analysis, Combes & Daniel (2001) attempt to ex-
plain the wide variety of fin kinematics and morphologies that are observed in nature.

In the current numerical study, we perform a comprehensive analysis of the wake
topology, force production and energetics of ellipsoidal flapping foils over a range of
aspect ratios (AR), Strouhal frequencies (St), Reynolds numbers (Re) and pitch-bias
angles. The primary motivation is to provide fundamental insights into the fluid
dynamics of low-aspect-ratio thrust flapping foils and supplement the extensive
work that has been done in the past on two-dimensional flapping foils. The full
three-dimensional Navier–Stokes equations are solved numerically here and therefore,
all unsteady–viscous and spanwise effects are included. Aspect ratios in the current
study range from 1.27 to 5.09 which cover the range most relevant to pectoral fin
propulsion. A two-dimensional (AR = ∞) case is also simulated for comparison. We
begin by describing the simulation methodology and results of a systematic grid and
domain dependence study. This is followed by a detailed discussion of the wake vortex
topology as well as mean wake features observed over the range of the parameters
varied in the current study. Finally, we present results on hydrodynamic performance
of these flapping foil and based on this, speculate on how hydrodynamic performance
might produce pressure towards pectoral fins in fish with certain aspect ratios.

In making connections between the current study and fish pectoral fins, it is
important to take note of some of the features of fish pectoral fins that are not
included in the current configuration. As pointed out previously, flapping is more
accurately modelled as a pitching–rolling motion and the current pitching–heaving
motion can be considered a simplification of this motion. Secondly, fish pectoral
fins can range from relatively stiff (Walker & Westneat 1997; Combes & Daniel
2001) to highly flexible (Lauder et al. 2005) which can undergo passive as well as
active deformation during flapping. Finally, even among labriform swimmers, pectoral
fins have a very large variety of shapes and sizes. Since no one study could possibly
examine pectoral fins in all their generality and complexity, the only way to distill some
general insights is to work with a simple model of the configuration. In the current
study, we focus on one shape metric of foils/fins, the aspect ratio, and examine
thoroughly the effect of this parameter on the thrust performance. Thus all these
limitations must be kept in mind while interpreting the results of the current study
in the context of fish pectoral fins and later in the paper, we comment specifically on
some of these limitations. It should also be re-emphasized that the current study also
has relevance to engineered flapping foils. Engineered flapping foils are mostly rigid
(Techet et al. 2005) and have relatively simple planforms and therefore the current
study provides data and insights that are useful for such foils also.

2. Numerical simulation procedure
2.1. Governing equations and numerical method

The equations governing this flow are the three-dimensional unsteady, viscous
incompressible Navier–Stokes equations

∂ui

∂xi

= 0, (2.1a)
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Figure 1. Schematic describing spatial discretization.

∂ui

∂t
+

∂(uiuj )

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂

∂xj

(
∂ui

∂xj

)
, (2.1b)

where ui are the velocity components, p is the pressure, and ρ and ν are the fluid
density and kinematic viscosity, respectively.

The Navier–Stokes equations (2.1) are discretized using a cell-centred, collocated
(non-staggered) arrangement of the primitive variables (ui, p). In addition to the
cell-centre velocities (ui), the face-centre velocities, Ui , are computed. The equations
are integrated in time using the fractional step method of Van-Kan (1986). In the first
sub-step of this method, a modified momentum equation is solved and an intermediate
velocity u∗

i obtained. A second-order Adams–Bashforth scheme is employed for the
convective terms while the diffusion terms are discretized using an implicit Crank–
Nicolson scheme which eliminates the viscous stability constraint. In this sub-step,
the following modified momentum equation is solved at the cell-nodes

u∗
i − un

i

�t
+ 1

2

[
3Nn

i − Nn−1
i

]
= − 1

ρ

δpn

δxi

+ 1
2

(
D∗

i + Dn
i

)
, (2.2)

where Ni = δ(Ujui)/δxj , Di = ν(δ/δxj )(δui/δxj ) and δ/δx corresponds to a second-
order central difference. This equation is solved using a line-SOR scheme. Sub-
sequently, face-centre velocities at this intermediate step, U ∗

i , are computed by
averaging the corresponding values at the grid nodes. Similar to a fully staggered
arrangement, only the face velocity component normal to the cell-face is calculated
and used for computing the volume flux from each cell. With reference to figure 1 for
a two-dimensional case, the following averaging procedure is followed;

ũi = u∗
i + �t

1

ρ

(
δpn

δxi

)
cc

, (2.3a)

Ũ1 = γwũ1P + (1 − γw)ũ1W, (2.3b)

Ũ2 = γsũ2P + (1 − γs)ũ2S, (2.3c)

U ∗
i = Ũi − �t

1

ρ

(
δpn

δxi

)
f c

, (2.3d)
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where γw and γs are the weights corresponding to linear interpolation for the west
and south face velocity components, respectively. Furthermore, cc and f c denote
gradients computed at cell-centres and face-centres, respectively. The above procedure
is necessary to eliminate odd–even decoupling that usually occurs with non-staggered
methods and which leads to large pressure variations in space. A similar procedure
is employed in the third direction for three-dimensional cases.

The second sub-step requires the solution of the pressure correction equation

un+1
i − u∗

i

�t
= − 1

ρ

δp′

δxi

, (2.4)

which is solved with the constraint that the final velocity un+1
i be divergence-free. This

gives the following Poisson equation for the pressure correction

1

ρ

δ

δxi

(
δp′

δxi

)
=

1

�t

δU ∗
i

δxi

(2.5)

and a Neumann boundary condition imposed on this pressure correction at all
boundaries. This Poisson equation is solved with a highly efficient geometric multigrid
method which employs a line based Gauss–Siedel successive over-relaxation (SOR)
smoother. Once the pressure correction is obtained, the pressure and velocity are
updated as

pn+1 = pn + p′, (2.6a)

un+1
i = u∗

i − �t
1

ρ

(
δp′

δxi

)
cc

, (2.6b)

Un+1
i = U ∗

i − �t
1

ρ

(
δp′

δxi

)
f c

, (2.6c)

These separately updated face velocities satisfy discrete mass-conservation to machine
accuracy and use of these velocities in estimating the nonlinear convective flux in (2.2)
leads to a more accurate and robust solution procedure. The procedure of separately
computing the face-centre velocities was initially proposed by Zang, Street & Koseff
(1994) and discussed in the context of the Cartesian grid methods in Ye et al. (1999).

2.2. Immersed boundary treatment

A multi-dimensional ghost-cell methodology is used to incorporate the effect of the
immersed boundary on the flow. This method falls into the category of sharp-interface
‘discrete forcing’ immersed boundary methods (Mittal & Iaccarino 2005). Figure 2
shows a two-dimensional schematic of an immersed boundary on a Cartesian grid.
The surface of three-dimensional bodies such as the ellipsoids that are the subject of
the current study, is represented by an unstructured grid with triangular elements. A
typical surface grid for a (1 : 0.12 : 4) ellipsoid is shown in figure 3. This surface grid
is then ‘immersed’ into the Cartesian volume grid. The method proceeds by identifying
‘ghost-cells’ which are cells inside the solid that have at least one neighbour in the
fluid. A ‘probe’ is then extended from the node of these cells into the fluid to an
‘image-point’ (denoted by IP ) such that it intersects normal to the immersed boundary
and the boundary intercept (denoted by BI ) is midway between the ghost-node and
the image-point. Next a bilinear (trilinear in three-dimensions) interpolation is used
to express the value of a generic variable (say φ) at the image-point in terms of the
surrounding nodes, namely,

φIP =
∑

βiφi. (2.7)
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IP
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Fluid-cell Solid-cellGhost-cell

Figure 2. Schematic describing ghost-cell methodology.

z
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az
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x

Figure 3. Typical ellipsoidal foil used in the current study. The surface of the ellipsoid is
represented by an unstructured grid made of triangular elements.

where i extends over all the surrounding nodal points and βi are the interpolation
weights corresponding to the nodes surrounding the image-point. Note that all of the
information regarding the local geometry of the boundary and its placement relative
to the grid is incorporated solely in these weights. Following this, the value of a
variable at the ghost-cell (denoted by GC) is computed by using a central-difference
approximation along the normal probe such that the prescribed boundary condition
at the boundary intercept is incorporated. Thus, for Dirichlet and Neumann boundary
conditions, the formulae are:

φGC = 2φBI − φIP , (2.8a)

and φGC = �lp

(
δφ

δn

)
BI

+ φIP , (2.8b)
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respectively, where �lp is the total length of the probe. Equations (2.7) and (2.8)
can be combined to give the following implicit expression for the values at the ghost
nodes:

φGC +
∑

βiφi = 2φBI , (2.9a)

φGC −
∑

βiφi = �lp

(
δφ

δn

)
BI

, (2.9b)

respectively, for these two types of boundary condition. These equations are then
solved in a fully coupled manner with the discretized governing equations (2.2) and
(2.5) for the neighbouring fluid cells along with the trivial equation φ =0 for the
internal solid cells. Using this procedure, the boundary conditions are prescribed to
second-order accuracy and this, along with the second-order accurate discretization
of the fluid cells leads to local and global second-order accuracy in the computations.
This has been confirmed by simulating flow past a circular cylinder on a hierarchy of
grids and examining the error on these grids (Bozkurttas et al. 2005).

Boundary motion can now be included into this formulation with relative ease.
Since the equations are written in the Eulerian form, all that is required is to move
the boundary at a given time-step, recompute the body-intercepts, image-points and
associated weights β and then advance the flow equations (2.2)–(2.6c) in time. The
boundary motion is accomplished by moving the nodes of the surface triangles in a
prescribed manner. The general framework can therefore be considered as Eulerian–
Lagrangian, wherein the immersed boundaries are explicitly tracked as surfaces in a
Lagrangian mode, while the flow computations are performed on a fixed Eulerian
grid. Further details regarding such immersed boundary methods can be found in Ye
et al. (1999), Udaykumar et al. (2001) and Mittal & Iaccarino (2005). In addition to
the simulations to be presented here, the solver has been used successfully in a CFD
validation study involving transitional synthetic-jets (Kotapati & Mittal 2005) and
has also been validated by simulating flow past a suddenly accelerated normal plate
and comparing results with available experiments and simulations (Bozkurttas et al.
2005).

2.3. Simulation set-up

The current study employs thin ellipsoidal foils of varying aspect ratio in all the
simulations. The geometry of the foil is defined by its three major axes denoted by
ax , ay and az (figure 3). Note that we employ the (x, y, z)-axes notation in the rest
of the paper. In the current simulations, the surface of the foil is represented by
a fine unstructured grid with triangular elements and the foil is oriented with the
x-axis along the streamwise direction and the z-axis along the spanwise direction.
Furthermore, ax is the chord of the foil which in these simulations is set equal
to unity and ay is the foil thickness. The thickness ratio ay/ax for all the foils in
the current study is equal to 0.12. The aspect ratio AR of the foil is defined as
(span)2/(area) which is equal to (4/π)az/ax for these ellipsoidal foils. In the current
study, in addition to a two-dimensional flapping foil for which AR = ∞, we examine a
foil with az/ax = 1 (AR = 1.27) which corresponds to a circular disk, and two ellipsoidal
foils with az/ax = 2 (AR =2.55) and 4 (AR =5.09).

The foil undergoes a combined pitching and heaving motion wherein the foil centre
heaves in the y-direction according to

y(t) = Ay sin(2πf t), (2.10)
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AR ay/ax Re St Ay/ax θ0 Aθ

1.27, 2.55, 0.12 100, 200, 0.3, 0.4, 0.5, 0.5 0◦, 10◦, 30◦

5.09, ∞ 400 0.6, 0.7, 0.8, 20◦, 30◦

1.0, 1.2

Table 1. Parameters involved and ranges of variation in the current study.

and pitches about the centre according to

θ(t) = θ0 + Aθ cos(2πf t), (2.11)

where θ is the geometric pitch-angle with respect to incoming flow. In (2.10) and (2.11)
θ0 is the pitch-bias angle, Ay and Aθ are the heave and pitch amplitudes, respectively,
and f is the flapping frequency. Note that the pitch angle variation is phase advanced
by 90◦ with respect to the heave motion. Other values of phase-difference between
heaving and pitching have been examined by Isogai et al. (1999), Tuncer, Walz &
Platzer (1998) and Ramamurti & Sandberg (2001) among others.

In addition to the foil aspect ratio (AR), the following are the key non-dimensional
parameters in the current study: Reynolds number Re =U∞ax/ν; normalized heave
amplitude Ay/ax , pitch-bias angle θ0, pitch amplitude Aθ and Strouhal number based
on the wake thickness St =2Ayf/U∞. It is clear that even this relatively simple
configuration has a very high dimensional parameter space. With regard to Ay/ax ,
it should also be pointed out that in fish that flap their pectoral fins, the flapping
amplitude can vary over a relatively large range depending on the fish as well as its
speed of travel (Lauder et al. 2005; Walker & Westneat 2002). However, in order to
limit the scope of this study, we choose to fix the normalized heave amplitude Ay/ax to
a value of 0.5 and the pitch amplitude Aθ to a value of 30◦. Similar values have been
adopted in a number of past studies (von Ellenrieder et al. 2003; Lewin & Haj-Hariri
2003; Triantafyllou, Techet & Hover 2004) and the amplitude adopted is for instance,
a reasonable representation of the mid-span kinematics of the bluegill sunfish pectoral
fin kinematics (Lauder et al. 2005). Table 1 provides a concise summary of all the
parameters involved and their range of variation.

The grids employed in the current study are designed to provide high resolution
in the region around the flapping foils as well as in the wake region and figure 4
shows two two-dimensional sections of a typical grid in the (x, y)- and (x, z)-planes.
A relatively large domain size is chosen and the foil is placed approximately at the
centre of this domain. At the left-hand boundary, we provide a constant inflow velocity
boundary condition, and a zero stress boundary condition is provided at all the lateral
boundaries. The right-hand boundary is the outflow boundary and there we provide
a zero streamwise gradient boundary condition for velocity which allows vortices
to convect out of this boundary without significant reflections. A homogeneous
Neumann boundary condition is used for pressure at all these boundaries.

In the current study, the thrust, lift and moment coefficients are defined as

CT =
T

1
2
ρU 2

∞Aplan

, CL =
L

1
2
ρU 2

∞Aplan

, CM =
M

1
2
ρU 2

∞Aplanax

, (2.12)

respectively, where T , L and M are the thrust, lift and pitching moments, respectively,
and Aplan, the planform projected area of the foil, is equal to πaxaz/4 for the ellipsoidal
foils and ax for the two-dimensional foil. Thrust is calculated by directly integrating
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Figure 4. Typical grid employed in the current simulations for the lower-aspect-ratio foils.
This grid is 145 × 129 × 101 and the domain size is 15 × 15 × 16. (a) (x, y)-view (b) (x, z)-view.

the computed pressure and shear stress on the foil surface. In all cases, the governing
equations are advanced in time until the force coefficients indicate that the flow has
reached a stationary state. Following that, the simulation is run further for a number
of cycles and data from these later cycles are used in the analysis as well as for
computing the flow statistics. We also compute a propulsive efficiency which is given
by

η =
T U∞

Ldy/dt + Mdθ/dt
, (2.13)

where the overbar implies a time average. The typical time step chosen in the current
study was such that there were over two thousand time steps in each cycle, thereby
ensuring more than adequate temporal accuracy.

2.4. Grid and domain independence studies

The nominal grid size employed in the current simulations is 144(x) × 128(y) × 104(z)
which amounts to about 1.92 million grid points. Domain sizes range from 15ax(x) ×
15ax(y) × 16ax(z) for the small-aspect-ratio foils to 15 × 15 × 32 for the large-aspect-
ratio (AR = 5.09) foil. This choice of grid and domain size was based on our experience
with the simulations of such flows as well as running test simulations on a number of
different grids. Figure 4 shows two views of a typical grid used in the current study.
As can be seen in this figure, very high resolution is provided in a cuboidal region
around the foil in all three directions. Beyond this region, the grid is stretched rapidly
in the y- and z-directions. In the x-direction, the stretching is rapid upstream of the
foil where we do not expect any streamwise gradient. In the wake region, however,
the stretching factor is kept below 3 % in order to keep the streamwise resolution
relatively high. This also limits the numerical dispersion that is associated with the
use of central-difference schemes on highly stretched meshes (Cain & Bush 1994).
Both of these factors are important in order to ensure adequate resolution of the fine
structures in the wake.

Comprehensive studies have been carried out to assess the effect of the grid
resolution and domain size on the salient features of the computed flow and to
demonstrate that the chosen grids produce accurate results. Grid refinement studies
are carried out by doubling the grid in all three directions simultaneously in the refined
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Case CT (CL)rms η

Nominal grid 0.246 1.780 0.1846
Finer grid 0.248 1.816 0.1851
Larger domain 0.246 1.798 0.1849

Table 2. Results of grid refinement and domain independence study for AR =2.55, St =0.6
and Re = 200 case.

zone around the foil. Beyond this region the resolution is increased nominally in order
to ensure a smooth grid. The overall grid size for this refined grid is 192 × 176 × 144
which amounts to about 4.87 million grid points. Domain independence studies are
carried out by doubling the domain size in all three directions to 30 × 30 × 32.
In this study, the resolution in the interior refined region is kept the same as the
nominal grid, but the resolution in the outer region is increased so as to maintain
the same stretching ratio as the nominal grid. The overall grid size for this domain
is 160 × 144 × 136 which amounts to 3.13 million mesh points. All these simulations
have been carried out on a single processor computer with a 64-bit AMD Opteron
processor with 8 Gb of core memory. Each nominal grid simulation takes anywhere
from 200 to 400 CPU hours on this computer.

Table 2 shows a comparison of key hydrodynamic quantities for the grid and
domain independence study carried out for the AR =2.55, St =0.6 and Re = 200 case.
The table shows that the grid refinement and domain enlargement lead to less than
1% difference in the mean thrust and efficiency and at most about 2% variation in the
r.m.s. lift. This clearly demonstrates that the hydrodynamic forces computed in the
current study are grid and domain independent. In addition to the above comparison
of the hydrodynamic forces and moments, it is useful to assess the effect of the grid
and domain on the flow development in the wake. In figure 5, we compare the wake
profiles for these three different grids. Figures 5(a) and 5(b) show the mean streamwise
(u1 − U∞) and transverse (u2) velocity profiles in the spanwise symmetry plane and
figure 5(c) shows the spanwise mean velocity profiles in the centre (x, z)-plane. In
all of these plots, we note that the differences between the profiles computed on
the three different grids are negligible. Also plotted in figure 5(d) are profiles of the
fluctuation kinetic energy defined as 1

2
(u′2

1 +u′2
2 +u′2

3 ) in the spanwise symmetry plane.
Comparison of these profiles is an even more severe test of grid dependence since
the fluctuations inherently contain more information from the smaller spatial and
temporal scales in the flow. Here too we find that the difference between the three
sets of profiles is small, and this clearly establishes the fidelity and accuracy of the
current simulations.

3. Results
In this section, we provide a comprehensive description of the wake topology

followed by a discussion of the thrust performance of these flapping foils for the
range of parameters shown in table 1.

3.1. Wake topology

The focus in this section is to describe the effect of aspect ratio on the vortex topology.
Vortices in three-dimensional simulations are identified by plotting an isosurface of the
imaginary part of the complex eigenvalue of the instantaneous velocity gradient tensor.
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Figure 5. Comparison of computed profiles in the wake showing grid and domain
independence of computed results for the AR = 2.55, St =0.6 and Re = 200 case. Five profiles
at x = 1, 2, 3, 4 and 5 are shown. (a) Streamwise (u1 − U∞) velocity on the spanwise symmetry
plane, (b) transverse (u2) velocity on the spanwise symmetry plane, (c) spanwise (u3) velocity on

the transverse symmetry plane, (d) fluctuation kinetic energy 1
2
(u′2

1 + u′2
2 + u′2

3 ) on the spanwise
symmetry plane.

This approach for identifying vortices in 3D flow fields has been advocated by Soria
& Cantwell (1993) and has been used extensively for extracting the vortex topology
in cylinder (Mittal & Balachandar 1995) and sphere wakes (Mittal, Wilson & Najjar
2002b). The idea behind this technique is to identify regions where rotation dominates
over strain. Since the rotational part of the velocity gradient tensor is skew-symmetric,
it is likely that in these regions, the eigenvalue of the velocity gradient tensor will have
a relatively large imaginary component. Therefore the magnitude of the imaginary
component of the eigenvalue of the velocity gradient tensor provides a means of
identifying vortices in the flow.

In §§ 3.1.1–3.1.4, we describe the effect of aspect ratio on the vortex topology and
wake structure for flapping foils without pitch-bias. For this analysis, we focus on cases
with Re = 200 and St = 0.6, which are roughly in the middle of the range for these
parameters in the current study. The effect of the Strouhal and Reynolds numbers as
well as pitch-bias is examined in subsequent sections. In describing the effect of aspect
ratio on the vortex topology, we proceed as follows: we first describe the AR = ∞ case
which is two-dimensional and serves as the baseline for the finite-aspect-ratio cases.
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Figure 6. Vortex topology for AR = ∞ foil at four phases visualized by plotting contours
of spanwise vorticity. There are 35 equispaced contour levels of non-dimensional spanwise
vorticity ranging from −9 to 9 in this and all other spanwise vorticity contour plots in the
current paper. (a) f t = 0, (b) f t = 1/4, (c) f t = 1/2, (d) f t = 3/4.

Subsequently, we describe the AR = 2.55 case, which is the intermediate finite-aspect-
ratio case in the current study as well as the case which is most relevant to fish
pectoral-fins. This is followed by a description of the AR = 1.27 and 5.09 cases.

3.1.1. AR = ∞ case

This infinite-aspect-ratio foil has been simulated as two-dimensional. This foil
is thrust producing with its mean thrust coefficient being 0.91. Figure 6 shows a
sequence of spanwise vorticity contour plots at four instances in the flapping cycle
and these plots clearly show the formation of an inverse Kármán vortex street. The
appearance of this vortex topology for this thrust-producing flapping foil is consistent
with Koochesfahani (1989), Triantafyllou et al. (1992) and Lewin & Haj-Hariri (2003).
Figure 7 shows contours of the mean streamwise velocity where the mean is computed
over five shedding cycles. The plot shows a narrow high-intensity jet in the wake
which is consistent with the fact that this is a thrust-producing case. Also apparent is
the asymmetry of this jet about the centreline. This asymmetry is consistent with the
finding of Jones et al. (1998) and Lewin & Haj-Hariri (2003) where asymmetric wakes
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Figure 7. Contours of mean streamwise velocity for the AR = ∞ case. The plot shows a
narrow high-velocity jet which is asymmetric about the centreline.

have been observed for a thrust-producing flapping foil. Although Jones et al. (1998)
have examined the flow associated with sinusoidally heaving foils whereas Lewin &
Haj-Hariri (2003) have studied foils undergoing a combined pitch-and-heave, both
studies find that for values of πSt > 1, the wake appears asymmetric or ‘deflected’. The
value of this parameter for the current simulation is 1.88 and therefore asymmetry in
the current flow is very much in-line with these previous findings. The direction of the
wake deflection is determined by the starting motion of the foil. In the current study,
the foil starts at its bottom-most location and moves up initially and this produces
a wake with an upward deflection. If the foil is started at the uppermost point and
moved down, a downward deflection is obtained. However, once deflected towards
one side of the centreline, the wake does not switch sides in a given simulation. The
asymmetry produces a mean transverse force that is significantly lower in magnitude
than the mean thrust force and therefore has little dynamical significance.

3.1.2. AR = 2.55 case

In this section, we examine the wake topology for the AR = 2.55 flapping foil.
Figures 8(a) and 8(b) show perspective and side views of the vortex topology for
this case at a phase when the foil is at the lowest point in its heaving cycle. Also,
shown in figure 8(d) is a contour plot of the spanwise vorticity at the spanwise
symmetry plane at this phase allowing for a direct comparison with the AR = ∞ case.
In all these plots, distinct vortices have been identified and named so as to facilitate
discussion regarding their evolution. It is also important to point out that similar to
the two-dimensional foil, this is a thrust-producing foil with a mean thrust coefficient
CT = 0.246.

Comparison of figure 8(d) with the corresponding plot for the AR = ∞ case (in
figure 6) shows some common features including the presence of the clockwise vortex
V1 in the wake, the counterclockwise vortex V2 shedding from the trailing-edge
and the clockwise leading-edge vortex V3 on the top surface of the foil. However,
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Figure 8. Vortex topology for AR =2.55 foil at the phase where the foil is at the lowest point
in its heaving motion and starting to move up. This and all other three-dimensional vortex
topology plots are visualized by plotting one isosurface of the imaginary part of the complex
eigenvalue of the velocity gradient tensor corresponding to a value of 1.0. (a) Perspective
view. (b) Side view. (c) Front-view schematic of tip vortices on streamwise plane indicated in
(a) and (b). (d) Spanwise vorticity contour plot on spanwise symmetry plane.

notwithstanding these similarities, we also see significant differences emerge between
the two wakes with the most striking difference being the complete disappearance
of the inverse Karman vortex street in the AR = 2.55 flapping foil. Explanation of
this fundamental change in the wake structure requires us to consider the three-
dimensional topology of the wake. It is clear from the three-dimensional perspective
view of the wake topology in figure 8(a) that the wake of this foil in fact, has little
resemblance to the two-dimensional foil case. This plot as well as the side view
in figure 8(b) shows that the downstream wake of this foil consists of two sets of
complex shaped vortex rings which convect at oblique angles to the wake centreline.
In the plots, we identify rings R1 and R3 in the lower set and R2 in the upper set
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and indicate their direction of rotation by lines and arrows. It is also noted that
each vortex ring has two sets of thin vortex ‘contrails’ (see for instance ring R2 in
figure 8b) at its upstream and downstream ends that extend towards the two adjacent
counter-rotating rings. As the vortices convect downstream, these contrails become
weaker and ultimately disappear (as for ring R1) leaving fairly well-defined vortex
rings. The vortex rings are themselves inclined with respect to the free stream (as
shown by the ring-axes arrows in figure 8b). Thus, the flow induced by each vortex
ring along its axis is expected to have a net streamwise component with the cross-
stream component of vortex rings in one set being offset by those in the other. As will
be shown later, this net streamwise momentum excess in the wake is also connected
with the thrust production of the flapping foil.

The process by which the rings are formed and the particular orientation and shape
adopted by them can be explained by examining the vortex formation and shedding
process closer to the foil trailing edge. In figures 8(a) and 8(b) consider vortex V2

as well as its two associated tip-vortices identified as TV2 which constitute the three
sides of a vortex loop. Note that vortex V2 is associated with the trailing-edge vortex
that is released from the lower surface of the foil as it moves downward whereas
the tip-vortices are released from the spanwise tips of the flapping foil in a similar
manner. Vortex V3 which is formed at the leading-edge due to the downward motion,
is shown disconnected from this vortex loop and the reasoning behind this will soon
become clear. Now it is straightforward to understand that the vortex loop associated
with vortex V1 and tip vortices TV1 was formed in the previous half-cycle in a similar
manner. It remains to be explained how these vortex loops turn into vortex rings
further downstream and why they convect at an angle oblique to the wake centreline.

Regarding ring formation, it would seem that the obvious mechanism, if we were
to consider the loop consisting of V1 and TV1, is that vortex V2 joins with TV1

thereby forming a ring which then convects downstream. However, closer examination
indicates that this is not the case here. Instead as shown in figures 9(a), 9(c) and 9(d)
which correspond to a later phase when the foil is midway and moving up, vortex
V2 does not join with V1 and TV1 and the completion of the ring occurs primarily
due to the the joining of the two tip-vortices TV1 which leads to the formation of a
spanwise structure V12 as shown in these plots. The process by which the upstream
ends of the tip vortices TV1 move towards each other can be understood by examining
flow in the streamwise plane in this region as indicated in figures 8(a) and 8(b) by
the dashed line. A schematic of the tip-vortices TV1 and TV2 and spanwise vortex
V2 on this plane is shown in figure 8(c). The direction of the velocity induced on
one tip-vortex by the other three is represented by the arrow and this clearly shows
that the vortices in the same system will tend to move towards each other. This
deformation of the vortices TV1 eventually leads to the formation of the spanwise
oriented vortex V12 which completes the vortex ring. Thus, vortex V2 does not join
with vortices V1 and TV1 to form the vortex ring. In fact, the schematic also indicates
that the tip-vortices compress the spanwise vortex V2 and this tends to diminish the
strength of the spanwise vortices as they convect downstream.

Figure 8(c) also indicates that the tip-vortices in one loop will tend to move away
from the tip-vortices of the adjoining loop. This is very apparent by comparing
figures 8(d) and figures 9(d) where we see that the incipient vortex V12 visible
in figure 8(d) just above but joined with vortex V2, achieves significant vertical
separation from vortex V2 by the time the foil gets to the centre. This tip-vortex-
induced upward motion of vortex V1 is the primary mechanism that leads to the
inclination of the vortex ring. Once the ring is inclined, its self-induced velocity tends
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Figure 9. Vortex topology for AR = 2.55 foil at the phase where the foil is at the centre of
its heaving motion. (a) Perspective view. (b) Side view. (c) Top view. (d) Spanwise vorticity
contour plot on spanwise symmetry plane.

to convect it along its axis and this mechanism then explains the convection of the
vortex rings at an oblique angle to the wake centreline. The experimental visualizations
of Buckholtz & Smits (2006) for a pitching panel also show a bifurcation in the wake
very similar to what is seen here. It should also be pointed out that in figure 9(c)
which is a top-view, we see a spanwise narrowing of the vortex rings as they convect
downstream. This is clearly due to the induction of one set of tip-vortices on the
adjacent set as explained in the previous paragraph. Spanwise narrowing has also
been observed in the simulations of Blondeaux et al. (2005a, b) for a rectangular
pitching–heaving foil as well as the experiments of Buckholtz & Smits (2006) for a
pitching plate. In contrast, the experiments of von Ellenrieder et al. (2003) do not
show any clear spanwise narrowing and the reason for this disagreement is not clear.
Also in agreement with Blondeaux et al. (2005a, b) and Buckholtz & Smits (2006),
we do not observe a distinct vortex loop associated with the trailing-edge as was
observed by von Ellenrieder et al. (2003).
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Figure 10. Contours of mean streamwise velocity for the AR = 2.55 case along the spanwise
symmetry plan. Contour levels in this plot are the same as those in figure 7.

The last distinct feature that requires explanation is the vortex contrails that are
seen extending from the upstream end of one loop to the downstream end of the
previous loop. If we consider the ones extending from vortex V12 to vortex V2 in
figure 9(a), it is clear that these structures are segments of the tip-vortices TV1 which
are induced by the V2 vortex to wrap around itself in a counterclockwise direction.

Figure 10 presents contours of the mean streamwise velocity along the spanwise
symmetry plane for this case. From these plots, we observe that the wake develops a
bifurcated jet with a relatively large inclination angle to the wake centreline. For this
case, the inclination angle of each of the two branches of the wake from the symmetry
line is about 16◦. This angle is estimated by drawing a straight line through local
maxima in mean streamwise velocity as indicated in figure 10. It is also worth pointing
out that within statistical uncertainty, the mean wake is symmetric about the wake
centreline. Thus, end effects tend to symmetrize the wake which is strongly asymmetric
for the two-dimensional case at this Strouhal number. A closer examination shows
that there is in fact a single streamwise directed jet in the very near wake which
bifurcates about two chord-lengths downstream of the trailing edge. The inclination
of the jet leads to a reduction in the streamwise momentum flux into the wake and
this is connected with the lower thrust production of this finite-span flapping foil as
compared to the two-dimensional foil.

The spanwise structure of these mean jets is examined by plotting contours of the
mean velocity at several streamwise planes in figure 11. Figure 11(a) shows that the
jet has a double-lobed structure in the near wake which clearly indicated that even
in the very near wake, the influence of the tip vortices cannot be neglected. Further
downstream at x/ax =2, we see in figure 11(b) the transverse bifurcation in the wake.
In addition, each branch of the jet actually has two separate lobes and these lobes
tend to merge further downstream (figure 11c). With regard to this merging it bears
pointing out that the apparent intensification of the jets around x/ax =6 which is
suggested by figure 10 is in fact not an intensification, but rather, a manifestation of
the merging of the two lobes of the jet onto the spanwise symmetry plane.

The preceding discussion therefore explains the processes which lead to the forma-
tion of all the significant topological features in the wake of the finite-aspect-ratio
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Figure 11. Contours of mean streamwise velocity for the AR =2.55 case on three streamwise
planes in the near wake (a) x/ax =1, (b) x/ax = 2, (c) x/ax =4. Contour levels in this plot are
the same as the ones in figure 7.

flapping foil. Using this discussion as the basis, we now examine the effect of aspect-
ratio on the vortex topology.

3.1.3. AR = 1.27 case

Figures 12(a)–12(c) present three views of the 3D vortex topology for the foil with
aspect ratio of 1.27, which is the lowest-aspect-ratio foil examined in the current study.
This case is also thrust-producing with CT = 0.073. The wake for this foil shares a
number of salient features with the AR = 2.55 foil wake. For instance, the plots show
that the wake of this foil is also dominated by two sets of vortex rings. The side-view
shows that these two sets of vortex rings convect at an oblique angle to the wake
centreline. The rings in each set all have the same direction of rotation as indicated
in the figure and their axis is also inclined with respect to the streamwise direction.
The difference between this case and the previous case is mostly qualitative. First, the
rings are more circular and this is obviously a consequence of the circular planform
of the flapping foil. Secondly, the oblique angle is larger and this is because the ring
axis is more vertical than in the previous case and this leads to a larger transverse
induction velocity. This difference is most obvious when we compare the locations of
vortices V1 and V12 in figure 9(d) and figure 12(d). It can be seen that whereas in
the previous case, vortex V1 is located at the wake centreline at this phase, for the
current case, vortex V1 is significantly above the wake centreline.

The vortex arrangement on the spanwise symmetry plane in figure 12(d), can be
viewed as two oblique inverse Kármán vortex streets, as indicated by the circular
arrows in this figure. A similar arrangement can be seen for the AR = 2.55 flapping foil
in figure 9(d). Thus, the inverse Kármán vortex street which is intimately linked with
a two-dimensional thrust-producing flapping foil does seem to make an appearance
even in small-aspect-ratio flapping foils.

Figure 13 presents contours of the mean streamwise velocity along the spanwise
symmetry plane for this case. The plot shows that for this case also the wake develops
a bifurcated shape at about one chord-length downstream of the trailing edge. The
jet inclination angle for this case is about 20◦ which is larger than the AR = 2.55
case. This larger inclination angle is also a prognosticator of a further drop in thrust
for this foil. Further, the mean wake is symmetric about the wake centreline. The
spanwise structure of the mean wake is shown in figure 14. Figure 14(a) shows some
indication of the four-lobed jet structure, but merger of the lobes in each jet further
downstream results in a simpler wake structure, as with the previous case.
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Figure 12. Vortex topology for AR = 1.27 foil at phase where foil is at the centre of its heaving
motion and moving up. (a) Perspective view. (b) Side view. (c) Top view. (d) Spanwise vorticity
contour plot on spanwise symmetry plane.

3.1.4. AR = 5.09 case

Finally, we consider the AR = 5.09 foil, the largest finite-aspect-ratio foil considered
in the current study and figure 15 shows the wake topology for this case. This large-
aspect-ratio case enables us to connect our observations for the two-dimensional
flapping foil with those for the lower-aspect-ratio flapping foils. The mean thrust
coefficient for this case is 0.39 which is higher than the previous two cases, but lower
than the two-dimensional case. Three key features differentiate this case from the
lower aspect-ratio cases discussed in the previous sections. First, in this case, the tip-
vortices are never seen to merge together and therefore no vortex rings are observed
in the wake. Instead, the wake is made up of elongated loops that are seen to wrap
end-on-end with adjacent loops. The absence of tip-vortex merging is simply because
their initial distance is larger. It should be noted that associated with this observation
is the absence of the secondary spanwise vortex V12 which was seen in the previous
cases. The lack of ring formation also leads to the second key difference, which is the
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Figure 13. Contours of mean streamwise velocity for the AR =1.27 case along the spanwise
symmetry plan. Contour levels in this plot are the same as those in figure 7.
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Figure 14. Contours of mean streamwise velocity for the AR =1.27 case on three streamwise
planes in the near wake (a) x/ax =1. (b) x/ax = 2. (c) x/ax =4. Contour levels in this plot are
the same as the ones in figure 7.

absence of two sets of obliquely convecting vortex structures. Instead, the two sets
of vortex loops stay intertwined with each other. However, the wake itself expands
rapidly in the transverse direction and this is clearly due to the self-induced velocity
of the vortex loops. The third difference is the presence of distinctly spanwise oriented
vortices in the very near wake such as vortex V2 identified in figures 15(a) and 15(c).
In fact, vortices V1, V2 and V3 in figure 15(d) clearly signal the re-emergence of
the conventional inverse Kármán vortex street seen in the wake of two-dimensional
thrust-producing flapping foils. It should, however, be noted that further downstream,
the spanwise vorticity diminishes in strength and the wake is dominated by the tip-
vortices. This is primarily because while the spanwise vortices induce a stretching and
therefore intensification of the tip-vortices, the tip-vortices induce a compression on
the associated spanwise vortices which tends to diminish their strength. The spanwise
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Figure 15. Vortex topology for AR = 5.09 foil at the phase where foil is at the centre of its
heaving motion. (a) Perspective view. (b) Side view. (c) Top view. (d) Spanwise vorticity contour
plot on spanwise symmetry plane.

narrowing of the wake observed in the previous cases is also visible in the top-view in
figure 15(c) and as explained before, this is also an effect induced by the tip-vortices.

Figure 16 presents contours of the mean streamwise velocity along the spanwise
symmetry plane for this case. The plot shows that topology of the mean wake for this
case is quite different from the previous lower-aspect-ratio cases. First, for this case,
there is no clear bifurcation of the jet. Instead, we observe a single jet up to about
x/ax =2 and the shape of this jet can be seen in figure 17(a). Beyond this point, the
jet forms the four-lobed-structure as seen in figure 17(b). However, unlike the previous
cases, we see that there are also two additional regions of large streamwise velocity on
the wake centreline. Further downstream, we observe that the four outer lobes keep
spreading in the transverse direction whereas the two regions of high velocity on the
wake centreline merge towards the wake centre. Consequently, we see a single region
of high streamwise velocity reappear on the wake centreline at around x/ax = 6. The
outer four lobes decay rapidly and do not form a bifurcated jet. Instead, we see
that the transverse spread of the outer lobes manifests itself as a rapid streamwise
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Figure 16. Contours of mean streamwise velocity for the AR =5.09 case along the spanwise
symmetry plan. Contour levels in this plot are the same as those in figure 7.
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Figure 17. Contours of mean streamwise velocity for the AR =5.09 case on three streamwise
planes in the near wake (a) x/ax =1. (b) x/ax = 2. (c) x/ax =5. Contour levels in this plot are
the same as the ones in figure 7.

transverse growth of the wake. Thus, this aspect-ratio case is substantially different
from the previous lower-aspect-ratio cases. The mean wake in figure 16 is noticeably
asymmetric about the wake centreline and this behaviour is inline with that observed
for the AR = ∞ case.

3.1.5. Effect of key parameters on wake topology

In this section, we examine the effect of Strouhal number, Reynolds number and
pitch-bias on the vortex topology. The discussion in this section is limited to the
AR = 2.55 foil which is the intermediate-aspect-ratio case in the current study and also
the one most relevant to fish pectoral fins. First, we focus on the effect of Strouhal
number and for this analysis, the Reynolds number is fixed at a value of 200.

Figure 18 presents top views of the vortex topology for St = 0.4, 0.8 and 1.2 for
this foil and this can be examined in conjunction with the corresponding plot for
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Figure 18. Vortex topology for AR = 2.55 foil for different Strouhal numbers. The Reynolds
number is 200 for all these cases. (a) St = 0.4. (b) St = 0.8. (c) St = 1.2.

the St = 0.6 case in figure 9. Figure 18(a) shows the vortex topology for the Strouhal
number of 0.4. The salient feature that must be pointed out here is the absence of any
linkage between the tip vortices as seen for St = 0.6. This is because the tip vortices
formed at this lower Strouhal number have lower strength and this weakens the
mutual induction mechanism that is responsible for the linking of the tip vortices as
described in § 3.1.2. This observation regarding increased interaction between adjacent
vortex loops is also consistent with the simulations of Blondeaux et al. (2005a, b) who
find that increase in Strouhal number from 0.175 to 0.35 leads to similar behaviour.
The current plot also shows general agreement with figure 5(b) in von Ellenrieder
et al. (2003) where the authors have shown a top-view of the vortex topology for a
rectangular AR =3.0 foil oscillating at a Strouhal number of 0.4 and Reynolds number
of 163. Their plot clearly shows that the wake is dominated by circular vortex loops
similar to those seen here.

For the higher Strouhal numbers of 0.8 and 1.2, we observe that as with St =0.6,
the tip vortices link together to form spanwise oriented vortex filaments. In fact,
at these higher Strouhal numbers, the spanwise spacing of the tip vortices further
downstream reduces with increasing Strouhal number as indicated by the arrows
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Figure 19. Vortex topology for AR = 2.55 foil for different Reynolds numbers. The Strouhal
number is 0.6 for both these cases. (a) Re= 100. (b) Re = 400.

in figures 18(b) and 18(c). This is entirely consistent with our previously described
scenario of mutual induction between two sets of tip vortices. Clearly, as the Strouhal
number increases, there is a concomitant increase in the tip-vortex strength and
their mutual induction leading to the tip vortices moving closer together. Another
consequence of the increased strength of the tip-vortices is that these vortices
wrap spanwise vortex filaments (wrapping direction indicated in figure 18(b) by the
circular arrows) around their downstream ends resulting in distinctly circular vortex
structures.

In addition to simulations at Re =200 which have been described so far, two
additional simulations, one at Re =100 and the other at 400 were carried out for the
AR = 2.55, St = 0.6 case in order to assess the effect of Reynolds number on the vortex
topology. Figure 19 shows the top-view of the vortex topology for these cases. For
the lower Reynolds number of 100, the tip vortices do not join at the upstream end
and furthermore, the loops dissipate rapidly in the wake. This behaviour is consistent
with the increased viscous effect for this case. The higher-Reynolds-number case, on
the other hand, shows many of the features observed for the high Strouhal number
case including full upstream merging of the tip vortices, narrowing of the spanwise
spacing between the tip-vortices as well as the formation of circular rings like vortices
owing to the induction of the tip vortices.

Simulations of the AR = 2.55 pitching–heaving foil at a higher Reynolds number of
1000 and Strouhal number of 0.6 were also reported in Narsimhan et al. (2006). The
focus of this study was on CFD-based parameterization of a conceptual bio-robotic
autonomous underwater vehicle propelled by flapping foils. The wake at this higher
Reynolds number was also found to exhibit a similar topology with two sets of
vortex rings propagating at an oblique angle to the wake centreline. Thus it seems
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Figure 20. Vortex topology for θ0 = 20◦ case. For this case AR = 2.55, St = 0.6 and Re = 200.

that the basic vortex dynamics of these finite-aspect-ratio flapping foils is relatively
independent over at least an order of magnitude of Reynolds numbers.

Finally, we examine the effect of pitch-bias angle (θ0) on the wake topology. Pitch-
bias has been found to be an effective parameter for producing large mean lift forces
for manoeuvring (Triantafyllou, Hover & Licht 2003; Mittal 2004; Singh, Sinha &
Mittal 2004). In the current study, we have chosen the case with AR = 2.55, St = 0.6
and Re = 200 and have performed simulations for θ0 = 10◦, 20◦ and 30◦ in addition
to the zero pitch-bias case described earlier. Figure 20 shows the vortex topology
for the θ0 = 20◦ case and this can be compared with the corresponding plots for
the zero pitch-bias case shown in figure 9. As expected, introduction of a pitch-bias
produces a wake that is strongly asymmetric about the centreline. A strong set of
vortex loops and rings is produced below the centreline, whereas the loops formed
above the centreline are considerably weaker. Furthermore, the vortex rings in the
lower set have their axes oriented almost perpendicular to the streamwise directions
and it is expected that this will induce a large downward velocity in this region.
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Figure 20(d) shows that if viewed along the spanwise symmetry plane, the lower set
of vortex structures appear to form an inverse Kármán-like street that is directed at
an oblique angle to the streamwise direction. Thus overall, even with a relatively large
bias-angle, many of the essential features of the wake topology remain similar to that
observed for the zero-bias angle case.

It is useful to comment on the extent to which some of the hydrodynamic features
observed here are also observed in more realistic situations. First, as mentioned
previously, the flapping motion is better represented as a pitching–rolling motion. In
such a motion there is only one strong tip vortex as opposed to the two tip vortices
present for the pitching–heaving foil. However, ongoing simulations of pitching–rolling
foils using the same solver show that these foils also produce a series of distinct, but
complex, vortex ring-like structures. These vortex structures form from the vortex
loops that are generated by the joining of the leading-edge separation vortex (V3 in
figure 8a), the tip vortex and the trailing-edge vortex (V2 in figure 8a). The induction
mechanism responsible for this is analogous to the transformation of vortex loops into
vortex rings in the wake of a sphere (Mittal 1999; Mittal et al. 2002b). Furthermore,
just as in the pitching–heaving case, the vortex rings for pitching–rolling foils arrange
themselves into two sets that propagate at oblique angles to the wake centreline. Thus,
the essential vortex dynamics described for the pitching–heaving foil are observed in a
pitching–rolling foil. Results from this study on pitching–rolling foils will be presented
in a separate paper. With regard to the robustness of the wake dynamics observed
here, it is worth pointing out that even a pitching panel which does not have a moving
leading edge and therefore does not generate a leading-edge vortex, produces a wake
which shows many of the features observed here (Buckholtz & Smits 2006).

It should also be noted that previous studies of Drucker & Lauder (1999) which have
examined the wake structure of a highly flexible sunfish pectoral fin swimming steadily
in an oncoming flow have also indicated the presence of a series of interconnected
vortex rings in the wake. Simulations (Lauder et al. 2005; Bozkurttas et al. 2006)
of flow past a sunfish pectoral fin also show that although the wake structure is
significantly more complicated owing to the complex shape and deformation of the
fin, vortices from the dorsal and ventral edges, and fin-tip do coalesce to form vortex-
ring-type structures. Thus, despite the absence of flexibility and the use of a simple
canonical foil shape, it seems that the predicted flow does share some rudimentary
features with real fins.

3.2. Hydrodynamic forces

Figure 21 shows the time variation of the thrust and lift coefficients for various aspect-
ratio flapping foils with St =0.6 and Re = 200. The plots show the third and fourth
cycles in the simulations, by which time the flow has clearly reached a stationary
state. For all cases, the thrust peaks twice in each cycle at the time instant in the cycle
when the foil is near the centre of its trajectory. Furthermore, the foils experience a
maximum drag force just before they reach the extreme points in their heave motion.
Although this qualitative behaviour is observed for all the cases, there is a significant
reduction in peak thrust with aspect ratio. Specifically, we find that the peak thrust
coefficient for the AR = ∞ is about 1.7, whereas that for the AR =1.27 case is about
0.40 which amounts to over a four-fold reduction. Similar observations hold for the
lift coefficient where the magnitudes are reduced with aspect ratio, but there is no
significant effect on the qualitative characteristics.

Figure 22(a) shows the variation in the mean thrust coefficient with Strouhal
number for various aspect-ratio foils at a Reynolds number of 200. First, it can been
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Figure 21. Variation of hydrodynamic forces with time for foils of various aspect ratio.
(a) Thrust coefficient, (b) lift coefficient. The Reynolds number is 200 for all these cases.
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Figure 22. Variation of hydrodynamic performance of flapping foils with Strouhal number
for for foils of various aspect-ratio. (a) Thrust coefficient. (b) efficiency. The Reynolds number
is 200 for all these cases.

seen from this figure that for all cases, the thrust increases monotonically with the
Strouhal number. Such a behaviour is well documented for two-dimensional (infinite-
aspect-ratio) flapping foils (Anderson et al. 1998; Jones et al. 1998; Koochesfahani
1989) and the current simulations prove that low-aspect-ratio foil also shows similar
behaviour. At this relatively low Reynolds number, foils produce thrust only at
relatively large Strouhal numbers. This is because of the large shear drag that the
foils have to overcome at this Reynolds number. In fact, at a Strouhal number of
0.4, the AR =2.55 foil produced almost zero net force. Thus, for moderate aspect-ratio
foils (such as AR =2.55) at these Reynolds numbers, there is a transition from drag
to thrust producing behaviour for St � 0.4. This observation has particular relevance
for the studies of von Ellenrieder et al. (2003) and Blondeaux et al. (2005a, b) since
the flow is expected to be quite sensitive to the system parameters and set-up in
this transitional regime and could possibly explain the disagreement between the two
studies vis-à-vis the wake structure.

Figure 22(b) presents the variation of efficiency for these cases and a number of
trends can be observed in this plot. First, all cases show that the efficiency reaches a
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Figure 23. Relative increase in hydrodynamic performance with aspect-ratio. (a) Thrust
coefficient, (b) efficiency. The Reynolds number is 200 for all these cases.

maximum at an intermediate value of Strouhal number. Furthermore, the Strouhal
number at which this peak occurs decreases with increasing aspect ratio. For the two-
dimensional infinite-aspect-ratio case, the maximum is reached at a Strouhal number
of about 0.53, whereas the corresponding values of the AR = 5.09, 2.55 and 1.27 cases
are 0.55, 0.75 and 0.83, respectively. It is also observed that the maximum efficiency
increases with aspect ratio. However, at Strouhal numbers higher than about 0.85,
all the cases except for the AR = 1.27 cases show virtually the same efficiency values.
Thus, except for very small aspect-ratio fins, efficiencies comparable to those of a
infinite aspect-ratio fin can be attained for higher Strouhal numbers. This would
imply that low-aspect-ratio pectoral fins that are used for paddling as well as flapping
can match the thrust efficiency of high-aspect-ratio fins in the flapping mode only
if the aspect ratio is above a certain minimum value and if the fin is operated at
relatively high Strouhal numbers. The optimal Strouhal numbers found in the current
study are higher than the range usually considered optimal for swimming and flying
animals (Taylor, Nudds & Thomas 2003; Rohr & Fish 2004). This is probably due to
the particular choice of parameters (amplitude, maximum pitch angle and Reynolds
number) in the current study. As mentioned earlier, the relatively low Reynolds
number in the current study leads to a proportionately large shear drag that has to
be overcome in order for the foil to produce net thrust. This tends to push optimal
Strouhal numbers to higher values. Also, Hover et al. (2004) find that even at high
Reynolds numbers, depending on the maximum angle-of-attack, the optimal Strouhal
numbers can vary from 0.3 to 0.6 for a rigid flapping foil. Thus, the optimal Strouhal
number can vary over a fairly large range with some of these parameters.

Figure 23 presents the relative increase in the thrust and efficiency with aspect ratio
for a range of Strouhal numbers. Essentially, we compare the relative increase in thrust
and efficiency as the aspect ratio doubles from 1.27 to 2.55 with the corresponding
increase as the aspect ratio again doubles from 2.55 to 5.09. Values corresponding to
St = 0.4 are not included in these plots since some of the thrust and efficiency values
are close to zero for this Strouhal number and this can give unrealistic values of the
relative increase. The plots show that for all Strouhal numbers, the gain in thrust
and efficiency in going from AR = 1.27 to 2.55 is larger than the corresponding gain
in going from AR =2.55 to 5.09. In fact, at the lower end of the Strouhal number
range, the difference is quite dramatic. For instance, at St = 0.6 the thrust coefficient
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Figure 24. Polar plot of mean lift versus mean thrust for various pitch-bias angles. For all
three cases in this plot, AR = 2.55, St = 0.6 and Re = 200.

increases by a factor of about 3.4 as the aspect ratio increases from 1.27 to 2.55
and the corresponding increase in efficiency is by a factor of 2.75. In contrast, the
corresponding factors are 1.6 and 1.3, respectively, for thrust and efficiency when
aspect ratio is increased from 2.55 to 5.09. This has some implications for pectoral
fins found in nature. Clearly, hydrodynamic considerations alone would tend to lead
to pectoral fins with larger and larger aspect-ratios. Conflicting with this tendency
are penalties incurred by the animal for bearing large-aspect-ratio fins. These include,
but are not limited to, the need for stronger and therefore heavier body structures to
withstand the bending moments produced on large-aspect-ratio fins, a larger visual
signature associated with longer fins and problems associated with operating long
slender fins in tight spaces. The current simulations indicate that significant gains
in hydrodynamic performance can be achieved as the fin aspect-ratio is increased
to about 2.5. Further increase in aspect-ratio brings only modest gains which could
easily be offset by the penalties associated with large-aspect-ratio fins. The above
would seem to be equally true for insects and bird wings, but the penalty associated
with large bending moments is probably higher for fishes than for insects or birds.
This is so because pectoral fins of most fish are designed to be highly flexible,
much more so than insect or bird wings. This property of the fins allows for highly
complex flapping gaits which the animal uses to manoeuvre and move about in
extremely energetic and unsteady environments. Fin flexibility in fish pectoral fins is
usually achieved through the use of slender and delicate structural members (such
as rays and membranes) which present very little resistance to bending moments.
Furthermore, fishes, especially those that employ labriform (pectoral fin) propulsion,
usually swim in complex environments such as rocky coasts and coral reefs where the
disadvantages of operating long slender fins would be significant. Thus, the pressure
against larger-aspect-ratios is probably highest for fish pectoral fins and this, along
with the discussion in the previous paragraph provides some explanation for the
observation that most fish pectoral fins are found to have an aspect-ratio somewhere
between 2 and 3.

For the pitch-bias angle cases, it is useful to examine the effect of this parameter on
the thrust and lift production. Figure 24 presents a polar plot of mean lift versus mean
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thrust for various pitch-bias angles for the AR = 2.55, St = 0.6 and Re = 200 case. The
plot shows that small changes in the pitch-bias angle can produce relatively large lift
forces. In fact, interpolation of this existing data shows that a condition of CL/CT = 1
is reached for a pitch-bias angle of about 5◦. It should be noted that production
of large lift forces would be extremely useful for rapid pitch-up or roll manoeuvres.
This effect of pitch-bias is known for two-dimensional flapping foils (Mittal et al.
2003; Triantafyllou et al. 2003) and the potential use of this parameter for bio-robotic
autonomous underwater vehicles has already been explored (Singh et al. 2004). The
plot also shows that for pitch-bias angles greater than about 20◦ the foil starts to
produce drag. This behaviour is inline with that observed by Triantafyllou et al. (2003)
for a two-dimensional flapping foils. It should be noted that this drag production at
high pitch-bias angles will produce simultaneous braking and turning which would be
useful for manoeuvring and/or station-keeping in highly unsteady environments such
as littoral regions. Finally, the plot shows that the mean lift continuously increases
with pitch-bias angle at least up to 30◦. This behaviour is different from that of
stationary airfoils. For instance, flow over a NACA 0012 airfoil stalls at an angle-of-
attack of about 16◦ (Abbott 1980). Thus, the flapping motion leads to a dramatic
increase in the mean geometric angle-of-attack over which usable lift can be produced.

4. Conclusions
Simulations of flow past thin ellipsoidal flapping foils have been carried out using

an immersed boundary solver. In contrast to bird and insect wings, fish pectoral fins
tend to be of a relatively lower-aspect-ratio and the current study is an effort to
understand the fundamental hydrodynamics of low-aspect-ratio flapping foils. It was
also expected that despite the highly simplified kinematics adopted, the current study
would lead to some general insights into hydrodynamics of low-aspect-ratio pectoral
fin which seem to be common among many species of fish that employ this fin in a
flapping-like mode for propulsion.

The simulations show that the wake of thrust-producing finite-aspect-ratio flapping
foils is dominated by two sets of interconnected vortex loops and this is consistent
with the studies of Blondeaux et al. (2005a, b) and Buckholtz & Smits (2006). For
low-aspect-ratios, these vortex loops evolve into distinct non-circular vortex rings as
they convect downstream. For all the finite-aspect-ratio cases studied here, the vortex
loops/rings convect in a direction which is at an angle to the streamwise direction
and this angle is found to decrease with increasing aspect-ratio. The axes of the
vortex loops/rings are also found to be oriented at an angle to both the streamwise
direction and the direction of their travel. The motion and orientation of these vortex
structures lead to the formation of twin oblique jets which are most clearly visible
in the time-averaged wake profiles. All of these wake features of foils are described
in terms of vortex dynamics. The study also describes the effect of Strouhal and
Reynolds number and pitch-bias angle on the wake topology.

Analysis of the hydrodynamic performance of these flapping foils shows that the
thrust coefficient increases monotonically with aspect-ratio and Strouhal number
for all foils. Furthermore, all foils exhibit a clear maximum in propulsive efficiency
with Strouhal number, although it is found that the peak efficiency decreases and
the Strouhal number at which this maximum is achieved increases with decreasing
aspect-ratio. It is also found that the relative gains in thrust and efficiency are quite
large as the aspect-ratio is doubled from 1.27 to 2.55, but the same is not true when
the aspect-ratio is doubled yet again. This could partially explain why many of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

19
0X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200600190X


Low-aspect-ratio flapping foils 341

pectoral fins found in fish are in the range between 2 and 3. Finally, examination
of the mean lift and thrust/drag produced by a finite-aspect-ratio flapping foil with
pitch-bias angle shows that even small values of this parameter produce relatively
large values of mean lift and this would therefore be a useful parameter for producing
manoeuvring forces and moments.

This research is supported by ONR MURI grant N00014-03-1-0897. Extensive
discussions with George Lauder and Peter Madden of Harvard University on many
aspects of fish swimming and flapping foils are gratefully acknowledged.
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