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We investigate the effects of superhydrophobic surfaces (SHS) carrying streamwise
grooves on the flow dynamics and the resultant drag reduction in a fully developed
turbulent channel flow. The SHS is modelled as a flat boundary with alternating
no-slip and free-slip conditions, and a series of direct numerical simulations is
performed with systematically changing the spanwise periodicity of the streamwise
grooves. In all computations, a constant pressure gradient condition is employed, so
that the drag reduction effect is manifested by an increase of the bulk mean velocity.
To capture the flow properties that are induced by the non-homogeneous boundary
conditions the instantaneous turbulent flow is decomposed into the spatial-mean,
coherent and random components. It is observed that the alternating no-slip and
free-slip boundary conditions lead to the generation of Prandtl’s second kind of
secondary flow characterized by coherent streamwise vortices. A mathematical
relationship between the bulk mean velocity and different dynamical contributions,
i.e. the effective slip length and additional turbulent losses over slip surfaces, reveals
that the increase of the bulk mean velocity is mainly governed by the effective slip
length. For a small spanwise periodicity of the streamwise grooves, the effective slip
length in a turbulent flow agrees well with the analytical solution for laminar flows.
Once the spanwise width of the free-slip area becomes larger than approximately 20
wall units, however, the effective slip length is significantly reduced from the laminar
value due to the mixing caused by the underlying turbulence and secondary flow.
Based on these results, we develop a simple model that allows estimating the gain
due to a SHS in turbulent flows at practically high Reynolds numbers.

Key words: drag reduction, flow control, turbulent flows

1. Introduction
The potential reduction of skin friction drag in turbulent flows is of large

economical and ecological interest and has continuously been investigated over

† Email address for correspondence: frohnapfel@kit.edu
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the past few decades. A variety of different drag-reducing techniques are known
today which are commonly classified in passive, active and reactive flow control
mechanisms (Gad-El-Hak 2007). From an application point of view passive flow
control techniques are most appealing since they do neither require the installation of
additional actuators and sensors nor the continuous energy input to run the control
(Spalart & McLean 2011). The use of superhydrophobic surfaces (SHS) for passive
control of skin friction drag has been investigated in both flow regimes, laminar and
turbulent, and it was demonstrated that SHS have promising potential for application
in turbulent flows (Rothstein 2010).

A SHS usually consists of a thin-film hydrophobic coating with a certain roughness
pattern. Gas bubbles are trapped in the cavities of the roughness pattern, locally
providing a gas–liquid interface with almost zero shear instead of the usual no-slip
interface along a solid wall. The superhydrophobicity of a surface is only obtained if
the fluid does not wet the cavities, e.g. remains in the Cassie state (Cassie & Baxter
1944; Rothstein 2010).

Philip (1972) models the SHS as an alternating boundary condition between no-
slip and free-slip using the Navier boundary condition, originally proposed by Navier
(1823), for solid–fluid interfaces on microscopic scale. By averaging over the entire
surface, an average slip velocity at the wall, us, is obtained:

us = ls

(
∂u
∂y

)
w

(1.1)

where ls denotes the effective slip length relating the slip velocity and the velocity
gradient at the wall (subscript w). For Stokes flow through a two-dimensional channel
with a superhydrophobic roughness pattern consisting of longitudinal or transversal
grooves, Philip (1972) analytically shows that the effective slip length over streamwise
grooves is exactly twice as large as that over transverse ones. The corresponding
solution for a flow in a circular tube is given in Lauga & Stone (2003). It can
be shown that for flows over longitudinal grooves, the solution derived by Philip
(1972) holds for a fully developed laminar regime regardless of the Reynolds number,
since the streamwise uniformity ensures that all nonlinear terms do not influence
the resulting flow field. In the case of transversal grooves, however, the nonlinear
terms cannot be neglected and thus the effective slip length exhibits a Reynolds
number dependency in the laminar regime. Consequently, the effective slip length
over transversal grooves reduces with increasing Reynolds number, and thus deviates
from that at the Stokes limit (Woolford, Maynes & Webb 2008). A unified expression
for the effective slip length for different geometries and Reynolds numbers in the
laminar regime is provided by Woolford et al. (2008), where the influence of the
cavity depth on the overall drag reduction and the assumption of a flat gas–liquid
interface are also discussed. It is shown that the assumption of a flat interface, which
we take in the present work, is valid if the width of the cavity is roughly equal to
its depth.

In addition to the mentioned analytical and numerical studies, experiments on
drag reduction resulting from SHS in laminar flow have also been conducted by, for
example, Ou, Perot & Rothstein (2004) or Maynes et al. (2007). In these experiments
the pressure drop is monitored as a function of varying flow rates and the results
are in agreement with the analytical derivations by Philip (1972): drag reduction in
laminar flow is increased with decreasing solid fraction and increasing cavity width;
longitudinal grooves generally have higher drag reduction potential than transversal
grooves.
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Considering that most engineering flows are turbulent such that the friction drag
is significantly increased compared with laminar flows, the potential application
of a SHS to turbulent flow for drag-reducing purposes is of great interest. First
experiments by Daniello, Waterhouse & Rothstein (2009) have demonstrated that
SHS turn out to be quite promising in the turbulent regime. They found significant
drag reduction with a slip length much smaller than the channel height. In laminar
flows, in contrast, the effective slip length has to be of the same order as the channel
height to achieve a significant drag reduction rate. This difference is caused by the
strong velocity gradients at the wall characteristic for turbulent flows: following (1.1)
a larger velocity gradient results in a larger slip velocity for a given slip length.

The effect of SHS on turbulent flows has also been investigated numerically. Min
& Kim (2004) model the SHS with a uniform slip length over a flat fluid–solid
boundary. They show that streamwise slip causes drag reduction if a constant flow
rate (CFR) is prescribed, while spanwise slip enhances turbulence near the wall,
and thus contributes to drag increase. Based on these results, Fukagata, Kasagi &
Koumoutsakos (2006) develop a theoretical model of the friction drag reduction over
a SHS with arbitrary streamwise and spanwise slip lengths. This model shows that
significant drag reduction can be achieved, even at high Reynolds numbers, with
a slip length of the order of ten wall units. This result is confirmed by Busse &
Sandham (2012) who perform an intensive parametric study for various combinations
of streamwise and spanwise slip lengths. As part of the parameter study they report
the inherent problem of turbulent drag reduction investigations at low Reynolds
numbers and CFR: the flow laminarizes for high drag-reduction values that are
realized with large streamwise slip lengths.

Martell, Perot & Rothstein (2009) first conducted direct numerical simulations
(DNS) of turbulent channel flow for which the SHS is modelled by alternating
local free-slip and no-slip wall boundary conditions without employing the effective
slip length model. In such a simulation, the effective slip length depends on the
groove geometry and is obtained as a result of the computation. In consecutive
work Martell, Rothstein & Perot (2010) consider several layouts of streamwise and
spanwise oriented grooves as well as surface structures consisting of posts in the
Reynolds number range of Reτ = 180–590. In these simulations, which are partly
complemented by experiments (Daniello et al. 2009), only one of the two channel
walls has a superhydrophobic property such that the flow is not symmetric around the
channel centreline and different shear stresses occur at the two walls. The simulations
are run under a constant pressure gradient (CPG), i.e. a fixed Reτ . Drag reduction
is evaluated based on the difference in wall shear stress on the SHS wall and on a
wall in a no-slip reference channel at the same Reτ . The reduction of the wall shear
stress is found to be highest for posts and streamwise-oriented grooves. In addition,
the tendency towards increasing drag reduction for an increase of the feature spacing
is observed.

Within the present study we aim to systematically investigate the impact of the
structural spacing of a SHS pattern with streamwise grooves on the fully developed
turbulent flow state. This pattern has the highest potential for drag reduction if the
solid fraction, Φ, of the surface is fixed (Martell et al. 2010). In contrast to previous
studies we perform DNS of turbulent channel flow including superhydrophobic
boundary conditions on both channel walls under CPG conditions. This set-up, for
which the wall shear stress and thus Reτ is kept constant on both channel walls,
ensures the absence of relaminarization effects and the gain of SHS is given by
an increase in flow rate (which also leads to a reduction of the non-dimensional
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FIGURE 1. Illustration of the computational domain and the instantaneous velocity field.

cf value). Most importantly, this particular flow condition allows us to derive a
simple mathematical relationship between the achieved gain in flow rate and the two
corresponding dynamical contributions, i.e. the effective slip length and the losses
due to enhanced turbulent motion over SHS.

By systematically changing the width of the streamwise grooves, we analyse the
quantitative contributions of each component to the resultant flow rate and thus
provide a link to the existing analytical solution for laminar flow conditions (Philip
1972). Based on these results, a simple modelling strategy that allows estimating the
gain achieved by SHS in turbulent flows is presented.

2. Numerical conditions and methods
2.1. Governing equations and numerical method

In the present work DNS are performed for a fully developed turbulent channel flow
driven by a CPG. The applied boundary conditions and the computational domain are
illustrated in figure 1, where x= x1, y= x2 and z= x3 correspond to the streamwise,
wall-normal and spanwise direction, respectively. The flow is bounded by alternating
no-slip free-slip boundary conditions on the bottom (y= 0) and top wall (y= 2δ),
while periodic boundary conditions are applied in streamwise and spanwise direction.

For an incompressible Newtonian fluid, the flow has to satisfy the continuity and
momentum equations in the following form:

∂u∗i
∂x∗i
= 0 (2.1)

ρ∗
Du∗i
Dt∗
=−∂p∗

∂x∗i
+µ∗ ∂

2u∗i
∂x∗2j

(2.2)
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Reτ Grid size Domain size 1x 1ymin 1z

180 128× 129× 128 2.5πδ× 2δ×πδ 11.0 0.1 4.4
180 128 × 129 × 256 2.5πδ × 2δ × πδ 11.0 0.1 2.2
180 256× 129× 256 5πδ× 2δ×πδ 11.0 0.1 2.2
180 256× 129× 256 2.5πδ× 2δ×πδ 5.5 0.1 2.2
180 512× 129× 256 2.5πδ× 2δ×πδ 2.75 0.1 2.2
180 128× 129× 512 2.5πδ× 2δ×πδ 11.0 0.1 1.1
180 128× 129× 1024 2.5πδ× 2δ×πδ 11.0 0.1 0.55
180 128× 129× 512 2.5πδ× 2δ× 2πδ 11.0 0.1 2.2
180 128× 129× 1024 2.5πδ× 2δ× 4πδ 11.0 0.1 2.2

TABLE 1. Domain properties of the present DNS. The bold line highlights the
configuration of the standard case.

where p∗ is the static pressure and µ∗ is the dynamic viscosity. Throughout
this paper, the asterisk denotes a dimensional quantity. Otherwise quantities are
non-dimensionalized by the friction velocity, u∗τ , and the kinematic viscosity, ν∗, such
that u = u∗/u∗τ , xi = x∗i u∗τ/ν

∗ and t = t∗u∗2τ /ν
∗ (wall units). Note that, as the pressure

gradient is kept constant during the simulation, u∗τ is constant consequently. The same
holds for the friction Reynolds number given by

Reτ = u∗τδ
∗

ν∗
, (2.3)

where δ∗ is the half-channel height. By doing so, the gain due to a SHS is measured
in terms of an increase in flow rate compared to a turbulent channel flow with purely
no-slip walls at top and bottom. This approach is chosen since the alternative set-up
in which a CFR is prescribed, will lead to very low friction Reynolds numbers for
the large drag reduction that is expected with SHS. Potential changes in the turbulence
properties due to the presence of SHS might be masked through this Reynolds number
effect.

As numerical scheme, a fractional step method on a staggered grid is applied.
For spatial discretization a second-order finite difference method is used while for
temporal discretization, the solver employs the second-order Adams–Bashforth method
for the convection terms and the Crank–Nicolson method for the viscous terms. The
grid resolution and the grid spacing are given in table 1. In particular, the resolution
in spanwise direction is critical in the present set-up and is discussed further in
the following section. To limit the overall computational costs we choose a rather
coarse grid in streamwise direction, i.e. 1x= 11, and a relatively short computational
domain. By doubling and quadruplicating the number of grid points in streamwise
direction for selected cases it was confirmed that the main results presented in this
paper, i.e. effective slip length and the profile of the Reynolds shear stress throughout
the channel (i.e. turbulent losses), are hardly affected by the streamwise grid spacing.
The difference in the resultant bulk mean velocity remains less than 2 %. Concerning
the streamwise extend of the computational box selected cases were rerun with twice
the streamwise box size. It is confirmed that the results presented in this paper are
hardly affected by this variation. Specifically, the corresponding difference of Ub is
less than 1 %. However, we note that, even for a streamwise extend of 5πδ, the
two-point correlation of the random streamwise velocity fluctuations in the near-wall
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FIGURE 2. Reynolds shear stress −u′v′ (a) normalized by the wall shear velocity u∗τ ,0 of
the reference case (no-slip) (b) normalized by the actual u∗τ . Curves: , no-slip reference
channel; – –, CFR streamwise slip; · · · , CFR streamwise and spanwise slip; •, CPG
streamwise slip; – · –, CPG streamwise and spanwise slip.

region (y+ < 10) does not fully decrease to zero if the spanwise location in the
centre of the free-slip region is considered. In general, the spanwise average of the
streamwise two-point correlations shows only very small differences compared with
the results of a regular no-slip channel.

All statistics presented in the following are obtained for an integration time of
t = 10 440 with a time step of 1t = 0.036. The present code has been validated for
the fully developed turbulent flow over no-slip walls with standard literature data
(Kim, Moin & Moser 1987).

2.2. Superhydrophobic boundary condition
Since there is no data available in the literature for superhydrophobic boundary
conditions under CPG we first verify our implementation of streamwise and spanwise
slip conditions by reproducing the data of Min & Kim (2004) for a homogeneous slip
length of ls = 3.566 under CFR conditions. The case of streamwise slip only (Case
1 in Min & Kim (2004)) as well as that for combined streamwise and spanwise slip
(Case 3 in Min & Kim (2004)) is considered for verification purposes. The obtained
slip velocity for streamwise slip deviates less than 1 % from the corresponding
literature result (of us = 3.006). The test case of combined streamwise and spanwise
slip is also reproduced with less than 1 % deviation from the literature result (of
us = 3.238). To illustrate the difference between CFR and CPG conditions for SHS,
the same simulations are run for CPG conditions. In this case the resulting slip
velocities have to coincide with the value of the prescribed streamwise slip lengths
since ∂u/∂y = 1 holds for CPG conditions. Since drag is not changed by definition,
the CPG condition yields an increase of the flow rate: 23 % for Case 1 and 13 % for
Case 3. Differences between CFR and CPG are naturally also visible in the Reynolds
stresses.

Figure 2 exemplary shows the distribution of the Reynolds shear stress, −u′v′,
for both cases (i.e. CFR and CPG) when either only streamwise or a combination
of streamwise and spanwise slip is applied. The Reynolds shear stress is chosen
since it is strongly linked to the friction factor, cf (Fukagata, Iwamoto & Kasagi

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.137


192 S. Türk, G. Daschiel, A. Stroh, Y. Hasegawa and B. Frohnapfel

2002), and is thus an essential quantity when skin friction drag reduction is to be
discussed. In figure 2(a), −u′v′ obtained under CFR and CPG is presented in a
normalization that is based on u∗τ ,0, i.e. the wall shear velocity of the reference case.
In this case, −u′v′ appears to be significantly damped in CFR. However, one cannot
immediately conclude that SHS suppresses near-wall turbulence, because the wall
friction is also reduced in CFR. The normalization of −u′v′ based on the actual u∗τ
is shown in figure 2(b): the difference between CFR and the reference flow are less
prominent. The slight remaining difference can be mainly attributed to the Reynolds
number effect, since it is well known that the turbulent statistics are affected by the
friction Reynolds number even in uncontrolled flow at the low Reynolds numbers
considered here. For CPG (and also the reference flow) there is no difference between
figure 2(a) and (b), since the reference and actual u∗τ are identical by definition. In
the case of CPG with streamwise slip only, the distribution of −u′v′ is identical to
that of the reference flow with no-slip walls. This suggests that the turbulent flow
over a SHS is dynamically equivalent to that in a channel flow with no-slip walls
moving at us. For combined streamwise and spanwise slip −u′v′ slightly increases
under CPG which is consistent with the conclusion of Min & Kim (2004) who show
that spanwise slip leads to an increased turbulence activity in the near-wall region.

As seen from the above considerations, the interpretation of results can depend on
the employed numerical conditions and the normalization of flow quantities. This issue
is not specific to the current study, but common in flow control problems as discussed
by Frohnapfel, Hasegawa & Quadrio (2012). Since the purpose of the present study is
to investigate the essential effects of a SHS on the dynamics of wall turbulence under
fully turbulent conditions, prescribing a constant wall friction is the most appropriate
strategy. Therefore, we employ the CPG condition throughout this work.

In contrast to studies with a prescribed spatially uniform slip length we investigate
SHS consisting of streamwise-oriented grooves in the following. In this set-up a
homogeneous slip length is not given a priori, but the surface is modelled by
alternating no-slip free-slip (i.e. no-shear) boundary conditions. These are applied at
top and bottom wall of the channel in such a way that the problem is symmetric
about the centre plane of the channel, and the effective slip length is obtained by
considering the time- and space-averaged (in streamwise and spanwise direction)
velocity field that results from the DNS. The implementation of this non-uniform
boundary condition is verified by reproducing the laminar analytical solution of Philip
(1972). The reproduction of the laminar solution shows that high spatial resolution
is required in order to handle the discontinuity that is introduced between slip and
no-slip areas. Systematic grid refinement under laminar flow conditions reveals that
this singularity in the boundary condition alters the convergence rate of the numerical
scheme: it is found to be of first order for the present case.

The SHS is characterized by the periodicity L as shown in figure 3 and the solid
fraction Φ which is defined as Φ = d/L. The investigated scenarios are summarized
in table 2. A wide range of L values is investigated, ranging from 2 to 150 % of the
channel height. To ensure that results for large L values are not influenced by the
spanwise extend of the computational box the domain size was extended for these
cases (see table 1). We note that it is questionable whether SHS that correspond to
the largest L values can be realized under turbulent flow conditions in practice (see
appendix A). However, it is still beneficial to consider such idealized situations in
order to investigate the effects of L on near-wall turbulent dynamics alone from a
fundamental viewpoint and also evaluate a maximum achievable gain in flow rate with
SHS.
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FIGURE 3. Schematic of a SHS with streamwise grooves and the corresponding phase φ.

Geometric wavelength, L 8.8 17.6 35.2 70.4 140.8 140.8 140.8 281.6 563.2
Spanwise resolution, 1z 0.55 0.55 1.1 2.2 2.2 0.55 2.2 2.2 2.2
Number of grid points per L, n 16 32 32 32 64 256 64 128 256
Normalized wavelength, L/2δ 0.024 0.049 0.098 0.20 0.39 0.39 0.39 0.78 1.56
Solid fraction, Φ 0.5 0.5 0.5 0.5 0.25 0.5 0.75 0.5 0.5

TABLE 2. Considered configurations.

As mentioned above, the spanwise resolution (i.e. the resolution of the periodically
varying boundary condition) is a critical issue for the numerical realization of the
alternating boundary conditions of no-slip and free-slip. Therefore, a parametric
study with varying resolution in the spanwise direction is carried out for three
selected wavelengths of L = 8.8, 17.6 and 140.8 under turbulent flow conditions.
The corresponding results are summarized in figure 4(a) where the resulting relative
slip length, ls/L, is plotted versus the spanwise resolution 1z. There is a clear
grid dependency for small values of L which indicates that even higher resolution
in spanwise direction (probably in combination with increased wall-normal and
streamwise resolution) would be required to correctly capture ls for small L. The
trend in the present results indicates that the convergence rate of first order observed
for laminar flow seems to also exist under turbulent conditions. If we assume that a
linear extrapolation of the shown trend towards 1z = 0 yields a lower limit for the
respective ls, it is possible to estimate a relative error as a function of the grid points,
n, employed per wavelength, L. Figure 4(b) indicates that n generally characterizes
the achievable accuracy of our set-up. It can be concluded that 25 = 32 grid points
should be present over one wavelength L in order to reduce the relative error in
ls to less than 10 %. This requirement for the grid resolution becomes particularly
tough for DNS with small L. However, the effect of SHS diminishes as L decreases
and the resultant effective slip length at small L < 35 can be well predicted by
the laminar analytical solution as will be shown in the following. In the range of
comparatively large L where the difference between SHS in laminar and turbulent
regimes is more prominent, sufficiently fine spanwise resolution can be achieved.
Based on the observed dependencies shown in figure 4 the spanwise resolution is set
as summarized in table 2.

2.3. Decomposition of the velocity field
Owing to the periodically varying boundary condition in the spanwise direction, it
is likely that the statistical features of the turbulent velocity field show a similar
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FIGURE 4. (a) Dependency of the relative slip length, ls/L, on the spanwise resolution,
1z for different wavelength, L. (b) Upper bound estimation of the relative error in
the determination of ls as a function of the number of grid points, n, employed per
wavelength, L.

periodicity. Accordingly, a phase-averaging operator leading to a triple decomposition
as suggested by Reynolds & Hussain (1972) is introduced as

〈f 〉 (φ, y)= 1
N

N∑
n=1

∫
t

∫
x

f
(

x, y, L
(
φ

2π
+ n
)
, t
)

dx dt, (2.4)

where f is an arbitrary variable and a function of space and time, while φ is a phase
with respect to the periodic structure as shown in figure 3 and N is the number of
periods in the computational domain. Averaging 〈f 〉 over φ results in the spatial mean

f (y)= 1
2π

∫ 2π

0
〈f 〉 (φ, y) dφ. (2.5)

Accordingly, coherent fluctuations are defined as

f̃ (φ, y)= 〈f 〉 (φ, y)− f (y). (2.6)

Thus, any flow quantity can be decomposed as follows:

f (x, y, z, t) = 〈f 〉 (φ, y)+ f ′′(x, y, z, t)

= f (y)+ f̃ (φ, y)+ f ′′(x, y, z, t), (2.7)

where a quantity with a double prime represent the deviation from the phase average
and is referred to as random fluctuation throughout this paper. We also define the
overall fluctuation as the deviation from the spatial mean

f ′(x, y, z, t) = f (x, y, z, t)− f (y)

= f̃ (y, φ)+ f ′′(x, y, z, t). (2.8)
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This is equivalent to the definition of a fluctuating component in the conventional
Reynolds averaging for no-slip walls with a homogeneous spanwise direction. In the
case of the hydrophobic surface with streamwise grooves, the overall fluctuations are
given by a sum of coherent and random fluctuations as shown in (2.8). Accordingly,
the correlation of two arbitrary quantities f and g can be obtained as

f ′g′ = f̃ g̃+ f ′′g′′. (2.9)

3. Impact of SHS on the turbulent flow field
3.1. Effective slip length

For laminar flow conditions the analytical solution of Philip (1972) provides a link
between the resulting effective slip length, ls, and the geometrical structure of the
surface pattern, L and Φ:

ls

L
= −1

π
log
[
cos
{π

2
(1−Φ)

}]
. (3.1)

The DNS results for the effective slip lengths determined by the time- and space-
averaged turbulent flow according to

us = ls

(
∂u
∂y

)
w

(3.2)

are compared with this solution. Note that for CPG conditions, it holds that ls = us

since the wall shear stress is fixed: (∂u/∂y)w = 1. It can be seen in figure 5 that
for L6 35 laminar and turbulent solutions coincide within the accuracy of the DNS
predictions (error bars are included for the two smallest L values according to the
estimation shown in figure 4) indicating that ls is mainly a function of the geometrical
properties of the streamwise grooves and does not depend on the flow state. For L>
35 significant deviations appear, such that turbulent flow conditions result in lower
values of ls. This difference becomes more pronounced as L increases and indicates
the existence of specific turbulent losses, which are analysed further in § 4.2.

3.2. Relative flow rate increase
In general, the presence of a SHS increases the bulk mean velocity compared with a
channel flow with no-slip walls at the same friction Reynolds number (CPG condition)
and constant channel height. The performance of SHS is thus evaluated based on
the relative increase of flow rate expressed in terms of the relative increase of the
bulk velocity, i.e. 1Ub/Ub,0, where 1Ub=Ub−Ub,0 and the subscript 0 indicates the
reference value with no-slip walls.

Figure 6 shows the relative increase in flow rate as a function of the different
geometric wavelengths, L, of the grooved surface structure. The DNS results for
turbulent flows show that this gain constantly increases with increasing L initially but
levels off for values above L ≈ 100 approaching a maximum increase in flow rate
of approximately 50 % for Φ = 0.5. In comparison with ls, plotted in figure 5, the
increase of 1Ub is slower with increasing L, indicating that additional losses are at
play here. These are discussed in § 4.3. The apparent limit of the achievable increase
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FIGURE 5. Comparison of the effective slip length obtained by DNS of turbulent flows
under CPG and the laminar solution of Philip (1972).
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FIGURE 6. Gain in terms of the relative increase in Ub for streamwise grooves at Φ= 0.5
compared with the no-slip reference channel.

in flow rate is particular for turbulent flows. The expected gain under laminar flow
conditions can be obtained from (3.1) as follows:

(
1Ub

Ub,0

)
lam

=
−L
π

log
[
cos
{π

2
(1−Φ)

}]
Reτ/3

− 1 (3.3)

and is also included in figure 6. As already noted by Daniello et al. (2009), it can
be seen that at low values of L, SHS are more effective under turbulent conditions
than under laminar ones. For large values of L the opposite is true since the turbulent
losses outweigh the benefit of higher near-wall velocity gradients in turbulent flow.

3.3. Velocity statistics over SHS
The spatial mean velocity profiles for different L are plotted in figure 7(a). The general
shape of the velocity profile found above purely no-slip walls is maintained with
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FIGURE 7. Mean streamwise velocity profiles (a) as obtained from the simulation and (b)
shifted by the corresponding slip velocity for: – –, L= 8.8; · · · , L= 35.2; – · –, L= 281.6;

, no-slip reference channel; ◦, DNS from Kim et al. (1987). The arrow indicates an
increase in L.

an offset at the wall that corresponds to the effective slip velocity. If the profiles
are corrected by this offset, they collapse within the viscous sublayer as shown in
figure 7(b). This collapse is expected, since the average velocity gradient at the wall
is fixed under the CPG condition. In the channel centre such a collapse of the velocity
profiles is not found. The relative velocity decreases with increasing L. As pointed out
above, this reduction is particular for turbulent flows and is not found under laminar
conditions. The same trend is observed when a uniform slip length in streamwise and
spanwise direction is prescribed at the wall. This change of the relative mean velocity
profile is generally linked to an increase of turbulence activity which Min & Kim
(2004) relate to slip effects in the spanwise direction.

In contrast to the spatial mean velocity profile, the phase resolved streamwise
velocity, 〈u〉, which can be seen in the contour plots of figures 12 and 14 clearly
reflects the numerical representation of streamwise grooves. In order to enable a
comparison of the statistics for flows over streamwise grooves with those for a
prescribed homogeneous slip length the split-up into a coherent and random part as
introduced in § 2.3 is applied in the following.

The Reynolds stresses for different L are shown in figures 8–11. The non-
homogeneity of the boundary condition in spanwise direction has the largest effect
on the streamwise component of the Reynolds stresses, u′2. The coherent contribution,
ũ2, increases with increasing L and decreases with increasing wall distance. The
increase with L is due to the fact that higher velocities can develop along a wider
groove, i.e. the free-slip surface. The coherent contributions to ṽ2 and w̃2 are small
for small L but increase for the two largest wavelengths, suggesting the presence of
a secondary flow. This observation is analysed in § 3.4 in more detail.

The random contributions to the normal stresses show non-zero values of u′′2 and
w′′2 at the wall due to the local no-shear condition while v′′2 has to approach zero due
to non-permeability of the boundary. In general, an increase of the peak value for the
random part of the normal Reynolds stresses and a slight shift of its location towards
smaller wall distances can be observed for SHS in comparison with no-slip walls.

In contrast to these results, Min & Kim (2004) report decreasing peak values of the
normal stresses for combined streamwise and spanwise slip. As already discussed with
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FIGURE 8. Streamwise component of the normal Reynolds stresses for: – –, L = 8.8;
· · · , L = 35.2; –•–, L = 140.8; – · –, L = 281.6; ◦, CFR homogeneous partial slip;
�, CPG homogeneous partial slip; , no-slip reference channel. The arrow indicates
the direction of increasing L. The total Reynolds stress (u′2) is given by the sum of the
coherent (ũ2) and the random (u′′2) contribution.

respect to figure 2, this discrepancy is primarily caused by the simulation strategy and
not by the way the SHS is modelled. The data for combined homogeneous partial slip
under CFR and CPG are therefore included in the middle part of figure 8 for reference.
The slip length, ls, corresponds approximately to the value obtained for L=35.2 and it
can be seen that the statistics for random velocity fluctuations in streamwise direction
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FIGURE 9. Wall-normal component of the normal Reynolds stresses for: – –, L = 8.8;
· · · , L = 35.2; –•– , L = 140.8; – · –, L = 281.6; �, CPG homogeneous partial slip;

, no-slip reference channel. The arrow indicates the direction of increasing L.

are similar for y> 13 for the two CPG cases. However, clear differences can be seen
in the near-wall region where u′′2 is larger for the case with streamwise grooves than
for that with homogeneous partial slip. This difference can be linked to the fact that
u′′2 is mainly generated over the free-slip region of the streamwise grooves where the
local slip length is infinite. The uniform slip length model is a macroscopic model,
which ignores the inhomogeneity of the local surface boundary condition, so that it is
expected that the uniform slip length model fails to predict turbulence statistics near
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FIGURE 10. Spanwise component of the normal Reynolds stresses for: – – L = 8.8;
· · · , L = 35.2; –•– , L = 140.8; – · –, L = 281.6; �, CPG homogeneous partial slip;

, no-slip reference channel. The arrow indicates the direction of increasing L.

the SHS, especially at large L. However, it should be emphasized that such a simple
model can well reproduce the trend of turbulence statistics away from the wall as
shown in the middle plot of figure 8, if the uniform slip length is properly given.
A very good agreement between the two simulation approaches is also found for the
random part of the Reynolds shear stress, as shown in figure 11, when the same ls is
realized.
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FIGURE 11. Reynolds shear stress for: – –, L = 8.8; · · · , L = 35.2; –•– , L = 140.8;
– · –, L= 281.6; 4, L= 563.2; �, CPG homogeneous partial slip; , no-slip reference
channel.

The random spanwise fluctuations w′′2 increase with increasing L, except for the
centre region of the channel, where they remain largely unchanged up to L = 140.8.
The CPG data for homogeneous partial slip are obtained with the same prescribed
partial slip in streamwise and spanwise direction. In contrast to the streamwise
direction a direct comparison of w′′2 obtained with partial slip and with one
specific L-value is not possible since there is no clear definition available for the
effective spanwise slip length, lz

s. Estimations of lz
s based on w′′2 or the corresponding

root-mean-square (r.m.s.) value are difficult due to the very small and spatially varying
near-wall gradient. As already pointed out with respect to u′′2 the overall trend for
w′′2 (and also for v′′2) are well captured with the homogeneous slip model.

The total Reynolds shear stress, as shown in figure 11, generally increases with
increasing L. However, a saturation of this effect can be observed. The coherent
contribution, which indicates the presence of a secondary flow structure, is generally
smaller than the random contribution but shows the interesting fact of a reversed sign
for the two largest wavelengths: negative values of −ũṽ appear.
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3.4. Secondary flow

The existence of non-negligible coherent contributions to v′2 and w′2 at larger
wavelengths L indicate the presence of secondary flow structures. Careful data
analysis shows that secondary flow structures of Prandtl’s second kind (Nikuradse
1926; Pöschl 1926), i.e. in the form of streamwise vortices, are indeed present
for all investigated values of L. Figure 12 shows the secondary motion in the y–z
plane for L= 17.6, 140.8 and 281.6. The underlying contour plot of the streamwise
velocity reflects the fact that the flow rate in the channel increases with increasing L,
i.e. from Ub = 17.1 for L= 17.6 to Ub = 23.3 for L= 281.6. The secondary motion
consists of a pair of counter-rotating vortices which extend roughly one wavelength
in wall-normal direction for small L and cover the entire channel height when the
ratio L/δ approaches one. The trend in the strength of the secondary motion can be
deduced from the coherent parts of figures 9 and 10: it increases with increasing L.
For the lower values of L the vortical motion transports fluid downwards over the
free-slip area and upwards over the no-slip area. Interestingly, for the two largest
wavelengths considered a secondary motion with opposite rotational direction is
observed. Namely, a downwelling motion occurs over the no-slip area, while the
upwelling is located above the free-slip area. Since ũ is always positive near the
free-slip area regardless of the value of L, this reversed vorticity leads to the change
of sign for the coherent part of the Reynolds shear stress as observed in figure 11.

In order to further investigate the mechanism and the dynamics of the secondary
flow over SHS, we consider the transport equation for the phase averaged streamwise
vorticity 〈ωx〉:

〈v〉 ∂ 〈ωx〉
∂y
+ 〈w〉 ∂ 〈ωx〉

∂z
= −∂

2 〈w′′v′′〉
∂y2

− ∂
2 〈w′′w′′〉
∂y∂z

+ ∂
2 〈v′′v′′〉
∂y∂z

+ ∂
2 〈v′′w′′〉
∂z2

+ 1
Reτ

(
∂2 〈ωx〉
∂y2

+ ∂
2 〈ωx〉
∂z2

)
. (3.4)

The terms on the left-hand-side represent the convection of 〈ωx〉 due to the secondary
flow. The first four terms on the right-hand-side are production terms of 〈ωx〉, while
the last term represents the viscous diffusion of 〈ωx〉. Considering that the convection
and diffusion terms do not produce vorticity, it is required that the production terms
have non-zero value in order to generate secondary motion. The production terms
include either a derivative in spanwise direction or the correlation 〈v′′w′′〉 such that
non-zero values can only be obtained when the alternating no-slip and no-shear
surfaces are resolved. Therefore, the effective slip model as introduced by Min &
Kim (2004), which is homogeneous in the spanwise direction, cannot lead to the
formation of secondary flow.

The production of 〈ωx〉 is largest close to the boundary between free-slip and
no-slip regions. Its spatial extent in the spanwise direction is around 1z ≈ 10 and
almost independent of L. For L< 140 the two neighbouring secondary vortices with
opposite sign force the flow upward above the no-slip area and downward over the
free-slip region as shown sketched in figure 13(a). For larger L the same production
mechanism seems to act at the interface between the no-slip and the free-slip wall. In
this case, however, the extension of the locally induced vortices is much smaller than
their spanwise separation. Thus, they do not interact directly but induce an additional
tertiary vortical motion at larger wall distance as sketched in figure 13(b).

The fact that secondary vortices are produced at the interface between the no-slip
and the free-slip wall and generate tertiary vortices depending on the distance between
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FIGURE 12. Visualization of the secondary flow in the y–z-plane with superimposed
colour contour of the phase-resolved streamwise velocity, 〈u〉.

the interfaces can also be observed if a variation of the solid fraction is considered.
Figure 14 shows the streamlines of the induced vortical structures for Φ = 0.25 and
Φ = 0.75 in the y–z plane. There is a downwelling motion above the free-slip region
close to the interface. For large free-slip areas, here Φ = 0.25, a tertiary vortex with
opposite rotational direction is induced which causes an upwelling motion above the
centre of the free-slip area.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.137


204 S. Türk, G. Daschiel, A. Stroh, Y. Hasegawa and B. Frohnapfel

Gas
cavity

(a) (b)

Solid
Gas

cavity
Gas

cavity

Tertiary vortical motion

FIGURE 13. Schematic of the secondary flow mechanism over a SHS with (a) small and
(b) large groove widths.
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FIGURE 14. Visualization of the secondary flow in the y–z-plane with superimposed
colour contour of the phase-resolved streamwise velocity, 〈u〉, for L= 140.8 with different
solid fractions.

A similar observation, i.e. that periodically varying surface structures induce
a secondary motion in the form of streamwise-oriented vortices, is known from
Goldstein & Tuan (1998) who report secondary flows in turbulent flow over riblets if
a certain riblet spacing is exceeded. The strength of the secondary flow increases with
increasing riblet spacing. For very large riblet spacing they observe the existence of
tertiary vortices which are induced by the secondary flow motion which is consistent
with the present observations.

4. Mechanism of the flow rate increase and its estimation
4.1. Mathematical relationship between the flow rate and different dynamical

contributions
In order to quantify the importance of the different mechanisms that determine the
flow rate increase over SHS, the approach of Fukagata et al. (2002) and Marusic,
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Joseph & Mahesh (2007), who present a mathematical relationship between the wall
friction and different dynamical contributions in wall-bounded flows, is extended for a
SHS. Applying triple integration to the averaged transport equation for the streamwise
momentum under the assumption of a CPG and symmetry of the flow with respect
to the channel centreline, results in the following identity, which is also presented in
similar form in Hasegawa, Frohnapfel & Kasagi (2011):

Ub = Reτ
3
+ us −

∫ δ

0

(
1− y

δ

) (−u′v′
)

dy. (4.1)

The first term on the right-hand side corresponds to the laminar flow rate over a no-
slip surface under the same pressure gradient. This laminar contribution is constant
since Reτ is fixed. Hence, the flow rate is determined by the second and third terms
on the right-hand side of (4.1). The second term represents the contribution of the
slip velocity, us (= ls for CPG conditions), and the third term is that of the weighted
Reynolds shear stress, which basically reflects the shape of the velocity profile. In a
laminar flow, the turbulence contribution is absent, so that the increase in flow rate
is determined solely by the slip velocity. In turbulent flows, however, the third term
leads to a significant reduction of the bulk velocity.

For the reference case of a flow over no-slip walls, denoted by the subscript of 0,
equation (4.1) reduces to

Ub,0 = Reτ
3
−
∫ δ

0

(
1− y

δ

) (−u′0v
′
0

)
dy. (4.2)

Since we are interested in the differences between purely no-slip surfaces and SHS,
we subtract (4.2) from (4.1) so that

1Ub =Ub −Ub,0 = us −
∫ δ

0

(
1− y

δ

) (−u′v′ + u′0v
′
0

)
dy︸ ︷︷ ︸

additional turbulent losses1Uloss

. (4.3)

Figures 15 and 16 show the change in bulk velocity, 1Ub, and its contributions as
given by (4.3) for different L and Φ. It can be seen that the change in Ub is mainly
governed by the slip velocity, us. Since us= ls, this curve corresponds to the one for ls
plotted in figure 5. The reduction of Ub due to the additional turbulent losses, 1Uloss,
seems to saturate with increasing L. This saturation is also reported in other numerical
studies that are based on uniform spanwise slip length (Fukagata et al. 2006; Busse
& Sandham 2012). In the following we analyse both contributions that determine the
effectiveness of the SHS with streamwise grooves in a turbulent flow, namely, the
effective slip length, ls, and the additional turbulent losses, 1Uloss, in more detail.

4.2. Effective slip in turbulent flow
The potential reasons that lead to the observed saturation of ls or us in turbulent
flows can be analysed by considering the transport equation of the phase-averaged
streamwise velocity 〈u〉:

〈v〉 ∂ 〈u〉
∂y
+ 〈w〉 ∂ 〈u〉

∂z
=−∂ 〈u

′′v′′〉
∂y

− ∂ 〈u
′′w′′〉
∂z

− ∂ 〈p〉
∂x
+
(
∂2 〈u〉
∂y2
+ ∂

2 〈u〉
∂z2

)
. (4.4)
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FIGURE 15. Contributions to the change of the bulk velocity according to (4.3) for
different L at Φ = 0.5: •, 1Ub; ×, us; �, 1Uloss; – · –, values predicted for 1Uloss
according to (4.12) and (4.13).
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FIGURE 16. Contributions to the change of the bulk velocity according to (4.3) for
different Φ at L = 140.8: •, 1Ub; ×, us; �, 1Uloss; – · –, values predicted for 1Uloss
according to (4.12).

Note that −∂ 〈p〉 /∂x = 1/Reτ = const. in the present configuration. The two terms
on the left-hand side represent the convective transport by the phase-averaged flow,
i.e. the secondary flow. The first two terms on the right-hand side arise from the
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Reynolds shear stresses, and correspond to turbulent diffusion, while the last term
expresses the viscous diffusion of 〈u〉. In laminar flow, the terms related to the
secondary flow (convective transport) and the turbulent diffusion are not present.
Hence, one of them (or both) should cause the deviation of ls from Philip’s laminar
solution at larger L as shown in figure 5.

In order to consider the effect of turbulent diffusion, we introduce the turbulent
(eddy) viscosity νt as

− 〈u′′i u′′j
〉≈ νt

(
∂ 〈ui〉
∂xj
+ ∂

〈
uj
〉

∂xi

)
. (4.5)

By substituting (4.5) into (4.4), we obtain

〈v〉 ∂ 〈u〉
∂y
+ 〈w〉 ∂ 〈u〉

∂z
=−∂ 〈p〉

∂x
+ ∂

∂y

{
(1+ νt)

∂ 〈u〉
∂y

}
+ ∂

∂z

{
(1+ νt)

∂ 〈u〉
∂z

}
. (4.6)

In general, νt is a local property of turbulence, and therefore a function of y and z.
The simplest approach is to assume that νt is identical to that over a no-slip surface. In
this case, νt is a function of y only and its empirical expression is given by Reynolds
& Hussain (1972):

νt = ν
∗
t

ν∗
= 1

2

[
1+

{
κReτ

3

(
1− y2

) (
1+ 2y2

) (
1− exp

[
−(1− |y|)Reτ

A

])}2
]−1/2

− 1
2
.

(4.7)
Here, κ and A are empirical constants, usually set to κ = 0.426 and A= 26. Note that
in (4.7), the locations of top and bottom walls correspond to y=−1 and 1, and the
channel centre is at y= 0. In the above equation, A is the van Driest constant which
represents the attenuation of turbulence due to the presence of a solid surface. In the
case of a SHS this value should be changed in order to reflect the modified boundary
conditions. For a free-slip surface the van Driest constant can be estimated to
Afs = 13.9 by fitting (4.7) to the DNS data of Hasegawa & Kasagi (2007) using the
method of nonlinear least squares. When the same fitting procedure is applied to the
no-slip reference channel data a value of Ans = 25.8 is obtained which is in a good
agreement with the conventionally known value of A= 26 (Van Driest 1956).

In order to estimate the van Driest constant at a SHS we employ the weighted sum
of Afs and Ans according to

ASHS ≈ΦAns + (1−Φ) Afs. (4.8)

Figure 17 shows a comparison of this simple model prediction with the eddy viscosity
profiles extracted from the present DNS data for different Φ at L= 140.8. Since the
agreement is reasonable we use (4.7) with ASHS as given by (4.8) for modelling νt
over a SHS in the following.

Once νt is fixed (4.6) can be solved in the y–z plane with the same boundary
conditions that are used in the DNS. In order to evaluate the convective transport
terms due to secondary motion, i.e. the left-hand side of (4.6), the information of 〈v〉
and 〈w〉 has to be provided. In the present calculation, they are extracted from the
DNS data. In order to clarify the importance of these terms, an additional computation
without the secondary flow is carried out by setting the left-hand-side of (4.6) to zero.
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FIGURE 17. Comparison of turbulent viscosity profiles from DNS simulations with
modelled profiles at L = 140.8. The grey shaded area represents an array of possible
viscosity distributions according to (4.8) between the boundaries of a free-slip surface,
Afs = 13.9, and a no-slip wall, Ans = 25.8.

The resulting slip length, ls = us, is obtained by the spatial average of 〈u〉 at the
SHS. The results for varying L and Φ, based on a spanwise resolution of 1z= 2.2,
are shown in figures 18 and 19, respectively, in comparison with the DNS data. The
comparison of the model results with and without consideration of the secondary flow
reveals that the tertiary vortices observed for L = 281.6 and 563.2 at Φ = 0.5 have
a significant impact on ls while the influence of ‘pure’ secondary motions is rather
weak. The same conclusions can be drawn based on the results presented in figure 19:
the initial deviation of ls from the laminar solution is mainly caused by the enhanced
momentum transfer under turbulent flow conditions; once tertiary vortices appear (in
this case for L= 140.8 at Φ = 0.25) their presence strongly influences ls.

In order to use these results for the development of a modelling strategy for ls,
the analytical solution for laminar flow is sketched additionally in figures 18 and 19.
Obviously, its agreement with the DNS data is excellent for small L in the case
of Φ = 0.5. For L > 35.2, however, the prediction of ls taking turbulent diffusion
into account according to (4.7) clearly increases the quality of the results. Only
for very large L, for which tertiary vortices appear, the proposed model starts to
fail. Similar conclusions can be drawn for the variation of Φ. Comparison of the
results with varying L and Φ suggests, that the recommended prediction method for
ls strongly depends on the width of the no-slip boundary, (1 − Φ)L: based on the
results presented, it is expected that the analytical solution provides good results
for approximately (1 − Φ)L < 20, the simple model based on the introduction of a
turbulent viscosity seems to be applicable up to roughly (1−Φ)L= 75.

4.3. Additional turbulent losses
The additional turbulent losses in (4.3) can be further decomposed into coherent and
random contributions as

1Uloss =
∫ δ

0

(
1− y

δ

) (−u′′v′′ + u′′0v
′′
0

)
dy︸ ︷︷ ︸

I

+
∫ δ

0

(
1− y

δ

) (
−ũṽ

)
dy︸ ︷︷ ︸

II

. (4.9)
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ls

L
101 102 103

0
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15

FIGURE 18. Comparison of the effective slip length obtained in DNS and predicted by
the present model (4.6) for different L at Φ = 0.5: •, DNS; —-, laminar solution from
Philip (1972); �, model without secondary flow; 4, model with secondary flow pattern
(extracted from DNS).

ls
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0 0.2 0.4 0.6 0.8 1.0

FIGURE 19. Comparison between the effective slip lengths obtained in DNS and predicted
by the present model (4.6) for different Φ at L = 140.8: •, DNS; , laminar solution
from Philip (1972); �, model without secondary flow; 4, model with secondary flow
pattern (extracted from DNS).

Here, I is the reduction of the bulk mean velocity due to the random part of the
Reynolds shear stress and II is the contribution due to its coherent part. Note that
the coherent contribution vanishes for a purely no-slip surface.
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FIGURE 20. Contributions to 1Uloss according to (4.9) for different L: �, 1Uloss= I+ II;
�, random contribution I; •, coherent contribution II; —-, values predicted for 1Uloss
according to (4.12) and (4.13).

In figure 20, the coherent and random contributions and also their sum are plotted as
a function of L at Φ = 0.5. It is observed that the coherent and random contributions
to the bulk mean velocity change irregularly with increasing L. Specifically for the
two largest L, the coherent contribution changes its sign, so that it contributes to
an increase of the flow rate. Meanwhile, the turbulent loss arising from the random
component is drastically enhanced. This change can be attributed to the change of
the rotation direction of the secondary motion as discussed in § 3.4. Although there
remain open questions on how the large-scale secondary motion influences the random
fluctuating fields, previous studies such as Schoppa & Hussain (1998) and Fukagata,
Kobayashi & Kasagi (2010) suggest a strong interaction between them. Despite the
complex behaviour of the coherent and random contributions, their changes balance,
so that the total turbulent loss changes rather gradually. Namely, it monotonically
increases with increasing L and then saturates. This trend is similar to the additional
turbulent losses observed in previous DNS assuming homogeneous spanwise slip on
the wall. Accordingly, we consider the total value of 1Uloss in the following and
develop a model following existing empirical formulas established for SHS with a
prescribed homogeneous spanwise slip length, lz

s.
Fukagata et al. (2006) estimate the additional turbulent losses due to lz

s in their DNS
data to

1Uloss = 4[1− exp(−(lz
s/7)

0.7)]. (4.10)

This relation is reconsidered by Busse & Sandham (2012). Using data from an
extensive parametric study for different combinations of streamwise and spanwise slip
lengths they propose 1Uloss to be more accurately presented by

1Uloss = 4
(

1− 4
4+ lz

s

)
. (4.11)
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Both correlations yield a limit for the additional turbulent losses due to homogeneous
spanwise slip of 1Uloss,max = 4. In the present investigation, the spanwise slip is not
given through a prescribed value for lz

s, but results from the geometrical properties of
the surface pattern. By simply introducing the ratio of free surface area, Φ, a as a
weighting factor such that

1Uloss,max ≈ 4 (1−Φ) , (4.12)

a limit for 1Uloss for non-homogeneous spanwise slip can be estimated. For Φ = 0.5,
this results in 1Uloss,max = 2 which is in reasonable agreement with results for larger
values of L in figure 15. Also for the additional Φ-values considered at L= 140 the
corresponding agreement is good.

In order to use (4.11) in the design process of a SHS a connection between lz
s and

L would be required. However, the evaluation of an effective spanwise slip length is
not possible analogue to (3.2) as there is no mean flow in the spanwise direction.
Since the present simulations at Reτ = 180 and L= 140.8 show good agreement with
the estimated 1Uloss,max and the increase of 1Uloss, when approaching this L value, is
similar to that for us, i.e. ∝ L0.6 for the present data (see figure 15), a rough estimate
for 1Uloss can be given by

1Uloss ≈ 4 (1−Φ)
(

L
140.8

)0.6

, (4.13)

for L< 140.8. This trend is in reasonable agreement with the present data shown in
figure 15, but further numerical results for a range of surface structures and Reynolds
numbers are required to confirm that such an estimation is indeed possible.

4.4. Estimation of the flow rate increase
As shown in (4.3), the gain of a SHS is given by the sum of us = ls and −1Uloss,
and their modelling strategies are presented in the preceding §§ 4.2 and 4.3. Here,
these models are combined in order to compare the model prediction for the flow
rate increase with the current DNS results. For the following estimations we consider
groove widths of L< 150 at Φ = 0.5 for which the effect of the secondary flow on
ls is small and for which (in contrast to very large L values) the stable existence of
a flat air–water interface can be assumed (see appendix A).

Figure 21 presents the relative increase of the bulk mean velocity obtained by DNS
in comparison with the model prediction. For L 6 35, ls in turbulent flows can be
extracted from Phillip’s analytical laminar solution. Therefore, the prediction of 1Ub
is based on the laminar solution (3.3) in combination with the model for 1Uloss (4.13).
Since it is shown in § 4.1 that the influence of 1Uloss on 1Ub is relatively small the
corresponding curve based on solely the analytical solution for ls is also included.
Although good agreement with the DNS data can only be expected for L 6 35, the
corresponding results over the entire L range are plotted in figure 21 for reference.
For larger L, not only ls but also 1Ub can directly be extracted from the solution of
(4.6) for which the left-hand side is set to zero (see § 4.2). Therefore, a separate model
for 1Uloss is not required. Overall, it is found that the model overestimates the gain
in flow rate due to SHS for larger values of L. However, the agreement is reasonable
considering the simple underlying model formulation.

The present model does not require any numerical computations for L635 and only
a two-dimensional laminar computation for larger values of L (as long as no tertiary
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FIGURE 21. Plot of 1Ub at Reτ = 180 with Φ = 0.5: model predictions (•) according
to the solution of (4.6) in comparison with the DNS data (F). The grey lines correspond
to a prediction of 1Ub based on solely the analytical solution for ls in the Stokes regime
(dashed line) and in combination with the model for 1Uloss (solid line).

vortices are present). Therefore, it allows the influence of a SHS in turbulent flows to
be estimated at practically high Reynolds numbers. Figure 22(a) shows the estimation
of the slip length at different friction Reynolds numbers of Reτ = 180, 103, 104, 105.
The model predictions for ls at different Reτ basically collapse for all L indicating
that the effective slip length does not exhibit a Reynolds number dependency in wall
units. This behaviour arises from the fact that the turbulent viscosity as introduced in
(4.5) is almost independent of Reτ in the near wall region. Since ls is independent of
Reτ the relative gain in terms of the predicted increase in flow rate decreases with
increasing Reynolds number as shown in figure 22(b). At Reτ = 105 the prediction
still yields a gain in flow rate of almost 29 % with L = 140.8 while it reaches only
13 % for L= 35. Considering these results in combination with the reduced stability
of the air–water interface at increasing Reynolds number (see appendix A) suggests
that a flow rate increase above 10 % is unlikely to be realized with SHS consisting
of streamwise grooves at higher Reynolds numbers.

5. Conclusion

We conduct a series of DNS of turbulent flow over a SHS carrying streamwise
straight grooves at Reτ = 180. The SHS is modelled as alternating free-slip and no-slip
boundary conditions, the spanwise periodicity L of which is systematically changed in
order to investigate its influence on the turbulence dynamics and the resultant gain. In
contrast, previous investigations of SHS in turbulent flows often use a homogeneously
prescribed slip length. In addition, they compare the obtained results to a no-slip
reference channel with the same flow rate (CFR) while the present investigation is
carried out for a CPG. In the present paper, it is first shown that significant differences
in the obtained results can be attributed to the simulation approach, i.e. whether CFR
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FIGURE 22. Model predictions of ls and 1Ub for different geometrical wavelengths, L,
at different Reynolds numbers, Reτ , with a solid fraction Φ = 0.5: ×, model Reτ = 180;•, model Reτ = 103; �, model Reτ = 104; �, model Reτ = 105.

or CPG is applied: while CFR leads to a reduction of the friction drag and is thus
likely to be accompanied by relaminarization effects at the Reynolds numbers for
which numerical parameter studies can be carried out, CPG leads to an increase of
the flow rate. This difference between CFR and CPG, which is present for any type
of skin friction drag variation, is visualized in figure 23(a,b). The comparison of the
flow fields in figure 23(b,c) shows what is demonstrated by the statistics presented in
the paper: the SHS model based on a homogeneously prescribed slip length leads to
similar results as the present model with spanwise alternating boundary conditions.

The main advantage of the resolved boundary condition is the determination of
the effective slip length, ls, as a result of the flow over SHS instead of its a priori
postulation. In the present paper, it is shown that the analytical solution for ls in the
Stokes flow regime (Philip 1972) also holds under turbulent flow conditions for small
spanwise extends of the free-slip surface, i.e. (1 − Φ)L < 20 (in wall units). In this
case, the small wall-normal distance required to reach a homogeneous flow state in
spanwise direction ensures that the effects of turbulent diffusion also remain small,
and thus do not induce any significant differences. For larger values of L, ls is found
to be smaller in turbulent flows than under laminar flow conditions.

The CPG flow condition allows deriving a simple mathematical relationship between
the resultant bulk mean velocity and different dynamical contributions, i.e. the
effective slip length, ls, and additional turbulent losses, 1Uloss. The present analysis
shows that the increase in the bulk mean velocity over SHS is mainly governed by
ls. The limited increase of ls for larger L under turbulent flow conditions is shown
to be related to two aspects. First, the turbulent diffusion decreases the effectiveness
of the free-slip areas if the resulting spanwise inhomogeneities penetrate further from
the wall. Second, the alternating free-slip and no-slip boundary condition causes a
spanwise inhomogeneity which induces a secondary flow of Prandtl’s second kind,
characterized by steady streamwise roll cells. For large free-slip areas, the occurrence
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FIGURE 23. Isosurfaces of λ2 = −0.005 (normalized by u∗τ ,0) coloured by velocity
magnitude: (a) CFR homogeneous slip ls = 3.566; (b) CPG homogeneous slip ls = 3.566;
(c) CPG for L= 35.2 resulting in ls= 3.877. The no-slip reference case for all simulations
is set at Reτ = 180.

of tertiary vortices with opposed rotational direction is observed. The influence of the
induced secondary motions on ls is found to be significant only when tertiary vortices
occur. They apparently limit the maximum achievable flow rate with SHS consisting
of streamwise grooves with the solid fraction of Φ = 0.5 under CPG to ∼1.5 times
the flow rate in a channel with no-slip surfaces. Considering the fact that such wide
cavities with a dimension in the order of the channel height are difficult to realize
for turbulent flow conditions (see appendix A), the present results suggest that it is
sufficient to consider the effect of turbulent mixing, i.e. the turbulent eddy viscosity,
for an estimation of ls and the corresponding flow rate increase.

The additional turbulent losses, 1Uloss, increase with increasing L and reach an
upper limit that is in agreement with results obtained for a prescribed partial slip in
spanwise direction, lz

s (Busse & Sandham 2012). An empirical correlation that links
1Uloss to the geometrical properties of the surface structure with streamwise grooves
is presented without any claim for generalization. Such a generalization is difficult
since a clear definition of lz

s, i.e. an effective slip length when no mean flow is
present, cannot be given in a straightforward manner and, to the best of the authors’
knowledge, does not exist in literature. The observed secondary and tertiary vortices
also influence 1Uloss. Interestingly, the tertiary vortices can induce a positive coherent
contribution to the Reynolds shear stress and thus limit the turbulent losses.

Based on the results of the present study a simple modelling strategy for turbulent
flows over SHS is established: for a spanwise width of the free-slip section of
approximately (1 − Φ)L < 20 the laminar prediction of ls is combined with the
prediction of 1Uloss which yields good agreement with the DNS data. For larger
values of L the effect of turbulent mixing is introduced by formulating a characteristic
eddy viscosity based on the geometrical properties of the surface structure in
combination with literature data for purely no-slip and free-slip boundaries. Although
this model formulation is rather crude, it yields reasonable agreement with the present
DNS data and can be used to estimate the effectiveness of SHS at larger Reynolds
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numbers up to approximately (1 − Φ)L < 75. Naturally, these model predictions are
restricted to the validity of the underlying assumptions, especially the existence of a
flat, stable and steady water–air interface.
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Appendix. Realistic cavity width under turbulent flow conditions
In order to realize the boundary conditions of the present DNS in practice, it has

to be guaranteed that the surface tension is strong enough to maintain the air–water
interface under a background turbulent pressure fluctuation. In fully developed wall
turbulence, the static pressure fluctuation p∗rms can be scaled by

p∗rms ∼O(ρ∗u∗τ
2
). (A 1)

It should be noted that the above value also corresponds to the mean static pressure
difference at different streamwise locations separated by a channel half-depth for
internal flows.

Considering that the width of the cavity (free-slip region) cannot be larger than the
period L of the SHS, the capillary pressure can be estimated as

p∗c ∼O
(
σ ∗

L∗

)
. (A 2)

Therefore, in order for the capillary pressure to overcome the background pressure
fluctuation, the following condition has to be met:

O
(
σ ∗

L∗

)
�O(ρ∗u∗τ

2
). (A 3)

This can be also rewritten as

L�O
(
Ca−1

)
, (A 4)

where the capillary number is defined as Ca=µ∗u∗τ/σ ∗.
Suppose we consider water under the standard condition as a working fluid,

µ∗ ≈ 0.00089 (Pa s) and σ ∗ ≈ 0.073 (N m−1). Taking a typical value of the friction
velocity as u∗τ = 0.5 (m s−1), the above equation indicates that L� 160. Note that
the criteria is inversely proportional to u∗τ , so that L generally has to be smaller with
increasing the free stream (or bulk) velocity. It is therefore unlikely that the largest
wavelengths of the streamwise grooves investigated in the present study can remain
in the Cassie state.
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Equation (A 4) can also be written as

Reτ �O
(

1
L

(
ρ∗σ ∗δ∗

µ∗2

))
. (A 5)

As shown in figure 15, the gain of a SHS saturates beyond L+ ≈ 100. If we aim
to achieve L+ = 100 for a channel half-height of δ∗ = 0.1 (m), the above equation
indicates that Reτ �O

(
105
)
. It is also evident from (A 5) that this restriction on Re

is mitigated when we increase the channel height and compromise L.
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