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ABSTRACT
Visualising the loads that a structure can tolerate provides a key insight into the structural
design process, especially for materials and structures that are governed by complex fail-
ure criteria. This paper proposes a general method for efficient construction of performance
envelopes in load space, and demonstrates the approach with two examples. The performance
envelope identifies all possible failure modes, all the redundant and non-redundant struc-
tural constraints, and the limiting failure mode in a particular direction in load space. Once
the envelope has been constructed, the structural reserve factors can be calculated extremely
quickly. In design such envelopes are most useful for structural analysis processes which
involve a very large number of load cases, and where the cost of constructing an envelope for
a given feature is relatively modest.
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D vector from Origin O to intersection point T with the plane of a triangle

DOF degrees of freedom

E Young’s modulus

f () function of

G Shear modulus

GFEM Global Finite Element Model

k-d tree a space-partitioning data structure for organising points in k-dimensional space

L load

L characteristic loads matrix

m, n direction cosines

Nx, Ny, Nxy plate/shell stress resultants

O origin of coordinate system

Px stiffener rod element force

Q matrix relating laminate stresses with strains

RF Reserve Factor

S composite ply shear strength

S rectangular diagonal matrix with non-negative real numbers on the diagonal

in SVD

SQP sequential quadratic programming

SVD singular Value Decomposition

t distance from origin to intersection of vector with plane of triangle

T intersection point of ray with plane of triangle

T rotation matrix

U real orthonormal matrix in SVD

V point position vector

V real orthonormal matrix in SVD

x, y, z cartesian coordinates

X composite ply strength in fiber direction

Y composite ply strength in transverse direction

Subscripts
1 fiber direction

2 transverse direction

c centroid, compressive

k order of reduced rank matrix

t tensile

Superscripts
T transpose

Greek Symbols
r, φ, θ spherical coordinates

α fracture angle in Puck failure criterion
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ε strain

ε error

λ1, λ2, λ3 Barycentric coordinates of a triangle. Note λ3 = 1 − λ1 − λ2

σ normal stress

τ shear stress

ν Poisson’s ratio

1.0 INTRODUCTION
Many high-value engineered products require the design of a complex structure that will
be subjected to a large variety of loading during its service life(1,2). An airframe is a good
example, subjected to dynamic operating manoeuvres(3) and constructed with thousands of
structural features of a similar nature(4,5). This can result in the need to consider hundreds of
thousands of structural strength constraints to size a wing(6) or well in excess of half a mil-
lion structural strength constraints to perform a preliminary wing-structure optimisation(7).
During such an optimisation, structural features are sized individually and this sizing affects
the stiffness of the structure and both the internal and external loads on the structure, e.g. a
more rigid wing will respond differently to a dynamic manoeuvre than a more compliant one.
Thus, an iterative process is required in the search for an optimised structure, adding signif-
icantly to the computational burden(8–10). To minimise the computational burden, the design
organisation must determine the most important loading cases (loads down-selection) and
use these in the optimisation of the structural features (structural sizing), checking individual
features under the down-selected loads, for a range of failure criteria.

The checking process for each structural element – load case – failure criterion combina-
tion may be simply described through the calculation of Reserve Factors (RF), Equation (1).
RF ≥ 1 represents a condition where the structural feature will not fail by a particular failure
mode (e.g. material failure, buckling, etc.) under a particular load case (e.g. symmetric pull
up, banked turn plus gust, etc.). The “load to cause failure” can be a load, stress or strain
depending on the failure criterion under consideration.

RF = load to cause failure

applied load · · · (1)

It is not possible a priori to determine which failure criterion will be significant for a given
structural feature – load case combination. Thus, a vast number of RF calculations are made
that will not influence the structural optimisation but must be undertaken to prove all loads can
be carried. Herein it is proposed to translate the failure criterion, typically described in stress
and strain space of the local structural feature, into a reduced-dimensional load space which
defines the loading on the structural feature embedded in the global structure. For a partic-
ular structural feature it then becomes possible to identify the non-redundant and redundant
loading constraints, along with the failure mechanisms that control structural performance.
Significantly, the combination of non-redundant failure criteria then defines a performance
envelope for the structural feature. This paper thus aims to demonstrate a robust approach
for the calculation of the geometry of performance envelopes in load space and to show their
utility.

The following section further introduces the concept of performance envelopes and a gen-
eral method for their efficient construction. This is followed in Sections 3 and 4 with examples
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Figure 1. A performance envelope in 2D load space.

to demonstrate the approach. The first example considers a composite laminate and textbook
analytical failure functions, whilst the second considers a stiffened panel feature with the
structural evaluation conducted using an industrial analysis tool. Rapid failure evaluation
using performance envelopes and the associated computational effort is presented for both
cases before the concluding remarks.

2.0 METHODOLOGY

2.1 Performance envelopes in load space
Consider a simple linear structure with bi-axial loading (loads L1 and L2) and six failure
criteria, one of which is a linear function of the applied stress, e.g. a displacement constraint,
and five of which are quadratic functions of the applied stress, e.g. material failure criterion
(see Fig. 1). In load space each function remains in its original linear or quadratic form where
the combination of L1 and L2 is sufficient to cause a state of stress/strain/deformation that
violates the individual constraint. Thus, in Fig. 1 the region that is inside all the ellipses and
the straight line is where all the RFs are >1. Note that only three ellipses and the straight line
contribute to the boundary of this region, so the remaining two constraints are redundant. The
performance envelope forming the boundary of this region identifies:

• A region in load space within which the structure can operate without failure,

• All possible modes of initial failure in the structure (the non-redundant constraints),

• The particular stress-sampling point which fails at any given combination of the loads,
and its failure mode (the non-redundant constraints which are violated).

Now considering load cases, any combination of loading is represented by a point in the
(L1, L2) load space. If this point lies inside the performance envelope i.e. the region of the
boundary where RF = 1, then the structure can carry the load without failure. Once the per-
formance envelope is identified, the redundant structural constraints that do not form part of
the envelope can be eliminated from the load case evaluation. This observation applies for
any set of loads, but the computational cost will be large unless the number of load dimen-
sions is small. In the examples that follow, the load space is three dimensional. In the first
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example, the performance envelope of a composite laminate is developed in a space defined
by the Nx, Ny, Nxy laminate loads. In the second example, which characterises the failure of
an aerospace stiffened panel structural feature, there are many individual load cases, but it
has been demonstrated(11) that these can be represented as the linear combination of three
characteristic patterns of internal load, derived using SVD (singular value decomposition).

2.2 A performance envelope mesh
A representation of the performance envelope surface is required; however, its shape is ini-
tially unknown. One way of representing an unknown geometry is to sample a set of surface
points to create an unorganised point cloud and connect each point into a set of polygons that
assemble to represent the geometry. Many researchers have used spherical parametrisation to
construct a mesh of an unorganised point cloud. For example, Gotsman et al.(12) introduced a
combination of barycentric coordinates and spherical parametrisation, whilst Zwicker et al.(13)

employed a spherical parametrisation to solve the re-meshing problem on a point cloud-based
mesh. In this research, a similar concept will be employed where:

(1) An initial point cloud in spherical coordinates is sampled on a unit sphere with a regular
point density. This is achieved by meshing a sphere with a mesh of triangular planar
facets.

(2) The failure function is examined for each point in the mesh (which defines a direction
from the origin) to find the radial distance at which the failure constraint is met.

(3) The unit points are transformed to the failure points.

(4) The performance envelope representation is formed by meshing the failure points. It is
then assessed for its accuracy, and mesh refinement undertaken until the desired accuracy
of the representation is achieved.

The following sub-sections outline each stage of the proposed approach in their noted order.

2.2.1 Unit point grid and mesh

A point grid is generated on a unit sphere with a set of predetermined spherical coordinate
angles (φ and θ ). The increment between each pair of angles determines how dense the initial
point grid will be. In order to create a complete sphere of points the spherical coordinate
angles are required to range from 0 ≤ φ ≤ 2π and from 0 ≤ θ ≤ π . The relationship between
the spherical coordinates and their equivalent Cartesian coordinates is given by Equation (2),
where r is the radius of the unit sphere (r = 1).

⎡
⎣ x

y
z

⎤
⎦ = r

⎡
⎣ sin φ sin θ

sin φ cos θ

cos φ

⎤
⎦ · · · (2)

By computing the points in spherical coordinates the construction of a unit sphere surface
mesh is straightforward. In this research, an unstructured triangle mesh is used because it
offers significant flexibility(14). However, at this stage it is worth noting that by employing the
final adaptive refinement step, described below, the total computational effort to produce a
final mesh envelope with a prescribed accuracy is not particularly sensitive to the initial unit
sphere mesh density.
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Figure 2. Illustration of mesh transformation in 2D, 1st quadrant.

2.2.2 Failure function radial transformation

Once the unit sphere mesh has been generated, the failure function can be evaluated for each
angle pair (φ, θ ). The goal is to solve for the r value that satisfies failure, i.e. RF = 1. The
failure function, Equation (3), can be solved either numerically or analytically. The following
examples herein demonstrate both numerical and analytical solution types.

f (r, φ, θ) = 1 · · · (3)

A piecewise-linear transformation can be applied to the domain using the determined r val-
ues to radially transform the unit sphere points in the r direction to new positions representing
the RF = 1 boundary. Figure 2 illustrates the radial transformation approach considering a 2D
quarter section of an envelope on φ = 0◦ plane. The example illustrates five mesh grid points
separated by equal θ intervals. As can be seen the transformation of the points is along a
constant direction from the origin.

2.2.3 Creating a performance envelope mesh

The transformed points may now be scattered around the load space. The original mesh con-
nectivity may thus be updated by applying a convex hull algorithm(15). As the convex hull
computes the smallest convex point set that encloses a given set of points this approach
implies that the real performance envelope must be convex. The following examples demon-
strate this to be the case for the range of textbook and industrial failure functions examined.
However, work is currently underway that effectively removes this constraint. For the exam-
ples, the Quick-hull algorithm(16) is used and for a 10,000 point problem in 3D the algorithm
computes a hull within less than 0.004s on a standard PC.

This first performance envelope mesh may now be refined to guarantee that the envelope
mesh lies within some known tolerance of the real envelope. Obviously there is a balance to
be achieved, discussed below, between the computational burden of calculating and using the
mesh, primarily defined by the number of mesh points(17).

A great deal of research has been conducted on mesh refinement. One of the most common
approaches is by mesh subdivision, Fig. 3. Subdivision algorithms insert an additional point
into a mesh and locally refine the mesh connectivity in the region to include the new point.
The location where the point is inserted will evidently influence the outcome of the process.
This work adopts the insertion at the centroid of the triangle as it is the first trivial solution
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Figure 3. Point insertion (a) on all edges (b) on one edge (c) at the centroid.

Figure 4. Mid-point refinement. If the RF at the centroid Vc of a given triangle does not lie on the plane
defined by V1, V2, V3 then an additional point Vc is added to the mesh defining the performance envelope.

(see Fig. 3(c)). This approach has the advantage that it does not require any of the ele-
ment bounding edges to be split, and so the refinement does not propagate to neighbouring
elements.

The approximation error between the real failure surface and a facet approximation may
be established for any facet centroid, shown in Fig. 4, using the mesh points, Equation (4)
and computing the centroid radius r0 and angle pair (φ, θ ). The centroid angle pair may then
be used to directly calculate, from an evaluation of the failure function, the actual failure
radius, r. Figure 4 graphically illustrates this calculation. The figure depicts a single generic
triangular facet which forms part of a performance envelope. In the figure, the corners of the
facet are on a single plane and are denoted V1, V2, V3. The arrow in the figure represents
a single orientation in load space, which defines a ratio of loading in each axis. The arrow
passes through the centroid of the facet. The distance from the origin to the facet centroid is
denoted as r0, and represents the facet’s approximation of the failure function (and therefore
the performance envelope approximation) for the ratio of loads defined by the arrow orien-
tation. The distance from the origin to the real failure surface (as calculated by the direct
evaluation of the failure function) is notionally denoted by r. Thus a facet centroid error can
be defined using Equation (5). If this error is greater than a defined tolerance, the centroid
radius and angle pair are added to the list of envelope mesh points. This will create a spike or
an indent depending on the difference between the two radii as shown in Fig. 4. Performing the

https://doi.org/10.1017/aer.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.94


134 THE AERONAUTICAL JOURNAL JANUARY 2021

Algorithm 1
Adaptive centroid refinement

Input triangulation and (x, y, z) coordinates of the mesh
for all triangles

compute centroid (x0, y0, z0) and convert to spherical coordinates (r0, φ, θ )
compute the actual failure radius at the centroid from f (r, φ, θ = 1)

if error ε is greater than the threshold then
subdivide the triangle and replace r0 with r where f (r, φ, θ = 1)

convert (r, φ, θ ) to Cartesian and add to the original list → (x, y, z)new

else keep the original triangle
Perform convex hull on the (x, y, z)new

Repeat the process for the new triangles until ε is less than the threshold

convex hull on the updated set of points gives a new triangulation of the convex surface. The
entire process may then be repeated until the error at each facet is minimised. The algorithm
is described in Algorithm 1.

Vc = V1

3
+ V2

3
+ V3

3 · · · (4)

ε = |r0 − r|
r · · · (5)

Having outlined the approach to compute an appropriate performance envelope in load
space, the following sections present example for performance envelope calculations. The
first example considers analytical failure functions a composite laminate plate subjected to
in-plane loading (representative of early conceptual design calculations).

3.0 PERFORMANCE ENVELOPE EXAMPLE BASED
ON ANALYTICAL FAILURE FUNCTIONS

3.1 Structural analysis and failure functions
Classical laminate theory(18,19) can be used to describe the relationship between applied
laminate plate loads and individual lamina stresses and strains, by assuming the following:

1. The material properties are the same at every point in an orthogonal axis of a lamina, and
there exists a linear relationship between stress and strain.

2. The displacement is continuous through the thickness; normals to the mid-surface remain
straight, unstretched and normal.

3. Each ply is in a state of plane stress with no delamination or inter-laminar effect.

With the additional assumptions that only laminate in-plane loads (Nx, Ny, Nxy) are present and
the laminate stacking sequence results in a bending-extension coupling matrix of insignificant
magnitude, then the laminate loads can be related to the laminate mid-plane strains (εx, εy, εxy)
considering only the extensional stiffness matrix, [A], Equation (6). The local lamina stress
(σ1, σ2, τ12) in each ply coordinate system can be obtained using a transformation matrix
(T) in which m = cos ϑ , n = sin ϑ and ϑ is the local material orientation in each lamina,
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Equation (7). Thus, the relationship between the applied loads and local material axis stresses
(σ1, σ2, τ12) can be defined by a matrix E = ATQ−1, Equation (8).

⎡
⎣ Nx

Ny

Nxy

⎤
⎦ =

⎡
⎣ A

⎤
⎦

⎡
⎣ εx

εy

εxy

⎤
⎦ · · · (6)

⎡
⎣ Nx

Ny

Nxy

⎤
⎦ =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ m2 n2 −mn

n2 m2 mn
2mn −mn m2 − n2

⎤
⎦

︸ ︷︷ ︸
T

⎡
⎣ Q11 Q12 0

Q21 Q22 0
0 0 Q33

⎤
⎦

−1

︸ ︷︷ ︸
Q−1

⎡
⎣ σ1

σ2

τ12

⎤
⎦

· · · (7)⎡
⎣ σ1

σ2

τ12

⎤
⎦ =

⎡
⎣ E−1

⎤
⎦

⎡
⎣ Nx

Ny

Nxy

⎤
⎦ · · · (8)

The lamina stresses (or strains), which are typically the inputs to failure functions(18–23),
are now described in the 3D laminate load space and using Equation (2) can be described
in the spherical coordinate parameterization, Equation (9). Thus any failure function in
terms of f (σ1, σ2, τ12) can be transformed into f (r, φ, θ) and the failure radius r (i.e.
f (σ1, σ2, τ12) = 1) computed at any specified angle (φ, θ ).

⎡
⎣ σ1

σ2

τ12

⎤
⎦ = r

⎡
⎣ E−1

⎤
⎦

⎡
⎣ sin φ sin θ

sin φ cos θ

cos φ

⎤
⎦ · · · (9)

Three failure functions, with different characteristics, can be transformed into laminate
global load space and combined to demonstrate the approach:

• The Tsai-Hill failure criterion does not distinguish failure modes and is calculated using
a simple quadratic inequality, Equation (10)(18–20).

f =
(σ1

X

)2 +
(σ2

Y

)2 +
(τ12

S

)2 +
(σ1σ2

X 2

)
≤ 1 · · · (10)

• The maximum fiber stress criterion aims to predict fiber failure by comparing ten-
sile or compressive applied fiber stresses with corresponding fiber strength properties,
Equation (11)(18–20).

f = σ1/X ≤ 1 · · · (11)

• The Puck failure criterion applies fracture plane stresses to establish matrix failure(24–26).
The stress components involved in the failure are represented in terms of traction shear
and normal stress on the fracture plane. Considering plane stress, the fracture plane stress
components are described by Equation (12), where α is the fracture angle(24).

⎡
⎣σn

τT

τL

⎤
⎦ =

⎡
⎣ 0 cos2α 0

0 − sin α cos α 0
0 0 cos α

⎤
⎦

⎡
⎣ σ1

σ2

τ12

⎤
⎦ · · · (12)

https://doi.org/10.1017/aer.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.94


136 THE AERONAUTICAL JOURNAL JANUARY 2021

Table 1
Composite laminate properties

Stiffness Properties Strength Properties

E1 2.10E + 11 N/m2 X , Xt 8.00E + 08 N/m2

E2 1.94E + 10 N/m2 Xc −6.00E + 08 N/m2

ν12 0.261 Y , Yt 3.00E + 07 N/m2

ν21 0.024 Yc −1.00E + 08 N/m2

G12 5.18E + 09 N/m2 S 5.00E + 07 N/m2

Puck Failure Criterion

ST − Yc

2 tan (α0)

SL S

μT − 1

2 tan (α0)

μL μT
SL

ST

Ply thickness = 0.125mm

Substituting Equation (9) into (12), the fracture plane stresses can be related to the
load in spherical coordinates, Equation (13). Thus, a set of fracture plane stresses can
be determined for a given load in spherical coordinates (r, φ, θ). For the Puck failure
equations(25), (Equation (14) for the matrix under compressive loading (σ2 < 0); Equation
(15) for the matrix under tensile stress (σ2 > 0)) require the fracture angle α to be calculated
to find the angle α0 at which the material is weakest. Only then can failure in each ply be
evaluated and the first ply failure found(26).

⎡
⎣σn

τT

τL

⎤
⎦ = r

⎡
⎣ 0 cos2α 0

0 − sin α cos α 0
0 0 cos α

⎤
⎦

⎡
⎣ E−1

⎤
⎦

⎡
⎣ sin φ sin θ

sin φ cos θ

cos φ

⎤
⎦ · · · (13)

f =
(

τT

ST − μTσn

)2

+
(

τL

ST − μLσn

)2

≤ 1 · · · (14)

f =
(

σn

Yt

)2

+
(

τT

ST

)2

+
(

τL

SL

)2

≤ 1 · · · (15)

The meaning of the material properties in Equations (13) and (14) and the values used in the
study are defined in Table 1. Each of these failure criteria clearly exhibits a different analytical
calculation. Thus, assuming an eight-ply composite laminate [0/90/±45]s and representative
lamina material properties, Table 1, it is possible to create example performance envelopes
for each criterion.

3.2 Performance envelope results
Considering first the Tsai-Hill criterion, Equation (10) implies that the failure envelope of
a ply is a quadratic function of σ1, σ2 and τ12 and therefore forms an ellipsoidal shape in
σ1, σ2, τ12 stress space or Nx, Ny, Nxy stress resultant space.
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Figure 5. Tsai-Hill laminate envelope for a [0/90/±45]s laminate with the properties given in Table 1.
(a) Tsai-Hill load envelopes of 0◦ and 90◦ plies (b) Tsai-Hill load envelopes of 45◦ and −45◦ plies (c)
Tsai-Hill laminate envelopes, 1st refinement (d) Tsai-Hill laminate envelopes, 3rd refinement (e) Tsai-Hill

laminate envelopes, 6th refinement.

Even though the failure equation is not physically based, it does provide insight into the
material behaviour. For example, the 0◦ ply allows more load in the longitudinal direction of
the laminate whereas the 90◦ has more transverse strength, Fig. 5(a). The envelopes of the
45◦ and −45◦ plies are identical (to within the accuracy of the facetted representation) in
the Nx, Ny plane when shear is zero; when the shear load is involved, they are aligned in the
maximum shear directions, as can be seen in Fig. 5(b).

These envelopes are based on an initial unit sphere mesh of 30 uniformly distributed points.
Integrating the lamina envelopes into a single laminate envelope is first illustrated in Fig. 5(c),
again based only on an initial unit sphere mesh of 30 uniformly distributed points. Clearly
mesh refinement is required with poor-quality facets identified in grey (identifying a differ-
ence > 5% between the mesh radius and the actual radius at the centroid). Figure 5(d) presents
a third refinement iteration and Fig. 5(e) presents the final Tsai-Hill performance envelope
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containing only good-quality facets (radius errors <5%), which is obtained after six iterations.
This final envelope considers all the possible combinations of the three in-plane loads and the
non-redundant Tsai-Hill failure modes. The envelope mesh represents the curved geometry
within the specified <5% tolerance and the entire construction process took 80s when per-
formed using a symbolic toolbox in MATLAB, installed on a Windows 7 PC with Quad-core
Intel i7 processor and 16 GB of memory.

Different failure criterion can also be evaluated simultaneously. To demonstrate this, fibre
failure using Equation (11) and matrix failure using Equations (14) and (15) are next exam-
ined. The same composite laminate properties and unit sphere with 30 initial points were
used as for the Tsai-Hill criterion. Figure 6(a) displays the result when the two envelopes
are placed together. Even though there are four failure modes in the figure, only fibre com-
pression and matrix tensile are important because they have the smallest load radius. When
the two envelopes are integrated the inner surface, which consists of only the critical criteria,
can be formed as displayed in Fig. 6(b). Each point on the surface identifies the most critical
failure mode and location (ply). During the construction, four different levels of data namely
modes of failure, laminate, ply stresses and fracture angles, were evaluated. The time used for
constructing the entire envelope where the error threshold of each facet was set at 2.5%, was
7.5min. If the error threshold was increased to 5%, the time was reduced to only 5min. As the
envelope uses the symbolic toolbox in MATLAB, the calculation time may be accelerated by
using a more advanced numerical solving method. Once an envelope is computed for a given
laminate, it is extremely rapid to evaluate whether any applied load combination results in an
RF of <1, as demonstrated in the following sections.

4.0 PERFORMANCE ENVELOPE EXAMPLE USING
BLACK-BOX FAILURE EVALUATION

4.1 Structural analysis and failure functions
A failure analysis tool which is used in the preliminary design stage for major aircraft compos-
ite structures was provided for this research as an executable file. The tool analyses stiffened
panel features for buckling and other failure modes using the idealisation presented in Fig. 7.
These are sometimes called super-stiffeners. The tool is built to solve specific problems for
structural sizing and optimisation, e.g. Iorga et al.(7). Thus the tool represents a single portion
of a larger industrial workflow for the design and optimisation of major aerospace compo-
nents. The loading conditions, material and geometric properties of the stiffened panel are
the initial inputs to the tool; based on these the tool returns a series of Reserve Factor (RF)
values. The mathematical calculations performed by the tool are proprietary and incorporate
empirical data and aspects of conventional design practice that could not be used directly
or indirectly to support performance envelope creation. Each stiffened panel in a wing or
fuselage structure has different material and geometric properties, but once these have been
defined the tool can be queried for the RF resulting from any arbitrary loading. Typically, at
the preliminary design stage a small number of broad ranging RFs would be examined for a
stiffened panel component. Table 2 illustrates a range of representative structural RFs failure
modes and provides references to formulae in the open literature. The table includes buckling
and damage tolerance assessments appropriate for stiffened panel component preliminary
design.
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Figure 6. Mixed failure mode envelope for a [0/90/±45]s laminate with the properties given in Table 1.
(a) Fibre and Matrix performance envelopes for a laminate (b) Combined Fibre and Matrix performance

envelopes for a laminate.

Thus this example has a number of additional challenges not encountered within the first
example: Firstly, the failure of a stiffened panel is a function of seven internal loads on the
structural element, as shown in Fig. 7, Equation (16); Secondly, the function is mathematically
inaccessible and must be treated as a procedural function or black box; Thirdly, the number
of failure mode requests is defined by an input flag. The smallest possible flag gives four RF
values simultaneously; Finally, there exists a minimum time per function call, which is high
compared to the time for solving polynomial equations on a standard PC using a numerical
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Table 2
Typical preliminary design reserve factor calculations for stiffened panels

Reserve factor general Exemplar open
Calculation description Buckling modes Source methods

Skin local buckling where
panel skin elements are
represented as plates with
boundary conditions defined
by the torsional stiffness of
adjacent structure.

[33, 34]

Stiffened panel buckling
where the panel (skin and
stiffener elements) are
assumed to buckle as a single
unit with boundaries at the
spars and ribs.

[33, 34]

Stiffener web and flange
buckling where single or
multiple stiffener elements
are assumed to buckle as
plate elements with boundary
conditions defined by
adjacent structure.

[34, 9]

Stiffener column buckling
where a stiffener is assumed
to buckle as a column with or
without local web and flange
element buckling.
Additionally, beam-column
analysis may be considered
with lateral pressure.

[35, 33, 36, 9]

Damage tolerance considering skin and stiffener section static stresses
(or strains) and material allowables. where the material allowables
represent damaged conditions, for example Compression After
Impact (CAI) or Open Hole Tension (OHT), and consider critical
and probable damage locations, for example the edge of a
stiffener web.

[37–38, 33]

method. A series of strategies were developed and employed to overcome these real-world
practical difficulties, and these are described next.

RF = f
({

Nx, Ny, Nxy

}
Right side

{
Nx, Ny, Nxy

}
Left side

{Px}Stiffener

)
· · · (16)
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Figure 7. Load components on an idealised stiffened panel.

4.1.1 Dimensional reduction of the load space

In Dharmasaroja et al.(11) a wing GFEM was examined considering 274 external load cases,
including flight manoeuvre, gust, landing, take-off and ground loading events. On the wing,
6 force and moment loads were applied at a total of 27 positions along the structure. In the
study reported here the 274 external load cases were analysed and the stiffened panel internal
loads extracted. These matched the loads required by the black-box analysis tool, as defined
in Fig. 7 and Equation (16). The calculated internal loads were then used to construct a matrix
of the internal loads A. This internal load matrix had 274 rows, representing the 274 applied
load cases, and 7 columns, representing the 7 extracted internal stiffened panel loads(27).

Using the well-known matrix technique of Singular Value Decomposition (SVD) the matrix
A was factorised as

A = USV T · · · (17)

A reduced-rank loads matrix can be derived which approximates the original internal loads
matrix as

A ≈ Ak = UkSkV T
k = UkL · · · (18)

where L will be called the characteristic loads matrix(27).
The SVD decomposition established that the 274 load cases × 7 DOF can be reduced to

Uk (274 × 3) and Lk (3 × 7) matrices, i.e. there were only 3 characteristic loads for a stiffened
panel. In other words, L represents three characteristic patterns of the seven internal loads.
The internal loads corresponding to any external wing loading can be represented as a linear
combination of these three. Uk represents 274 points in 3D characteristic load space corre-
sponding to all wing external load cases. This process for the dimensional reduction of the
load space is further described in Dharmasaroja(27).

Normally the reserve factor for each potential failure mode would be checked for each of
the 274 load cases, requiring individual GFEM calculations to obtain the internal loads for
a failure evaluation using the black-box analysis tool. However, in this reduced load space
the performance envelope is the surface where RF = 1. Thus by forming the performance
envelope in the reduced load space it becomes possible to use linear combinations of the
characteristic loads to assess any external load case against the performance envelope. With
three characteristic loads only three internal load calculations need to be performed to enable
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Figure 8. Maximum normalized error on each stiffened panel for the left and right panel stress resultants
and the stiffener axial load, expressed as a percentage. (a) Wing root (b) Wing mid-span (c) Wing tip.

Figure 9. Multi-constraint optimisation illustration in spherical coordinates (φ, θ ).

any external load case to be represented and compared with the performance envelope (and
the failure functions it represents).

To assess the accuracy of this process, the stiffened panel loads and performance envelopes
were analysed under a representative sample of one hundred flight and ground external load-
ing cases(11). For three stiffened panels (one at the GFEM wing root, one at the mid-span and
one at the wing tip) characteristic loads were identified and used to recreate the loads result-
ing from the one hundred external load cases. The errors were then calculated considering
the original stiffened panel loads and the reconstructed loads. The maximum normalised load
errors of all the hundred cases are displayed in Fig. 8(27). None of the reconstruction errors
is greater than 5%, thus creating a performance envelope in its identified characteristic load
space for a stiffened panel in a wing.

4.1.2 Function evaluation

Since the calculations required to find the RFs are not accessible, a numerical method must be
used to find the solution where RF = 1. However, the tool requests at least four RF mode types
per analysis. For this reason, it is not efficient to individually determine only a single RF mode
type at a time. The problem can be reformulated as a multi-constraint optimisation. Figure 9
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Figure 10. Procedural performance envelopes of different structural elements.

illustrates the multi-constraint optimization problem with three RF constraints. Herein four
optimization solvers were tested: interior point, trust region reflective, SQP and active set(28).
The SQP and active set solvers performed best with the active set found to be relatively quick,
as it takes larger steps towards optimisation, but SQP was found to be more robust, always
converging for every load angle input.

4.2 Performance envelope results
A study was conducted on the mid-span stiffened panel examined in Section 4.1.1.
Calculations were performed considering the three identified characteristic loads (labelled
U1, U2, U3). Seven failure criteria were requested from the analysis tool. Although the details
of the failure criteria calculations were not available a general title for each calculation was
given as part of the analysis output. The calculations included buckling and damage tolerance
criteria. For a reader unfamiliar with aircraft stiffened panel design Refs (8) and (9) provide
appropriate background on relevant buckling and damage tolerance criteria. The initial enve-
lope in the first iteration was morphed from a unit sphere with 30 mesh points, as in the first
example. It then underwent ten refinement processes in which the subdivision occurred at
the centroids of the triangles with unacceptable errors. The final envelope in the 11th refine-
ment is shown in Fig. 10. Similar to the laminate performance envelope, the failure surface
is formed by different failure modes. In Fig. 10 the colour of the mesh points denotes the
critical failure mode, and for a single point the complete list of calculated RFs at the surface
are presented. For this example, the envelope construction time with a threshold error of 5%
was approximately 50min (when performed using MATLAB, installed on a Windows 7 PC
with Quad-core Intel i7 processor and 16 GB of memory). Figure 11 demonstrates how a
performance envelope enables the identification of the non-redundant binding constraints of
a structural feature.
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Figure 11. RF estimation using a performance envelope. (a) Performance envelope and two arbitrary loads
(b) allowable radius and load case radius (c) Triangle ray intersection.
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5.0 RF ESTIMATION USING PERFORMANCE
ENVELOPES

Once a performance envelope has been created, it may be used for rapid failure evaluation.
Figure 11(a) illustrates plotting two arbitrary load cases in a load space containing a perfor-
mance envelope. The load case residing within the performance envelope (r, φ, θ) has an RF
greater than 1 (a safe load) while the load case lying outside the envelope will cause structural
failure (RF < 1). For a given pair of load angles (φ, θ), the envelope is defined by a vector
from the origin to the point of intersection with the envelope boundary. The vector radius is
labelled the allowable radius rallowable, Fig. 11(b). Assuming the load radius is a linear function
of the applied loads then the RF for any load case with the same load angles can be calculated
using Equation (19).

RF = load to cause failure

applied load
∼= (RF)∼ = rallowable

rapplied
· · · (19)

If the load radius is not a linear function of the applied loads, then Equation (19) is a first-
order approximation of the RF in the area of interest, i.e. close to the failure surface where
RF = 1.

5.1 Ray triangle intersection
For a performance envelope formed by a triangular mesh, each triangle represents a region
in load space where it is assumed RF = 1. For a given direction in load space, the load cor-
responding to RF = 1 is a vector from the origin to the point of intersection with one of
the triangles. In computer-graphics, this vector-plane intersection problem is called ray trac-
ing, and it is used to project the light source to a 3D object for rendering(29). Möller and
Trumbore(30) introduced a simple and efficient ray-triangle intersection algorithm for the tri-
angle mesh as described in Fig. 11(c). Principally, the algorithm solves three linear equations
to determine the distance (t) from the origin (O) to the plane defined by the triangle and
the barycentric coordinates (λ1, λ2) of the intersection point (T). If the intersection point is
inside the triangle then all three barycentric coordinates of the triangle (λ1, λ2, 1 − λ1 − λ2)

are greater than 0. The vector (D), which defines the direction of the vector from the origin,
can be found from the three components of the characteristic load vector corresponding to a
given load case. The corresponding RF is computed as described in Algorithm 2.

This method checks the ray against every triangle. For the envelope application where the
number of triangles is significantly less than in a computer graphics application, this algo-
rithm allows the calculation of allowable radius in a negligible amount of computational time,
discussed next along with results. When the number of points or triangles is extremely large,
a more refined algorithm such as a k-d tree(31), which organises points in k-dimensional space
to facilitate rapid searching, might be considered as an alternative.

5.2 Reserve factor calculation results
Again, the study was conducted on the mid-span stiffened panel examined in Section 4.1.1.
The three identified characteristic loads (labelled U1, U2, U3) for the 100 internal load cases
were intersected against the previously created performance envelope (Section 4.2, Fig. 10).
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Algorithm 2
Fast RF using Möller-Trumbore algorithm

Compute the spherical coordinates of the applied load i.e. the two angles φ, θ and the
radius rapplied of the characteristic load vector from its cartesian coordinates (U1, U2, U3)
for all triangles

Solve Möller–Trumbore intersection → obtain (t, λ1, λ2)
if (λ1, λ2, 1 − λ1 − λ2) > 0 then

the radial vector in load space intersects this triangle, so we can ignore any
subsequent triangles
set rallowable = t
return RF = rallowble/rapplied

Figure 12. Comparison of RF values approximated with the performance envelope with direct calculation
using the analysis tool.

The estimated RFs where then compared against the actual RFs obtained by running the anal-
ysis tool directly. Figure 12 displays the combined results, plotting the estimated RF values
(vertical axis) against the actual RF values (horizontal axis). Note that 1/RF values are plotted,
since large RF values are of less interest than smaller RF values. Note also that the structure
has not been accurately sized, such that RF < 1 (i.e. 1/RF > 1) are present, enabling the method
to be fully tested.

The plot indicates that all the RFs were accurately estimated from the performance
envelopes throughout the range. The maximum error is around 0.5%, which is five times
less than the refinement threshold set when creating the envelope. The computational time to
create the estimated RF values was essentially negligible. For 100 load cases, the intersection
operation time with 256 facets took approximately 0.001s. Moreover, increasing the number
of load cases does not significantly increase the computational burden; for example, using the
same performance envelope, calculating the critical RFs of 104 random load values required
only 0.08s.
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Table 3
Computational effort of various envelope construction approaches

Total Analysis Critical
Threshold Points/ Tool Time RF Max

Load Space type (%) Iteration facets Calls (min) Error (%)

Standard space method 5 11 177/308 1,416 50 1.56
Standard space method 10 7 110/194 880 20 3.33
Ellipsoid space method 5 5 124/214 992 24 2.63
Ellipsoid space method 10 5 60/104 480 12 3.53

5.3 Computational effort
Given the insignificant computational burden to estimate RF values from a performance
envelope (Section 5.2) but the considerable computational burden to create a performance
envelope (Section 4.2), this section focuses on the construction of the performance envelope.

5.3.1 Relaxing the performance envelope threshold

In Section 5.2 the error introduced by the mesh scarcely influences the RF calculation. As
a result, the mesh refinement error threshold, which was set at 5%, can be relaxed to reduce
the total computational time. Increasing the threshold error from 5% to 10%, the envelope
construction time is reduced from approximately 50 to 20min. Examining the new RF approx-
imations from the envelope show a negligible effect from the mesh coarsening. This result is
interesting and implies that the threshold error for the mesh refinement should be adjusted
based on the RF approximations rather than the performance envelope if the sole purpose of
the performance envelope is to approximate RF values.

5.3.2 Ellipsoid scaling

Considering the performance envelopes in Figs 5, 6 and 10 their shapes are closer to ellipse-
like geometry than a sphere. The transformation of the mesh on a unit sphere to these
envelopes thus results in many poorly shaped triangles. As a result, attempting to refine the
mesh directly from such an initial mesh requires substantial effort. A new method which
creates an optimised space for the mesh is thus proposed.

The ellipsoid approximation algorithm introduced in Li and Griffiths(32) generates a trans-
formation matrix that may be used to transform the points in 3D Cartesian coordinates on a
unit sphere to create a best-fit ellipsoid. This approach approximates the ellipsoid from the
initial envelope iteration and then embeds the effect on the original load space. The use of the
more suitable load space means better triangle shapes are initially created and these are more
suitable for refinement to represent the ellipsoid shape of the envelope. Additionally, by only
changing the load space the previously described mesh refinement method can be effectively
applied and triangular meshes refined to fit the ellipsoid performance envelope shape.

Table 3 presents indicators that can be used to measure the computational effort required for
the construction of a performance envelope. These include the number of iterations required
to meet the specified error threshold, the number of points and facets in the final constructed
envelope, the average number of analysis tool queries used in the creation of the envelope,
and the total time for constructing the envelope.
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Examining the results in Table 3 the standard method that gradually refines the trian-
gle from the initial coarse mesh is less efficient than the ellipsoid space method which
requires only five iterations. When increasing the triangle threshold by 10% for the ellipsoid
space method, the number of black-box tool calls was reduced to 60 points and gave 3.53%
maximum RF errors for the critical value. The total construction time was around 12min.

6.0 CONCLUSIONS
A robust method for constructing a performance envelope has been established and demon-
strated. The method is based on the concept of spherical parametrisation and adaptive mesh
refinement. The method initially generates the spatial angles around a unit sphere mesh. The
unit sphere mesh points are moved in the radial direction and form a surface mesh defining
the performance envelope. The adaptive mesh refinement gradually refines the initial coarse
mesh until the representation error is below a desired threshold.

Two demonstration case studies illustrate that a performance envelope in three-dimensional
load space is adequate for capturing the failure behaviour of complex structural elements
(a composite laminate considering standard analytical failure functions, and a stiffened panel
considering industrial analysis tools). The case studies also demonstrate that a performance
envelope is potentially useful in fast reserve factor estimation, redundant constraint elimina-
tion and identifying the binding constraints that are effectively designing a structural feature.
The estimation of RFs of multiple load cases is demonstrated to be rapid, though the con-
struction of a performance envelope requires the upfront cost of modelling the surface where
RF = 1. The demonstration case studies also establish that initially ellipsoid-shaped perfor-
mance envelopes are suitable for effective mesh refinement.

The proposed approach will be most useful for structures with a very large number of
load cases, where the cost of reconstructing the envelope for a given structural feature may
be offset against the number of load cases requiring examination. In operations, a constructed
performance envelope defines an effective digital twin model for a structural feature, enabling
rapid evaluation of load exceedance, and the rapid identification of structural features which
require inspection, maintenance or repair.
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