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The flow regime in the vicinity of oscillatory slender bodies, either an isolated one or
a row of many bodies, immersed in viscous fluid (i.e. under creeping flow conditions)
is studied. Applying the slender-body theory by distributing proper singularities on
the bodies’ major axes yields reasonably accurate and easily computed solutions. The
effect of the oscillations is revealed by comparisons with known Stokes flow solutions
and is found to be most significant for motion along the normal direction. Streamline
patterns associated with motion of a single body are characterized by formation and
evolution of eddies. The motion of adjacent bodies results, with a reduction or an
increase of the drag force exerted by each body depending on the direction of motion
and the specific geometrical set-up. This dependence is demonstrated by parametric
results for frequency of oscillations, number of bodies, their slenderness ratio and
the spacing between them. Our method, being valid for a wide range of parameter
values and for densely packed arrays of rods, enables simulation of realistic flapping
of bristled wings of some tiny insects and of locomotion of flagella and ciliated micro-
organisms, and might serve as an efficient tool in the design of minuscule vehicles. Its
potency is demonstrated by a solution for the flapping of thrips.
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1. Introduction
The relative ease with which the Stokes equations can be handled has made

problems of motion in Stokes flow an appealing and well-known field of research
for more than 150 years. In the ‘classic’ Stokes flow, the basic assumptions are: (a)
the Reynolds number (Re) is sufficiently small that only viscous terms are retained
in the complete Navier–Stokes equations, and (b) the motion is in steady-state, and
hence temporal derivatives are omitted. The mathematical solutions of the equations
were proposed to describe and explain many forms of feeding and locomotion in
the zoological realm, from ciliary motion, described by Gray as early as in 1928
(Gray 1928), to insect flight dealt with by Weihs and Barta in 2008 (Weihs & Barta
2008). While serving as milestones in the qualitative description of motion of flagella
and cilia (but not in the quantitative description of ‘wave-like’ motion of ciliated
surfaces; see Brennen & Winet 1977), those time-independent solutions are inadequate
models for flapping wings and hovering insects since time-averaged approaches are not
sufficient to address questions relating to flight control (Dudley 2000; Taylor 2001); or,
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Motion of slender bodies in unsteady Stokes flow 67

as Ellington (1984) stated, the unsteady effects have an increased significance in the
hovering of insects. Indeed, when trying to apply steady-state solutions to simulations
of the flight of insects belonging to the thrips family (described by Sunada et al.
2002), the steady-state solution (Barta & Weihs 2006) failed to balance the computed
force related to the motion of the wings and the weight of the insect (Barta &
Weihs 2004). The typical eddies found in the vicinity of oscillatory bodies, which
are absent when eliminating the time factor from the equations, are another aspect of
the qualitative differences between steady and unsteady situations, which considerably
affect the motion of small particles near the moving body, and prohibit the steady
solutions from accurately simulating the feeding of swimming micro-organisms or
the sensing of signals contained in movements of surrounding air by the thin
hairs that cover insects and spiders (Bathellier et al. 2005). Hence the importance
of time-dependent solutions. From a non-dimensionalization of the Navier–Stokes
equations it is clear that, when the particle displacement is very small compared to
its characteristic size, linearization of the equations (i.e. retaining the time derivative
while omitting the inertial–convective term) is justified. Such situations are typical of
the flows produced by the swimming of microscopic organisms (Pozrikidis 1989a)
and of the dynamics of arachnid and insect filiform hairs (Bathellier et al. 2005),
and occur in the design of extremely small flying vehicles (Zussman, Yarin & Weihs
2002) and in electroacoustics (where the particle motion is merely ultrasonic buzzing,
Loewenberg 1994).

Solutions for the unsteady, three-dimensional Stokes flow (represented by the
linearized Navier–Stokes equations) are known for a sphere (Stokes 1851), for
the axisymmetric motion of spheroids with aspect ratios in the range of [0.1, 10]
(Lawrence & Weinbaum 1988), for cylinders (Loewenberg 1994), and for dumbbells
and biconcave disks (Pozrikidis 1989b). These solutions are found (a) by
implementing perturbation methods, in which case they are valid only for very low or
very high frequencies of oscillations (e.g. Smith 1997, who solved for the oscillatory
flow past a circular cylinder when the frequency tends to zero), (b) by solving for
the streamfunction, in which case they can address only axisymmetric cases (e.g.
Lawrence & Weinbaum 1986), or (c) by implementing boundary integral methods
that involve intensive computational resources (e.g. Pozrikidis 1989a,b; Kohr 2003;
D’Elı́a et al. 2010). This state of affairs has led us to seek for a method that will
be sufficiently general, i.e. valid for a wide scope of frequencies and geometrical
parameter values, but at the same time detailed, i.e. will yield not just global
properties, such as the total force involved in the motion, but locally induced velocity
fields too. It should be accurate and easy to implement in order to quantitatively
simulate the detailed flow field for a wide range of situations from the laboratory or
the zoological realm. Here we solve for the flow field around a moving elongated
isolated body (as a potential model for the locomotion of flagella) and for the flow
induced by an array of elongated bodies in viscous fluid (a configuration that might
describe bristled wings composed of slender ‘rods’, as is common in the wings of
insects, the locomotion of ciliated cells, eukaryote propulsion and the hairy legs of
spiders and insects).

For the general, multi-body, steady-state situation the most obvious approach is to
solve by distributing singularities either on the surface of the body (e.g. Kim & Karrila
1991) or along its axis – an appealing option, since it involves line integrals and not
surface ones. Johnson (1980) was the first to formulate a method of axial distribution
for the steady flow in a way that is both rigorous and uniformly valid over the surface
of a slender body. In this method, the velocity induced by an axial distribution of
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68 E. Barta

singularities is equated to the given velocity of the body to yield integral equations for
the intensities of the singularities. The uniform asymptotic expansion of the integrands
enables the conversion of the original equations to the easy-to-manipulate and stable
Fredholm equations of the second kind. Barta & Liron (1988) extended this method so
as to apply it to two bodies, and Barta & Weihs (2006) further extended it for a finite
row of slender bodies in close proximity.

Dealing with the unsteady case necessitates distribution of appropriate fundamental
solutions. Tsai et al. (2006) used a space–time unification method and complicated
expressions for the fundamental solutions in their solution for a general time-
dependent Stokes flow. A major simplification is achieved when one uses the fact
that any given time-dependent velocity (and pressure) field might be described by its
harmonics, i.e. represented by its Fourier series. Due to the linearity of the involved
equations, this actually means that any velocity field is a combination of fields that are
invoked by oscillatory motions. Pozrikidis (1989a) has defined the Stokeslet, doublet
and rotlet for oscillatory motion in viscous flow. Shatz (2004) has defined higher-
order singularities. Both used distribution of singularities (Pozrikidis on the surface
of the body and Shatz on its axis) in order to solve for the motion of spheroids
with aspect ratios in the range of [0.1, 10] that oscillate with low to moderate
frequencies.

Here we apply slender-body theory to spheroids with very small aspect ratio and
determine the ratio between the Stokeslets’ and doublets’ intensities, which enables
an accurate and uniformly valid solution. First, we solve for an isolated body: these
solutions are relevant for the motion of flagellar propulsion. The equations are given in
§ 2 along with numerical solutions, parametric investigations and analysis of the results.
Streamlines that characterize the motion and demonstrate local features are drawn and
global properties are found by computation of the total drag force. Note that although
we write here the equations for spheroids, our method is applicable for any slender
body possibly with a curved major axis (see Barta & Liron 1988). Therefore it may
simulate the hydromechanics of flagella with planar waves, as described by Brennen
& Winet (1977), as long as its motion does not involve considerable stretching or
contraction. Next, in § 3, we solve for two and then a row of oscillating spheroids, in
order to elucidate the effect of a body on its neighbours. Conclusions regarding the
efficacy of the clustering of the bodies, shown to be highly dependent on the direction
of motion, are drawn based on both locally induced velocities and the total force
exerted by the bodies. A specific simulation of the flapping of an insect is given in § 4
and the meaning and implications of this work are discussed in § 5.

2. An isolated slender spheroid in oscillatory Stokes flow
We consider oscillatory flow in an unbounded domain. Thus the velocity and

pressure are given by U = u exp(−iωt) and P= p exp(−iωt), where ω is the frequency
of the oscillations. Inserting these expressions into the linearized Navier–Stokes
equations and non-dimensionalizing all variables yields the following momentum
equation:

λ2u=−∇p+∇2u, (2.1)

where λ2 = −iωdl2/ν, dl is a typical length of the problem (usually chosen as the
radius of the body in the direction perpendicular to the motion) and ν is the kinematic
viscosity of the fluid. Equation (2.1), combined with the continuity equation, ∇ · u= 0,
and with no-slip conditions at the surface of the involved body, uniquely determines
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Motion of slender bodies in unsteady Stokes flow 69

the flow field for any oscillatory motion, and therefore for any field whose time-
dependence can be expressed by a Fourier series.

The fundamental solutions of the above equations are given in Pozrikidis (1989a).
The velocity at point x induced by a Stokeslet with intensity vector α situated at point
y is

ui = 1
8π

(
A(R)δij

r
+ B(R)rirj

r3

)
αj, i, j= 1, 2, 3, (2.2)

where r is the vector that connects x and y, r = |r|, R= λr and

A(R)= 2e−R

(
1+ 1

R
+ 1

R2

)
− 2

R2
, (2.3)

B(R)=−2e−R

(
1+ 3

R
+ 3

R2

)
+ 6

R2
. (2.4)

The velocity at point x induced by a doublet with intensity vector β situated at point
y is

ui = 1
8π

(
C(R)δij

r3
− 3D(R)rirj

r5

)
βj, i, j= 1, 2, 3, (2.5)

where

C(R)= e−R(1+ R+ R2), (2.6)
D(R)= e−R(1+ R+ R2/3). (2.7)

2.1. The governing equations

Following slender-body theory, a slender spheroid of revolution is represented by a
distribution of singularities along its major axis between its foci. To leading order, only
Stokeslets (2.2), (2.3) and (2.4) and doublets (2.5), (2.6) and (2.7) are considered. Due
to the linearity of the equations, every motion is given as a combination of motions
along three orthogonal directions, here chosen to coincide with the body’s coordinate
system: tangential (t), normal (n) and bi-normal (b) to the body’s major axis.

In a pioneering work, Johnson (1980) used a uniformly valid asymptotic expansion
(inner plus outer expansions minus inner–outer expansion), and by analytical
considerations found that in order to have a constant velocity on the circumference
of the body, the ratio between the doublet intensity at point s on the axis, β(s), and
the Stokeslet intensity there, α(s), should be βj(s) = (ε2/2)(e2 − s2)αj(s), j = t, n, b,
where ε is the slenderness ratio of the spheroid and ±e its foci: e2 = 1 − ε2 (length
normalization is done with respect to half the body length l). This choice enabled the
formulation of integral equations that were accurate to within an error of O(ε/ ln ε).
The same ratio was determined for the case of multiple bodies (Barta & Liron 1988;
Barta & Weihs 2006).

Here, the situation is more complicated since the above ‘classical’ ratio is not
justified, as is proved below. Using inner, outer and inner–outer expansions of the
distances between a point situated at the cross-sectional plane, at height s, with ψ as
its circumferential angle, and the singularities that are distributed on the axis of the
body, one gets the following expressions for the velocity components at the surface
of the body, u (along either the normal or bi-normal direction) and v (along the
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tangential direction):

u(s, ψ)=
∫ e

−e

(αn(s′)− αn(s))A(λ|s′ − s|)
|s′ − s| ds′

+
∫ (e−s)/ε

−(e+s)/ε

αn(s)A(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)

+ βn(s)C(λε
√
σ 2 + (1− s2))

ε2
√
σ 2 + (1− s2)

3 dσ

+ (1− s2)cos2ψ

∫ (e−s)/ε

−(e+s)/ε

αn(s)B(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)
3

− 3βn(s)D(λε
√
σ 2 + (1− s2))

ε2
√
σ 2 + (1− s2)

5 dσ, (2.8)

v(s, ψ)=
∫ e

−e

(αt(s′)− αt(s))(A(λ|s′ − s|)+ B(λ|s′ − s|))
|s′ − s| ds′

+αt(s)
∫ (e−s)/ε

−(e+s)/ε

A(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)

+ B(λε
√
σ 2 + (1− s2))σ 2

√
σ 2 + (1− s2)

3 dσ

+ βt(s)

ε2

∫ (e−s)/ε

−(e+s)/ε

C(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)
3

− 3D(λε
√
σ 2 + (1− s2))σ 2

√
σ 2 + (1− s2)

5 dσ. (2.9)

The above equations were derived by retaining only the leading-order terms in the
asymptotic expansion of the distances involved (the details appear in the appendix of
Johnson 1980) and in the functions A,B,C,D. When the argument R= λr is large, all
these functions have a constant, zero value, so any approximation of the argument will
do. When R = λr is small, due to the continuity of all the functions, the leading term
of their argument is the relevant argument (and the order of magnitude of the errors
made by omitting smaller terms is not altered by those functions remaining the same
as in the steady-state solutions).

It is clear that in order to get a uniform velocity on the surface of the spheroid, the
ψ-dependent term (the third integral) in (2.8) must be null. An attempt to nullify it
by assuming that the doublets’ intensities are constant within the region of integration
(and thus could be taken out of the integral sign) will lead to highly inaccurate
solutions, as was found for the steady-state case. Thus, one has to assume a relation
of the form βj(s) = ε2(e2 − s2)γj(s) for any direction j (doublet strength is always
proportional to the cross-sectional radius squared, but the proportionality constant γ (s)
may vary along the axis), and substitute it in the above equations to get the correct

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.365


Motion of slender bodies in unsteady Stokes flow 71

relation between the intensities of the singularities:

βj(s)= αj(s)ε2(e2 − s2)

3

×

∫ (e−s)/ε

−(e+s)/ε

B(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)
3 dσ∫ (e−s)/ε

−(e+s)/ε

(e2 − (s− εσ )2)D(λε√σ 2 + (1− s2))√
σ 2 + (1− s2)

5 dσ

. (2.10)

Note that relation (2.10) above depends on λ, and thus the relation between the
Stokeslets and doublets here is not just a function of geometry, as is the case in the
steady-state solution, but of the frequency of the oscillations too. Clarke et al. (2006)
solved for a slender cylinder near a wall by distributing transient Stokeslets (2.2), (2.3)
and (2.4) and steady-state doublets with the steady-state ratio between the frequencies.
Therefore their work is valid only for low frequencies. As long as λε is much smaller
than 1 (for then the functions B and D reach their asymptotic value of 1), using the
steady-state relation between the intensities does not hamper the solution, but dealing
with higher frequencies requires implementation of (2.10).

By following the guidelines that lead to the formulation of the ‘classic’ ratio for the
steady-state case (Johnson 1980), the reader may verify that (2.10) holds for any body
with circular transverse cross-sections whose radius satisfies the equation r = ε√1− s2,
and not just for slender spheroids.

Substitution of a given body velocity in (2.8) and (2.9) yields integral equations for
αn(s) and αt(s), the Stokeslets intensities.

2.2. Numerical solutions
The decoupled equations (2.8) and (2.9), being Fredholm of the second type, are easily
solved: we replace the integrals by sums according to the rectangle midpoint rule,
get a system of linear algebraic equations for the intensities of the Stokeslets that
are scattered along the body axis, and then solve by LU decomposition, using the
Mathematica software by Wolfram Research. We successfully implemented our method
for a very wide range of parameter values (slenderness ratios in the range 0.1–0.001
and frequency parameter from zero to a few hundred). It is found that representing
half of the spheroid axis by 30 points is sufficient, i.e. it yields results that are much
smaller than the asymptotic errors. This is verified in two ways: (a) a posteriori, by
validating that the no-slip condition for the velocity is satisfied within an error no
higher than that expected from the asymptotic expansions, and (b) by verifying that
further refinement of the numerical mesh will not significantly change the results.

In order to unravel the effect of the unsteadiness on the solution, we compared the
varying, complex-valued intensities found here to the constant Stokeslet intensity that
characterizes the motion of a spheroid in Stokes flow determined by Chwang & Wu
(1975). It turns out that the steepest variations of the intensities occur near the body’s
ends; see figures 1 and 2.

By comparing figures 1 and 2 it becomes clear that the effect of the oscillations
is more pronounced when the motion is normal to the long axis. In every direction
the phase attains its maximum absolute value at the centre and is diminished towards
the foci, indicating that viscous characteristics (represented by the real part of the
intensities) are more important at the body’s ends than at its centre (in accordance with
the findings of Pozrikidis 1989a).
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FIGURE 1. Distribution of the intensities of the oscillating Stokeslets along the axis of a
slender spheroid with ε = 0.01 for various λ values: |λ| = 0.5 (dotted line), 2 (dashed line), 5
(solid line). Motion is along the normal direction. (a) Magnitude normalized by the value of
the steady-state Stokeslet. (b) Phase.
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FIGURE 2. Distribution of the intensities of the oscillating Stokeslets along the axis of a
slender spheroid with ε = 0.01 for various λ values: |λ| = 0.5 (dotted line), 2 (dashed line), 5
(solid line). Motion is along the tangential (axial) direction. (a) Magnitude normalized by the
value of the steady-state Stokeslet. (b) Phase.
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FIGURE 3. Distribution of the intensities of the oscillating Stokeslets along the axis of a
slender spheroid: |λ| = 2: ε = 0.01 (dotted line), 0.005 (dashed line), 0.001 (solid line).
Motion is along the normal direction. (a) Magnitude normalized by the value of the steady-
state Stokeslet. (b) Phase.

Figures 3 and 4 demonstrate the effect of the slenderness ratio of the spheroid
on the singularities’ intensities: as the body becomes more slender, the effect of the
oscillations is less pronounced.
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FIGURE 4. Distribution of the intensities of the oscillating Stokeslets along the axis of a
slender spheroid: |λ| = 2; ε = 0.01 (dotted line), 0.005 (dashed line), 0.001 (solid line).
Motion is along the tangential (axial) direction. (a) Magnitude normalized by the value of the
steady-state Stokeslet. (b) Phase.

2.2.1. The local flow field
Due to the numerical simplicity of our method, it is easy to demonstrate the

instantaneous evolution of the flow field around the body. The velocity at any arbitrary
point is computed by integrating the velocities induced by all the distributed Stokeslets
and doublets according to (2.2) and (2.5). Figures 5 and 6 present instantaneous
streamline patterns for the flow around a spheroid with slenderness ratio ε = 0.01 and
where |λ| = 2. Qualitatively, the patterns are the same as those plotted by Pozrikidis
(1989b) for non-slender spheroids: namely, there is a generation, expansion and then
disappearance of viscous eddies near the body. As expected, when ωt = π there is a
reversal of the flow and the direction of motion alternates between sequential eddies.
The higher the frequency of the oscillations the more ‘irregular’ is the instantaneous
flow field, and eddies will be formed in the vicinity of the body. In motion normal
to the axis the eddies are generated near the body’s ends, while in axial motion the
contour of the eddy conforms to the contour of the body.

2.2.2. Drag force
The total drag (per unit length) involved with the motion of a spheroid that moves in

the ith direction with a unit velocity is given by (see Pozrikidis 1989a)

Di = 8π
(
µ

∫ e

−e
αi(s) ds− (λε)2 /6

)
i= t, n, b. (2.11)

In table 1 we demonstrate the effect of the oscillations on the drag exerted by a
spheroid that moves along any one of its axes for two slenderness ratios. In general,
increasing the frequency of the oscillations increases the drag force, both its absolute
value (magnitude) and its argument (phase). The effect is more pronounced when the
body is less slender (ε is higher) and moves normal to its major axis; thus the ratio
Dn/Dt increases with λ and asymptotically reaches a value of two, characteristic of
potential flow.

Table 1 shows that for low frequencies (when the viscous effects are the important
ones), ε has a minor effect on the magnitude of the drag, while for high frequencies ε
has a tremendous effect – in accordance with the high sensitivity with respect to shape
that is characteristic of potential flows (when the inertial effects are the important
ones).

Lawrence & Weinbaum (1988) concluded that the dominance of a certain
component of the total drag (steady Stokes flow resistance, non-dissipative added
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(a) (b)

(c) (d)

FIGURE 5. Instantaneous streamlines in the flow field around a slender spheroid that moves
along the normal direction: ε = 0.01; |λ| = 2. (The spheroid is represented by the solid line at
the centre.) (a) ωt = 0; (b) ωt = 1; (c) ωt = 2; (d) ωt = 3.

λ ε = 0.0025 ε = 0.01
Dn Dt Dn Dt

0 3.50 2.03 4.34 2.62
(1− i) 4.14e−0.11i 2.25e−0.07i 5.35e−0.14i 2.99e−0.10i

3(1− i) 5.01e−0.16i 2.60e−0.13i 6.87e−0.22i 3.62e−0.18i

6(1− i) 5.81e−0.18i 2.96e−0.17i 8.46e−0.27i 4.35e−0.24i

10(1− i) 6.58e−0.21i 3.33e−0.20i 10.16e−0.31i 5.16e−0.29i

15(1− i) 7.35e−0.23i 3.70e−0.22i 12.02e−0.36i 6.05e−0.34i

TABLE 1. The total drag exerted by a slender spheroid in oscillatory motion along its
two axes.

mass force, Basset force, memory integral force) is a function of the aspect ratio and
the frequency. In accordance with them, we found that the transition from viscous to
inertial dominance for a motion in a given direction depends to leading order on (|λ|ε)
and to a lesser extent on ε. This is another demonstration of our previously stated
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(a) (b)

(c) (d)

FIGURE 6. Instantaneous streamlines in the flow field around a slender spheroid that moves
along the axial direction: ε = 0.01; |λ| = 2. (The spheroid is represented by the solid line at
the centre.) (a) ωt = 0; (b) ωt = 1; (c) ωt = 2; (d) ωt = 3.

conclusion that the transient Stokes flow is more adequately approximated by the
steady Stokes flow for extremely slender bodies, because where ε is very small, even
for relatively high |λ| values, the viscous effects are dominant. It is especially true for
axial motion as the balance between the inertial forces and the viscous ones occurs
at |λ|ε ∼ 1.6 for transverse motion and at |λ|ε ∼ 15 for axial motion (a lower value
characterizes spheroids that are not very slender). Pozrikidis (1989a), dealing with
non-slender spheroids (ε is close to 1) and normalizing with respect to the body width
(thus ‘translating’ his findings into our terms means replacing |λ| by |λ|ε), claimed
that the inertial effects balance the viscous ones at |λ| ∼ 5 and become dominant at
|λ| ∼ 100 for any aspect ratio. In another paper (Pozrikidis 1989b) he stated that this
‘transition point’ depends on the direction of the flow/motion.

2.3. Varying velocities along the body axis
Our method can be implemented not only for basic, constant oscillatory transition of a
spheroid. Motions of a body in shear flow, paraboloidal flow, etc., can be solved by the
same method of solution, but the expressions become quite lengthy as they involve the
distribution of other types of singularities, such as rotlets, stresslets and quadrupoles,
which are determined by taking the appropriate derivatives of the Stokeslet, (2.2), (2.3)
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λ ε = 0.0025 ε = 0.01

1− i e e
5(1− i) 0.91 0.77
15(1− i) 0.77 0.69
50(1− i) 0.71 0.55

TABLE 2. Location, s, of the maximum of |αn(s)| along the axis of a slender spheroid in
oscillatory linearly increasing motion: u(s)= 1+ s, s ∈ [−e, e] at ωt = 0.

and (2.4). The ratio between the intensities of those singularities is formulated along
the same lines that lead to (2.10): namely, they are always proportional to the cross-
sectional radius squared or raised to the fourth power (depending on the specific order
of the singularity), multiplied by appropriate quotients of lengthy integrals that depend
on the frequency. However, there is another simple case that does not involve higher
singularities and potentially has practical applications and meaning: a solution for a
slender body that has a linearly increasing velocity in the normal direction. This might
simulate a beat of a cilium that is fixed at one of its ends (i.e. it is attached to a larger
body). Implementing (2.8) and (2.9) for a velocity vector that is a function of the
location s on the body axis yields the solution. In a steady Stokes flow such a situation
involves the distribution of Stokeslets that are found to have monotonically increasing
intensities, (Barta & Liron 1988; Weihs & Barta 2008). Here, the variation of the
intensities depends on both the slope of the varying velocity and the frequency of
the oscillations. High frequencies involve maximum intensity at the centre of the body
while low ones involve maximum intensity at the fast-moving end. Moderate values
involve maximum intensity somewhere between those locations, as demonstrated in
table 2. As found for the simpler cases above, the more slender the spheroid, the less
important is the role played by the unsteadiness, and thus highly slender bodies are
characterized by maximum intensity attained close to the fast-moving end.

Although the total drag involved with such motion remains the same as in the
constant translation as long as the mean velocity of the spheroid remains unchanged,
the local effects might be quite different, as is revealed by a comparison of figure 7
with figure 5.

One has to be cautious when applying our method to a cilium attached to a body,
because the distribution of singularities without reflections with respect to the body
means that the necessary no-slip conditions are not met on the body surface. However,
by computing the velocity induced by those singularities, one may a posteriori
estimate the inaccuracy of the solution. Due to the zero velocity at the end of the
cilium that is fixed to the body, the Stokeslet intensities near the body are necessarily
very small, thus inducing negligible velocity there. Indeed, when we computed the
velocity induced by the spheroid described in figure 7, we found that the maximal
induced velocity on a plane attached to the fixed end is within the limits of the
accuracy of the equations; in other words, for all practical purposes the no-slip
condition on the body is satisfied. Therefore, as a crude first approximation, one
may implement our method for an elongated cilium or flagellum attached to a large
body.

The linear increase of velocity is only an example for a beating cilium, but other
variations are known to exist. For example, in their classic paper Blake & Sleigh
(1974) claimed that the velocities at the first quarter of the cilium are very small for
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(a) (b)

(c) (d)

FIGURE 7. Instantaneous streamlines in the flow field around a slender spheroid that moves
along the normal direction with linearly increasing motion: u(s)= 1+ s, s ∈ [−e, e]; ε = 0.01;
|λ| = 2. (The spheroid is represented by the solid line at the centre.) (a) ωt = 0; (b) ωt = 1;
(c) ωt = 2; (d) ωt = 3.

Opalina, Paramecium and Pleurobrachia, after that there is a steep increase, and at
the fifth of the cilium that is far from the body the velocity profile flattens out – a
situation that can be successfully handled by our approach.

3. A row of slender spheroids in oscillatory Stokes flow
We describe the flow field induced by the oscillatory motion of a finite row

of parallel, slender spheroids immersed in an unbounded incompressible fluid. The
spacing, d, between two adjacent spheroids satisfies 1 > d > 2ε, and the number of
rods, m, can be any integer from 2 upwards, limited only by computation time.

3.1. The governing equations
For each spheroid in the row (i = 1, . . . ,m) we write the equations for the three
components of the velocity u, v,w (normal, tangential and bi-normal respectively)
obtained by distribution of oscillatory Stokeslets and doublets along the major axes of
each spheroid within the row where the ratio between the intensities is determined by
using (2.10). Since this ratio was found to be satisfactory for the isolated spheroid,
it is valid here as well, because the terms that are dependent on the azimuthal angle
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(the ones that limit the accuracy of the solution) stem from the inner expansion of
the equations, which remains unchanged in this case as the presence of the adjacent
spheroids affects just the outer and inner–outer expansions. Thus

ui(s)=
∫ e

−e

(αi
n(s
′)− αi

n(s))A(λ|s′ − s|)
|s′ − s| ds′

+
∫ (e−s)/ε

−(e+s)/ε

αi
n(s)A(λε

√
σ 2 + (1− s2))√

σ 2 + (1− s2)

+ γ
i
n(s)(e

2 − (s− εσ )2)C(λε√σ 2 + (1− s2))√
σ 2 + (1− s2)

3 dσ

+
m∑

j=1,
j6=i

∫ e

−e

αj
n(s
′)A(λ

√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
ds′

+ ε2
m∑

j=1,
j6=i

∫ e

−e

γ j
n(s
′)(e2 − s

′2)C(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3 ds′, (3.1)

vi(s)=
∫ e

−e

(αi
t(s
′)− αi

t(s))(A(λ|s′ − s|)+ B(λ|s′ − s|))
|s′ − s| ds′

+αi
t(s)
∫ (e−s)/ε

−(e+s)/ε

A(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)
+ B(λε

√
σ 2 + (1− s2))σ 2

√
σ 2 + (1− s2)

3 dσ

+ γ i
t (s)

∫ (e−s)/ε

−(e+s)/ε
(e2 − (s− εσ )2)

(
C(λε
√
σ 2 + (1− s2))√

σ 2 + (1− s2)
3

− 3D(λε
√
σ 2 + (1− s2))σ 2

√
σ 2 + (1− s2)

5

)
dσ

+
m∑

j=1,
j6=i

∫ e

−e
αj

t(s
′)

{
A(λ
√
(s− s′)2+ (d(i− j))2)√
(s− s′)2+ (d(i− j))2

+ (s− s′)2 B(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3

}
ds′

+
m∑

j=1,
j6=i

∫ e

−e
γ j

t (s
′)

{
C(λ

√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3

− 3 (s− s′)2 D(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
5

}
ε2(e2 − s

′2) ds′

+
m∑

j=1,
j6=i

{∫ e

−e
α

j
b(s
′)

B(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3
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− γ j
b(s
′)

3ε2(e2 − s
′2)D(λ

√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
5

× d(i− j)(s− s′) ds′, (3.2)

wi(s)=
∫ e

−e

(αi
b(s
′)− αi

b(s))A(λ|s′ − s|)
|s′ − s| ds′

+
∫ (e−s)/ε

−(e+s)/ε

αi
b(s)A(λε

√
σ 2 + (1− s2))√

σ 2 + (1− s2)

+ γ
i
b(s)(e

2 − (s− εσ )2)C(λε√σ 2 + (1− s2))√
σ 2 + (1− s2)

3 dσ

+
m∑

j=1,
j6=i

∫ e

−e
α

j
b(s
′)

{
A(λ
√
(s− s′)2+ (d(i− j))2)√
(s− s′)2+ (d(i− j))2

+ d2 (i− j)2 B(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3

}
ds′

+
m∑

j=1,
j6=i

∫ e

−e
γ

j
b(s
′)

{
C(λ

√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3

− 3d2 (i− j)2 D(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
5

}
ε2(e2 − s′2) ds′

+
m∑

j=1,
j6=i

∫ e

−e

{
α

j
t(s′)B(λ

√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
3

− 3ε2(e2 − s
′2)γ j

t (s′)D(λ
√
(s− s′)2+ (d(i− j))2)√

(s− s′)2+ (d(i− j))2
5

}
× d(i− j)(s− s′) ds′. (3.3)

The solution of the above system of 3m integral equations, (3.1), (3.2) and (3.3),
with the ratio specified in (2.10) that defines γ (s), yields the Stokeslet intensities αi

n(s),
αi

t(s), α
i
b(s).

3.2. Numerical solutions

The method of solution used for the isolated body applies here too. Motion along
the normal direction is decoupled from motion along any one of the other directions,
and thus solving for motion along the en direction involves a solution of mn linear
equations (n being the number of discrete points scattered along each spheroid
axis) while solving for motion along either the et or eb directions involves 2mn
linear equations. Since most of the computational work is done in the process
of determination of the coefficients of the equations, a solution for one of these
two directions yields a solution for the other direction with redundant additional
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computational effort. Symmetry, either around the centre of the bodies or around the
centre of the row, halves the original number of equations.

3.2.1. Two parallel spheroids
The significant effect of the interaction between two spheroids in Stokes flow, even

when the distance between the bodies is considerable, was determined long ago both
numerically (Barta & Liron 1988) and experimentally (e.g. Cheer & Koehl 1987).
When one body moves, it drags the surrounding viscous fluid where the other body
is immersed, thus helping it to move in the same direction and reducing the total
drag involved with the motion. The reduction is most significant in motion along the
axis that ‘connects’ the bodies (the bi-normal direction) and least significant in motion
along the spheroid axis (the tangential direction).

In oscillatory motion the situation is qualitatively different due to the presence of the
inertial forces in addition to the viscous effects. As Feng & Joseph (1995) found, a
boundary close to a moving body enhances the effect of the unsteadiness on the flow
field, indicating that an assumption of a ‘classical’ Stokes flow in a system of two
bodies might be unjustified more than it is for an isolated body.

As is demonstrated by figure 8, low frequencies of oscillations induce flow fields
that are quite similar to typical Stokes flow, i.e. the two bodies drag and ‘help’ each
other even when the distance between them is large, especially in motion in the
bi-normal direction. However, high frequencies cause the viscous effects to be inferior
to the inertial effects to the extent that, in some cases, the presence of the other body
disturbs and hinders the motion (i.e. requires exertion of higher drag force). For axial
motion the effect of the other body’s presence is moderate. For transverse motion,
however, if it is in the normal direction, then the moderate help of the other body
(due to viscosity) is overridden by its interference (due to inertia), but for the motion
in the bi-normal direction, the profound help of the other body overrides the inertial
interference unless the frequency of oscillations is very high. Some combinations of
frequency and spacing between the bodies lead to situations where the presence of
another body hardly affects the motion due to a near-balance between the help of
viscous forces and the interference of inertial forces. As was found for the steady-state
situation, the more slender the spheroid (i.e. ε is reduced), the less significant are the
interactions between the bodies, i.e. the normalized magnitude of the force is close to
1 and its phase is very low.

Our results are in qualitative agreement with the experimental findings of Bathellier
et al. (2005) for the coupling between pairs of trichobothria. They found that the
lower the frequency of oscillations, the thicker the region of viscous coupling. A
quantitative comparison of our calculations with their measurements is impossible, as
we are solving a resistance problem (the velocity of the body is given and the forces
and moments are to be found) while they describe a situation of a mobility problem
(the forces and moments are given and the motion of the body is to be determined).

The local flow field, as reflected by the values of the intensities of singularities, is
also a result of those opposite trends; thus, for low frequencies of oscillations and
quite close bodies we found that the minimum intensity is located at the centre of
the body (where the presence of the other spheroid is most helpful), while for high
frequencies or when the bodies are separated by a great distance it is the maximum
intensity that was attained at the centre of the body (where the other body makes it
most difficult to move).
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FIGURE 8. The magnitude of the drag exerted by a slender spheroid (ε = 0.02) that is d body
half-lengths apart from a similar spheroid in oscillatory motion. Solid line, λ = 0.1(1 − i);
dashed line, λ= (1− i); dotted line, λ= 10(1− i). The drag is normalized by that exerted by
a similar isolated spheroid. Motion is along the (a) normal direction, (b) tangential direction,
(c) bi-normal direction.

3.2.2. A row of parallel spheroids
The interplay between the viscous character of the slow flow and the inertial effects

that stem from the unsteadiness, demonstrated above for the case of two adjacent
bodies, induces complicated situations when many bodies are involved. The trends
found above become more significant when the number of rods in the row increases.
Specifically, as long as the motion is in the bi-normal direction (one spheroid moves
‘behind’ the other), there is a considerable gain from the clustering of the rods and
the overall force needed to move the row is quite low, e.g. 50 rods move with
a drag needed for the motion of just 25 isolated rods even when they are not in
close proximity (d = 50ε) and the frequency is high (λ = 3(1 − i)). But for the
same parameter values and motion along the normal direction (one spheroid moves
in parallel to the other), this row of rods involves a drag force that is higher than
that needed for the locomotion of all its components when isolated; see table 3. In
contrast to the situation found in Stokes flow, where increasing the number of rods
in a row always means a lower drag force exerted by each rod (Barta & Weihs
2006), here extending the row of rods might improve the efficacy of locomotion, or
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λ= 0 λ= 0.3(1− i) λ= 3(1− i)
d = 10ε d = 50ε d = 10ε d = 50ε d = 10ε d = 50ε

en direction 4.4 10.1 5.44e−0.18i 16.26e−0.31i 20.95e−0.75i 62.25e−0.26i

eb direction 3.1 6.5 3.47e−0.11i 8.80e−0.21i 7.25e−0.40i 24.70e−0.39i

et direction 5.0 12.5 5.75e−0.12i 17.62e−0.21i 12.98e−0.41i 40.08e−0.24i

TABLE 3. The overall drag forces exerted on a row normalized by the drag on a single,
isolated spheroid. The row consists of 50 spheroids; ε = 1/300.
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FIGURE 9. The mean drag force exerted by a rod in a row of m spheroids with gaps of 0.1
body half-lengths; ε = 0.01; solid line, λ = 0.1(1 − i); dashed line, λ = (1 − i); dotted line,
λ = 5(1 − i). Motion is along the (a) normal direction, (b) tangential direction, (c) bi-normal
direction.

the other way around. The direction of motion, the slenderness ratio, the frequency of
oscillations, the number of rods and the distances between them all affect the involved
drag forces. From figure 9 it is evident that when the frequency is low, the motion of
the row is Stokes-like, i.e. the rods are dragged by the flow created by their neighbours
(transferred to them via the viscous ambient fluid) and the force they exert is relatively
low. This is especially true for motion along the axis that ‘connects’ their centres (the
bi-normal direction). However, for high or even moderate frequencies, the presence
of the neighbours can disturb the motion when the row moves along the normal
direction, and is only a slight boon for tangential motion. Those effects become more
pronounced as the bodies become closer (shorter distance d) or less slender (higher ε)
or oscillate with a higher frequency λ.

Note that figure 9 refers to the mean drag force. Each rod exerts its own specific
force; those specific forces are quite similar in the central region of the row but might
vary significantly (decrease or increase depending on the parameter values) towards the
ends of the row.
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A different way to estimate the effect of clustering of slender bodies is to examine
the degree of leakiness, i.e. does the row of rods act like a continuous sheet and
the fluid between the rods actually moves at the same speed as the rods (as occurs
in steady Stokes flow: see figure 6 in Barta & Weihs 2006) or are there significant
losses in comparison to a full wing? In correlation with our findings regarding the
drag forces, the velocities of the fluid between the bodies when the motion is in
the bi-normal direction resemble the rods’ velocities as the row moves almost like a
continuum, even when the frequency of oscillations is quite high; but for motion in the
tangential direction and, even more so, for motion in the normal direction, this is not
the case. As the frequencies are increased the ambient fluid starts to ‘lag’ behind, i.e.
the magnitude of its velocity decreases and the phase increases. This deviation from
coherent motion becomes much more pronounced towards the tips of the spheroids
(away from the bodies’ centres).

4. A case study
The effect of the oscillatory character of the motion of the body is beautifully

demonstrated by modelling the flapping of wings of insects. The thrips family of
insects is one of the few families that has been extensively studied, and therefore
provides the necessary data for theoretical simulation. The insect has four comb-like
wings, which have been shown to produce forces similar to those of solid wings (an
experimental study by Sunada et al. 2002). With this it can save weight with a minor
sacrifice in performance. However, a trial to balance the insect weight and the drag
force produced by the wings flapping (the force gained by the effective stroke minus
the one spent on the recovery stroke), according to the steady Stokes flow equations,
has failed (Barta & Weihs 2004). Here, we recalculate the forces involved by imposing
the much more realistic assumption of oscillatory motion.

Using the data supplied by Sunada et al. (2002), we concluded the values of the
involved geometrical parameters; specifically, the wing span is 8.1×10−4 m, the length
of the rods, l, equals 1.5 × 10−4 m and ε = 5 × 10−3. An average wing is composed
of about 50 bristles (rods), and thus we get a spacing, d, between the rods of 21.5ε.
The frequency of the flapping is about 200 Hz. In fact the motion is composed of
two different phases: the effective stroke (ES), where the motion of the rods is normal
to their long axis and is fast (velocity U), and the recovery stroke (RS), where the
motion is considerably slower (velocity V) and along the tangential direction. In both
phases the velocity of the rods increases linearly from almost zero for the first rod (the
one closest to the body of the insect) to its maximum (U or V) for the farthest rod.
Henceforth we determine the probable velocities and frequencies for the two phases of
motion. The overall distance that the rods cover in each cycle of motion (i.e. within
1/200 of a second) is equal to twice the angle of attack (measured to be about sixty
degrees) multiplied by the wing span. Therefore we write

1/200= 8.1× 10−4(2π/3)(1/U + 1/V). (4.1)

As far as we know, the ratio between the velocities U and V has not been measured
for thrips. Here we have assumed a ratio of 3, which reflects the situation in other
species. (For example, see the report by Blake & Sleigh 1974 on the duration ratio for
the two phases of stroke that varies from 1.2 in Opalina to 4 in Paramecium and in
Pleurobrachia; Fry, Sayaman & Dickinson 2005 found a ratio of 1.2 in Drosophila.) It
induces (after substitution in (4.1)) velocities U = 1.36 m s−1 and V = 0.45 m s−1 or
frequencies of 801.67 s−1 and 265.26 s−1 for the ES and RS respectively. Equations
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(3.1), (3.2) and (3.3) are solved for m = 51 rods with λ values of 0.76(1 − i)
and 0.44(1 − i) for the two phases (calculated based on the above frequencies, a
characteristic length, dl, of half the body length, and kinematic viscosity of air known
to be about 15.7×10−6 m2 s−1 at room temperature). The resulting Stokeslet intensities
are incorporated in (2.11) to yield the force produced by the motion of each rod.
All rods together in the four wings of the insect produce a net drag of magnitude
6.44 × 10−7 kg m s−1 in the effective stroke, from which one has to subtract the force
required to bring the wing back to its starting position (the recovery stroke), which is
equal to 0.87× 10−7 kg m s−1, meaning that the net gained force of the flapping wings
is about 5.6 × 10−7 kg m s−1, a value that almost exactly balances the weight of the
thrips (5.9× 10−7 kg m s−1 by Sunada et al. 2002).

Implementing the steady-state Stokes equations induced a net force that was
significantly lower than the required force and could not explain the hovering of
thrips, while here, under the oscillatory assumption, there is an almost perfect balance
between the exerted force and the weight, especially when one takes into account
the many sources of inaccuracies involved with the data used. Those inaccuracies are
mainly differences between forewings and hindwings (we used the only available data,
which refer to a forewing), neglecting the central wing rod (the one that connects the
bases of all the slender bristles and that exerts its own force), inaccuracy due to the
unknown ratio between the velocities U and V , as well as unknown exact values of the
angle of attack and the geometrical data concerning the rods.

The difference between the steady solutions and the present one is attributed mainly
to the difference found above (see table 3) between the effects of the densely packed
row of bodies on its members for motions along normal and tangential directions.
While the drag force in normal motion of a 50-rod row in Stokes flow (λ = 0) is
approximately equal to that exerted in motion along the tangential direction, in an
oscillatory situation the motion along the normal direction involves much higher forces.
Hence the gap between the drag exerted in the effective stroke and the recovery stroke
is widened, because it stems not just from the difference in the velocities per se but
from the different character of the motions in the two phases: the interference due
to the presence of adjacent bodies is more significant for motion along the normal
direction.

5. Discussion
The flow field in the vicinity of either an isolated slender body or a row of such

bodies moving in a time-dependent fashion within a viscous fluid is found by slender-
body theory with utilization of singular fundamental solutions for oscillatory, viscous
flow. Both the local flow field and the global drag forces involved are determined
with relatively little computational effort for a wide range of parameter values (any
frequency of oscillations as long as the bodies have a slenderness ratio lower than 0.1
and the spacing between their axes is higher than 5 diameters). A relation between
the singularities’ intensities is determined so as to make the inaccuracies which are
inherent to the method of solution (induced velocity with circumferential variations
on the body surface) cause errors no higher than those induced in the steady-state
situation (at most a few per cent: Barta & Weihs 2006).

Trends that were previously found to be valid for a non-slender body in oscillatory
motion, namely that (a) eddies evolve, expand and then disappear in the vicinity of the
moving body, (b) the singularities’ strength is maximal at the centre of the body and
decreases towards its ends, (c) higher frequency of oscillations leads to higher drag
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force, and (d) the effect of the oscillations is more pronounced in motion normal to
the axis, have been established for the case of a slender body, but the effect of the
oscillations was found to be less significant as the body becomes more slender.

In addition, we dealt with multiple bodies configurations and concluded the
following.

(a) Adjacent slender bodies help each other (i.e. the drag force they exert is lower
than that exerted by an isolated body) when moving together in the bi-normal
direction, but might disturb each other and induce a higher drag force when
motion is in the normal direction. Motion in the tangential direction is somewhere
between those two cases.

(b) In contrast to the situation in steady states, here the effect of extending a row
of bodies is not necessarily monotonic, i.e. a larger row of bodies might be a
benefit or a burden in accordance with the direction of motion, slenderness ratio,
frequency of flapping and spacing between the bodies.

The unsteady effects proved to be more crucial for a system of multiple bodies than
for an isolated body. This can be demonstrated by comparing the results of tables 1
and 3: increasing the value of λ from 0 to 3(1 − i) leads to an increase of the
drag force by factors of ∼1.3 and 1.5 for motions along the tangential and normal
directions, respectively, for an isolated spheroid, but induces an increase by factors
of 2.3, 2.6 and 4.8 for the mean drag force involved in motions in the bi-normal,
tangential and normal directions, respectively, for a row of 50 spheroids. Hence, even
at low frequencies of oscillations the time-dependent character of a creeping flow
cannot be ignored when several adjacent bodies are concerned. Thus, the motion of
ciliated bodies or bristled wings (both composed of arrays of densely packed ‘rods’)
was shown here to be highly affected by the oscillatory situation, proving the well-
known fact (Sane & Dickinson 2002) that quasi-steady estimates grossly underestimate
the magnitude of the mean drag coefficient of flapping wings.

This paper is a step towards a realistic description of the motion of slender bodies
within a viscous fluid. Since our method is applicable to any given motion of bodies
(or ambient flow field), to any slender body (as long as it has a circular cross-section)
and to a wide range of frequencies of oscillations, it is non-specific and might be
relevant to quite a few situations. Many solutions that have been previously formulated
might serve as a first approximation, but are inadequate for realistic situations. This is
either due to the inaccuracies involved (here, as shown in tables 1 and 2, we found
that the shape of the body, or its slenderness ratio, has a tremendous effect on the
solution, so deduction from known solutions for almost spherical bodies to a slender
body will not yield an acceptable estimate) or due to the high computational effort
involved (as in the boundary integral methods).

The method developed here may be extended in a straightforward manner to the
case of a matrix of rods (instead of a row) in order to simulate the locomotion
of micro-organisms with a pseudo-rectangular body covered with cilia, described
by Brennen & Winet (1977). Another straightforward extension is a distribution of
oscillatory rotlets in order to account for a rotational movement. One of the most
interesting simulations would be of an array of cilia with two planar waves, one
travelling along the axis of each cilium and the other across the row. As long as
the oscillations are coherent (i.e. all rods have the same frequency) our method is
valid and may cope with a detailed simulation of the locomotion of micro-organisms,
previously dealt with by rough models (e.g. the envelope model: see Blake & Sleigh
1974).
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The author is indebted to Professor Danny Weihs for fruitful discussions regarding
the flapping of insects.
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