
TLP 17 (4): 516–558, 2017. C© Cambridge University Press 2017

doi:10.1017/S1471068417000175 First published online 28 June 2017

516

Constraint solving for finite model finding
in SMT solvers�

ANDREW REYNOLDS and CESARE TINELLI

Department of Computer Science, The University of Iowa, Iowa City, Iowa, USA

(e-mail: andrew.j.reynolds@gmail.com, cesare-tinelli@uiowa.edu)

CLARK BARRETT

Department of Computer Science, Stanford University, Stanford, California, USA

(e-mail: barrett@cs.stanford.edu)

submitted 2 June 2017; revised 2 June 2017; accepted 2 June 2017

Abstract

Satisfiability modulo theories (SMT) solvers have been used successfully as reasoning

engines for automated verification and other applications based on automated reasoning.

Current techniques for dealing with quantified formulas in SMT are generally incomplete,

forcing SMT solvers to report “unknown” when they fail to prove the unsatisfiability of a

formula with quantifiers. This inability to return counter models limits their usefulness in

applications that produce queries involving quantified formulas. In this paper, we reduce these

limitations by integrating finite model finding techniques based on constraint solving into the

architecture used by modern SMT solvers. This approach is made possible by a novel solver

for cardinality constraints, as well as techniques for on-demand instantiation of quantified

formulas. Experiments show that our approach is competitive with the state of the art in

SMT, and orthogonal to approaches in automated theorem proving.

KEYWORDS : Satisfiability modulo theories, finite model finding

1 Introduction

Satisfiability modulo theories (SMT) is a subfield of automated reasoning concerned

with the problem of determining the satisfiability of formulas in some first-order

theory T , where T is usually a combination of several sub-theories. SMT techniques

and solvers have been used successfully in recent years to support a variety of

formal methods for hardware and software development, including automated

verification. They are especially effective for tasks that can be reduced to proving

the unsatisfiability of quantifier-free formulas in certain theories, such as theories

of linear arithmetic, algebraic datatypes, bit vectors, arrays, strings and so on, for

which it is possible to build specialized constraint solvers. A number of applications,

however, require reasoners that can prove the unsatisfiability of quantified formulas

� The work of the first two authors was partially funded by a grant from Intel Corporation.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 517

in those theories. In verification applications, for instance, quantified formulas are

necessary to express properties of systems with an unbounded number of processes,

or properties involving a number of memory locations. In general, the need for

quantified formulas arises naturally when dealing with function or predicate symbols

that do not belong to the signature of an SMT solver’s built-in theories.

The few SMT solvers that can currently reason about quantified formulas are

based on incomplete methods and often report “unknown” when they fail, after

some predetermined amount of effort, to prove a quantified formula unsatisfiable.

For many client applications, however, it is very useful to know if the failure is due

to the fact that the input formula is indeed satisfiable, especially if the solver can

also return some representation of the formula’s model. Current SMT solvers are

able to produce models of satisfiable quantified formulas only in fairly restricted

cases (Ge and de Moura 2009), which limits their scope and usefulness.

We reduce these limitations with a novel approach for model finding in SMT.

Since, by the undecidability of first-order logic, there are no automated methods

for finding arbitrary models, we focus on finite models, which can be represented

symbolically and enumerated. More precisely, because SMT solvers work with sorted

logics with both built-in and free (uninterpreted) sorts, we focus on finding models

that interpret the free sorts as finite domains. As with traditional finite model

finders for first-order logic, the main idea is simply to check universally quantified

formulas exhaustively over candidate models with increasingly large domains for

the free sorts, until an actual model is found. Our approach differs from previous

ones in that it does not rely on the explicit introduction of domain constants for the

free sorts, as done by MACE-style model finders (Claessen and Sörensson 2003),

and in that we are able to reason modulo more theories than just the theory of

equality, unlike SEM-style model finders (Zhang and Zhang 1995). Moreover, and

crucially for our goals, the approach is fully integrated into the general architecture

underlying most SMT solvers.

While limited to SMT formulas with quantifiers ranging only over free sorts or

built-in finite sorts (such as, for instance, bit vector sorts or enumeration sorts),

our approach is still quite useful. Formulas with such quantifiers occur often, for

instance, in verification applications; moreover, when they are satisfiable they usually

have small finite models.

We present our model finding method in the context of an abstract framework that

models a large class of SMT solvers supporting multiple theories and quantified

formulas (Krstić and Goel 2007). We incorporate in this framework an efficient

mechanism for deciding the satisfiability of a set of ground SMT formulas under

finite cardinality constraints (FCC) for the free sorts. This is used first to find

a candidate model, a model M of a heuristically generated finite set of ground

consequences of the input formula ϕ. To check that M satisfies ϕ as well, the model

finder then verifies, in a complete way, that all ground consequences of ϕ over the

universe of M are satisfied by M. When this check fails, the model finder looks

for a new candidate model, possibly under extended cardinality bounds for the free

sorts. The practical effectiveness of this approach relies on two crucial components:

(i) a method for constructing and representing candidate models efficiently and (ii)

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

518 A. Reynolds and C. Tinelli

a model-based quantifier instantiation heuristic that avoids the explicit generation

and checking of all the ground instances of the input formula. The two are strictly

related since the instantiation heuristic takes advantage of the way candidate models

are represented to identify, and ignore, entire sets of instances that do not need to

be considered.

The paper is organized as follows. After discussing preliminaries in Section 3,

we present the framework used by SMT solvers in Section 4. We then present a

high-level overview of our approach for finite model finding in Section 5, followed

by details in Sections 6–8 This includes, in particular, the strategy used by the

solver for finding small candidate finite models and the algorithm for checking

the satisfiability of quantified formulas against these candidate models. Section 9

describes an experimental evaluation of our implementation of these techniques in

the SMT solver cvc4 on several sets of benchmarks.

This paper builds on material from previous conference papers (Reynolds et al.

2013a; Reynolds et al. 2013b), as well as the PhD dissertation by the first au-

thor Reynolds (2013).

2 Related work

Most traditional finite model finders for quantified formulas are based on a reduction

to a decidable logic, propositional logic or some decidable fragments of first-order

logic, where the reduction introduces finite upper bounds on the cardinalities of

the atomic types. This technique was pioneered by McCune in the Mace tool

(McCune 1994), and is often referred to as MACE-style model finding. These

techniques were later implemented in the tool Paradox (Claessen and Sörensson

2003), which incorporated successful techniques for symmetry breaking. Other

conceptually similar tools include FM-Darwin (Baumgartner et al. 2009), which

handles first-order logic with equality, the Alloy Analyzer with its backend Kodkod

(Torlak and Jackson 2007) which handles first-order relational logic, and Nitpick

(Blanchette and Nipkow 2010) which handles higher order logic. Recently, a MACE-

style finite model finding approach was also implemented in the Vampire theorem

prover (Reger et al. 2016).

A different approach to model finding, pioneered by the SEM model finder (Zhang

and Zhang 1995), does not encode the input problem into propositional logic.

Instead, it uses built-in support for equality together with constraint propagation

techniques similar to those used in modern constraint solvers. In this respect, our

approach is more similar to SEM-style model finding than it is to MACE-style

model finding.

Our approach uses on-demand quantifier instantiation to check the satisfiability

of universally quantified formulas. Other instantiation-based approaches have been

developed, both in the automated theorem proving community (Korovin 2008) and

in SMT. For the latter, instantiation-based techniques are most typically used in an

incomplete way for finding proofs of unsatisfiability (Detlefs et al. 2003; de Moura

and Bjørner 2007; Ge et al. 2009). Other techniques establish the satisfiability of

quantified formulas, either by using model-based techniques (Ge and de Moura

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 519

2009), or by reasoning in local theories where only a finite set of instances is

required for completeness (Ihlemann et al. 2008).

3 Preliminaries

We work in the context of many-sorted first-order logic with equality. A (many-

sorted) signature Σ consists of a set of sort symbols and a set of (sorted) function

symbols, f : S1 × · · · × Sn → S , where n � 0 and S1, . . . , Sn, S are sorts in Σ. When

n is 0, f is also called a constant symbol. We use the binary predicate ≈ to denote

equality. We assume that Σ always includes a Boolean sort Bool and constants true

and false of that sort—allowing us to encode all other predicate symbols as function

symbols of return sort Bool. For such symbols, we may write, e.g., P (t1, . . . , tn) as

shorthand for the equality P (t1, . . . , tn) ≈ true. A signature Σ0 is a subsignature of a

signature Σ, and Σ is a supersignature of Σ0, if every sort and function symbol of

Σ0 is also in Σ.

Given a signature Σ, a Σ-term is either a (sorted) variable x with sort from Σ, or

an expression of the form f(t1, . . . , tn), where f is a function from Σ, and t1, . . . , tn
are Σ-terms. A term t is a well-sorted term of sort S if t is a variable having sort S ,

or t is of the form f(t1, . . . , tn) where f is of sort S1 × · · · × Sn → S , and t1, . . . , tn are

well-sorted terms of sorts S1, . . . , Sn, respectively. An atomic Σ-formula is an equality

t1 ≈ t2 where t1 and t2 are well-sorted Σ-terms of the same sort. A Σ-literal is either

an atomic Σ-formula p or its negation ¬p. We write s �≈ t as an abbreviation for

¬s ≈ t. A Σ-clause is a disjunction of Σ-literals, e.g., l1 ∨ . . . ∨ ln. A Σ-formula is an

expression built from atomic Σ-formulas logical connectives such as ∨, ∧, and ¬,

and quantifiers ∀ and ∃. An occurrence of variable x is free in a formula ϕ if it

does not reside within a sub-formula ∀xψ or ∃xψ of ϕ. We write FV (ϕ) to denote

the set of variables that occur free in ϕ, or the free variables of ϕ. A Σ-sentence is

a Σ-formula with no free variables. A Σ-term or formula is ground if it contains

no variables. More generally, by a slight abuse of terminology, we will sometimes

call ground any quantifier-free term or formula. Where x = (x1, . . . , xn) is a tuple of

sorted variables, we write ∀xϕ as an abbreviation for ∀x1 · · · ∀xn ϕ and ∃xϕ as an

abbreviation for ¬∀x ¬ϕ. When using this notation, we will implicitly assume that

x is maximal—for example, we assume that ∀x1 ∀x2 ϕ is instead written as ∀x1x2 ϕ.

A substitution σ is a mapping from variables to terms, applied in postfix form,

such that xσ and x have the same sort for every variable x and the set Dom(σ) :=

{x | xσ �= x}, the domain of σ, is finite. We say σ is a most general unifier of terms

t1 and t2 if σ is a substitution with minimal domain such that t1σ = t2σ.

A Σ-interpretation I maps each sort S in Σ to a non-empty set SI, the domain of

S in I; it maps each variable x of sort S to an element xI of SI and each function

symbol f : S1 × · · · × Sn → S ∈ Σ to a total function fI : SI
1 × · · · × SI

n → SI.

If Σ0 is a sub-signature of Σ, the Σ0-reduct of I is the Σ0-interpretation I0 that

interprets the symbols of Σ0 exactly as I does. The evaluation of a term f(t1, . . . , tn)

in I, denoted I[[t]], is defined recursively as (i) I[[x]] = xI; (ii) I[[f(t1, . . . , tn)]] =

fI(I[[t1]], . . .I[[tn]]). For a Σ-interpretation I, a variable x of sort S , and an element

u of SI, we write I[x → u] to denote a Σ-interpretation that interprets x as u, and is

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

520 A. Reynolds and C. Tinelli

otherwise identical to I. The usual satisfiability relation |= between Σ-interpretations

and Σ-formulas, written |=, is defined as follows1:

– I |= t1 ≈ t2 iff I[[t1]] = I[[t2]].

– I |= ϕ ∧ ψ iff I |= ϕ and I |= ψ.

– I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ.

– I |= ¬ϕ iff I �|= ϕ.

– I |= ∀xϕ iff I[x → v] |= ϕ for all v ∈ SI where S is the sort of x.

A Σ-interpretation M satisfies (or is a model of) a Σ-formula ϕ if M |= ϕ; M
satisfies (or is a model of) a set of Σ-formulas if it satisfies all of them. A Σ-formula

or set of Σ-formulas is satisfiable if it has a model and is unsatisfiable otherwise. We

consider only interpretations that interpret Bool as a binary set and true and false

as distinct elements of that set. We write ⊥ to abbreviate the unsatisfiable formula

false ≈ true. A set Γ of formulas propositionally entails a formula ϕ, written Γ |=p ϕ,

if the set Γ ∪ {¬ϕ} is unsatisfiable when considering all atomic formulas in it as

propositional (Boolean) variables.

A theory is a pair T = (Σ, I) where Σ is a signature and I is a class of Σ-

interpretations, the models of T , closed under variable reassignment (that is, for all

I ∈ I, every Σ-interpretation that differs from I only in how it interprets variables

is also in I). The union of two theories T1 = (Σ1, I1) and T2 = (Σ2, I2), when it exists,

is the theory T1 ∪ T2 = (Σ, I) where Σ is the smallest super-signature of Σ1 and Σ2

and I is the set of all Σ-interpretations whose Σi-reduct is in Ii for i = 1, 2. This

definition extends to more than two theories as expected.

Given a theory T = (Σ, I), a Σ-formula ϕ is satisfiable modulo T , or T -satisfiable,

if and only if there is a model of T that satisfies ϕ. A set Γ of Σ-formulas T -entails

a Σ-formula ϕ, written Γ |=T ϕ, if every model of T that satisfies all formulas in

Γ satisfies ϕ as well. The formula ϕ is T -valid if it is T -entailed by the empty

set—equivalently, if it is satisfied by every model of T . Two sets Γ1 and Γ2 of

Σ-formulas are equisatisfiable in T if for every model of T that satisfies one there is

a model of T that satisfies the other, and the two models differ at most on the way

they interpret the free variables not shared by Γ1 and Γ2.

4 The DPLL(T1, . . . , Tm) framework

Most SMT solvers have a basic architecture that combines in a principled way

a propositional satisfiability solver, the SAT engine, with a number of theory

solvers, specialized constraint solvers for sets of literals over a specific theory.

A general framework, called DPLL(T), to describe at an abstract but formal level

the working of such SMT solvers and the interaction of their main components was

originally developed by Nieuwenhuis et al. (2006). The framework, parameterized

by a background theory T , describes entire families of procedures to determine the

1 Cases for additional constructs such as ⇒, ⇔ and ∃ can be defined as usual by reduction to the cases
below.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 521

T -satisfiability of a ground set of input clauses. We present here a variant of it, intro-

duced by Krstić and Goel (2007), where T is not a monolithic theory but is instead

the union of a number of separate sub-theories, each with its own theory solver.

4.1 The theory T

For the rest of the paper, we will consider a Σ-theory T = T1 ∪ · · · ∪Tm where each

Ti is a theory with signature Σi. One of these theories, say Te with e ∈ {1, . . . , m},
may be the theory of equality—over the symbols Σe. This theory, whose set of

models consists of all Σe-interpretations, is also known as the theory of equality

with uninterpreted functions (EUF). As a consequence, we will refer to the sort

and function symbols of T that occur only in Σe as uninterpreted and to the other

symbols of T as interpreted. To stress that we treat the component theories of T

individually, we will refer to our variant of DPLL(T) as DPLL(T1, . . . , Tm).

For convenience and without loss of generality, we assume that if a signature

from {Σ1, . . . ,Σm} shares a sort symbol with another signature then it shares it also

with all the signatures in the set. Finally, we impose the (true) restriction that the

signatures Σ1, . . . ,Σm share no function symbols at all except for true and false. This

restriction is currently imposed by all SMT solvers that support multiple theories as

it enables the modular combination of theory solvers for the individual theories.

4.2 Transition system

The DPLL(T1, . . . , Tm) framework for theory T defines a state transition system for

each ground Σ-formula ϕ0 whose T -satisfiability one is interested in. Intuitively, the

initial state of the system corresponds to a CNF encoding of ϕ0. Under the right

conditions on T , all of the executions of the system starting from such a state end

in a distinguished fail state if and only if ϕ0 is not T -satisfiable.

States System states are all triples of the form 〈M,F, C〉 where

• M, the current assignment, is a sequence of literals and decision points •,

• F is a set of ground clauses derived from ϕ0, and

• C is either the distinguished value no or a clause, which we will refer to as a

conflict clause.

Each assignment M can be factored uniquely into the subsequence concatenation

M0 • M1 • · · · • Mn, where no Mi contains decision points. For i = 0, . . . , n, we call

Mi the decision level i of M and denote with M[i] the subsequence M0 • · · · • Mi.

When convenient, we will treat M as the set of its literals. The formulas in F have

a particular purified form that can be assumed with no loss of generality since any

formula can be efficiently converted into that form while preserving equisatisfiability

in T : each element of F is a ground clause, and each atom occurring in F is

pure, that is, has signature Σi for some i ∈ {1, . . . , m}. By the way, assignments are

constructed, their atoms too are always pure.

Initial states have the form 〈∅, F0, no〉 where F0 is an input set of clauses to

be checked for T -satisfiability. The expected final states are states of the form

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

522 A. Reynolds and C. Tinelli

Propagatei

l1, . . . , ln ∈ M l1, . . . , ln |=i l l ∈ LitF ∪ IntM l, l /∈ M

M := M l

Decide

l ∈ LitF ∪ IntM l, l /∈ M

M := M • l
Conflicti

C = no l1, . . . , ln ∈ M l1, . . . , ln |=i ⊥

C := l1 ∨ · · · ∨ ln

Explaini

C = l ∨ D l1, . . . , ln |=i l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Learni

∅ |=i l1 ∨ · · · ∨ ln l1, . . . , ln ∈ LitM |i ∪ IntM ∪ Li

F := F ∪ {l1 ∨ · · · ∨ ln}
Learn0

C �= no • ∈ M

F := F ∪ {C}

Backjump

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln � i < lev l

C := no M := M[i] l

Fail

C �= no • /∈ M

C := ⊥
Fig. 1. DPLL(T1, . . . , Tm) rules

〈M,F,⊥〉, when F0 is not T -satisfiable; or else 〈M,F, no〉 with M satisfiable in T , F

equisatisfiable with F0 in T , and M |=p F .

If M is T -satisfiable and M |=p F , we call M a satisfying assignment for F .

Transition rules. The possible behaviors of the system are defined by a set of non-

deterministic state transition rules, specifying a set of successor states for each

current state. The rules are provided in Figure 1 in guarded assignment form (Krstić

and Goel 2007). A rule applies to a state s if all of its premises hold for s. In the rules,

M, F , and C , respectively, denote the assignment, formula set, and conflict clause

component of the current state. The conclusion describes how each component is

changed, if at all.

We write l to denote the complement of literal l and write l ≺M l′ to indicate that

l occurs before l′ in M. The function lev maps each literal of M to the (unique)

decision level at which l occurs in M. The set LitF (resp., LitM) consists of all

literals in F (resp., all literals in M) and their complements. For i = 1, . . . , m, the set

LitM |i consists of the Σi-literals of LitM . IntM is the set of all interface literals of

M: the equalities and disequalities between shared variables where the set of shared

variables is

{x | x is a variable in both LitM |i and LitM |jfor some 1 � i < j � m} .

The index i in the rules ranges from 0 to m for Propagatei, Conflicti, and Explaini,

and from 1 to m for Learni. In all rules, |=i abbreviates |=Ti when i > 0. In

Propagate0, l1, . . . , ln |=0 l simply means that l1 ∨ · · · ∨ ln ∨ l ∈ F . Similarly, in

Conflict0, l1, . . . , ln |=0 ⊥ means that l1 ∨ · · · ∨ ln ∈ F; in Explain0, l1, . . . , ln |=0 l

means that l1 ∨ · · · ∨ ln ∨ l ∈ F .

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 523

The rules Decide, Propagate0, Explain0, Conflict0, Learn, and Backjump model

the behavior of the SAT engine, which treats atoms as Boolean variables. The rules

Conflict0 and Explain0 model the conflict discovery and analysis mechanism used

by CDCL SAT solvers. All the other rules model the interaction between the SAT

engine and the individual theory solvers in the overall SMT solver.

Generally speaking, the system uses the SAT engine to construct the assignment

M as if the problem were propositional, but it periodically asks the sub-solvers for

each theory Ti to check if the set of Σi-literals in M is Ti-unsatisfiable, or entails in

Ti some yet undetermined literal from LitF ∪ IntM . In the first case, the sub-solver

returns an explanation of the unsatisfiability as a conflict clause, which is modeled

by Conflicti with i ∈ {1, . . . , m}. The propagation of entailed theory literals and

the extension of the conflict analysis mechanism to them is modeled by the rules

Propagatei and Explaini.

The inclusion of the interface literals IntM in Decide and Propagatei achieves

the effect of the Nelson–Oppen combination method (Tinelli and Harandi 1996;

Bruttomesso et al. 2009). Under the right conditions on the component theories,

the two rules allow the overall system to determine the T -satisfiability of the

input formula by doing only local reasoning in the individual component theories

and exchanging information between their corresponding solvers just through

(dis)equalities between interface variables.

The rule Learni with i > 0 is needed to model theory solvers following the splitting-

on-demand paradigm (Barrett et al. 2006). When asked about the satisfiability of

their constraints, these solvers may instead return a splitting lemma, a Ti-valid

formula that encodes an additional guess that needs to be made about the literals in

M before the solver can determine their satisfiability. The set Li in the rule is a finite

set consisting of literals, not present in the input set F0, which may be generated by

such solvers.

4.3 System executions and correctness

An execution of a transition system modeled as above is a (possibly infinite) sequence

s0, s1, . . . of states such that s0 is an initial state and for all i � 0, si+1 can be generated

from si by the application of one of the transition rules. A system state is reachable

if it occurs in some execution; it is irreducible if no transition rules besides Learni,

apply to it. An exhausted execution is a finite execution whose last state is irreducible.

A complete execution is either an exhausted execution or an infinite execution. An

application of Learni, with i � 0, is redundant in an execution if the execution

contains a previous application of Learni with the same premise.

Adapting results from Barrett et al. (2006), Krstić and Goel (2007), and Nieuwen-

huis et al. (2006), it can be shown that every execution starting with a state 〈∅, F0, no〉
and ending in 〈M,F, C〉 satisfies the following invariants:

(1) M contains only pure literals and no repetitions.

(2) F |=T C and M |=p ¬C when C �= no.

(3) F0 and F are equisatisfiable in T .

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

524 A. Reynolds and C. Tinelli

Moreover, the transition system is terminating: every execution with no redundant

applications of Learni is finite; and sound : for every execution starting with a state

〈∅, F0, no〉 and ending with a state 〈M,F,⊥〉, the clause set F0 is T -unsatisfiable.

Under suitable assumptions on the sub-theories T1, . . . , Tm, the system is also

complete: for every exhausted execution starting with 〈∅, F0, no〉 and ending with

〈M,F, no〉, M is satisfiable in T and M |=p F0. Here, we provide a sketch of the

correctness proof for DPLL(T1, . . . , Tm) restricted to a single theory T1 based on the

proof for the original framework (Nieuwenhuis et al. 2006).

Theorem 1

Suppose T = T1. With any strategy where all applications of Learn1 are not

redundant and introduce new literals only from a finite set L1, DPLL(T1) is sound,

complete, and terminating for all sets F0 of ground clauses.

Proof: (Sketch)

Soundness. Observe that all reachable states of the form 〈M,F, C〉 where C �= no

are such that C is T1-entailed by F0. When C is introduced by Conflict0, it is a clause

from F; when it is introduced by Conflict1, it is T1-valid. When applying Explaini,

we replace a literal l in C with disjunction of literals l1 ∨ · · · ∨ ln which is entailed by

l either in the theory T1 (when i = 1), or together with F (when i = 0). Thus, when

a state of the form 〈M,F,⊥〉 is reachable, we can conclude that F |=T1
⊥. Since all

clauses in F are T1-entailed by F0 by construction, ⊥ is T1-entailed by F0 as well.

Termination. For all reachable states 〈M,F, C〉, every literal occurring in M, F , or

C belongs to the finite set of literals LitM ∪IntM ∪L1. As a consequence, there is only

a finite number of reachable states. Consider a partial ordering � on assignments M,

with the empty assignment as maximal element, such that (e1M1) � (e2M2) if either

(i) e1 = • and e2 �= • or (ii) e1 = e2 and M1 � M2. In addition, consider a partial

ordering � on conflict clauses, seeing as sets of literals, such that C1 � C2 if either

C1 is no, or neither C1 nor C2 are no and C2 ≺mul
M C1, where ≺mul

M is the multiset

extension of ≺M . Extend this ordering to states so that 〈M1, F1, C1〉 � 〈M2, F2, C2〉
if and only if M1 � M2, or M1 = M2 and C1 � C2. One can show that this ordering

is well founded. Moreover, applying all rules besides Learn1 to a state s results

in a state s′ where s � s′. Termination then follows from the fact that Learn1 is

applicable only a finite number of times.

Completeness. We claim that for every irreducible reachable state 〈M,F, no〉, M
is a T1-satisfiable satisfying assignment for F . To see this, consider first that since

Decide does not apply to the state, M must contain an assignment for all literals

in F . Moreover, M is a satisfying assignment for F since Conflict0 does not apply.

Since Conflict1 does not apply, then M must be T1-satisfiable. Since F0 ⊆ F , we

have that M propositionally entails F0, and thus F0 is T1-satisfiable as well. Thus,

since our procedure is terminating, it is also complete. �
The soundness and termination arguments in the proof above immediately extend

to the multiple theory case of DPLL(T1, . . . , Tm) where m > 1. The completeness

argument can be extended as well under further model-theoretic assumptions on the

component theories (Krstić and Goel 2007; Jovanovic and Barrett 2013).

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 525

proc check(M,F, C) ≡
(Propagate0 | . . . | Propagaten)

∗;

if weak effort(M,F, C) = true

if l, l /∈ M for some l ∈ LitF
Decide on l

else if strong effort(M,F, C)

return 〈M,F,no〉
return check conflict(M,F, C)

proc check conflict(M,F, C) ≡
if C �= no

(Explain0 | . . . | Explainn)
∗;

if C = ∅
return 〈M,F,⊥〉

else

Learn; Backjump
return check(M,F, C)

Fig. 2. A typical strategy check for applying DPLL(T1, . . . , Tm) rules.

4.4 A typical strategy for DPLL(T1, . . . , Tm)

A typical strategy for applying the theory-specific rules of DPLL(T1, . . . , Tm) is

outlined in Figure 2 where | denotes alternative choice and ∗ denotes zero or more

rule applications. The check procedure involves two sub-procedures weak effort and

strong effort, which are not shown here and are specific to the theory T . Each of

these methods when invoked either applies Conflicti or Learni for some 1 � i � m

and returns false, or applies no rules and returns true.

Weak effort checks, as denoted by weak effort, are commonly used to eagerly

avoid extensions that are clearly unsatisfiable in one of the theories. On the

other hand, strong effort checks, as denoted by strong effort, are required to make

progress toward determining the T -satisfiability of the conjunction of literals in M.

In particular, unlike weak effort, we require that strong effort returns true only

when M is T -satisfiable. Generally speaking, weak effort checks typically involve

computationally inexpensive reasoning at the cost of incompleteness, whereas strong

effort checks are complete but may involve expensive reasoning. The design of a

theory solver in the DPLL(T1, . . . , Tm) framework depends largely on how the

methods weak effort and strong effort are implemented. We will see an example of

these functions in Section 6.2.

In more detail, the first sub-procedure check in Figure 2 applies to states 〈M,F, C〉
where C = no. We first apply the rule Propagatei for sub-theories Ti, possibly

multiple times. Afterwards, we apply a weak effort check. If no conflicts or clauses

are learned at weak effort, we apply Decide on some unassigned literal l from LitF ,

if one exists. Otherwise, our assignment M is complete, and we apply a strong effort

check to verify the T -satisfiability of M. If strong effort(M,F, C) returns true, then

M is satisfiable in T , and the method returns the (final) state 〈M,F, no〉, indicating

that F is satisfiable. In all other cases, we apply check conflict.

The second sub-procedure check conflict is applied to states 〈M,F, C〉 where C

may be different from no. In those cases, we perform conflict analysis by repeated

applications of Explaini. If we reach the fail state, then we know F is unsatisfiable.

Otherwise, we add a learned clause via Learn, and apply Backjump to return to a

prefix of M.

We formally state the requirements of weak and strong effort checks for the

single theory case in the following proposition which is a consequence of

Theorem 1.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

526 A. Reynolds and C. Tinelli

Proposition 1

Suppose T = T1. The check method in Figure 2 implements a sound, complete, and

terminating strategy for all sets F0 of ground clauses provided all of the following

hold:

(1) In weak effort and strong effort, all applications of Learn1 are not redundant

and introduce new literals only from a finite set L1.

(2) weak effort and strong effort return false only when they apply at least one

rule.

(3) strong effort(M,F, C) returns true only when the conjunction of the literals in

M is T1-satisfiable.

Proof: (Sketch) The first point ensures that check meets the requirements on

applications of Learn1 as given in Theorem 1; the second point ensures that

check is a terminating method; and the third point ensures that check generates

exhaustive executions. �

5 Finite model finding in SMT

The DPLL(T1, . . . , Tm) framework described in the previous section is limited to

quantifier-free formulas. This section outlines an approach for finite model finding

for quantified formulas that can be integrated in DPLL(T1, . . . , Tm)-based SMT

solvers. Concretely, we consider Σ-formulas in the following language:

φ := t1 ≈ t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∀xϕ,

where t1 and t2 are Σ-terms, and the sort of x is either an uninterpreted sort or a

sort interpreted in every model of T as a finite set of some fixed cardinality. Examples

of the latter include sorts denoting fixed-length bit-vectors or finite (non-recursive)

datatypes. Certain integer arithmetic constraints with bounded quantifiers, where the

bounds are explicitly provided or can be inferred, can be treated similarly to finite

interpreted sorts (Reynolds 2013; Baumgartner et al. 2014). Many applications of

SMT rely on solving problems that fall into such categories, given a careful encoding

of the constraints.

Given an input formula ψ in the grammar above, our approach first performs

a purification step, which results in a set F of ground clauses, and a set A of

equivalences of the form a ≈ true ⇔ ∀xϕ, abbreviated as a ⇔ ∀xϕ, where a is a

Boolean variable uniquely associated with the quantified formula ∀xϕ. We will refer

to a as the proxy variable for ∀xϕ. The set F can be constructed by a standard

conversion of ψ to clausal form which, however, treats the quantified sub-formulas

of ψ as atoms. After that, each quantified formula ∀xϕ occurring in a clause of F

is replaced with its proxy variable a if it occurs positively in the clause, and with

ϕ{x �→ k} otherwise, where ϕ{x �→ k} is the result of substituting each occurrence in

ϕ of a variable x of x with a fresh variable k (to be treated like a Skolem constant).

The process is repeated until F contains no quantifiers. This conversion from ψ to

F and A can be done so that ψ and F ∪A are equisatisfiable. We will denote by �ψ�
the resulting pair (F, A).

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 527

FM-SolveH (F, A)

Input: A set F of purified Σ-clauses and a set A of equivalences

Output: sat or unsat

1. Find a satisfying assignment M for F . If none is found, return unsat.

2. Construct a Σ-interpretation M that satisfies M. Let V be a minimal set of Σ-terms

such that, for each uninterpreted sort S of Σ, every element of SM is denoted by a

term in V (that is, for all s ∈ SM there is a v ∈ V such that s = M[[v]]).

3. For each ∀xϕ where a ⇔ ∀xϕ ∈ A and a ∈ M,

(a) let Ix be the set of substitutions from x to terms in V chosen by H(M, ∀xϕ);

(b) let (F, A) = (F ∪ F ′, A ∪ A′) where (F ′, A′) = �{¬a ∨ ϕσ | σ ∈ Ix}�.

If each of the sets Ix was empty, return sat, otherwise go to Step 1.

Fig. 3. Finite Model Finding Procedure FM-SolveH, parameterized by a quantifier

instantiation heuristic H.

Example 1

Consider the formula ψ = ¬P (b, c) ∧ (Q(b, c) ⇔ ∀xP (b, x)) where P and Q are

uninterpreted predicates and x, b, and c are of some uninterpreted sort S . The

purified form �ψ� is computed as follows. First, a conversion of ψ to clausal normal

form results in the clauses:

F0 := {¬P (b, c), ¬Q(b, c) ∨ ∀xP (b, x), Q(b, c) ∨ ¬∀xP (b, x)}.

We replace the occurrence of ¬∀xP (b, x) in the third clause of F0 with ¬P (b, k),

where k is a fresh variable of sort S , and replace the positive occurrence in the second

clause with a fresh proxy variable a of sort Bool. We obtain the quantifier-free set

of purified clauses F and equivalences A:

F := {¬P (b, c),¬P (b, k) ∨ Q(b, c), a ∨ ¬Q(b, c)},
A := {a ⇔ ∀xP (b, x)}.

It is not hard to see that φ and F ∪ A are equisatisfiable in T .

5.1 Model finding procedure

Figure 3 describes a finite model finding procedure called FM-SolveH that takes

as input a set F and a set A, where (F, A) = �φ� for some Σ-formula ψ, and tries

to determine the satisfiability of F ∪ A by adding to F instances of the quantified

formulas that occur in A. The procedure is parameterized by an instantiation

heuristic H for the quantified formulas.

In Step 1, it looks for a satisfying assignment M for F2. This assignment can

be found using the DPLL(T1, . . . , Tm) procedure from the previous section. If

2 Recall that a satisfying assignment is a T -satisfiable set of Σ-literals that propositionally entail F .

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

528 A. Reynolds and C. Tinelli

no satisfying assignment can be found, the procedure terminates with unsat, for

“unsatisfiable.” Otherwise, in Step 2, it constructs a Σ-interpretation M that satisfies

M. In doing so, however, it considers only Σ-interpretations M that interpret the

uninterpreted sorts of Σ as finite sets. This makes it feasible to actually construct

the set V used in Step 3. In that step, the procedure considers the set of quantified

formulas that are active in M, that is, those whose proxy variable occurs positively

in M. It adds new constraints F ′ ∪ A′ to F ∪ A based on instances of quantified

formulas chosen by the heuristic H, which takes as input a model and a quantified

formula. We consider only heuristics that are sound with respect to models: if H
returns no instances for quantified formulas in Step 3, it is because M satisfies

all active quantified formulas in M, and so the procedure terminates with sat, for

“satisfiable.”

Theorem 2

For all inputs F, A for FM-SolveH, the following hold:

(1) If the method for finding satisfying assignments M for F in Step 1 is sound,

then the procedure FM-SolveH returns unsat only if F ∪ A is T -unsatisfiable.

(2) If for all inputs, H(M, ∀xϕ) returns the empty set only if M |= ∀xϕ, then the

procedure FM-SolveH returns sat only if F ∪ A is T -satisfiable.

Proof: To show Point 1, assume the method for finding satisfying assignments M

for F in Step 1 is sound. Thus, when the procedure returns unsat, we have that F is

T -unsatisfiable. Since the formulas added to F and A in Step 3 preserve satisfiability,

we have that our input is T -unsatisfiable as well.

To show Point 2, the procedure returns sat when H(M, ∀xϕ) returns the empty

set for all quantified formulas where a ⇔ ∀xϕ ∈ A and a ∈ M. Assume M |= ∀xϕ

for all such formulas. Then, F ∪ A is satisfied by a model M′ where aM′
= (∀xϕ)M

for each a ⇔ ∀xϕ ∈ A and a �∈ M, and where all other symbols are interpreted as

in M. Since during all iterations of the procedure F ∪ A remains a superset of the

original input, we have that the latter is satisfied by M′ as well. �
The following sections will examine in more detail the main ideas behind the three

steps of procedure FM-SolveH. In Section 6, we describe techniques for finding

satisfying assignments in Step 1. These assignments have models that interpret

uninterpreted sorts as sets of minimal cardinality and are used in Step 2. In Section 7,

we describe methods for constructing such models. Finally, in Section 8, we describe

quantifier instantiation heuristics that can be used to choose sets of substitutions for

Step 3.

Although Theorem 2 holds in general for inputs that involve several theories, for

simplicity, we restrict ourselves in the following to problems in EUF only, that is,

involving only uninterpreted sorts and function symbols. Under these restrictions, we

provide arguments for the correctness of the three steps of FM-SolveH in Theorems 4

and 5, which ensure the correctness of our finite model finding procedure according

to Theorem 2.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 529

6 EUF with finite cardinality constraints (FCC)

In this section, we introduce techniques for finding satisfying assignments in Step

1 of procedure FM-SolveH from Figure 3. We will focus on satisfying assignments

that have small models, that is, models which interpret the uninterpreted sorts

of our signature as finite sets of minimal size. To do this, we introduce an

extension of the theory EUF with FCC. We describe its signature (ΣFCC) and

semantics, give a satisfiabiliy procedure for conjunctions of literals in this theory,

and describe how it can be integrated into the DPLL(T1, . . . , Tm) architecture. Finally,

we discuss a strategy, fixed-cardinality checkFCC , which ensures that upper bounds

are incrementally established for all uninterpreted sorts.

Defnition 1 (FCC)

Let EUF be the theory of equality and uninterpreted functions over some signature

ΣEUF. The theory FCC of EUF with FCC is the extension of EUF obtained as

follows. The signature ΣFCC of FCC extends ΣEUF with a constant cardS,k of

sort Bool for each sort S of ΣEUF and integer k > 0. Its models are all ΣFCC-

interpretations that satisfy each atomic formula cardS,k exactly when they interpret

S as a set of cardinality at most k.

As shown below, the FCC-satisfiability of sets of ΣFCC-literals is a decidable

problem. By a reduction from graph (vertex) coloring, one can show that the

problem is NP-hard. The main idea of the reduction is to represent the set of k

colors as a sort C and represent the vertices of the graph as variables of sort C.

An edge between two vertices x and y is encoded as the constraint x �≈ y. The

cardinality constraint on C is encoded by cardC,k . It is not difficult to see that given

a model M of FCC (which is finitely representable), checking whether M satisfies a

set of ΣFCC-literals can be done in polynomial time. It follows that this satisfiability

problem is NP-complete.

We prove its decidability by providing an effective satisfiability procedure. The

procedure relies on computing certain congruence closures of sets of constraints, so

we start by introducing that notion.

Defnition 2 (Congruence closure)

Let M be a set of literals, in any signature, and let TM be the set of all terms (and

sub-terms) occurring in M. The congruence closure M∗ of M is the smallest set of

literals such that

(1) M ⊆ M∗ ⊆ {s ≈ t | s, t ∈ TM} ∪ {s �≈ t | s, t ∈ TM};
(2) for all s, t ∈ TM , M∗ |=EUF s ≈ t iff s ≈ t ∈ M∗.

By construction, the relation {(s, t) | s ≈ t ∈ M∗} induced by M∗ is a congruence,

and hence an equivalence, relation over TM . For brevity, we will identify M∗ with

its induced equivalence relation when convenient. It can be shown (see, e.g., Baader

and Nipkow 1998) that (i) M∗ is computable whenever M is finite, and (ii) if M is

satisfiable it is satisfied by an interpretation M that interprets each sort S as the

set VS = {vS1 , . . . , vSnS } consisting of an arbitrary representative vSi for each of the nS
equivalence classes of M∗ over terms of sort S . We call M a normal model of M.

Our procedure will seek to find normal models for given input sets M of literals.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

530 A. Reynolds and C. Tinelli

Input: A set M of ΣFCC-literals

Output: sat or unsat

1. If s ≈ t ∈ M∗ for some s �≈ t ∈ M ∪ {false �≈ true}, return unsat.

2. If M contains no positive cardinality literals, return sat;

otherwise, let k be the smallest integer such that cardS,k ∈ M.

3. If ¬cardS,j ∈ M for some j � k, return unsat.

4. If there are k or fewer equivalence classes in M∗, return sat.

5. If there exists two terms s and t in distinct equivalence classes of M∗ such that

M �|=EUF s �≈ t, run the procedure recursively on M ∪ s ≈ t and M ∪ s �≈ t, returning

sat if either of the two subcalls returns sat, and returning unsat otherwise.

6. Return unsat.

Fig. 4. Decision Procedure for FCC.

6.1 Decision procedure

This section presents a decision procedure for the satisfiability of sets of constraints

in the theory FCC. For now, we limit ourselves to signatures ΣFCC whose set of sorts

consists of a single (uninterpreted) sort S. Figure 4 gives the decision procedure

for the satisfiability problem in this case. As input, the procedure takes a set M

consisting of cardinality constraint literals for S and equalities and disequalities over

ground ΣFCC-terms of sort S, and terminates with sat or unsat.

Lemma 1

The procedure in Figure 4 is sound, complete, and terminating for every set M of

ΣFCC-literals.

Proof: Soundness. Let us start by observing that splitting the problem based on

equalities s ≈ t, as done in Step 5 of the procedure, is trivially sound since all models

of FCC satisfy exactly one of s ≈ t and s �≈ t. The procedure answers unsat in one

of the following cases:

(1) An equality s ≈ t is entailed by M where s �≈ t is also in M ∪ {false �≈ true}.
(2) Conflicting literals cardS,k and ¬cardS,j are asserted for j � k.

(3) There exist k + 1 terms (each in a different equivalence class) that are entailed

to be mutually disequal by M.

For the first case, it is immediate that M has no models. For conflicts in the second

case, no model can be constructed with both at most k and at least j + 1 elements

in the domain of S. For conflicts in the third case, note that if the procedure reaches

Step 6, there must be k + 1 equivalence classes with representatives t1, . . . , tk+1, say,

where M |=EUF ti �≈ tj for all 1 � i < j � k + 1; hence no model can be constructed

satisfying cardS,k .

Termination. It is easy to see that when the procedure recurses in Step 5, the set

of equalities and disequalities in M without the cardinality constraints is satisfiable.

Let C be a set collecting the equivalence classes of M∗ and let [t]M denote the

equivalence class of a term t. We argue that the splitting on the equality of s and t

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 531

done at Step 5 decreases the size of the set

EM := { ([u]M, [v]M) ∈ C × C | [u]M �= [v]M, M �|=EUF u �≈ v } (6.1)

in other words, it decreases the number of equivalence classes that are pairwise not

entailed to be disequal. In either branch of the split on s ≈ t, no equivalence classes

are created (although two existing ones are possibly merged), and ([s]M, [t]M) is

no longer an element of EM in the recursive call. When EM becomes empty, the

procedure is guaranteed to terminate, since either more than k equivalence classes

are entailed to be distinct, in which case the procedure answers unsat, or there are

at most k equivalence classes, in which case the procedure answers sat.

Completeness. The procedure answers sat when the congruence closure M∗

contains no equality whose negation occurs in M, and either there is no positive

cardinality literal in M, or M∗ has at most k equivalence classes where k is the

smallest integer such that cardS,k ∈ M. In either case, we can construct a model

where S is interpreted as a set of size j, with j � k for all cardS,k ∈ M and j � k

for all ¬cardS,k ∈ M. If j is greater than the number of equivalence classes in

M∗, arbitrary new elements can be added to the domain of S without affecting the

satisfiability of the equalities and disequalities in M. �
An immediate consequence of this lemma is that constraint satisfiability in FCC

is decidable.

Proposition 2

The FCC-satisfiability of sets of ΣFCC-literals is decidable.

The completeness argument in Lemma 1 also suggests a constructive proof of the

following result.

Proposition 3

Every satisfiable set of ΣFCC-literals has a finite model.

We point out that in the absence of cardinality constraints, the decision procedure

in Figure 4 reduces to the standard congruence closure procedure used to decide

the satisfiability of constraints in EUF. SMT solvers supporting EUF have theory

solvers that essentially implement that procedure.

6.2 Integration into DPLL(T1, . . . , Tm)

Our decision procedure for FCC can be integrated into the DPLL(T1, . . . , Tm)

framework by capitalizing on the existence of a theory solver for EUF (Te). We

effectively extend such a solver modularly with facilities to reason about cardinality

constraints as well. Since FCC is an extension of EUF, we now replace the latter

with the former in the framework and make Te = FCC. Recall the strategy outlined

in Figure 2 of Section 4.4. In the following, we detail how the methods weak effort

and strong effort of this strategy are implemented for FCC.

For simplicity, we maintain the restriction for now that FCC contains a single

uninterpreted sort S. Also, when convenient, we identify equivalence classes of terms

with their representative terms.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

532 A. Reynolds and C. Tinelli

proc weak effort FCC (M,F, C) ≡
if l1, . . . , ln |=EUF ⊥ for some l1, . . . , ln ∈ M

Apply Conflicte with C := l1 ∨ · · · ∨ ln, return false

else if cardS,k ,¬cardS,j ∈ M for j > k,

Apply Conflicte with C := ¬cardS,k ∨ cardS,j , return false

else if cardS,k ∈ M and M |=EUF distinct(t1, . . . , tk+1)

Apply Learne to ¬cardS,k ∨ ¬distinct(t1, . . . , tk+1), return false

else

return true

Fig. 5. Weak effort check for FCC.

6.2.1 Weak effort check

At weak effort, we recognize conflicting states of three different forms, outlined in

Figure 5. First, if we are unable to construct a congruence closure for M that is

consistent with the disequalities from M, we identify a subset {l1, . . . , ln} of M that

is EUF-unsatisfiable and apply Conflicte to it. Second, if M contains the conflicting

cardinality constraints cardS,k ∈ M and ¬cardS,j with j > k, we construct the conflict

clause ¬cardS,k∨cardS,j . Third, we may recognize cases when M contains a literal of

the form cardS,k while its other literals entails that k+1 terms t1, . . . , tk+1 are pairwise

disequal. In this case, we use Learne to add the lemma ¬cardS,k∨¬distinct(t1, . . . , tk+1)

to the current set F of clauses, where distinct(t1, . . . , tk+1) is shorthand for the

conjunction of disequalities stating that the terms t1, . . . , tk+1 are pairwise distinct3.

We will refer to a lemma of this form as a clique lemma. We assume that this instance

of Learne is applied only when the resultant clause does not occur in F . In practice,

this can be achieved either by maintaining a cache of learned clauses or by ensuring

Propagatee is applied to completion between each call. We apply Learne because the

constraint ¬distinct(t1, . . . , tk+1) may contain literals not belonging to F . We could

alternatively apply Conflicte to construct a conflict clause of form l1∨. . .∨ln∨¬cardS,k ,

where {l1, . . . , ln} is a subset of M that entails distinct(t1, . . . , tk+1). However, we have

found that in practice this is inefficient, as many different sets of literals can be

found for essentially the same conflict.

Generating clique lemmas. For the purposes of discovering and learning clique

lemmas, we incrementally construct and maintain on the side a disequality graph

D for S, whose vertices correspond to the equivalence classes of terms of sort S

induced by the congruence closure of M, and whose edges represent disequalities in

M between terms in different equivalence classes. In this representation, a sufficient

condition for discovering a conflict reduces to finding a (k + 1)-clique in D. Now,

even just checking for the presence of a (k + 1)-clique in a n-vertex graph is too

expensive in general—as this is an NP-complete problem (Garey et al. 1974). For

this reason, the weak effort check of our procedure uses an incomplete check for

potential cliques. This is done by partitioning the vertices of the graph into suitable

3 Note that ¬cardS,k ∨ ¬distinct(t1, . . . , tk+1) is a valid formula of FCC.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 533

subsets that we call regions. After defining regions formally, we explain below how

we exploit them to discover clique-related conflicts efficiently in practice.

Defnition 3 (k-Region)

Let D = (V , E) be an undirected graph and let R be a subset of V . For all vertices

v ∈ R, let ext(v) be the number of edges between v and vertices not in R. We say

R is a k-region of D if for all 0 < i � k, the size of the set {v | v ∈ R, ext(v) � i} is

smaller than k− i. A k-regionalization RD of D is a partition of V into k-regions. We

will refer to it simply as a regionalization when k is understood or not important.

Regionalizations are useful for us because they facilitate the discovery of cliques.

Lemma 2

If RD is a k-regionalization of a graph D and D contains a k-clique C , then all the

vertices of C reside in the same region of RD .

Proof: If k � 1, the statement is trivial. Otherwise, assume by contradiction D

contains k-clique C = C1 ∪ C2 for non-empty C1, C2 where, for some region R of

RD , v ∈ R for all v ∈ C1 and v �∈ R for all v ∈ C2. Say |C2| = i, and thus |C1| = k− i.

Since C is a k-clique, ext(v) must be at least i for all v ∈ C1, contradicting the

assumption that R is a region. �
Notice that any graph D = (V , E) has a trivial regionalization, with just one

region which contains all vertices in V .

Example 2

Consider the constraints {c1 �≈ c2, c2 �≈ c3, c3 �≈ c4}, all over sort S, and the

partition {{c1, c2}, {c3, c4}}. This partition is a 3-regionalization in the disequality

graph induced by this set, because a 3-clique can span two regions only if it contains

two vertices with interregional edges, and this partition only has one such edge.

Adding the disequality c2 �≈ c4 or c1 �≈ c4 breaks the regionalization invariant.

Let us examine how to maintain a k-regionalization in an (initially empty) evolving

graph D, a data structure supporting the dynamic allocation of vertices and edges,

as well as the merging of vertices. In our framework, where D’s vertices correspond

to equivalence classes of terms and edges to disequalities between them, these

operations are triggered by operations performed on the data structure that stores

the congruence closure M∗ of the current assignment M. In particular, a vertex ve
is added to D when a new equivalence class e is created, which happens whenever a

new term is added to M; an edge between the vertices v1 and v2 corresponding to

equivalence classes e1 and e2 is added to D when the disequation t1 �≈ t2 is added

to M, for some term t1 in e1 and t2 in e2; and two vertices are merged, in a single

vertex that inherits their edges, when their corresponding equivalence classes are

merged during the computation of M∗.

We maintain at all times a (k + 1)-regionalization RD of the graph D, where k is

the smallest integer such as cardS,k ∈ M4. As the graph D is modified, it may be

necessary to merge certain regions of the current within RD to ensure the invariant

4 Recall that cardS,k states that sort S has at most k elements.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

534 A. Reynolds and C. Tinelli

proc fix region(R,RD) ≡
if R is not a k-region

choose some R′ ∈ RD, where R′ �= R

R := R \ {R,R′} ∪ {R ∪ R′}
fix region({R ∪ R′},RD)

Fig. 6. The fix region procedure. Ensures R ∈ RD is a k-region by merging it with another

R′ ∈ RD , and repeating this process recursively.

in Definition 3 holds. The procedure fix region from Figure 6 ensures that a set R

within RD is a k-region by merging it as needed with another set R′ in RD , and

repeating this process recursively until R becomes a k-region. As a heuristic, we

choose the R′ with the highest density of interregional edges to R.

Assuming we have a regionalization RD for graph D, here is how we construct a

regionalization RD′ for graph D′ resulting from an addition to M. In the following,

R(v) denotes the region in a regionalization R that contains the vertex v.

Adding Vertices: When a vertex v is added to D, RD′ is the result of adding the

singleton region {v} to RD .

Adding Edges: When we add an edge (v1, v2) to D, we have that RD′ = RD is still a

partition of V . However, RD(v1) or RD(v2) may not be regions of D′. We apply

the procedure fix region first to (RD(v1),RD′) and then to (RD(v2),RD′) to ensure

that RD′ is a regionalization.

Merging Vertices: When a vertex v1 is merged with another vertex v2 in D, we

have that D′ is a quotient graph of D, that is, D′ contains a new vertex, call it u,

connected to all vertices that are connected to either v1 or v2 in D. If RD(v1) is equal

to RD(v2), let R be (RD(v1)∪{u})\{v1, v2}. Then RD′ is equal to (RD∪R)\{RD(v1)}.
To ensure RD′ is a regionalization, we apply fix region to (R,RD′). If RD(v1)

is not equal to RD(v2), let {vi, vj} = {v1, v2}, Ri = (RD(vi) ∪ {u}) \ {vi}, and

Rj = RD(vj) \ {vj}. Then, RD′ is equal to (RD ∪ {Ri, Rj}) \ {RD(v1),RD(v2)}. We

apply fix region to (Ri,RD′) and subsequently to (Rj,RD′).

Additionally, when cardS,k′ is asserted for k′ < k, we discard the (k + 1)-

regionalization and rebuild a (k′ + 1)-regionalization.

Given a (k + 1)-regionalization RD of D, we will call each region in RD with at

least k + 1 vertices a large region, and all others small regions. For the purposes of

efficiently discovering (k+1)-cliques during weak effort checks, we maintain a watched

set of k+1 vertices for each large region R in RD , which we will write as w(R). This

set is incrementally updated when vertices are added or removed from regions, and

when regions are combined. If there exists a large region R in RD where each vertex

in w(R) is connected, then we add the clique lemma ¬cardS,k ∨ ¬distinct(t1, . . . , tk+1)

to F using the rule Learne, where w(R) = {t1, . . . , tk+1}.

6.2.2 Strong effort check

Recall from Section 4.4 that a strong effort check must determine that the current set

of constraints is consistent, or otherwise report a conflict or lemma. The strong effort

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 535

proc strong effort FCC (M,F, C) ≡
let k be the smallest integer such that cardS,k ∈ M

let t1, . . . , tn be the equivalence class representatives of sort S in M∗

if n > k

choose 1 � i < j � n such that M �|=EUF ti �≈ tj
apply Learne to ti ≈ tj ∨ ti �≈ tj
return false

else

return true

Fig. 7. Strong effort check for FCC.

check of the FCC solver is given in Figure 7. If cardS,k ∈ M for some (minimal) k,

and there are more than k equivalence class of sort S in the congruence closure of

M, then we choose two equivalence class representatives ti and tj and apply Learne
to add the splitting lemma (ti ≈ tj ∨ ti �≈ tj) to F . In practice, we also insist that

future applications of Decide on the atom ti ≈ tj should be invoked with positive

polarity. If the number of equivalence classes is less than or equal to k, then the

procedure returns true, indicating that M is FCC satisfiable.

The choice of ti and tj is guided by the watched set of vertices within regions. In

particular, if there is a large region R in RD , we know that w(R) does not form a

clique. We choose ti, tj to be two vertices from w(R) that are not connected in D.

Otherwise, if there are no large regions in RD and there are more than k vertices in

D, then there must be at least two small regions. We select two regions Ri and Rj
based on a heuristic (namely, the maximum density of interregional edges), combine

them into a new region Ri ∪ Rj , apply fix region to Ri ∪ Rj , and repeat.

We illustrate the operation of the FCC solver with a couple of examples.

Example 3

Consider the constraints {a ≈ f(b), b ≈ f(c), a �≈ b, b �≈ c, cardS,2} where all

terms are over the single sort S. First, the FCC solver computes the congruence

{{a, f(b)}, {b, f(c)}, {c}}. Using a, b, c as the representatives, the solver builds the

disequality graph with edges {(a, b), (b, c)}. Since cardS,2 limits the size of S to at

most 2, the solver generates the lemma a ≈ c ∨ a �≈ c. Adding the constraint a ≈ c

produces no conflicts and allows the FCC solver to answer “satisfiable.”

Example 4

Consider the constraints {c1 ≈ c, c4 ≈ c, c1 �≈ c2, c2 �≈ c3, c3 �≈ c4, cardS,2} with

all constants of sort S. The corresponding disequality graph for these constraints

contains a clique of size 3. By discovering that clique, the FCC solver can conclude

that it is impossible to shrink the model to two elements, and hence reports a clique

lemma of the form ¬distinct(c1, c2, c3) ∨ ¬cardS,2.

Because of congruence constraints, guesses on merge lemmas may sometimes lead

to inconsistencies when constructing the congruence closure, unless we compute and

propagate all entailed disequalities—which is usually not done, for efficiency. This is

demonstrated in the following example.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

536 A. Reynolds and C. Tinelli

Example 5

Consider the constraints {c3 ≈ f(c1), c4 ≈ f(c2), c3 �≈ c4, cardS,2} where all the terms

have sort S. Unless the EUF sub-solver propagates the entailed literal c1 �≈ c2, the

FCC solver will construct the disequality graph (V , E) = ({c1, c2, c3, c4}, {(c3, c4)}) for

S. Say we decide to apply Learne on (c1 ≈ c2 ∨ c1 �≈ c2), and then the literal c1 ≈ c2
is added to our set of constraints. The subset {c3 ≈ f(c1), c4 ≈ f(c2), c3 �≈ c4,

c1 ≈ c2} will then be found unsatisfiable by congruence closure. In contrast, adding

the equalities c1 ≈ c3 and c2 ≈ c4 to our set will produce a model of the required

cardinality.

We now state the correctness of our FCC procedure as integrated in the

DPLL(T1, . . . , Tm) framework. In the following, we let checkFCC denote the strategy

that applies the rules of DPLL(TFCC) according to Figure 2, with the weak and

strong effort checks described in this section.

Theorem 3

checkFCC is a sound, complete, and terminating strategy for every set of ground

clauses F0.

Proof: Notice that the weak and strong effort methods in this section legally apply

DPLL(T1, . . . , Tm) rules, that is, they apply Conflicte only to clauses whose negated

literals imply a contradiction and Learne to clauses that hold in all models. We

follow the three requirements for weak and strong effort checks as described in

Proposition 1.

To show the first point, the only literals introduced by applications of Learne (call

them LFCC) are equalities and disequalities between terms occurring in F0. Clearly,

LFCC is finite. To show the second point, the weak and strong effort methods in

this section false only when they apply at least one rule. To show the third point,

strong effort FCC (M,F, C) returns true only when the congruence closure of M

contains k or fewer equivalence classes for all cardS,k ∈ M. In such states, we are

guaranteed that M is satisfiable in FCC. �

6.3 Establishing finite cardinalities

We have now shown that a theory solver for FCC can be integrated into the

DPLL(T1, . . . , Tm) architecture with support for eager conflict detection through the

use of weak effort checks. In this section, we show an approach that makes use of

this solver for answering the following problem: given an input F , find the smallest

integer n > 0 such that F ∧ cardS,n is satisfiable.

A straightforward scheme for solving this problem is the following. First, use

the solver to determine if F ∧ cardS,1 is satisfiable, and answer satisfiable if so. If

this is unsatisfiable, use the solver to determine if F ∧ cardS,2 is satisfiable, and

so on. Due to Proposition 3, this process is guaranteed to terminate when F is

satisfiable. A clear disadvantage of this scheme is that, in the absence of conflict

analysis, it diverges when F is unsatisfiable. This section describes an alternative

approach that overcomes this limitation. At a high level, our approach modifies the

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 537

proc weak effort fc FCC (M,F, C) ≡
Let k be the least � s.t. k � n and ¬cardΣ,k �∈ M

if fix(cardΣ,k ,M, F, C) = false

return false

For each Si ∈ Σ, let ki be the least � s.t. ¬cardSi ,ki �∈ M

if fix(cardSi ,ki ,M, F, C) = false for a minimal i

return false

if k1 + . . .+ kn > k

Apply Conflicte to C := (∨n
i=1cardSi ,ki−1 ∨ ¬cardΣ,k)

return false

return weak effort FCC (M,F, C)

proc fix(a,M, F, C) ≡
if a �∈ LitF

Apply Learne to (a ∨ ¬a)
return false

else if a �∈ M

Apply Decide to a

return false

else

return true

Fig. 8. A version of the weak effort check procedure of the FCC solver that fixes the

cardinality of uninterpreted sorts {S1, . . . ,Sn} in signature Σ according to a fair strategy.

weak effort check of the FCC solver by introducing splits on cardinality constraints

(cardS,k ∨ ¬cardS,k), and deciding upon literals of the cardS,k for the minimal

feasible k. Before formally defining this approach, we discuss a generalization that

is applicable to signatures with multiple uninterpreted sorts.

6.3.1 Extension to multiple sorts

Consider the case when our signature Σ contains multiple sorts S1, . . . ,Sn. Given a

set of input clauses F , we wish to determine that either F is unsatisfiable, or find

a tuple (k1, . . . , kn) such that F ∧ cardS1 ,k1
∧ . . . ∧ cardSn,kn is satisfiable. To find such

a tuple, a challenge is to devise a strategy that is fair. As an illustrative example,

consider the formula (c �≈ d ∨ ϕ), where c and d are constants of sort S1, and the

formula ϕ does not have a model where S2 is interpreted as a finite set5. Clearly,

this formula has a model where the cardinality of sorts S1 and S2 are 2 and 1,

respectively. However, in the absence of a fair strategy, a naive approach could

search for models of size (1, 1), (1, 2), (1, 3), and so on, ad infinitum.

To devise a strategy for finite model finding that is fair in the presence of multiple

sorts, we extend the signature Σ of FCC to include signature cardinality constraints

cardΣ,k , constants of sort Bool for each integer k > 0. Let Σ be a signature containing

uninterpreted sorts S1, . . . ,Sn. Let I be a Σ-interpretation that interprets sort Si ∈ Σ

as a set of size ki for 1 � i � n. Then, I satisfies cardΣ,k if and only if k1+ . . .+kn � k.

Figure 8 gives an extension of the weak effort check of the FCC solver that

introduces cardinality constraints for the purposes of finding small models. In detail,

we first find the minimal natural number k such that the literal ¬cardΣ,k does not

occur in M. Using the sub-routine fix, if the atom cardΣ,k does not occur in F , we

apply Learne to add (cardΣ,k ∨¬cardΣ,k) to F . If it does occur in F , we apply Decide

to cardΣ,k . We then do the same for each of the uninterpreted sorts S1, . . . ,Sn in our

signature. If these steps do not apply a rule, then M contains the literals cardΣ,k

and ¬cardSi ,� for each 1 � � < ki, i = 1, . . . , n. We then check if cardΣ,k is in conflict

with the negatively asserted cardinality constraints. In particular, k1 + . . . + kn > k,

5 Observe that ϕ must contain universal quantifiers for this to be the case.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

538 A. Reynolds and C. Tinelli

we return a conflict of the form (cardS1 ,k1−1 ∨ . . . ∨ cardSn,kn−1 ∨ ¬cardΣ,k), where we

write cardSi ,ki−1 to denote a cardinality constraint when ki > 1 and ⊥ if ki = 1.

Otherwise, we apply the original weak effort check of the FCC solver from Figure 5.

Let fixed-cardinality checkFCC be the strategy that applies the rules of DPLL(TFCC)

according to Figure 2 where the weak effort check is the one from Figure 8, and the

strong effort check is the one from Figure 7. This strategy maintains the following

invariant.

Proposition 4

Given a signature Σ containing uninterpreted sorts S1, . . . ,Sn, for each execution

of fixed-cardinality checkFCC ending in 〈M,F, C〉, either M contains no decision

points, or M is of the form N • cardΣ,k M0 (• cardS1 ,k1
M1) · · · (• cardSm,km Mm) N ′,

for some m, 0 � m � n, where N,M0, . . ., Mm contain no decision points, N ′

contains no decision points if m < n, ¬cardΣ,j ≺M cardΣ,k for each n � j < k, and

¬cardSi ,j ≺M cardSi ,ki for each 1 � i � m, 1 � j < ki.

In other words, using the strategy fixed-cardinality checkFCC, minimal positive

cardinality literals are the first decision literals in satisfying assignments. This

invariant follows directly from definition of the method given in Figure 8.

Theorem 4

Fixed-cardinality checkFCC is a sound, complete, and terminating strategy for every

set of ground clauses F .

Proof: Assume our signature Σ contains uninterpreted sorts S1, . . . ,Sn. Note that the

weak effort check method in Figure 8 extends our original weak effort check while

additionally applying only legal applications of DPLL(T1, . . . , Tm) rules, noting we

apply Learne to tautologies of the form (a ∨ ¬a), Conflicte to sets of literals that

are collectively inconsistent according to our extension of FCC, and Decide to

literals whose atom does not occur in M. To show this strategy is sound, complete,

and terminating, we again follow the three requirements for weak and strong effort

checks as given in Proposition 1.

To show the first point, we must show that the set LFCC of literals introduced

by applications of Learne is finite. For each 1 � i � n, let ki be smallest integer

greater than the number of terms of sort Si in F , and such that the literal ¬cardSi ,ki

does not occur in F . Let k be the smallest integer greater than k1 + . . . + kn, and

such that the literal ¬cardΣ,k does not occur in F . We claim that the set of literals

introduced by applications of Learne, call them L
fc
FCC, are a subset of the set of all

equalities and disequalities between terms from F , the literals of the form (¬)cardSi ,j

where 1 � j < ki for each sort Si, and the literals (¬)cardΣ,j where n � j < k.

First, only equalities and disequalities between terms from F are introduced by

applications of Learne for the same reason as in Theorem 3. Second, assume by

contradiction that a literal (¬)cardSi ,ki is introduced by an application of Learne.

Then, it must be the case that an execution of fixed-cardinality checkFCC results in

a state where ¬cardSi ,ki−1 ∈ M. For this to be the case, ¬cardSi ,ki−1 must be added

to M by Propagatee or Backjump. In either case, there must exist a set of literals

l1, . . . , ln from F such that l1, . . . , ln |=FCC ¬cardSi ,ki−1. By our selection of ki, this

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 539

is a contradiction since there must be at least ki terms of sort Si in F for this to

be the case. Third, for similar reasons, by our selection of k, a literal (¬)cardΣ,k

cannot be introduced by an application of Learne unless there exists an execution

of fixed-cardinality checkFCC resulting in a state where ¬cardSi ,j ∈ M for some Si
where j � ki. This cannot be the case for the reasons mentioned above.

To show the second point, weak effort check method in Figure 8 returns false

only when it applies a rule.

To show the third point, the strong effort check of fixed-cardinality checkFCC is

the same as the strong effort check in checkFCC and thus this holds for the same

reason as in the proof of Theorem 3. �
Combining the results of Theorem 4 and Proposition 4, given as input a set of

ground Σ-clauses F , fixed-cardinality checkFCC will terminate either in (i) a fail

state, establishing that F is unsatisfiable, or (ii) a state 〈M,F, no〉 where M contains

cardSi ,ki for each uninterpreted sort Si in Σ, establishing that F is satisfied by a

(finite) model.

For the remainder of the paper, we assume that Step 1 of our finite model

finding procedure in Figure 3 uses fixed-cardinality checkFCC for finding satisfying

assignments M.

7 Constructing candidate models

We now focus our attention to Step 2 of procedure FM-SolveH from Figure 3, which

attempts to constructs models M of satisfying assignments M for the input clause

set F . We refer to M as a candidate model. Note that the assignment M computed by

the procedure may contain occurrences of proxy variables a for quantified formulas

∀xϕ with the variables in x ranging over uninterpreted or finite sorts. Recall that

those formulas are stored in the input set A in equivalences of the form a ⇔ ∀xϕ.

The goal of the procedure is to construct M so that it satisfies not just M but also

all its active quantified formulas (those whose proxy variable a occurs positively in

M). The reason is that such a model witnesses the T -satisfiability of F ∪ A.

To discuss the model construction, we focus on the variables and the uninterpreted

sorts and function symbols of Σ, since the interpretation of the other sorts and

function symbols is fixed by the theory. We construct a candidate model M by

associating each uninterpreted sort S with a finite set VS of domain elements (i.e.,

SM = VS). Contrary to other model finding approaches, which use fresh symbols

as domain elements, we use the equivalence classes of M∗ or, rather, representative

terms for these classes. All interpreted sorts are interpreted in M as usual. We

extend M∗ to another T -satisfiable set, call it M∗
c , such that the representative of

each equivalence class of interpreted sort Si in M∗
c is a value from SM

i . Such an

extension is always possible since M is T -satisfiable.

We then associate each uninterpreted function f of sort S1 × . . . × Sn → S to

a function fM from SM
1 × · · · × SM

n to SM. We construct this function based on

the literals in M that contain f. For instance, if M contains f(c) ≈ b, then fM is

defined so that it maps the interpretation of c to the interpretation of b. Using those

equalities typically produces only a partial definition for f. To complete it, one can

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

540 A. Reynolds and C. Tinelli

use arbitrary output values for the missing input tuples. We describe choices for

doing so in the following.

Concretely, we represent candidate Σ-models with the following data structure.

Defnition 4 (Defining map)

Let f : S1 × · · · × Sn → S be an uninterpreted function symbol of Σ and let y1, . . . , yn
be distinct fresh variables of respective sort S1, . . . , Sn. A defining map for f is a finite

set Δf of well-sorted (directed) equations of the form f(t1, . . . , tn) ≈ v with v ∈ SM

and ti ∈ {yi} ∪ SM
i for i = 1, . . . , n, satisfying the following requirements:

(1) If s1 ≈ v1, s2 ≈ v2 ∈ Δf with s1 �= s2 and s1 and s2 have an most general unifier

σ, then

(a) σ is non-empty, and

(b) s1σ ≈ v ∈ Δf for some v.

(2) f(y1, . . . , yn) ≈ v ∈ Δf for some v.

A Σ-map is a set Δ =
⋃
f∈Σf Δf where each Δf is a defining map for f.

For the rest of this section, we will use letters y, y1, y2, . . . to denote variables and

c, c1, c2, . . . to denote constant symbols.

Example 6

The set {f(c1, y2) ≈ c2, f(y1, c2) ≈ c1, f(c1, c2) ≈ c3, f(y1, y2) ≈ c3} is a defining map

for f. Notice that f(c1, y2) and f(y1, c2) have most general unifier {y1 �→ c1, y2 �→ c2}.
As required in point 1, this most general unifier is non-empty and an equality of the

form f(c1, c2) ≈ v also occurs in this set.

By construction of Δ, every flat term, a Σ-term t = f(v1, . . . , vn) has exactly one most

specific generalization s among the left-hand sides of the equalities in Δf , where s is

a generalization of t if t = sσ for some substitution σ, and s is more specific than

s′ if s′ is a generalization of s. The existence of this generalization is guaranteed by

Point 2 in the definition above; its uniqueness by Point 1. The value of t in Δ is the

value v in the (unique) equality s ≈ v ∈ Δf . Thus, a Σ-map Δ represents a normal

model M where each uninterpreted sort S is interpreted as the term set VS and each

uninterpreted function symbol f : S1 × · · · × Sn → S is interpreted as the function

fM mapping every (v1, . . . , vn) ∈ SM
1 × · · · × SM

n to the value of f(v1, . . . , vn) in Δ6.

7.1 Model construction procedure

We now describe a procedure for constructing Σ-maps from satisfying assignments. In

particular, we describe a parameterized method for completing the partial definitions

(of uninterpreted functions) induced by an assignment M.

Let M be an assignment. Recall that if M is T -satisfiable, it is satisfied by a

normal model, that is, a model that interprets each uninterpreted sort S as the set

6 More precisely, a Σ-map represents a family of normal models which differ only over the variables and
the interpreted symbols of Σ.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 541

Input: A satisfying assignment M and a set U ⊆ TM

Output: A Σ-map Δ

1. For each uninterpreted function symbol f : S1 × · · · × Sn → S of Σ,

(a) Let D1 = {f(VM(t1), . . . ,VM(tn)) ≈ VM(t) | t ∈ TM, t = f(t1, . . . , tn)}
(b) Let D2 = {f(t1, . . . , tn)∀ ≈ VM(t) | t ∈ U, t = f(t1, . . . , tn)}
(c) Let Δf = D1 ∪ D2 and let {ti ≈ vi}0�i�m be an arbitrary enumeration of Δf . For all

ti ≈ vi, tj ≈ vj with i < j that are unifiable with mgu σ, if tiσ does not already

occur as a left-hand side in Δf , add tiσ ≈ vi to Δf .

(d) If f(y1, . . . , yn) does not occur as a left-hand side in Δf , add f(y1, . . . , yn) ≈ v for

some arbitrary value v ∈ SM.

2. Let Δ =
⋃
f∈Σ Δf �

Fig. 9. Model construction procedure.

VS consisting of a representative term for each equivalence class of (the extension

of) M’s congruence closure M∗
c . For each term t, we write VM(t) to denote the

representative of t’s equivalence class in M∗
c .

For every uninterpreted function symbol f : S1 × · · · × Sn → S in Σ, we fix n

distinct fresh variables y1, . . . , yn of respective sort S1 . . . , Sn. To each uninterpreted

sort S , we associate a distinguished ground Σ-term eS , which we will write as e

when S is understood. This ground term guides the selection of default values

of the interpretation of uninterpreted function symbols in our model construction

procedure, based on the following operation. For a ground Σ-term f(t1, . . . , tn), we

denote by f(t1, . . . , tn)
∀ the term f(u1, . . . , un) where ui = yi if ti = e, and ui = VM(ti)

otherwise, for i = 1, . . . , n.

The non-deterministic procedure described in Figure 9 constructs a Σ-map from

M and a subset U of the set of terms TM occurring in M. The subset U determines

which terms will be used as the basis for default values of function interpretations.

For example, let M be a normal model induced by the defining map constructed by

the procedure in Figure 9 for some U. If f(e, e) ∈ U, then the default value of f in

M is the value of f(e, e) in M. In our implementation of the procedure, we choose

the set U to be the entire set TM , although other choices are possible.

Example 7

Consider an assignment M with the following constraints:

{c1 ≈ f(c2, e), c3 ≈ f(c4, c6), c3 ≈ f(e, c4), c6 ≈ f(c2, c5), c2 ≈ c5, c4 ≈ f(e, e)}

where all terms are of uninterpreted sort S. The equivalence classes in the congruence

closure of M are

{c1, f(c2, e)}, {c2, c5}, {c3, f(c4, c6), f(e, c4)}, {c4, f(e, e)}, {c6, f(c2, c5)}, {e} .

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

542 A. Reynolds and C. Tinelli

Let VS = {c1, c2, c3, c4, c6, e} and U = {f(c2, e), f(e, c4), f(e, e)}. Following the proce-

dure to construct the defining map Δf , we let

D1 = {f(c2, e) ≈ c1, f(c4, c6) ≈ c3, f(c2, c2) ≈ c6, f(e, e) ≈ c4}
D2 = {f(c2, y2) ≈ c1, f(y1, c4) ≈ c3, f(y1, y2) ≈ c4}
Δf = D1 ∪ D2

Since f(c2, y2) and f(y1, c4) are unifiable with σ = {y1 �→ c2, y2 �→ c4}, and f(c2, c4)

is not in Δf , we add the equality f(c2, c4) ≈ c1 (alternatively, f(c2, c4) ≈ c3) to Δf .

Finally, since f(y1, y2) is already in Δf , this gives us the set

Δf = { f(c2, e) ≈ c1, f(c4, c6) ≈ c3, f(c2, c2) ≈ c6, f(e, e) ≈ c4,

f(c2, y2) ≈ c1, f(y1, c4) ≈ c3, f(y1, y2) ≈ c4, f(c2, c4) ≈ c1}

which is a complete definition for f. Notice that a different selection of U would have

led to a different construction for Δf . Let M be the normal model induced by a Δ

containing Δf . We have that, for instance, M[[f(c2, c3)]] = c1 since f(c2, y2) ≈ c1 ∈ Δf
and f(c2, y2) is the most specific generalization of f(c2, c3) among the left-hand sides

of equalities in Δf . Similarly, we have that M[[f(c6, c4)]] = c3 and M[[f(c3, c3)]] = c4.

Proposition 5

Let M be a T -satisfiable assignment containing only uninterpreted function symbols

over uninterpreted sorts. The set Δ constructed by the procedure in Figure 9 is a

Σ-map. Moreover, the normal model M represented by Δ satisfies M.

Proof: To show that Δ is a Σ-map, we show that Σf is a defining map for each

function symbol f of Σ. Step 1(c) of the procedure ensures that Point 1(b) of

Definition 4 is met for all pairs of equalities in Δf , while Step 1(d) makes sure that

Point 2 is met. We prove by contradiction that Point 1(a) of Definition 4 also holds

for Δf . Assume that t ≈ v1, t ≈ v2 ∈ Δf with v1 �= v2. Due to our construction,

both t ≈ v1 and t ≈ v2 are in D1 ∪ D2. Thus, there must exist terms t = f(t1, . . . , tn)

and s = f(s1, . . . , sn) in TM such that VM(t1) = VM(s1), . . ., VM(tn) = VM(sn) and

VM(t) = v1 �= v2 = VM(s), contradicting our assumption that M is a (consistent)

satisfying assignment. Thus, Δf is a defining map for all f ∈ Σ, and thus Δ is a

Σ-map.

For each term f(t1, . . . , tn) ∈ TM , we have that f(VM(t1), . . . ,VM(tn)) ≈ VM(t) ∈
D1, and thus M(t) = VM(t). Thus, M satisfies all equalities between pairs of terms

in the same equivalence class of M∗
c . Since M∗

c is T -satisfiable, we have that M
satisfies all disequalities in M∗

c as well. Since M∗
c is a superset of M, we have that

M satisfies M. �

8 Model-based quantifier instantiation

We now focus our attention on Step 3 of our finite model finding procedure

FM-SolveH from Figure 3. In this step, the procedure FM-SolveH considers

quantified formulas in the set:

{∀xϕ | (a ⇔ ∀xϕ) ∈ A and a ∈ M} (8.1)

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 543

proc eval(M, t, σ) ≡
match t with

| f(t1, . . . , tn) → for j = 1, . . . , n

let (vj , Xj) = eval(M, tj , σ)

choose a critical argument subset C of {1, . . . , n}
return (fM(v1, . . . , vn),

⋃
i∈C Xi)

| x → return (σ(x), {x})
Fig. 10. The eval procedure for candidate model M. Returns a pair (v, S) where (tσ)M = v,

and S is a subset of the domain of σ that was used to compute this interpretation.

Call this set Q. For each formula ∀xϕ ∈ Q, it uses a quantifier instantiation heuristic

H that returns a set of substitutions from x to terms in the set V constructed in

Step 2. A trivial way to implement H is to choose all such possible substitutions.

If x is a tuple of n variables each ranging of a sort with k domain elements,

this heuristics will return kn substitutions, which is clearly unfeasible unless both

k and n are rather small. Significantly more scalable heuristics can be adopted

if it is possible to identify sets of substitutions σ yielding instances ϕσ that are

already satisfied by the current candidate model, as these substitutions can be

safely ignored. These heuristics are collectively known as model-based quantifier

instantiation.

A way to perform model-based quantifier instantiation, as implemented in the

SMT solver Z3 (Ge and de Moura 2009), is to use the SMT solver itself as an oracle:

a separate copy of the SMT solver is run on another query to determine whether a

candidate model M satisfies each quantified formula. If it does not, a single instance

that is falsified by M is added to the current clause set F . This approach incurs the

performance overhead of constructing the corresponding query as well as initializing

the oracle. Our version of model-based instantiation relies instead upon specialized

data structures when checking candidate models and choosing instantiations, and

may add more than one instantiation per invocation.

We describe below a model-based quantifier instantiation method that identifies

entire sets of instances as satisfiable in M without actually generating and checking

those instances individually (Reynolds et al. 2013b). The main idea is to determine

the satisfiability in M of some instance ϕσ of a quantified formula ∀xϕ ∈ Q,

generalize ϕσ to a set J of instances equisatisfiable with ϕσ in M, and then look for

further instances only outside that set. The set J is computed by identifying which

variables of ϕ actually matter in determining the satisfiability of ϕσ. Technically,

for each ψ = ∀xϕ, substitution σ = {x �→ v} into V, and instance ϕ′ = ϕσ of

ψ, if M |= ϕ′ we compute a partition of x into x1 and x2 and a corresponding

partition of v into v1 and v2 such that M |= ∀x2 ϕ{x1 �→ v1}; similarly, if M �|=
¬ϕ′ we compute a partition such that M �|= ∀x2 ¬ϕ{x1 �→ v1}. In either case,

we then know that all instances of ϕ{x1 �→ v1} over V are equisatisfiable with

ϕ′ in M, and so it is enough to consider just ϕ′ in lieu of all them. We will

refer to the elements of x1 above as a set of critical variables for ϕ (under σ)—

although strictly speaking this is a misnomer as we do not insist that x1 be

minimal.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

544 A. Reynolds and C. Tinelli

8.1 Generalizing evaluations

We have developed a general procedure that, given the Σ-map of a candidate model

M, a term t, and a substitution σ over t’s variables, computes and returns both the

value of tσ in M and a set of critical variables for σ. This procedure effectively

extends to quantifier-free formulas as well by treating them as Boolean terms—which

evaluate to either true or false in a Σ-interpretation depending on whether they are

satisfied by the model or not.

The procedure, called eval, is defined recursively over its input term and is

sketched in Figure 10. For uniformity, we assume that function symbols and logical

operators are all in prefix form.

When evaluating a non-variable term f(t1, . . . , tn), eval determines a critical

argument subset C for it. This is a subset of {1, . . . , n} such that the term f(s1, . . . , sn)

denotes a constant function in M where each si is the value computed by eval

for ti if i ∈ C , and is a unique variable otherwise. If f is a logical symbol, the

choice of C is dictated by the symbol’s semantics. For instance, for ≈(t1, t2), C is

{1, 2}; for ∨(t1, . . . , tn), it is {1, . . . , n} if the disjunction evaluates to false; otherwise,

it chooses {i} for some i where ti evaluates to true. If f is a function symbol of Σ,

eval computes C by first constructing a custom index data structure for interpreting

applications of f to values. The key feature of this data structure is that it uses

information on the sets X1, . . . Xn to choose an evaluation order for the arguments of

f. For example, given the term t = f(g(x, y, z), v2, h(x)), say that eval computes the

values v1, v2, v3 and the critical variable sets {x, y, z}, ∅, {x} for the three arguments

of f, respectively. With those sets, it will use the evaluation order (2, 3, 1) for those

arguments—meaning that the second argument is evaluated first, then the third, etc.

Using the index data structure, it will first determine if f(x1, v2, x3) has a constant

interpretation in M for all x1, x3. If so, then the evaluation of t depends on none of

its variables, and the returned set of critical variables for t will be ∅. Otherwise, if

f(x1, v2, v3) has a constant interpretation in M, then the evaluation of t depends on

{x}, or else it depends on the entire variable set {x, y, z}.
The next example gives more details on the whole process of using eval to

generalize a ground instance to a set of ground instances equisatisfiable with it in a

given model.

Example 8

Let Q = {∀x1 x2 f(x1) ≈ g(x2, b) ∨ h(x2, x1) �≈ b}, where all terms are of some sort

S. Consider a candidate model M induced by a Σ-map containing the following

definitions:

Δg = {g(a, a) ≈ c, g(y1, b) ≈ a, g(y1, y2) ≈ b}
Δf = {f(b) ≈ b, f(y1) ≈ a}
Δh = {h(y1, y2) ≈ b}

Suppose VS = {a, b, c}. The table below shows the bottom-up calculation performed

by eval on the formula ϕ = f(x1) ≈ g(x2, b) ∨ h(x2, x1) �≈ b with M above and

σ = {x1 �→ a, x2 �→ a}.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 545

input output critical arg. subset

x1 (a, {x1})
x2 (a, {x2})
b (b, ∅) ∅

f(x1) (a, {x1}) {1}
g(x2, b) (a, ∅) {2}
h(x2, x1) (b, ∅) ∅

f(x1) ≈ g(x2, b) (true, {x1}) {1, 2}
h(x2, x1) �≈ b (false, ∅) {1, 2}

f(x1) ≈ g(x2, b) ∨ h(x2, x1) �≈ b (true, {x1}) {1}

For most entries in the table, the evaluation is straightforward. For a more interesting

case, consider the evaluation of g(x2, b). First, the arguments of g are evaluated,

respectively, to (a, {x2}) and (b, ∅). Using an indexing data structure built from Δg
for the evaluation order (2, 1), we determine that g(x2, b) has constant value a for

all x2. Hence, we return an empty set of critical variables for g(x2, b).

Similarly, the fact that eval returns (true, {x1}) for the original input formula ϕ

and the substitution σ = {x1 �→ a, x2 �→ a} means that we were able to determine

that all ground instances of ϕ{x1 �→ a} = (f(a) ≈ g(x2, b) ∨ h(x2, a) �≈ b), not just the

instance ϕσ, are satisfied in M. We can then use this information in FM-SolveH to

completely avoid generating and checking those instances.

8.2 A model-based instantiation heuristic

For any given quantified formula ψ, the eval procedure allows us to identify a set

of instances over V that can be represented by a single one, as far as satisfiability

in the candidate model M is concerned. In this subsection, we present a quantifier

instantiation heuristic that generates a set I of instances that together represent all

instances of ψ over V that are falsified by M. This kind of exhaustiveness is crucial

because it allows us to conclude that M |= ψ by just checking that I is empty.

The heuristic is implemented by a procedure that relies on eval for computing the

set I above, or rather, a set of substitutions for generating the elements of I from

ψ. The procedure is fairly unsophisticated and quite conservative in its choice of

representative instances, which makes it very simple to implement and prove correct.

Its main shortcoming is that it does not take full advantage of the information

provided by eval, and so may end up producing more representative instances than

needed in many cases.

Let ψ = ∀xϕ ∈ Q with x = (x1, . . . , xn), where Q is the set defined in (8.1).

For i = 1, . . . , n, let Si be the sort of xi and let Vx = VS1
× · · · × VSn . For each

S ∈ {S1, . . . , Sn}, let <S be an arbitrary total ordering over the values VS of sort

S . Let < be the lexicographic extension of these orderings to the tuples in Vx and

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

546 A. Reynolds and C. Tinelli

proc Hm(M, ∀xϕ) ≡
Ix := ∅; t := vmin
do

(v, {xi1 , . . . , xim}) := eval(M, ϕ, {x �→ t})
if v = false then Ix := Ix ∪ {{x �→ t}}
t := nexti(t) where i = n+ 1 − max{0, i1, . . . , im}

while t �= vmin
return Ix

Fig. 11. A model-based instantiation heuristic Hm, where x = (x1, . . . , xn).

observe that Vx is totally ordered by <. We write vmin to denote the minimum of Vx

with respect to this ordering.

For every v = (v1, . . . , vn) ∈ Vx, let nexti(v) denote the smallest tuple u with

respect to < such that v(j) <Sj u(j) for some 1 � j � n + 1 − i, if such a tuple

exists, and denote vmin otherwise (including when i > n)7.s For instance, with

n = 3, S1 = S2 = S3 and VS1
= {a, b} with a <S1

b, we have that next1(a, a, a) =

(a, a, b), next2(a, a, a) = (a, b, a), next2(a, b, a) = (b, a, a), next3(a, a, a) = (b, a, a), and

next2(b, b, a) = vmin = (a, a, a). Note that except in the case that nexti(v) is vmin, we

have that v < nexti(v).

Our instantiation heuristic Hm is given in Figure 11. It takes in a quantifier-free

formula ϕ with variables x and returns a set Ix of substitutions σ for x such that

M �|= ϕσ. At each execution of its loop, the procedure implicitly determines with

eval a set I of instances of ϕ that are equisatisfiable with ϕ{x �→ v} in M, where v is

the tuple stored in the program variable t. The next value tnext for t is a greater tuple

chosen to maintain the invariant that all the tuples between t and tnext generate

instances of ϕ that are in I . To see that, it suffices to observe that these tuples

differ from t only in positions that correspond to non-critical variables of ϕ, namely

those before position i where xi is the first critical variable of ϕ in the enumeration

x1, . . . , xn. This observation is the main argument in the proof of the following result.

Lemma 3

Let v0, . . . , vm be all values successively taken by variable t at the beginning of the

loop in Hm. Let vmax be the maximum element of Vx. Then for all j = 1, . . . , m,

(1) vj−1 < vj ,

(2) for all u with vj−1 � u < vj , M |= ϕ{x �→ u} iff M |= ϕ{x �→ vj−1},
(3) for all u with vm � u � vmax, M |= ϕ{x �→ u} iff M |= ϕ{x �→ vm}.

Proof: (Sketch) The first statement is immediate since for all j = 1 . . . m, we have

vj = nextk(vj−1) for some k and vj �= vmin. To show the second statement for a j,

assume vj = nextk(vj−1) for some k. For each u where vj−1 � u < vj , we have that

u(�) = vj−1(�) for all � � k. For all � < k, the eval procedure determined that the

variable x� was not a critical variable for ϕ. Since u and vi−1 vary on only these

variables, we have M |= ϕ{x �→ u} iff M |= ϕ{x �→ vj−1}. The third statement holds

for similar reasons as the second. �

7 Where v(j) and u(j) are the jth component of v and u, respectively.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 547

Theorem 5

The set Ix returned by Hm(M, ϕ, x) is empty if and only if M |= ∀xϕ.

Proof: Thanks to the previous lemma, if there is an instance of ϕ that is falsified

by M, then Hm will consider at least one vi for which ϕ{x �→ vi} evaluates to false,

and hence it will return at least one instance. Conversely, if all instances of ϕ are

satisfied by M, then all instances of ϕ considered by Hm evaluate to true, and hence

it will return no instances. �
We remark that, for the model finding purposes of procedure FM-SolveH, there is

no need for the procedure Hm to compute the full set Ix once it contains at least one

substitution. Any non-empty subset would suffice to trigger a (more incremental)

revision of the current candidate model M. That said, our current implementation

does compute the whole set and adds all the corresponding instances to the clause

set F before computing another model for it. Our experiments show that computing

and using one substitution at a time is worse for overall performance than computing

and using the full set Ix.

Example 9

Consider the quantified formula ∀x1 x2 ϕ and candidate model M from Example 8.

Assume that a <S b <S c. The result of running Hm on M, ϕ and x = (x1, x2) is

summarized in the table below. Each row in the column shows the value of variable

t at the beginning of the loop in Hm, the result of computing eval, the substitution

(if any) added to Ix on that iteration, and the computation of the next tuple of

terms nexti(t).

Iteration t eval(M, ϕ, {x �→ t}) Add to Ix i nexti(t)

1 (a, a) (true, {x1}) ∅ 2 (b, a)

2 (b, a) (false, {x1}) {x1 �→ b, x2 �→ a} 2 (c, a)

3 (c, a) (true, {x1}) ∅ 2 (a, a)

We begin by setting t to vmin = (a, a). As demonstrated in Example 8, we have that

eval(M, ϕ, {x1 �→ a, x2 �→ a}) returns the pair (true, {x1}). The first component of

this pair indicates that M[[ϕ{x1 �→ a, x2 �→ a}]] = true, and hence we do not add

this substitution to Ix. The second component of this pair indicates moreover that

this interpretation did not depend on the value of x2, and hence (ϕ{x1 �→ a, x2 �→
v})M = true for all values of v. Thus, we need not consider t = (a, b) or t = (a, c).

Instead, on the second iteration, we consider next2(a, a) = (b, a). Subsequently,

eval(M, ϕ, {x1 �→ b, x2 �→ a}) returns the pair (false, {x1}). This indicates that

(ϕ{x1 �→ b, x2 �→ v})M = false for all values of v. We add the substitution {x1 �→
b, x2 �→ a} to Ix only. Finally, on the third iteration, eval(M, ϕ, {x1 �→ c, x2 �→ a})
returns the pair (true, {x1}); we add no substitutions to Ix, and the loop terminates.

Overall, Hm returns the singleton set of substitutions {{x1 �→ b, x2 �→ a}}.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

548 A. Reynolds and C. Tinelli

8.3 Enhancement: Heuristic instantiation

Modern SMT solvers rely on syntatic heuristic instantiation methods for finding

unsatisfiable instances for quantified formulas (Detlefs et al. 2003; de Moura and

Bjørner 2007; Reynolds et al. 2014). In these methods, quantified formulas are

instantiated based on pattern matching. For instance, the solver may choose to

instantiate the quantified formula ∀xP (f(x)) ⇒ Q(x) based on the substitution {x �→
c} when P (f(c)) is a ground term occurring in its current satisfying assignment. This

technique is often referred to as E-matching. We found that heuristic instantiation-

based E-matching can be helpful in the context of our finite model finding approach

as well, because the instances it generates are helpful in quickly ruling out candidate

models that are obviously spurious.

A quantifier instantiation heuristic H, such as the model-based one from the

previous section, can be enhanced by applying heuristic instantiation with a higher

priority. That is, we may consider a modified quantifier instantiation heuristic that

first computes the set of instances Ix returned by E-matching for a quantified formula

∀xϕ. If this set is non-empty, it returns Ix; otherwise, it returns the instances from

the original heuristic H on ∀xϕ.

In practice, we have found that it is best to apply heuristic quantifier instantiation

after finding a satisfying assignment with a bounded number of equivalence classes.

By waiting to apply quantifier instantiation until after a satisfying assignment of this

form can be constructed, we can avoid pitfalls common to E-matching. In particular,

having a finite cardinality for uninterpreted sorts ensures that only a finite number

of terms are unique up to congruence, thus ensuring that E-matching, which is

non-terminating in general, will eventually return instances that rule out the current

upper bound on cardinality, or terminate with no instances. We discuss the impact

of heuristic instantiation further in Section 9.2.

9 Results

We implemented all features mentioned in this paper inside cvc4 (Barrett et al.

2011), a state-of-the-art SMT solver based on the DPLL(T1, . . . , Tm) architecture.

This section presents experimental results on this implementation8. We separate this

section into two sets of experiments, the first to evaluate the relative effectiveness

of various strategies for the FCC solver, and the second to evaluate the model

finder’s overall performance when used with quantified formulas. For the second set

of experiments, we compare our model finder against state-of-the-art SMT solvers

and automated theorem provers.

9.1 FCC solver evaluation

We first examine the effectiveness of approach to handling ground problems in the

theory of EUF with FCC. In this section, all experiments were run on a Linux

8 Details can be found at http://cs.uiowa.edu/~ajreynol/TPLP-fmf.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 549

machine with an 8-core 2.60 GHz Intel R© Xeon R© E5-2670 processor with 16 GB of

RAM.

We tested various configurations of the FCC solver, starting with the default

configuration cvc4+f, which contains the region-based enhancements described in

Section 6.2, where conflicting states are reported by using clique lemmas of the form

(¬distinct(t1, . . . , tk+1) ∨ ¬cardS,k). We also tested a configuration, cvc4+fe, which

reports conflict clauses of the form (l1 ∨ . . . ∨ ln ∨ ¬cardS,k), where l1, . . . , ln are

equalities and disequalities that entail distinct(t1, . . . , tk+1). This configuration avoids

the introduction of new equalities into the search (contained in the expansion of

distinct), but has the disadvantage that it can generate different conflict clauses

for essentially the same clique. Additionally, we considered configuration cvc4+f-r,

which differs from cvc4+f only in that regionalizations have always just one region

per sort S , encompassing the entire disequality graph for S .

We also evaluated the MACE-style approach to finite model finding described in

related work (McCune 1994), which we implemented in the configuration cvc4+mace.

In the case of a set of ground clauses F involving a single sort, if TF is the set of

all terms in F and c1, . . . , ck are fresh constants serving as domain constants, this

configuration checks the satisfiability of

F ∧ distinct(c1, . . . , ck) ∧
∧

t∈TF

(t ≈ c1 ∨ . . . ∨ t ≈ ck) (9.1)

for k = 1, 2, . . . until (9.1) is found satisfiable for some k. Then, the minimal model

size for F is k. A major and well-known shortcoming of this approach is the

introduction of unwanted symmetries in the problem due to the use of domain

constants. cvc4 can address this issue to some extent since it incorporates symmetry

breaking techniques directly at the ground EUF level (Déharbe et al. 2011).

We considered satisfiable benchmarks encoding randomly generated graph color-

ing problems and consisting of a conjunction of disequalities between constants of a

single sort. In particular, we considered a total of 793 non-trivial problems containing

between 20 and 50 unique constants and between 100 and 900 disequalities, and

measured the time it takes each configuration to find a model of minimum size, with

a 60 second timeout. For the benchmarks we tested, the configuration cvc4+f solves

the most benchmarks within the time limit: 723. The configuration cvc4+f was an

order of magnitude faster than cvc4+fe on most benchmarks, with the latter only

being able to solve 309 benchmarks within the time limit. This strongly suggests

that generating explanations for cliques in conflict lemmas involving cardinality

constraints is not an effective approach in this scheme.

Figure 12 compares the performance of the configuration cvc4+f against cvc4+f-r

and cvc4+mace. The second scatter plot clearly shows that the cvc4+f configuration

generally requires less time and solves more benchmarks (723 versus 664) than

cvc4+f-r, confirming the usefulness of a region-based approach for clique detection.

The third scatter plot compares cvc4+f against cvc4+mace. The latter configura-

tion was able to solve only 617 benchmarks and generally performed poorly on

benchmarks with larger model size. The median model size of the 123 benchmarks

solved only by cvc4+f was 17, whereas the median size of the 13 benchmarks solved

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

550 A. Reynolds and C. Tinelli

.1

1

10

100

.1 1 10 100

CV
C4

+f

CVC4+f-r

.1

1

10

100

.1 1 10 100

CV
C4

+f

CVC4+mace

Fig. 12. Results for randomly generated benchmarks. Runtimes are on a log–log scale.

only by cvc4+mace was 10. This suggests that for larger cardinalities cvc4+mace

suffers from the model symmetries created by the introduction of domain constants,

something that cvc4+f avoids.

9.2 Finite model finder evaluation

We provide results on cvc4 with finite model finding for three sets of benchmarks

coming from different formal methods applications, including verification and

automated theorem proving. We will refer to various configurations of cvc4 based

on the features they include. Configuration cvc4+f uses the finite model finding

techniques described earlier. Additionally, configurations containing m in their suffix

use the model-based quantifier instantiation heuristic described in Section 8, and

configurations with i use heuristic instantiation, which can be paired with finite

model finding configurations as described in Section 8.3.

Experiments from Section 9.2.1 were run on a Linux machine with an 8-core 2.60

GHz Intel R© Xeon R© E5-2670 processor. All others were run on a Linux machine

with an 8-core 3.20GHz Intel R© Xeon R© E5-1650 processor with 16 GB of RAM.

9.2.1 Intel benchmarks

We evaluated the overall effectiveness of cvc4’s finite model finder for quantified

SMT formulas taken from verification conditions generated by DVF (Goel et al.

2012), a tool used at Intel for verifying properties of security protocols and

design architectures, among other applications. Both unsatisfiable and satisfiable

benchmarks were produced, the latter by manually removing necessary assumptions

from verification conditions. All benchmarks contain quantifiers, although only over

uninterpreted sorts, and span a wide range of theories, including linear integer

arithmetic, arrays, EUF, and algebraic datatypes.

For comparison, we looked at the SMT solvers cvc3 (Barrett and Tinelli 2007)

(version 2.4.1)9, Yices (Dutertre and De Moura 2006) (version 1.0.32), and z3 (De

Moura and Bjørner 2008) (version 4.1). We did not consider traditional theorem

provers and finite model finders because they do not have built-in support for the

9
cvc3 is the predecessor of cvc4. The latter was developed from scratch, and does not have any code
in common with cvc3.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 551

Sat german refcount agree apg bmk
(45) (6) (42) (19) (37)

time # time # time # time # time

cvc3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
yices 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0
z3 45 1.1 1 7.0 0 0.0 0 0.0 0 0.0
cvc4+i 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0
cvc4+f 45 0.3 6 0.1 42 15.5 18 200.0 36 1201.5
cvc4+f-r 45 0.3 6 0.1 42 18.6 15 364.3 34 720.4
cvc4+fi 45 0.4 6 0.1 42 14.2 19 492.8 36 831.0
cvc4+fm 45 0.3 6 0.1 42 23.6 19 210.2 37 375.1
cvc4+fmi 45 0.3 6 0.1 42 16.4 19 221.1 37 176.8

Unsat german refcount agree apg bmk
(145) (40) (488) (304) (244)

time # time # time # time # time

cvc3 145 0.4 40 0.2 457 6.8 267 77.0 229 76.2
yices 145 1.8 40 7.0 488 1475.4 304 35.8 244 25.3
z3 145 1.9 40 0.9 488 10.6 304 12.2 244 5.3
cvc4+i 145 0.1 40 0.2 484 6.8 304 11.2 244 2.9
cvc4+f 145 0.8 40 0.4 476 3782.1 298 2252.5 242 1507.0
cvc4+f-r 145 0.4 40 0.2 475 1574.3 294 3836.0 240 1930.5
cvc4+fi 145 0.7 40 0.1 488 188.7 302 342.0 244 660.3
cvc4+fm 145 0.4 40 0.3 471 5018.2 300 1122.7 242 834.1
cvc4+fmi 145 0.3 40 0.1 488 185.9 302 339.8 244 668.5

Fig. 13. Number of solved satisfiable and unsatisfiable Intel (DVF) benchmarks and

cumulative time for solved benchmarks. All times are in seconds.

theories in our benchmark set. All these solvers use E-matching as a heuristic method

for answering unsatisfiable in the presence of universally quantified formulas. Z3

additionally relies on model-based quantifier instantiation techniques to establish

satisfiability in the presence of quantified formulas (Ge and de Moura 2009).

The results, separated into unsatisfiable and satisfiable instances, are shown in

Figure 13 for five classes of benchmarks and a timeout of 600 seconds per bench-

mark. The first two classes, refcount and german, represent verification conditions

for systems described in Goel et al. (2012); benchmarks in the third are taken

from Tuttle and Goel (2012); the last two classes are verification problems internal

to Intel.

For the satisfiable benchmarks, our finite model finder is the only tool capable

of solving any instance in the last three benchmark classes. In fact, cvc4+f is able

to solve all but two, and most of them in less than a second. When extended to

include techniques for model-based quantifier instantiation (configurations cvc4+fm

and cvc4+fmi), we are able to solve all satisfiable benchmarks within the timeout.

By comparing cvc4+f against cvc4+f-r, we see that the region-based approach for

recognizing cliques is beneficial, particularly for the harder classes where the latter

configuration solves fewer benchmarks within the timeout. The model sizes found

for these benchmarks were relatively small; only a handful had a model with sort

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

552 A. Reynolds and C. Tinelli

cardinalities larger than 4. To our knowledge, our model finder is the only tool

capable of solving these benchmarks.

For the unsatisfiable benchmarks, Yices and Z3 can solve all of them, with Z3

being much faster in some cases. We observe that cvc4 with finite model finding

is orders of magnitude slower than the SMT solvers on these benchmarks. This

is, however, to be expected since it is geared toward finding models, and applies

exhaustive instantiation with increasingly large cardinality bounds, which normally

delays the discovery that the problem is unsatisfiable regardless of those bounds.

However, we found that each unsatisfiable problem can be solved by either

cvc4 or cvc4+fmi, and in less than 3 seconds. Additionally, configuration cvc4+fmi

solves all unsatisfiable benchmarks within 900 seconds, suggesting that cvc4’s model

finder makes consistent progress toward answering unsatisfiable on provable DVF

verification conditions. From the perspective of verification tools, the results here

seem promising. A common strategy for handling a verification condition would

be to first use an SMT solver hoping that it can quickly find it unsatisfiable with

E-matching techniques; and then resort to finite model finding if needed to either

answer unsatisfiable, or produce a model representing a concrete counterexample

for the verification condition.

9.2.2 TPTP benchmarks

We considered benchmarks from a recent version of the TPTP library (Sutcliffe

2009) (5.4.0), a widely used library from the automated theorem proving community.

The benchmarks from this library involve no theory reasoning other than equality,

and are composed mostly of quantified formulas.

We compared cvc4 (version 1.2) against other SMT solvers including z3 (version

4.3) and cvc3 (version 2.4.1), as well as various automated theorem provers and

model finders for first-order logic, including Paradox (Claessen and Sörensson 2003)

and iProver (Korovin 2008) (version 0.99). Paradox is a MACE-style model finder

that uses preprocessing optimizations such as sort inference and clause splitting,

among others, and then encodes to SAT the original problem together with

increasingly looser constraints on the size of the model. iProver is an automated

theorem prover based in the Inst-Gen calculus that can also run in finite model

finding mode (iprover+f). In that mode, it incrementally bounds model sizes in

a manner similar to MACE-style model finding. However, it encodes the whole

problem into the EPR fragment10, for which it is a decision procedure. Since these

two tools are limited to classical first-order logic with equality, we considered only

the unsorted first-order benchmarks of TPTP.

Figure 14 shows results for benchmarks from the TPTP library that are known to

be satisfiable or unsatisfiable. All experiments were run with a 300 second timeout

per benchmark. The benchmarks were placed into (exactly one) category based

on its logical and syntactic characteristics, where EPR includes benchmarks that

10 This fragment of first-order logic consists of all formulas of the form ∃x.∀y.ϕ, where ϕ is quantifier-free
and contains no function symbols.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 553

Unsat Sat

EPR NEQ SEQ PEQ Total EPR NEQ SEQ PEQ Total
(920) (2008) (7682) (1796) (12406) (388) (618) (340) (612) (1958)

z3 840 1406 3366 656 6268 345 261 175 160 941
cvc3 596 910 3091 648 5245 24 0 8 0 32
iprover 888 1786 3346 310 6330 384 434 106 156 1080
iprover+f - - - - - 378 555 224 268 1425
paradox - - - - - 343 534 201 372 1450
cvc4+i 809 1346 3277 668 6100 21 1 8 0 30
cvc4+f 736 900 1261 531 3428 329 441 178 242 1190
cvc4+fm 725 942 1315 419 3401 329 448 214 286 1277
cvc4+fi 733 994 1594 457 3778 329 422 178 231 1160
cvc4+fmi 748 997 1594 459 3798 327 416 190 232 1165

Fig. 14. Number of solved TPTP benchmarks. All experiments were run with a 300 second

timeout.

reside in the effectively propositional fragment, NEQ are benchmarks that do not

contain any equality reasoning, SEQ are benchmarks containing some equality, and

PEQ are benchmarks containing only pure equality. Both configurations iprover

and iprover+f used scheduling strategies that iProver incorporated for CASC 24, a

competition for automated theorem provers, meaning that multiple configurations

of this solver were run sequentially. The latter of these configurations, as well as the

configuration paradox were solely run on the satisfiable benchmarks from this set.

All configurations of cvc4 with finite model finding used sort inference techniques

as described in Reynolds (2013), which is capable of treating unsorted inputs as

multi-sorted based on their structure. Sort inference techniques are known to be

useful for this set of benchmarks, and are used in most competitive ATP systems,

including Paradox and iProver.

For satisfiable benchmarks, cvc4’s model finder with exhaustive instantiation

(cvc4+f) solves 1,190 benchmarks. Using model-based quantifier instantiation, that

number goes up to 1,277 (configuration cvc4+fm). Using heuristic instantiation

(cvc4+fmi) in addition to model-based instantiation led to finding fewer satisfiable

benchmarks, solving 1,165 within the timeout, suggesting that the solver becomes

overloaded with the large number of instantiations produced by exhaustive instan-

tiation.

While cvc4 solves more than z3, which finds 941 satisfiable benchmarks, our

model finder still trails the overall performance of the other model finders on these

problems. Paradox was the overall best solver, finding 1,450 satisfiable benchmarks.

We attribute this to the fact that we have not implemented advanced preprocessing

techniques, such as clause splitting, that have been shown to be critical for finding

finite models of TPTP benchmarks. Nevertheless, cvc4’s model finder solves more

satisfiable benchmarks (214) than Paradox for classes of problems having some

equality reasoning (SEQ). Collectively, some configuration of cvc4 with finite model

finding was able to solve 52 satisfiable benchmarks that paradox was not able to

solve, and 36 satisfiable benchmarks that iprover+f was not able to solve.

Figure 14 also shows results for unsatisfiable problems. Although these results

are not comparable to those achieved by state-of-the-art theorem provers, such as

Vampire and E (Schulz 2002; Kovács and Voronkov 2013), we note that iprover

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

554 A. Reynolds and C. Tinelli

Fig. 15. Satisfiable TPTP problems with (cvc4+fm) and without (cvc4+f) model-based

instantiation. A point (x, y) on this graph says the configuration solves x benchmarks each

having at most y ground instances of quantified formulas.

solves the most benchmarks, 6330. Here, cvc4+fmi was the best configuration of

cvc4 with finite model finding, solving 3,781 within the timeout. While finite model

finding configurations solved considerably fewer than using heuristic instantiation

alone, some configuration of cvc4 with finite model finding solves 144 unsatisfiable

benchmarks that were unable to be solved by any other solver in these experiments,

including iProver and z3.

To further evaluate the impact of model-based quantifier instantiation on our

model finder, we recorded statistics on the domain size of quantified formulas in

benchmarks solved by its various configurations. We measured the total number

of possible ground instances for all quantified formulas in the smallest model for

that benchmark (a quantified formula over n variables each with domain size k has

kn instances). For a problem with d total instances, the configuration cvc4+f must

explicitly generate these d instances, while a model-based configuration may avoid

doing so.

The graph on the right-hand side of Figure 15 shows that cvc4+f was only able

to solve 13 problems having more than 100 K instances, the maximum having

around 5.6 million instances. On the other hand, cvc4+fm was capable of solving

123 problems having more than 100 K instances, with the largest having more than

2.8 trillion instances. This indicates that the model-based instantiation approach

improves the scalability of our model finder, and allows it to solve benchmarks

where exhaustive instantiation is clearly infeasible. Model finders such as Paradox

have other ways of handling the explosion in the number of instances, namely

by minimizing the number of variables per clause. Coupling these techniques with

model-based techniques could then lead to additional improvements in scalability.

Since techniques for reducing variables in clauses rely on introducing new symbols

into the problem, we have found that they have a negative impact on performance

for several classes of benchmarks, and thus are disabled by default in cvc4.

9.2.3 Isabelle benchmarks

Recent work has shown that SMT solvers are effective at discharging proof

obligations for Isabelle, a generic proof assistant (Paulson and Wenzel 2002).

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 555

Sat Arr FFT FTA Hoare NSS QEp SN TSq TSf Total

z3 2 19 24 47 7 47 1 17 8 172
cvc3 0 9 0 0 0 0 0 8 0 17
cvc4+i 0 9 0 0 0 0 0 8 0 17
cvc4+f 35 145 177 162 56 85 12 57 90 819
cvc4+fm 33 141 173 155 43 86 12 54 89 786
cvc4+fi 36 146 172 162 61 86 12 55 93 823
cvc4+fmi 36 147 174 162 61 83 12 56 93 824

Unsat Arr FFT FTA Hoare NSS QEp SN TSq TSf Total

z3 178 277 917 549 108 325 241 620 291 3506
cvc3 321 296 1124 607 105 297 207 643 227 3827
cvc4+i 307 288 990 563 117 360 242 708 283 3858
cvc4+f 165 106 451 239 44 131 88 442 151 1817
cvc4+fm 132 92 442 238 26 160 88 430 128 1736
cvc4+fi 172 185 589 383 47 222 112 585 196 2491
cvc4+fmi 168 186 589 379 47 222 112 584 196 2483

Fig. 16. Number of solved satisfiable and unsatisfiable Isabelle benchmarks for various

classes within a 300 second timeout.

The performance of these solvers can benefit from an encoding that makes use

of theories (Blanchette et al. 2011). We considered a set of 13,041 benchmarks

corresponding to both provable and unprovable proof goals, corresponding to a

superset of those discussed in Blanchette et al. (2011). Most benchmarks in this set

contain quantifiers, and a significant portion contain integer arithmetic. For many

of them, the quantification is limited to the uninterpreted sorts, thus making our

finite model finding approach applicable.

The results are shown in Figure 16. For satisfiable benchmarks, all configurations

of cvc4’s model finder find more satisfiable problems than z3, which finds only 172

of them overall. The model-based quantifier instantiation technique from Section 8

(configuration cvc4+fm) was less effective than naive instantiation (configuration

cvc4+f) which solves 819, suggesting that model-based techniques were not effective

at minimizing the number of instantiations for this set of benchmarks. Using

heuristic E-matching noticeably improved the search for models, as configuration

cvc4+fi solves 823 satisfiable benchmarks. Using both model-based instantiation

and heuristic instantiation, configuration cvc4+fmi, found more satisfiable problems

(824) than any other configuration.

For unsatisfiable problems, cvc4+i is the overall winner, solving 3,858, which

was more than both z3 and cvc3 which solved 3,506 and 3,827, respectively.

Configurations of cvc4 with finite model finding generally solves less unsatisfiable

benchmarks, but is orthogonal to other solvers and configurations. In these exper-

iments, 309 unsatisfiable benchmarks that cvc3 cannot solve are solved by at least

one configuration of cvc4 with finite model finding. Similarly, a configuration of

cvc4 with finite model finding solves 429 unsatisfiable benchmarks that z3 cannot,

and 168 that cvc4+i cannot.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

556 A. Reynolds and C. Tinelli

10 Conclusion

We developed a general approach for finite model finding in SMT that is efficient

for many classes of problems that are of practical interest to formal methods

applications. Experimental evidence from an implementation of these methods in

the SMT solver cvc4 shows that our approach is effective in practice at solving

many classes of benchmarks, including verification conditions from industry, and

benchmarks from automated theorem proving libraries. The implementation is highly

competitive with respect to other SMT solvers and to automated theorem provers.

In ongoing work, we plan to extend our approach to the problem of finding models

of formulas with quantifiers ranging over built-in domains such as the integers and

inductive datatypes. We are also investigating the use of cvc4 as a backend to

interactive proof assistants such as Isabelle and Coq, where small counterexamples

to conjectures are often helpful to the user.

Acknowledgements

We would like to thank Amit Goel and Sava Krstić for their valuable contributions

to this work, Sascha Böhme for proving the Isabelle benchmarks, and François

Bobot for his help in writing a TPTP front end for CVC4.

References

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University Press.

Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A.

and Tinelli, C. 2011. CVC4. In Proc. of CAV’11, Lecture Notes in Computer Science, vol.

6806. Springer, 171–177.

Barrett, C., Nieuwenhuis, R., Oliveras, A. and Tinelli, C. 2006. Splitting on demand in

SAT modulo theories. In Proc. of LPAR’06, Lecture Notes in Computer Science, vol. 4246.

Springer, 512–526.

Barrett, C. and Tinelli, C. 2007. CVC3. In Proc. of the 19th International Conference on

Computer Aided Verification (CAV ’07), W. Damm and H. Hermanns, Eds. Lecture Notes

in Computer Science, vol. 4590. Springer-Verlag, Berlin, Germany, 298–302.

Baumgartner, P., Bax, J. and Waldmann, U. 2014. Finite quantification in hierarchic theorem

proving. In Proc. of Automated Reasoning - 7th International Joint Conference, IJCAR 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, pp. 152–167.

Baumgartner, P., Fuchs, A., de Nivelle, H. and Tinelli, C. 2009. Computing finite models

by reduction to function-free clause logic. Journal of Applied Logic 7 (1), 58–74.

Blanchette, J. C., Böhme, S. and Paulson, L. C. 2011. Extending Sledgehammer with SMT

solvers. In Automated Deduction, vol. 6803, N. Børner and V. Sofronie-Stokkermans, Eds.

Lecture Notes in Computer Science, Springer, 116–130.

Blanchette, J .C. and Nipkow, T. 2010. Nitpick: A counterexample generator for higher-

order logic based on a relational model finder. In ITP 2010, M. Kaufmann and L. C.

Paulson, Eds. Lecture Notes in Computer Science, vol. 6172. Springer, 131–146.

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A. and Sebastiani, R. 2009. Delayed

theory combination versus Nelson-Oppen for satisfiability modulo theories: A comparative

analysis. AMAI 55 (1–2), 63–99.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

Constraint solving for finite model finding 557

Claessen, K. and Sörensson, N. 2003. New techniques that improve MACE-style finite model

building. In CADE-19 Workshop: Model Computation – Principles, Algorithms, Applications,

11–27.

de Moura, L. and Bjørner, N. 2007. Efficient E-matching for SMT solvers. In Proc. of

Automated Deduction - CADE-21, 21st International Conference on Automated Deduction,

Lecture Notes in Computer Science, vol. 4603. Springer, Bremen, Germany, 183–198.

De Moura, L. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Proc. of the

Theory and Practice of Software, 14th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, TACAS’08/ETAPS’08, Springer-Verlag, Berlin,

Heidelberg, 337–340.

Déharbe, D., Fontaine, P., Merz, S. and Paleo, B. W. 2011. Exploiting symmetry in SMT

problems. In Proc. of CADE-23, Lecture Notes in Computer Science, vol. 6803. Springer,

222–236.

Detlefs, D., Nelson, G. and Saxe, J. B. 2003. Simplify: A theorem prover for program

checking. Journal of ACM 52 (3), 365–473.

Dutertre, B. and De Moura, L. 2006. The Yices SMT solver. Version 2.2. Tool paper at

http://yices. csl. sri. com/tool-paper. pdf

Garey, M. R., Johnson, D. S. and Stockmeyer, L. 1974. Some simplified np-complete

problems. In Proc. of the 6th Annual ACM Symposium on Theory of Computing, STOC ’74,

ACM, New York, NY, USA, 47–63.

Ge, Y., Barrett, C. and Tinelli, C. 2009. Solving quantified verification conditions using

satisfiability modulo theories. Annals of Mathematics and Artificial Intelligence 55 (1–2),

101–122.

Ge, Y. and de Moura, L. 2009. Complete instantiation for quantified formulas in satisfiability

modulo theories. In Proc. of CAV’09, Lecture Notes in Computer Science, vol. 5643.

Springer, 306–320.

Goel, A., Krstić, S., Leslie, R. and Tuttle, M. 2012. SMT-based system verification with

DVF. In Proc. of SMT’12.

Ihlemann, C., Jacobs, S. and Sofronie-Stokkermans, V. 2008. On local reasoning in

verification. In TACAS 2008, C. R. Ramakrishnan and J. Rehof, Eds. Springer, Berlin

Heidelberg, 265–281.

Jovanovic, D. and Barrett, C. 2013. Being careful about theory combination. Formal Methods

in System Design 42 (1), 67–90.

Korovin, K. 2008. iProver – an instantiation-based theorem prover for first-order logic.

In Proc. of IJCAR’08, Lecture Notes in Computer Science, vol. 5195. Springer, 292–

298.

Kovács, L. and Voronkov, A. 2013. First-order theorem proving and vampire. In Proc. of

Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,

Russia, 1–35.

Krstić, S. and Goel, A. 2007. Architecting solvers for SAT modulo theories: Nelson-Oppen

with DPLL. In Proc. of FroCoS’07, Lecture Notes in Computer Science, vol. 4720. Springer,

1–27.

McCune, W. 1994. A Davis–Putnam Program and its Application to Finite First-Order Model

Search: Quasigroup Existence Problems. Technical Report, Argonne National Laboratory.

Nieuwenhuis, R., Oliveras, A. and Tinelli, C. 2006. Solving SAT and SAT modulo theories:

From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of

the ACM 53 (6), 937–977.

Paulson, L. C. and Wenzel, M. 2002. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, vol. 2283. Springer.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

558 A. Reynolds and C. Tinelli

Reger, G., Suda, M. and Voronkov, A. 2016. Finding finite models in multi-sorted first-

order logic. In Proc. of Theory and Applications of Satisfiability Testing - SAT 2016 - 19th

International Conference, Bordeaux, France, 323–341.

Reynolds, A. J. 2013. Finite Model Finding in Satisfiability Modulo Theories. PhD Thesis, The

University of Iowa.

Reynolds, A., Tinelli, C., Goel, A. and Krstić, S. 2013. Finite model finding in SMT. In

Computer Aided Verification, vol. 8044, N. Sharygina and H. Veith, Eds. Lecture Notes in

Computer Science, Springer, Berlin Heidelberg, 640–655.

Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M. and Barrett, C. 2013. Quantifier

instantiation techniques for finite model finding in SMT. In Automated Deduction - CADE-

24, M. P. Bonacina Ed. Lecture Notes in Computer Science, vol. 7898. Springer, Berlin

Heidelberg, 377–391.

Reynolds, A., Tinelli, C. and de Moura, L. M. 2014. Finding conflicting instances of

quantified formulas in SMT. In FMCAD, IEEE, 195–202.

Schulz, S. 2002. E–a brainiac theorem prover. Ai Communications 15 (2, 3), 111–126.

Sutcliffe, G. 2009. The TPTP problem library and associated infrastructure: The FOF and

CNF parts, v3.5.0. Journal of Automated Reasoning 43 (4), 337–362.

Tinelli, C. and Harandi, M. T. 1996. A new correctness proof of the Nelson–

Oppen combination procedure. In Proc. of FroCoS’96, Applied Logic, Kluwer, Academic

Publishers, 103–120.

Torlak, E. and Jackson, D. 2007. Kodkod: A relational model finder. In Proc. of TACAS’07,

Lecture Notes in Computer Science, vol. 4424. Springer, 632–647.

Tuttle, M. R. and Goel, A. 2012. Protocol proof checking simplified with SMT. In Proc. of

NCA’12, IEEE Computer Society, 195–202.

Zhang, J. and Zhang, H. 1995. SEM: A system for enumerating models. In Proc. of IJCAI’95,

298–303.

https://doi.org/10.1017/S1471068417000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000175

