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SUMMARY
In this paper, a model-based exponential stabilization of
a quadruped robot is studied in bounding motion. The
dynamics of the five-link planar underactuated mechanical
model of the quadruped robot with four actuated joints
system is derived. It is shown that the dynamical equation of
the proposed simplified model belongs to a class of second-
order nonholonomic mechanical systems which cannot be
stabilized by any smooth time-invariant state feedback.
Utilizing a coordinate transformation based on the so-
called normalized momentum, a robust backstepping control
method is presented for the quadruped robot. Both theoretical
analysis and numerical simulations show that the robust
backstepping controller can stabilize the underactuated
quadruped robot so that it could balance on its rear legs
and track a desired trajectory. Despite the model parameter
uncertainties, the robustness of the controller is maintained.
The simulation results show the effectiveness of the proposed
method.

KEYWORDS: Quadruped robot; Lagrangian modeling;
Underactuated system; Nonholonomic system; Nonlinear
control.

1. Introduction
The legged robots are an important class of biologically
inspired robotic systems, which have been investigated by
many researchers in the past three decades.1,2 The quadruped
robots due to their similar capabilities with the natural
walking/running animals have attracted much attention in
recent years. Little-Dog is a successful example of such
robots, which can move in rough terrain and climb from
obstacles with walking and bounding gaits.3 Bounding
gait is a dynamic motion that the robot stands in two
legs. This is a challenging task for quadruped robot since
the robot is underactuated in this stance. The presence
of unactuated joints results in a complicated dynamical
relationship between the actuated joints and the ground.

Underactuated Mechanical Systems are those systems that
have more degrees of freedom (DOF) than the actuators.4,5

The mechanical underactuated systems are often called
second-ordered nonholonomic system.6,7 An underactuated
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mechanical system is generally nonlinear in nature, and
cannot be globally linearized by static or dynamic feedback8

except for the differentially flat systems. However, one
can employ famous Brockett’s theorem9 to transform such
systems to special normal forms. Stabilizing nonlinear
systems without a special normal form is generally an open
problem.10 Recently, the main progresses for the nonlinear
control theory highly depend on the nonlinear systems that
holding special geometric or algebraic structures,11 such
as the strict feedback normal form4 or feedforward normal
forms.12,13 The former can be stabilized by the backstepping
procedure14 and the latter can be stabilized by state feedback
in explicit form as nested saturations.12 For nonholonomic
system, if the control distribution of the system has nilpotent
property,15 the system can be transformed into a triangular
normal form.16,17 However, a general solution to obtain
the transformation for any nonlinear system does not exist.
Therefore, an approximate normal form transformation
combining with a robust control may be adopted. This
method has been employed for balancing a one-leg hopping
robot with two arms.18 However, one-leg hopping robot has
much simple dynamic model compared to quadruped robot.

For controlling the underactuated mechanical systems,
Olfati-Saber presented a method in ref. [10] called
normalized momentum. If the underactuated system has
symmetric kinetic energy, one can change the partially
linearized form of the dynamics into a special case of
the famous Byrnes–Isidori normal forms,4 namely strict
feedback and feedforward forms, with a double integrator,
such that the control input does not appear in the unactuated
subsystem. This simplifies the control design by reducing the
control of the original higher order system into the control of
its lower order nonlinear unactuated subsystem.

Backstepping control is an effective control technique
which is especially used for a class of nonlinear systems that
are strict feedback form transformable.14,19 In works such as
refs. [4, 19], the authors have made significant contributions
to the development of this theory. Moreover, in ref. [18], this
theory has been used for robust control of a hopping robot in
stance phase with two active and two passive joints.

In this paper, a new simplified dynamic model of
underactuated quadruped robot in bounding motion with
four actuated and two unactuated joints is developed for
the first time using the Lagrangian method. Based on the
Olfati-Saber coordinate transformation given in ref. [10], an
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Fig. 1. Little-Dog robot in the bounding motion.3

approximate normal form of the model is obtained. Then, a
robust backstepping controller is employed for this system.
The approximated transformation introduces uncertainties
in the simplified dynamical model. Despite the model and
parameter uncertainty, the robustness of the controller is
maintained while achieving proper performance. It is shown
that the proposed controller stabilizes the underactuated
quadruped robot and allows tracking the desired trajectory in
bounding motion in a suitable range.

The paper is organized as follows. In Section 2, the
robot model is introduced and the dynamics of the robot
are analyzed. In Section 3, an approximate strict feedback
normal form with perturbation terms is presented based
on the transformation mentioned in ref. [10]. Since the
approximations introduce some uncertainties into the model,
a robust backstepping controller is used in Section 4.
Section 5 presents some numerical simulations that verify
the suggested schemes in the former two sections. Finally,
the concluding remarks are provided in Section 6.

2. Dynamics of the Underactuated Quadruped Robot in
Bounding Motion
Obtaining an accurate dynamic model for quadruped robot
has proven to be quite difficult due to its high DOF and its
ground interactions. The complications are more pronounced
in the bounding motion compared to walking gates. Figure 1
shows a quadruped robot known as Little-Dog in bounding
motion.3 The Little-Dog robot has 12 actuators: two in each
hip and one in each knee for each leg. When the robot moves
in the three-dimensional space, it will have 22 DOF: six
for the body, three rotational joints in each leg, and one
prismatic spring in each leg. By assuming that the leg springs
are overdamped and has first-order dynamics, we arrive at a
40-dimensional state space (18 × 2 + 4).

According to the Little-Dog properties as a sample,
quadruped robot is a complicated system. However, to keep
the model as simple and low dimensional as possible, we

Fig. 2. (Colour online) Quadruped robot planar model in bounding
motion.

approximate the dynamics of the quadruped robot using a
planar five-link serial rigid-body chain model for bounding
motion, with revolute joints connecting the links, and a free
base joint, as shown in Fig. 2. Due to lateral symmetry in
the planar model, only one side of the body needs to be
considered. In other words, it is assumed that the rear legs
(feet) move together as one and the front legs (hands) move
together as one. We assume like Little-Dog the robot leg
has two segments: the shin and the upper leg. The shin
itself consists of rigid parts and a massless stiff spring which
moves along the axis of the shin. For bounding motion, the
connection between the ground and foot of the quadruped
robot is considered as a passive joint. The spring is another
passive DOF.

Let the generalized coordinates of the planar model be
(ϕ, l0, q1, q2, q3, q4), where ϕ is the angle between leg’s axis
and the ground, l0 is the length of massless shin (l0 = l00

when spring is free), and q1, q2, q3, q4 are angular variables
of between the links, respectively. Positive direction of q2, q3

is assumed to be clockwise and other angles are counter-
clockwise. In bounding locomotion, we want to move the
position of the hand (lx, ly) to desired point. The length of
the rigid part of the shin with nonzero mass is l1with mass
m1. The massless segment that has the length l0 serially
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connected to the former. The stiffness of the linear spring
is k.

The planar model shown in Fig. 2 has six DOF in bounding
phase and is actuated by four actuators on the joints. Thus,
the telescopic and swing motions of the robot leg are due to
the dynamics coupling of the four links indirectly.

The generalized coordinates in bounding phase can be
denoted by x = [xT

p , xT
a ]T ,where xp = [l0, ϕ]T and xa =

[q1, q2, q3, q4]T correspond to the passive and the active
joints, respectively. The Lagrangian of the planar model is of
the form

L(x, ẋ) = K(x, ẋ) − V (x)

= 1

2

[
ẋp

ẋa

]T

M(xp, xa)

[
ẋp

ẋa

]
− V (x), (1)

where K and V denote the kinetic and potential energies,
respectively. The inertia matrix M(xp, xa) can be written as

M(xp, xa) =
[
Mpp Mpa

Map Maa

]
, (2)

whose submatrices are obtained in Appendix A. One can see
from the appendix that the inertia matrix is only a function of
variables (l0, q1, q2, q3, q4) and is independent of variable ϕ.
This follows that K(x, ẋ) is also independent of ϕ. According
to Lagrangian mechanics, if the Lagrangian function L(x, ẋ)
is independent of a generalized coordinates xi , then one can
say that the Lagrangian is symmetric with respect to xi . In
this case, xi is said to be a cyclic coordinates.10 Lagrangian
symmetry gives identical equation as

∂L(x, ẋ)/∂xi = 0. (3)

For a mechanics system, the Lagrangian dynamics has an
expression

d

dt

∂L(x, ẋ)

∂ẋi

− ∂L(x, ẋ)

∂xi

= τi. (4)

For a pure system (without any controls), τi is equal to
zero. Considering Eq. (3), Eq. (4) reduces to

pi = ∂L(x, ẋ)/∂ẋi = constant. (5)

This means that pi is a conserved quantity. For the
underactuated planar model shown in Fig. 2, one can verify
that the potential energy of the robot is a function of all
generalized coordinates such that there is no Lagrangian
symmetry. However, as mentioned above, the kinetic energy
K(x, ẋ) is symmetric with respect to variable ϕ, and thus one
can write

∂K(x, ẋ)/∂ϕ = 0. (6)

Since the robot has a nonconstant potential energy, the
existence of kinetic symmetry does not lead to existence of
conserved quantities. In control viewpoint, the existence of
conserved quantities always leads to losing the controllability

of the system, which is a typical case for underactuated
systems.

Considering the kinetic symmetry and utilizing Eq. (4), the
Lagrangian dynamics of the planar model can be expressed
as

d

dt

∂K

∂l̇0
− ∂L

∂l0
= 0,

d

dt

∂K

∂ϕ̇
+ ∂V

∂ϕ
= 0, (7)

d

dt

∂K

∂q̇i

− ∂L

∂qi

= τi, i = 1, . . . , 4,

where τi, i = 1, . . . , 4 is the joint torque. The first two
equations of Eq. (7), with right-hand side zero can be
considered as differential constraints of the actuated part.
Since ∂L/∂l0 �= 0 and ∂L/∂ϕ �= 0, the first two equations of
Eq. (7) cannot be reduced to a first-order or an algebraic
equation, and therefore, system (7) is a second-order
nonholonomic system. From the above discussions, one can
conclude that:

(a) The planar model of the quadruped robot is an
underactuated mechanical system since the six DOF
mechanical system has only four actuators.

(b) The planar model is a second-order nonholonomic
system because of the nonconstant potential field.

(c) The planar model has no Lagrangian symmetry but
has kinetic symmetry. This plays a vital role in the
controllability and stabilization of the underactuated
system.

3. Deriving the Normal Form of the Dynamics
In this section, we transform the underactuated system (7)
into a normal form such that the control problem can
be resolved effectively. Using Appendix A in finding the
derivatives in Eq. (7), one can write the model as

mppẍp + mpaẍa + cp(x, ẋ) = 0,
(8)

mapẍp + maaẍa + ca(x, ẋ) = τ,

where the terms cp(x, ẋ) and ca(x, ẋ) both include the
centrifugal, Coriolis, gravitational, and frictional forces,
which can be found from Eq. (7). Since mpp is invertible
(see Appendix A), using a partial feedback linearization of
the form

τ = (
maa − mapm−1

ppmpa

)
ẍa + (

ca − mapm−1
ppcp

)
, (9)

and defining u as

u = (
maa − mapm−1

ppmpa

)−1(
τ − ca + mapm−1

ppcp

)
, (10)

system (8) is transformed into a partially linearized form

ẋp = yp,

ẏp = −m−1
ppcp − m−1

ppmpau,
(11)
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ẋa = ya,

ẏa = u,

where u = ẍa is considered as the new input. Obviously,
subsystem (xa, ya) is linearized whereas subsystem (xp, yp)
remains highly nonlinear, and the new control u appears in
both subsystems. In fact, the existence of the control signal
in nonlinear subsystem highly increases the complexity of
control design for underactuated systems.

In order to transform system (11) into a normalized form,
at first we bring the Olfati-Saber transformation along with
some necessary definitions in this regard, and we apply them
to this model.

Definition 1. External variables and shape variables10:
The variables that appear in the kinetic energy of the
mechanical system with Lagrangian (1) are called shape
variables. A configuration variable is called an external
variable, if it does not appear in the kinetic energy, i.e.,
∂K(x, ẋ)/∂xi = 0.

Definition 2. Normalized momentum10: For the
underactuated system (8), the normalized momentum with
respect to the generalized coordinates xp,xa are defined as

πp = m−1
pp

∂L

∂ẋp

= ẋp + m−1
ppmpaẋa,

πa = m−1
pa

∂L

∂ẋa

= ẋa + m−1
pamaaẋp,

(12)

respectively.

Definition 3. Strict feedback form10: A nonlinear system
is said to be in strict feedback form if it has the following
triangular structure:

ż = f (z, γ1),
γ̇1 = γ2,

· · ·
γm = u.

(13)

The following proposition gives the condition for
transforming the underactuated mechanical system to the
strict feedback normal form, so that the system can be
stabilized by the backstepping procedure.19

Proposition 1. Strict feedback form transformation10:
Assume that the unactuated coordinates xp are external
variables and the actuated coordinates xa are shape variables.
If the normalized momentum πp in Eq. (12) is integrable and
the part ω = [m−1

pp (xa)mpa(xa)]dxa of πp has the form ω =
d�(xa), then there exists a global coordinate transformation
of the form

xr = xp + �(xa),
yr = ∂L/∂ẋp = mpp(xa)ẋp + mpa(xa)ẋa,

(14)

that along with partial feedback linearization (9) transforms
the dynamics of the system (8) into the following cascade

nonlinear system in a strict feedback form:

ẋr = m−1
pp (xa)yr,

ẏr = − ∂V (xr−�(xa),xa )
∂xr

,

ẋa = ya,

ẏa = u,

(15)

where u = ẍa is the new input.

Remark 1: The planar model with Eq. (7) does not satisfy
the condition of Proposition 1 since the passive coordinate
l0 is not a kinetic symmetrical coordinate. However, as
shown in the following two propositions, system (7) can
be approximated to satisfy the conditions of Proposition 1.

Extending of Proposition 1 to hold for any mechanical
system with nonsymmetric kinetic energy with respect to
passive variables that can be approximated by desired
constants, we provide the following proposition.

Proposition 2. Approximate momentum integral:
Consider the dynamics of the underactuated quadruped
planar model (7), if the kinetic energy K(l0, q1, q2, q3, q4)
is estimated by K̂(l01, q1, q2, q3, q4), i.e., l0 ≈ l01, then it
follows that:

(a) The approximate kinetic energy K̂(l01, q1, q2, q3, q4) is
symmetric about the passive coordinates xp = [l0, ϕ]T .

(b) If the matrix m̂pp(l01, q1, q2, q3, q4) is estimated by
m̂pp(l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 ), in which q∗
i , i = 1, 2, 3, 4

are any given angular positions of the four links,
respectively, then the approximate momentum part ω̂ =
[m̂−1

pp (l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )m̂pa(l01, q1, q2, q3, q4)]dxa is
integrable.

Proof.

(a) Considering Appendix A, by letting l0 ≈ l01, it is trivial
that the approximate kinetic energy K̂(l01, q1, q2, q3, q4)
becomes independent of passive coordinates xp =
[l0, ϕ]T , which makes it is symmetric about xp.

(b) Let m̂pp(l01, q1, q2, q3, q4) ≈ m̂pp(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ),
referring to Appendix A, the approximate momentum
part can be written as

ω̂ = [
m̂−1

pp (l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )m̂pa(l01, q1, q2, q3, q4)
]
dxa

= m̂−1
pp (l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 )

×
[
M13dq1 + M14dq2 + M15dq3 + M16dq4

M23dq1 + M24dq2 + M25dq3 + M26dq4

]
, (16)

where according to Appendix A, Mij (i = 1, 2&j =
3, 4, 5, 6) is a function of qi (i = 1, 2, 3, 4). This can
be denoted by ω̂ = d�(l01, q1, q2, q3, q4). Then, it follows
that:

�(l01, q1, q2, q3, q4) = m̂−1
pp (l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 )

[
℘11

℘12

]
, (17)

where ℘1j (j = 1, 2) is the integral of m̂pa(l01, q1, q2, q3, q4)
and can directly be obtained. This completes the proof. �
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Remark 2: When using Proposition 1 along with
Proposition 2 to transform an underactuated system into
the strict feedback form, the resulting approximation
error should be taken into account. Considering the
Lagrangian (1), since the potential energy V (x) is only a
function of generalized coordinates (i.e., ∂V (x)/∂ẋ = 0), the
generalized momentum given in Eq. (14) can be written as

∂L(x, ẋ)

∂ẋ
= ∂K(x, ẋ)

∂ẋ
− ∂V (x)

∂ẋ
= ∂K(x, ẋ)

∂ẋ
= M(x)ẋ.

(18)

The momentum part is relative to the passive coordinates,
i.e.

yr = ∂L/∂ẋp = mpp(x)ẋp + mpa(x)ẋa. (19)

Considering the approximations l0 ≈ l01 and mpp(l0,
q1, q2, q3, q4) ≈ m̂pp(l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 ), then the approxim-
ate momentum in Eq. (16) can be expressed by

ŷr = m̂pp(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )ẋp + m̂pa(l01, q1, q2, q3, q4)ẋa.

(20)

For systems that satisfy the conditions of Proposition 1
and Proposition 2, we present the following proposition
which shows that the underactuated system (8) can be
transformed into a strict feedback normal form with
perturbation terms such that the nonlinear dynamic system
(8) can be controlled by robust backstepping procedure.

Proposition 3. Strict feedback form with perturbation
terms: For the underactuated planar model (8), combining
partial feedback linearization (9), the new control signal (10)
and the following coordinate transformation:

xr = xp + �(l01, q1, q2, q3, q4),

yr = ∂L/∂ẋp = mpp(xa)ẋp + mpa(xa)ẋa, (21)

transforms system (8) into the following strict feedback form:

ẋr = m̂−1
pp (l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 )yr + ε1,

ẏr = −∂V (xr − �(l01, q1, q2, q3, q4), xa)

∂xr

+ ε2, (22)

ẋa = ya,

ẏa = u,

with perturbations terms given by

ε1 = ŷr − yr, ε2 =
[
∂K/∂l0

0

]
. (23)

Proof. Using Eqs. (9) and (10), system (8) reduces to

mppẍp + mpaẍa + cp(x, ẋ) = 0,

ẋa = ya, (24)

ẏa = u.

Thus, the last two equations of Eq. (22) are verified.
Moreover, substituting Eqs. (21) and (16) into the left-hand
side of the first equation in Eq. (22) yields

ẋr = ẋp + d

dt
�(l01, q1, q2, q3, q4)

= ẋp + m̂−1
pp (l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 )m̂pa(l01, q1, q2, q3, q4)ẋa

= m̂pp(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )(yr + ε1), (25)

where ε1 = ŷr − yr , which proves the first equation of Eq.
(22). To prove the second equation of Eq. (22), consider the
first two equations of Eq. (7). Since ∂V/∂ẋp = 0, one can
write

d

dt

(
∂L

∂ẋp

)
= − ∂V

∂xp

+
[

∂K/∂l0
0

]
. (26)

Using Eq. (19) in Eq. (26) gives

ẏr = − ∂V

∂xp

+
[
∂K/∂l0

0

]
. (27)

Let ε2 =
[
∂K/∂l0

0

]
. Equations (26) and (27) follow that:

ẏr = −∂V/∂xp + ε2. (28)

The first equation in Eq. (21) implies that ∂xr

∂xp
= I , so one

can write

∂V (xp, xa)

∂xp

= ∂V (xr − �(l01, q1, q2, q3, q4), xa)

∂xr

. (29)

Therefore, Eq. (28) reduces to

ẏr = −∂V (xr − �(l01, q1, q2, q3, q4), xa)

∂xr

+ ε2. (30)

Hence, the second equation of Eq. (22) is verified, which
completes the proof. �

Remark 3: Letting (z1, z2) = (xr, yr ) and (γ1, γ2) =
(xa, ya), Eq. (22) can be rewritten in a more familiar form as

ż = f (z, γ1, ε),

γ̇1 = γ2, (31)

γ̇2 = u.

The normal form (31) with nonlinear perturbation ε indicates
that the standard backstepping procedure cannot be used
directly, and thus a robust backstepping controller is
necessary.

4. Robust Backstepping Control
In this section, we present a robust controller for
system (22). To allow the proposed controller fit both
the set-point regulation and trajectory tracking tasks,
we employ transformation: z1 = xd

r − xr , z2 = yd
r − yr ,
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γ1 = xd
a − xa , γ2 = yd

a − ya on system (22), where the
superscript d denotes the desired trajectory of the
corresponding variable. Therefore, Eq. (22) reduces to

ż1 = ẋd
r − m̂−1

pp (l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )(yd
r − z2) − ε1,

ż2 = ẏd
r − fr (xd

r − z1, x
d
a − γ1) − ε2,

γ̇1 = γ2, (32)

γ̇2 = ẏd
a − u,

where

fr (xr, xa) = −∂V (xr − �(l01, q1, q2, q3, q4), xa)

∂xr

.

It can be seen that in the z-subsystem of Eq. (32), function
fr is not affine with respect to the input variableγ1. Although
a backstepping theorem for the nonaffine system has already
been developed in ref. [4], it has some restrictive conditions
that make it difficult to find a Lyapunov function. Therefore,
we would prefer to find an affine approximation of function
fr for system (32). Referring to Eq. (29) and Appendix A,
one can write

fr (xr, xa) = −∂V (xp, xa)

∂xp

= [fr1 fr2 ]T , (33)

where

fr1 = −∂V

∂l0
= −(m1 + m2 + m3 + m4 + m5)g sin ϕ

− k(l0 − l00),

fr2 = −∂V

∂ϕ
= −[(l0 + l10)m1 + (l0 + l1)(m2 + m3 + m4

+ m5)]g cos ϕ − [l20m2 + l2(m3 + m4 + m5)]g cos(ϕ

+ q4) − [l30m3 + l3(m4 + m5)]g cos(ϕ + q3 + q4)

− [l40m4 + l4m5]g cos(ϕ + q2 + q3 + q4)

− l50m5g cos(ϕ + q1 + q2 + q3 + q4).

Obviously, in the above equations, functions fr1 and fr2

are not affine in variables γ1 = xa = [q1, q2, q3, q4]T , one
may consider the motion of leg near to the vertical position
at the bounding motion, which implies that ϕ ≈ π

/
2, and

consequently, sin ϕ ≈ 1, cos ϕ ≈ 0.5π − ϕ, cos(ϕ + α) ≈
− sin α. In addition, let l0 ≈ l01 in fr2 then fr1 and fr2 can be
estimated by

f̂r1 = −(m1 + m2 + m3 + m4 + m5)g − k(l0 − l00),

f̂r2 = F0g(ϕ − 0.5π) + [l20m2 + l2(m3 +m4 +m5)]g sin(q4)

+ [l30m3 + l3(m4 + m5)]g sin(q3 + q4) + [l40m4

+ l4m5]g sin(q2 + q3 + q4) + l50m5g sin(q1 + q2

+ q3 + q4), (34)

where F0 = (l0 + l10)m1 + (l0 + l1)(m2 + m3 + m4 + m5).
Substituting Eq. (17) into Eq. (21) yields

xr =
[
l0
ϕ

]
+ m̂−1

pp (l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )

[
℘11

℘12

]
. (35)

Using Eq. (35) in Eq. (34) and considering the first-order
approximation of sin(·), the estimate of fr can be expressed
as

f̂r = f0(xr, l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )

+ f1(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )(xd
a − γ1), (36)

where

f0(xr, l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ) = A + B
(
xr − m̂−1

ppC
)
,

f1(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ) = D − Bm̂−1
ppE,

with matrices A, B, C, D, and E expressed in Appendix B.
Considering estimate (36), system (32) can be

approximated by the following affine system in strict
feedback form with perturbation terms:

ż1 = ẋd
r − m̂−1

pp (l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )
(
yd

r − z2
) − ε1,

ż2 = ẏd
r − f0(xr, l01, q

∗
1 , q∗

2 , q∗
3 , q∗

4 )

− f1(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ) × (
xd

a − γ1
) − ε3, (37)

γ̇1 = γ2,

γ̇2 = ẏd
a − u,

where ε3 = ε2 + fr − f̂r . Despite the fact that the
approximate system (37) introduces an additional modeling
error fr − f̂r , the following lemma ensures that the
perturbation terms are bounded.

Lemma 1. Boundedness of the perturbed terms: The
perturbation terms ε1 and ε3 in the quadruped robot dynamics
(37) are bounded, i.e., there exist positive constants δi >

0, i = 1, 2 such that ‖ε1‖ ≤ δ1 and ‖ε3‖ ≤ δ2 are satisfied.

Proof. The quadruped robot model is a periodic motion
system, and thus, the generalized coordinate velocities,
accelerations, and momentum (x,ẋ,ẍ, and yr ) are all
bounded. Then, all perturbation terms in Eq. (37) are
bounded, and one has δ1 ≥ max(‖ε1‖), δ2 ≥ max(‖ε3‖). �

For the purpose of clarity and simplicity, Eq. (37) can be
rewritten in a more compact form as

ż1 = h1(t) + g1z2 − ε1,

ż2 = h2(t) + Bz1 + f1γ1 − ε3,

γ̇1 = γ2, (38)

γ̇2 = h3(t) − u,

where h1(t) = ẋd
r − m̂−1

ppyd
r , h2(t) = ẏd

r − A − Bxd
r +

Bm̂−1
ppC − f1x

d
a , and g1 = m̂−1

pp .
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The main result of the paper is presented in the following
theorem which offers a method for the stabilization and
control of the five-link model of quadruped robot in bounding
motion.

Theorem. Robust backstepping control of quadruped
robot model in bounding motion: Consider system (38)
and arbitrary scalar constants k1, k2, k3, k4 > 0, η1, η2 > 0,
and assume that the upper bounds δ1 ≥ max(‖ε1‖), δ2 ≥
max(‖ε3‖) are known. Consider the smooth state feedback
ugiven by

u = k4eγ2 +
(

∂H3

∂γ1

)T

+ h3 − ∂(λ3)

∂γ1
(γ2) − ∂(λ3)

∂z2
(h2 + Bz1

+ f1γ1) − ∂(λ3)

∂z1
(h1 + g1z2), (39)

where positive definite functions Hi(·) are

H1(z1) = 1

2
zT

1 z1,

H2(z1, z2) = 1

2
zT

1 z1 + 1

2
(z2 − λ1)T (z2 − λ1),

H3(z1, z2, γ1) = H2(z1, z2) + 1

2
(γ1 − λ2)T (γ1 − λ2), (40)

H4(z1, z2, γ1, γ2) = H3(z1, z2, γ1) + 1

2
(γ2 − λ3)T (γ2 − λ3),

and

λ3(z1, z2, γ1) = −k3eγ1 −
(

∂H2

∂z2
f1

)T

+ ∂λ2

∂z2
(h2 + Bz1

+ f1γ1) + ∂λ2

∂z1
(h1 + g1γ2),

f1λ2(z1, z2) = −(
k2 + η2δ

2
2

)
(z2 − λ1) −

(
∂H1

∂z1
g1

)T

− h2 − Bz1 + ∂λ1

∂z1
(h1 + g1z2),

g1λ1(z1) = −(k1 + η1δ
2
1)z1 − h1.

Then, the control law (39) guarantees system (37) to
become uniformly bounded, i.e., there exists a positive
constant σ such that the state vector converges to the
following compact residual set:

� = {(z1, z2, γ1, γ2) : H (z, γ ) ≤ σ }, (41)

where H (z, γ ) = H4(z1, z2, γ1, γ2).

Proof. Consider the z1subsystem of Eq. (37), select H1(z1)
as the candidate Lyapanov function and view z2 as the virtual
input for z1 subsystem, then using inequalities: 2ab ≤ a2 +
b2 and

∣∣aT b
∣∣ ≤ ‖a‖ . ‖b‖, for every η1 > 0 one can write

Ḣ1(z1) = zT
1 ż1

= zT
1 [h1 + g1z2 − ε1] ≤ zT

1 [h1 + g1z2]

+ η1

∥∥zT
1

∥∥2 ‖ε1‖2 + 1/(4η1)

≤ zT
1

[
h1 + g1z2 + η1δ

2
1z1

] + 1/(4η1). (42)

Let g1z2 = −(k1 + η1δ
2
1)z1 − h1, where k1 > 0 is arbitrary,

then Eq. (42) reduces to

Ḣ1(z1) ≤ −k1z
T
1 z1 + 1/(4η1). (43)

Furthermore, select H2(z1, z2) as the candidate Lyapanov
function for composite subsystem (z1, z2), with γ1 as its
virtual input and let ez2 = z2 − λ1(z1), then it follows that:

Ḣ2(z1, z2) = Ḣ1(z1) + eT
z2

(ż2 − λ̇1(z1))

= ∂H1

∂z1

[
h1 + g1(ez2 + λ1) − ε1

]

+eT
z2

[
h2 + Bz1 + f1γ1 − ε3 − ∂λ1

∂z1
(h1 + g1z2)

]

= ∂H1

∂z1
[h1 + g1λ1 − ε1]

+eT
z2

[(
∂H1

∂z1
g1

)T

+ h2 + Bz1 + f1γ1 − ε3

−∂λ1

∂z1
(h1 + g1z2)

]
. (44)

Considering the inequality (43), Eq. (44) yields

Ḣ2(z1, z2) ≤ −k1z
T
1 z1 + eT

z2

[(
∂H1

∂z1
g1

)T

+ h2 + Bz1

+f1γ1 − ε3 − ∂λ1

∂z1
(h1 + g1z2)

]
+ 1

4η1

≤ − k1z
T
1 z1 + eT

z2

[(
∂H1

∂z1
g1

) T

+ h2 + Bz1 + f1λ2

+f1(γ1 − λ2) − ∂λ1

∂z1
(h1 + g1z2) + η2δ

2
2ez2

]
+ ξ ,

(45)
where ξ = 1/(4η1) + 1/(4η2). Let

f1λ2 = −(k2 + η2δ
2
2)ez2 −

(
∂H1

∂z1
g1

)T

− h2 − Bz1 + ∂λ1

∂z1
(h1 + g1z2),

where k2 > 0 is arbitrary. From the inequality (45), one can
write

Ḣ2(z1, z2) ≤ −k1z
T
1 z1 − k2e

T
z2
ez2 + ∂H2

∂Z2
f1(γ1 − λ2) + ξ.

(46)
Furthermore, select H3(z1, z2, γ1) as the candidate

Lyapunov function for composite subsystem (z1, z2, γ1), with
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γ2 as its new virtual input, and let eγ1 = γ1 − λ2, then

Ḣ3(z1, z2, γ1) = Ḣ2(z1, z2) + eT
γ1

(γ̇1 − λ̇2)

≤ −k1z
T
1 z1 − k2e

T
z2
ez2 + eT

γ1

[(
∂H2

∂z2
f1

)T

+λ3 + (γ2 − λ3) − ∂λ2

∂z2
(h2 + Bz1 + f1γ1)

− ∂λ2

∂z1
(h1 + g1γ2)

]
+ ξ.

(47)
Letting

λ3(z1, z2, γ1) = −k3eγ1 −
(

∂H2

∂z2
f1

)T

+ ∂λ2

∂z2
(h2 + Bz1

+f1γ1) + ∂λ2

∂z1
(h1 + g1γ2),

with arbitrary k3 > 0, inequality (47) reduces to

Ḣ3(z1, z2, γ1) ≤ Ḣ2(z1, z2) − k3e
T
γ1

eγ1 + eT
λ1

(γ2 − λ3) + ξ

= −k1z
T
1 z1 − k2e

T
z2
ez2 − k3e

T
γ1

eγ1

+∂H3

∂γ1
(γ2 − λ3) + ξ.

(48)
Finally, selecting H4(z1, z2, γ1, γ2) as the candidate

Lyapunov function for the system (38), and letting eγ2 =
γ2 − λ3 follows that:

Ḣ4(z1, z2, γ1, γ2) = Ḣ3(z1, z2, γ1) + eT
γ2

(γ̇2 − λ̇3)
≤ −k1z

T
1 z1 − k2e

T
z2
ez2 − k3e

T
γ1

eγ1

+eT
γ2

[(
∂H3

∂γ1

)T

+ h3 − u

−∂λ3

∂γ1
(γ2) − ∂λ3

∂z2
(h2 + Bz1 + f1γ1)

−∂λ3

∂z1
(h1 + g1z2)

]
+ ξ.

(49)
With

u = k4eγ2 +
(

∂H3

∂γ1

)T

+ h3 − ∂λ3

∂γ1
(γ2) − ∂λ3

∂z2
(h2 + Bz1

+ f1γ1) − ∂λ3

∂z1
(h1 + g1z2), (50)

as the actual input for the system (38) in which k4 > 0 is
arbitrary, inequality (49) follows:

Ḣ4(z1, z2, γ1, γ2) ≤ −k1z
T
1 z1 − k2e

T
z2
ez2 − k3e

T
γ1

eγ1

− k4e
T
γ2

eγ2 + ξ. (51)

For simplicity, let k1 = k2 = k3 = k4 = 0.5 ρ > 0. Then,
inequality (51) is rewritten as

Ḣ4 ≤ −ρH4 + ξ. (52)

Table I. The physical parameters of the Little-Dog.3.

Symbol Value Unit Description

Shin
�l0max 4.5 cm Maximum spring travel
K 7500 N/m Spring linear stiffness
m1 0.13 kg Mass of shin
l1 9.2 cm Length of shin (rigid part)
I1 7 × 10−5 Kg.m2 Inertia of shin
r1 5.7 cm Center of mass
Upper leg
m2 0.24 kg Mass of upper leg
l2 7.5 cm Length of upper leg
I2 6 × 10−6 Kg.m2 Inertia of upper leg
r2 4.8 cm Center of mass
Body
m3 2.3 kg Mass of body
l3 20.2 cm Length of body
I3 2.2 × 10−3 Kg.m2 Inertia of body
r3 8.7 cm Center of mass

Thus

H4(t) ≤ H4(t0)e−ρ(t−t0) + (ξ/ρ)(1 − e−ρ(t−t0))
≤ H4(t0)e−ρ(t−t0) + (ξ/ρ).

(53)

From Eq. (40), it is clear that H4(t) ≥ max{ 1
2zT

1 z1,
1
2eT

z2
ez2,

1
2eT

γ1
eγ1,

1
2eT

γ2
eγ2}. Moreover, it is trivial that

lim
t→∞ H4(t0)e−ρ(t−t0) = 0. Therefore, for all ρ > 0there exists

a constant ξ0 > 0 such that

H4(t0)e−ρ(t−t0) < ξ0, t > T .

Hence, we have

‖χi‖ < 2(ξ0 + ξ/ρ), i = 1, 2, 3, 4 , (54)

whereχ1 = z1, χ2 = ez2, χ3 = eγ1, χ4 = eγ2 . By selecting
the independent parameters ρ, η1, η2, there exists a σ such
that

H4(z1, z2, γ1, γ2) ≤ σ ≤ ξ0/ρ. (55)

This completes the proof. �
Remark 4: The proposed robust backstepping control (39)

depends on the bound of perturbation terms of system (38).
With the periodic motion manner of the quadruped robot in
bounding motion, the perturbations in the system (38) are
bounded in principle.

5. Numerical Simulation
The control aim is that the hand of the quadruped robot
tracks a desired path and the robot does a complete bounding
step motion, which will be helpful for different tasks
such as passing an obstacle. We would like to test the
robustness of the proposed controller in the presence of model
uncertainties. For simulating the quadruped robot, we use the
physical parameters of the Little-Dog3 which are given in
Table I.
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Fig. 3. (Colour online) The active joints of the closed-loop system in bounding motion.

For bounding motion, the actuators situated in the joints
should follow a certain path. Thus, a path planning is needed.
However, with simple calculations, we can assign a path for
every joint so that the bounding is realized. Particularly, we
choose the following path for each joint:

xd
i (t) = α + β sin(ωt + κ), i = 1, . . . , 6, (56)

where α, β, ω, and κ are the parameters selected to have
proper robot bounding gesture and xi (i = 1, . . . , 6) are
ϕ, l0, q1, q2, q3, q4, respectively (see Fig. 2). The nominal
operating points of the paths are obtained by

x∗
i = 1

2

(
xmin

i + xmax
i

)
, (57)

where xmin
i , xmax

i are the minimum and maximum values of
the selected paths given in Eq. (56). Table II shows the choice
of these parameters as well as the minimum, maximum, and
the nominal operating points of these paths.

Using the robust controller (39) and the desired path (56),
we simulate the dynamic Eq. (38) with MATLAB. At first, the
desired path is transformed to the form given in Eq. (14); then
the model and the controller are implemented. Afterwards,
by utilizing coordinate transformation (14), the active and
passive variables appear.

The designed controller is robust as it tackles unstructured
uncertainties of the approximate model. In addition, we
add parameter variations (as additional uncertainties) to
the simulations. On the other hand, our controller is a
model-based controller, and thus the parameter uncertainties

Table II. Values of the selected paths..

Minimum Maximum Operation
(xd

i ) (xmin
i ) (xmax

i ) point (x∗
i )

l0 (cm) 1.95 3.6 2.8
ϕ (degree) 116 134 125
q1 (degree) 41.5 48.5 45
q2 (degree) 148 155 151.5
q3 (degree) 135 142.5 138.75
q4 (degree) 70 79 74.5

must also be tested. These uncertainties can be the result
of measurement errors or possible changes in the model.
Therefore, we randomly change all the mass parameters
of the model indicated in Table I between 1 and 15%
and compare the results of simulations with and without
uncertainties.

Figure 3 shows the angular displacement of the active
joints of the planar model, which indicates that the four active
joints of the robot follow the determined path with a small
overshoot. The dot-dashed green lines indicate the desired
path, the blue lines refer the results of the actual closed-
loop system design based on the nominal parameters of the
original nonlinear system, and the dashed red lines refer to
results of the system with additional parameter perturbations
(due to 1 15% change in mass parameters). The passive joint
angle ϕ and passive spring length l0 of the robot leg are shown
in Fig. 4. The passive angle ϕ follows the trend of other joints
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Fig. 4. (Colour online) The passive joints (l0, ϕ) of the closed-loop system in bounding motion.

with a larger overshoot. The spring length has changed from
its initial value to a value less than its free state value.

Figures 5 and 6 illustrate the displacements of the centers
of masses of the robot links one to four. These centers of mass
relate to robot’s body parts shown in Fig. 2. For instance, cm1

is related to the part with length l1 and so on. Figure 7 shows
the displacement of the end-effector of the quadruped model
hand which is the tip of the last link. Figure 8 illustrates
the required torques for this displacement for the bounding
motion. As it is expected, by the increase in the mass of
each actuator from joint 1 to joint 4 the required torque
increases, but the stability of the robot is maintained. Little-
Dog is a small robot and thus the required torque for its
movements is not high. The steady state torque is also shown
in Fig. 8. Finally, in Fig. 9 the phase trajectories of variables
are depicted which are obtained in periodic mode in 100 s
without uncertainty which show all the states remain stable.

Finally, we would like to compare the results of our method
with those of previous works. It should be noted that although
there are some works on the gaiting of quadruped bounding
motion,20,21 these works do address the control of the robot
dynamics. However, there exist some methods for control
of underactuated manipulators22–24 which can be used for
bounding. A common method is the separation of control
procedure for active and passive joints.22–24 Although such
method is only proper for convergence to a position not
trajectory, ref. [22] uses the sliding mode method to control
the active joints as a fully actuated system by choosing fixed
values for the passive joints. To compare our method with
the method presented in ref. [22], we employ it for bounding
motion of quadruped robot model by defining sliding surface

and control as

s = �a(xd
a − xa) + ẋd

a − ẋa and

u = �a(ẋd
a − ẋa) + ẍd

a + pasgn(s), (58)

where �a and pa are positive gains. This control method
is applied to Eq. (8) supposing that the passive joints are
fixed, i.e., lo = 2.8 cm and ϕ = 120◦. Figure 10 shows the
result of this simulation. As we can see from the figure, the
displacement of the robot with the sliding mode control is not
efficient in comparison with that of results with backstepping
method. This is expected since the passive joints are fixed and
are not controlled in the sliding mode method given in ref.
[22].

6. Conclusions
In this paper, the control of an underactuated quadruped
robot in bounding state was discussed. Considering
the complexities of the quadruped robot, a simplified
quadruped model with six DOF involving four actuated
and two unactuated joints was presented. Next, the
dynamical equations of this model were obtained which are
second-order nonholonomic equations. The resulting highly
nonlinear model was transformed to a strict feedback form.
This transformation is suitable for other mechanical systems
with the same number of actuated and unactuated variables as
well. The transformation simplifies the dynamical equations
of the system since the control variable appears only in the
last subsystem. The transformation has perturbed terms due
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Fig. 5. (Colour online) Displacements of the centers of masses of the robot links (x-axis).

Fig. 6. (Colour online) Displacements of the centers of masses of the robot links (y-axis).
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Fig. 7. (Colour online) Displacement of the robot’s hand.

Fig. 8. (Colour online) (a)–(d) The torques of the actuators, (e) the blow up of the fourth torque to show its steady state value.
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Fig. 9. (Colour online) The phase trajectories.

Fig. 10. (Colour online) The comparison results of the proposed backstepping method with those of the sliding mode method.

https://doi.org/10.1017/S0263574712000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000458


436 Modeling and robust backstepping control of an underactuated quadruped robot

to the estimations employed. Then, a robust backstepping
feedback controller was designed, which guarantees the
boundedness and convergence of the robot states. The
simulation results indicate the proper behavior of the closed-
loop system even when the mass parameters of the robot are
perturbed by 15% of the nominal design values.
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Appendix A: The inertia matrix of quadruped robot
model in bounding motion
The positions of Center of Mass (CM) of the links for the
underactuated quadruped robot are given as follows:

The CM of the shin{
lxc1 = (l0 + l10) cos(ϕ),
lyc1 = (l0 + l10) sin(ϕ). (A 1)

The upper leg{
lxc2 = (l0 + l1) cos(ϕ) + l20 cos(ϕ + q4),
lyc2 = (l0 + l1) cos(ϕ) + l20 cos(ϕ + q4). (A 2)

The body⎧⎪⎨
⎪⎩

lxc3 = (l0 + l1) cos(ϕ) + l2 cos(ϕ + q4) + l30

cos(ϕ + q4 + q3),
lyc3 = (l0 + l1) sin(ϕ) + l2 sin(ϕ + q4) + l30

sin(ϕ + q4 + q3).

(A 3)

The arm⎧⎪⎨
⎪⎩

lxc4 = (l0 + l1) cos(ϕ) + l2 cos(ϕ + q4) + l3
cos(ϕ + q4 + q3) + l40 cos(ϕ + q4 + q3 + q2),

lyc4 = (l0 + l1) sin(ϕ) + l2 sin(ϕ + q4) + l3
sin(ϕ + q4 + q3) + l40 sin(ϕ + q4 + q3 + q2).

(A 4)

The hand⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lxc5 = (l0 + l1) cos(ϕ) + l2 cos(ϕ + q4) + l3
cos(ϕ + q4 + q3) + l4 cos(ϕ + q4 + q3 + q2)
+ l5 cos(ϕ + q4 + q3 + q2 + q1),

lyc5 = (l0 + l1) sin(ϕ) + l2 sin(ϕ + q4) + l3
sin(ϕ + q4 + q3) + l4 sin(ϕ + q4 + q3 + q2)
+l5 sin(ϕ + q4 + q3 + q2 + q1).

(A 5)

The kinetic energy of the robot system is

K = Kt + Kr, (A 6)

where

Kt = 1

2

[
m1(l̇2

xc1 + l̇2
yc1) + m2(l̇2

xc2 + l̇2
yc2) + m3(l̇2

xc3 + l̇2
yc3)

+ m4(l̇2
xc4 + l̇2

yc4) + m5(l̇2
xc5 + l̇2

yc5)
]
,
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Kr = 1

2

[
I1ϕ̇

2 + I2(ϕ̇2 + q̇2
4 ) + I3(ϕ̇2 + q̇2

3 + q̇2
4 ) + I4(ϕ̇2 + q̇2

2 + q̇2
3 + q̇2

4 )

+ I5(ϕ̇2 + q̇2
1 + q̇2

2 + q̇2
3 + q̇2

4

]
.

The potential energy of the robot is

V = m1glyc1 + m2glyc2 + m3glyc3 + m4glyc4 + m5glyc5 + 1/2k(�l0)2, (A 7)

where k is the stiffness of the spring and g is the gravitational acceleration. Let x = [l0, ϕ, q1, q2, q3, q4]T , then the kinetic
energy has form

K = 1

2
ẋT M(x)ẋ, (A 8)

where

M(x) =
[
mpp mpa

map maa

]
mpp =

[
M11 M12

M21 M22

]
mpa = mT

ap =
[
M13 M14 M15 M16

M23 M24 M25 M26

]

maa =

⎡
⎢⎢⎣

M33 M34 M35 M36

M43

M53

M63

M44 M45 M46

M54 M55 M56

M64 M65 M66

⎤
⎥⎥⎦ ,

where

M11 = m1 + m2 + m3 + m4 + m5,

M12 = M21 = − (l20m2 + l2(m3 + m4 + m5)) sin(q4) − (l30m3 + l3(m4 + m5)) sin(q3 + q4)

− (l40m4 + l4m5) sin(q2 + q3 + q4) − l50m5 sin(q1 + q2 + q3 + q4),

M13 = M31 = −l50m5 sin(q1 + q2 + q3 + q4),

M14 = M41 = −l50m5 sin(q1 + q2 + q3 + q4) − (l40m4 + l4m5) sin(q2 + q3 + q4),

M15 = M51 = − (l30m3 + l3(m4 + m5)) sin(q3 + q4) − (l40m4 + l4m5) sin(q2 + q3 + q4) − l50m5 sin(q1 + q2 + q3 + q4),

M16 = M61 = − (l20m2 + l2(m3 + m4 + m5)) sin(q4) − (l30m3 + l3(m4 + m5)) sin(q3 + q4)

− (l40m4 + l4m5) sin(q2 + q3 + q4) − l50m5 sin(q1 + q2 + q3 + q4),

M22 = I1 + I2 + I3 + I4 + I5 + l2
0(m1 + m2 + m3 + m4 + m5) + l2

10m1 + l2
20m2 + l2

2(m3 + m4 + m5) + l2
30m3

+ l2
3(m4 + m5) + l2

40m4 + l2
4m5 + l2

50m5 + 2l0l1(m1 + m2 + m3 + m4 + m5) + 2l3(l40m4 + l4m5) cos(q2)

+ 2(l0(l30m3 + l3(m4 + m5)) + l1(l30m3 + l3(m4 + m5)) cos(q3 + q4) + 2(l0 + l1)(l20m2

+ l2(m3 + m4 + m5)) cos(q4) + 2l4l50m5 cos(q1) + 2l3l50m5 cos(q1 + q2) + 2l2(l40m4 + l4m5) cos(q2 + q3)

+ 2(l0 + l1)(l40m4 + l4m5) cos(q2 + q3 + q4) + 2l2l50m5 cos(q1 + q2 + q3) + 2l2(l30m3 + l3(m4 + m5)) cos(q3)

+ 2(l0 + l1)l50m4 cos(q1 + q2 + q3 + q4) + 2(l0 + l1)l50m5 cos(q1 + q2 + q3 + q4),

M23 = M32 = I5 + l2
50m5 + l4l50m5 cos(q1) + l3l50m5 cos(q1 + q2) + l2l50m5 cos(q1 + q2 + q3)

+ (l0 + l1) l50m5 cos(q1 + q2 + q3 + q4),

M24 = M42 = I4 + I5 + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1) + l3(l40m4 + l4m5) cos(q2) + l3l50m5 cos(q1 + q2)

+ l2l50m5 cos(q1 + q2 + q3) + (l0 + l1)l50m5 cos(q1 + q2 + q3 + q4) + l2(l40m4 + l4m5) cos(q2 + q3)

+ (l0 + l1)(l40m4 + l4m5) cos(q2 + q3 + q4),
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M25 = M52 = I3 + I4 + I5 + l2
30m3 + l2

3(m4 + m5) + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1) + 2l3(l40m4 + l4m5) cos(q2)

+ l2(l30m3 + l3(m4 + m5)) cos(q3) + 2l3l50m5 cos(q1 + q2) + l2l50m5 cos(q1 + q2 + q3)

+ (l0 + l1)l50m5 cos(q1 + q2 + q3 + q4) + l2(l40m4 + l4m5) cos(q2 + q3) + (l0 + l1)(l40m4 + l4m5) cos(q2 + q3 + q4)

+ (l0(l30m3 + l3(m4 + m5)) + l1(l30m3 + l3(m4 + m5)) cos(q3 + q4),

M26 = M62 = I2 + I3 + I4 + I5 + l2
20m2 + l2

2(m3 + m4 + m5) + l2
30m3 + l2

3(m4 + m5) + l2
40m4 + l2

4m5 + l2
50m5

+ 2l4l50m5 cos(q1) + 2l3(l40m4 + l4m5) cos(q2) + 2l2(l30m3 + l3(m4 + m5)) cos(q3)

+ (l0 + l1)(l20m2 + l2(m3 + m4 + m5)) cos(q4) + 2l3l50m5 cos(q1 + q2)

+ 2l2l50m5 cos(q1 + q2 + q3) + (l0 + l1)l50m5 cos(q1 + q2 + q3 + q4) + 2l2(l40m4 + l4m5) cos(q2 + q3)

+ (l0 + l1)(l40m4 + l4m5) cos(q2 + q3 + q4) + (l0(l30m3 + l3(m4 + m5)) + l1(l30m3 + l3(m4 + m5)) cos(q3 + q4),

M33 = I5 + l2
50m5,

M34 = M43 = I5 + l2
50m5 + l1l50m5 cos(q1),

M35 = M53 = I5 + l2
50m5 + l4l50m5 cos(q1) + l3l50m5 cos(q1 + q2),

M36 = M63 = I5 + l2
50m5 + l4l50m5 cos(q1) + l3l50m5 cos(q1 + q2) + l2l50m5 cos(q1 + q2 + q3),

M44 = I4 + I5 + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1),

M45 = M54 = I4 + I5 + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1) + l3(l40m4 + l4m5) cos(q2) + l3l50m5 cos(q1 + q2),

M46 = M64 = I4 + I5 + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1) + l3(l40m4 + l4m5) cos(q2) + l2(l30m3

+ l3(m4 + m5)) cos(q3) + l3l50m5 cos(q1 + q2) + l2l50m5 cos(q1 + q2 + q3) + l2(l40m4 + l4m5) cos(q2 + q3)

M55 = I3 + I4 + I5 + l2
30m3 + l2

3(m4 + m5) + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1) + 2l3(l40m4 + l4m5) cos(q2)

+ 2l3l50m5 cos(q1 + q2),

M56 = M65 = I3 + I4 + I5 + l2
30m3 + l2

3(m4 + m5) + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1) + 2l3(l40m4 + l4m5) cos(q2)

+ 2l2(l30m3 + l3(m4 + m5)) cos(q3) + 2l3l50m5 cos(q1 + q2) + l2 (l40m4 + l4m5) cos(q2 + q3)

+ l2l50m5 cos(q1 + q2 + q3),

M66 = I2 + I3 + I4 + I5 + l2
20m2 + l2

2(m3 + m4 + m5) + l2
30m3 + l2

3(m4 + m5) + l2
40m4 + l2

4m5 + l2
50m5 + 2l4l50m5 cos(q1)

+ 2l3(l40m4 + l4m5) cos(q2) + l2(l30m3 + l3(m4 + m5)) cos(q3) + 2l3l50m5 cos(q1 + q2)

+ l2(l40m4 + l4m5) cos(q2 + q3) + l2l50m5 cos(q1 + q2 + q3).

Considering above equations since M11 and M22 are nonzero, Mpp is invertible.

Appendix B: The approximation of function fr
Affine approximation of function fr for system (32) can be rewritten as

f̂r = f0(xr, l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ) + f1(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 )(xd
a − γ1),

f0(xr, l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ) = A + B(xr − m̂−1
ppC),

f1(l01, q
∗
1 , q∗

2 , q∗
3 , q∗

4 ) = D − Bm̂−1
ppE,

where

A =

⎡
⎢⎣

−(m1 + m2 + m3 + m4 + m5)g + kl00

−0.5πF0g + g[l20m2 + l2(m3 + m4 + m5)](sin q∗
4 − q∗

4 cos q∗
4 ) + g[l30m3 + l3(m4 + m5)](sin(q∗

3 + q∗
4 )

−(q∗
3 + q∗

4 ) cos(q∗
3 + q∗

4 )) + g[l40m4 + l4m5](sin(q∗
2 + q∗

3 + q∗
4 ) − (q∗

2 + q∗
3 + q∗

4 ) cos(q∗
2 + q∗

3 + q∗
4 ))

+gl50m5(sin(q∗
1 + q∗

2 + q∗
3 + q∗

4 ) − (q∗
1 + q∗

2 + q∗
3 + q∗

4 ) cos(q∗
1 + q∗

2 + q∗
3 + q∗

4 ))

⎤
⎥⎦ ,
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B =
[−k 0

0 m1(l01 + l10)g + (m2 + m3 + m4 + m5)(l01 + l1)g

]
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(l20m2 + l2(m3 + m4 + m5)) (cos(q∗
4 ) + q∗

4 sin(q∗
4 )) + 2 (l30m3 + l3(m4 + m5)) (cos(q∗

3 + q∗
4 )

+ (q∗
3 + q∗

4 ) sin(q∗
3 + q∗

4 )) + 3 (l40m4 + l4m5)
(
cos(q∗

2 + q∗
3 + q∗

4 ) + (q∗
2 + q∗

3 + q∗
4 ) sin(q∗

2 + q∗
3 + q∗

4 )
)

+ 4l50m5
(
cos(q∗

1 + q∗
2 + q∗

3 + q∗
4 ) + (q∗

1 + q∗
2 + q∗

3 + q∗
4 ) sin(q∗

1 + q∗
2 + q∗

3 + q∗
4 )

)
2l4l50m5

(
q∗

1 q∗
2 + q∗

1 q∗
3 + q∗

1 q∗
4

)
sin(q∗

1 ) + 2l3(l40m4 + l4m5)
(
q∗

2 q∗
3 + q∗

2 q∗
4

)
sin(q∗

2 )
+ 2 (l2l3(m4 + m5) + l2l30m5) q∗

3 q∗
4 sin(q∗

3 ) + 2l3l50m5(q∗
1 q∗

3 + q∗
2 q∗

3 + q∗
1 q∗

4 + q∗
2 q∗

4 ) sin(q∗
1 + q∗

2 )
+ 2 (l2l40m5 + l2l4m5)

(
q∗

2 q∗
4 + q∗

3 q∗
4

)
sin(q∗

2 + q∗
3 ) + 2l2l50m5

(
q∗

1 q∗
4 + q∗

2 q∗
4 + q∗

3 q∗
4

)
sin(q∗

1 + q∗
2 + q∗

3 )
+ l4l50m5

(
sin(q∗

1 ) − q∗
1 cos(q∗

1 )
) + 2l3l50m5

(
sin(q∗

1 + q∗
2 ) − (q∗

1 + q∗
2 ) cos(q∗

1 + q∗
2 )

)
+ 3l2l50m5

(
sin(q∗

1 + q∗
2 + q∗

3 ) − (q∗
1 + q∗

2 + q∗
3 ) cos(q∗

1 + q∗
2 + q∗

3 )
) + 4l50m5 (l01 + l1) (sin(q∗

1 + q∗
2 + q∗

3 + q∗
4 )

− (q∗
1 + q∗

2 + q∗
3 + q∗

4 ) cos(q∗
1 + q∗

2 + q∗
3 + q∗

4 )) + l3 (l40m4 + l4m5)
(
sin(q∗

2 ) − q∗
2 cos(q∗

2 )
)

+ 2l2 (l40m4 + l4m5)
(
sin(q∗

2 + q∗
3 ) − (q∗

2 + q∗
3 ) cos(q∗

2 + q∗
3 )

)
+ 3 (l01l40m4 + l01l4m5 + l1l4m5 + l1l40m4) sin(q∗

2 + q∗
3 + q∗

4 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D =

⎡
⎢⎣

0 0 0 0
gl50m5 cos(q∗

1 + q∗
2 + q∗

3 + q∗
4 ) g (l40m4 + l4m5) cos(q∗

2 + q∗
3 + q∗

4 )
+gl50m5 cos(q∗

1 + q∗
2 + q∗

3 + q∗
4 )

g (l30m3 + l3(m4 + m5) cos(q∗
3 + q∗

4 )
+g(l40m4 + l4m5) cos(q∗

2 + q∗
3 + q∗

4 )
+gl50m5 cos(q∗

1 + q∗
2 + q∗

3 + q∗
4 )

g(l20m2 + l2(m2 + m3 + m4 + m5)) cos(q∗
4 )

+g (l30m3 + l3(m4 + m5) cos(q∗
3 + q∗

4 )
+g(l40m4 + l4m5) cos(q∗

2 + q∗
3 + q∗

4 )
+gl50m5 cos(q∗

1 + q∗
2 + q∗

3 + q∗
4 )

⎤
⎥⎦ ,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4l50m5 sin(q∗
1 + q∗

2 + q∗
3 + q∗

4 ) −3 (l40m4 + l4m5) sin(q∗
2 + q∗

3 + q∗
4 )

−4l50m5 sin(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

−2 (l30m3 + l3(m4 + m5)) sin(q∗
3 + q∗

4 )

−3 (l40m4 + l4m5) sin(q∗
2 + q∗

3 + q∗
4 )

−4l50m5 sin(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

− (l2(m3 + m4 + m5) + l20m2) sin(q∗
4 )

−2 (l30m3 + l3(m4 + m5)) sin(q∗
3 + q∗

4 )

−3 (l40m4 + l4m5) sin(q∗
2 + q∗

3 + q∗
4 )

−4l50m5 sin(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

I5 + l2
50m5 − 2l4l50m5

(
q∗

2 + q∗
3 + q∗

4

)
sin(q∗

1 )

−2l3l50m5
(
q∗

3 + q∗
4

)
sin(q∗

1 + q∗
2 )

−2l2l50m5q
∗
4 sin(q∗

1 + q∗
2 + q∗

3 )

+l4l50m5 cos(q∗
1 ) + 2l3l50m5 cos(q∗

1 + q∗
2 )

+3l2l50m5 cos(q∗
1 + q∗

2 + q∗
3 )

+4l50m5 (l01 + l1) cos(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

I4 + I5 + l2
40m4 + (

l2
4 + l2

50

)
m5

−2l3 (l40m4 + l4m5)
(
q∗

3 + q∗
4

)
sin(q∗

2 )

−2l3l50m5
(
q∗

3 + q∗
4

)
sin(q∗

1 + q∗
2 )

−2l2 (l40m4 + l4m5) q∗
4 sin(q∗

2 + q∗
3 )

−2l2l50m5q
∗
4 sin(q∗

1 + q∗
2 + q∗

3 )

+2l4l50m5 cos(q∗
1 )

+2l3l50m5 cos(q∗
1 + q∗

2 )

+3l2l50m5 cos(q∗
1 + q∗

2 + q∗
3 )

+4 (l01l50 + l1l50) m5 cos(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

+l3 (l40m4 + l4m5) cos(q∗
2 )

+2l2 (l40m4 + l4m5) cos(q∗
2 + q∗

3 )

+3l01 (l40m4 + l4m5) cos(q∗
2 + q∗

3 + q∗
4 )

+3l1 (l4m5 + l40m4) cos(q∗
2 + q∗

3 + q∗
4 )

I3 + I4 + I5 + l2
30m3 + l2

3 (m4 + m5)

+l2
40m4 + (l2

4 + l2
50)m5

−2l2 (l3(m4 + m5) + l30m5) q∗
4 sin(q∗

3 )

−2l2 (l40m4 + l4m5) q∗
4 sin(q∗

2 + q∗
3 )

−2l2l50m5q
∗
4 sin(q∗

1 + q∗
2 + q∗

3 )

+2l4l50m5 cos(q∗
1 )

+2l3l50m5 cos(q∗
1 + q∗

2 )

+3l2l50m5 cos(q∗
1 + q∗

2 + q∗
3 )

+4 (l01l50 + l1l50) m5 cos(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

+2l3 (l40m4 + l4m5) cos(q∗
2 )

+2l2 (l40m4 + l4m5) cos(q∗
2 + q∗

3 )

+3l01 (l40m4 + l4m5) cos(q∗
2 + q∗

3 + q∗
4 )

+3l1 (l4m5 + l40m4) cos(q∗
2 + q∗

3 + q∗
4 )

+2l2 (l30m3 + l3(m4 + m5)) cos(q∗
3 )

+2l1 (l3(m4 + m5) + l30m3) cos(q∗
3 + q∗

4 )

+2l01 (l3(m4 + m5) + l30m3) cos(q∗
3 + q∗

4 )

I2 + I3 + I4 + I5 + l2
20m2

l2
2 (m3 + m4 + m5) + l2

30m3 + l2
3 (m4 + m5)

l2
40m4 + l2

4m5 + l2
50m5

+2l4l50m5 cos(q∗
1 )

+2l3l50m5 cos(q∗
1 + q∗

2 )

+3l2l50m5 cos(q∗
1 + q∗

2 + q∗
3 )

+4 (l01l50 + l1l50) m5 cos(q∗
1 + q∗

2 + q∗
3 + q∗

4 )

+2l3 (l40m4 + l4m5) cos(q∗
2 )

+2l2 (l40m4 + l4m5) cos(q∗
2 + q∗

3 )

+3l01 (l40m4 + l4m5) cos(q∗
2 + q∗

3 + q∗
4 )

+3l1 (l4m5 + l40m4) cos(q∗
2 + q∗

3 + q∗
4 )

+2l2 (l30m3 + l3(m4 + m5)) cos(q∗
3 )

+2l1 (l3(m4 + m5) + l30m3) cos(q∗
3 + q∗

4 )

+2l01 (l3(m4 + m5) + l30m3) cos(q∗
3 + q∗

4 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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