
A New Method of Ship Routing on
Raster Grids, with Turn Penalties and

Collision Avoidance

Rafal Szlapczynski

(Gdansk University of Technology)
(Email : rafal@pg.gda.pl)

The article introduces a method of finding optimal routes on raster planes. The method
presented takes advantage of a new algorithm that tends to minimize a number of direction
changes within a route, while steering clear of the obstacles. Two different schemes, suitable

for restricted area Vessel Traffic Service (VTS) system and collision avoidance system located
on the own ship are described. The VTS-oriented scheme supports VTS priority policy that
may extend or override international give-way regulations. The own-ship routing scheme in

a give-way situation is capable of determining the shortest safe path to the destination point.
The method takes into account own ship dynamics. It has linear time and space complexities
and therefore is sufficiently fast to perform real-time routing on the raster grids. Both the
general method and the algorithm it uses are presented in detail in the paper. Implementation

issues are also discussed.

KEY WORDS

1. Navigation. 2. Optimal route. 3. Lee’s algorithm. 4. Collision avoidance.

1. INTRODUCTION. Raster grids are a digital representation of planar
data that is currently in use in a number of fields, including navigation. One of
the most common operations to be performed on raster planes is to determine an
optimal route between a start cell and a destination cell, which does not cross any
obstacles (in sea navigation: landmass, barriers or shoals). An algorithm perform-
ing this should fulfill certain conditions. Of these the most obvious is, that it does
indeed find an optimal route if such exists. Other conditions are those of time
and memory space needed. In reality only algorithms of linear time and space com-
plexities are useful as only such may be accepted by a real-time system processing
large numbers of cells. The big O notation will be further used for complexities,
with O(n) indicating linear complexity.

The first solution to meet the conditions mentioned above was the maze routing
algorithm presented by Lee [3], often described as wave propagation process. To date
Lee’s algorithm and its variations are among the most widely used routing methods,
with applications in maze games, VLSI design and road map routing problems.
However, the original algorithm proposed by Lee has one serious drawback: it
works only for the 2-geometry grid plane (also known as the Manhattan geometry).

THE JOURNAL OF NAVIGATION (2006), 59, 27–42. f The Royal Institute of Navigation
doi:10.1017/S0373463305003528 Printed in the United Kingdom

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


Only recently has it been upgraded to higher geometries while sustaining the linear
time and space complexities. This new solution has been proposed by Chang, Jan and
Parberry [1].

Despite the major progress, the potential use of the improved Lee’s algorithm has
still some limitations. Both the original algorithm and the upgraded version tend to
find the shortest path, which is not always identical to the optimal one. In the pres-
ence of many obstacles the algorithms determine a route containing so many turning
points and course alterations that no navigator would follow it, even when advised so
by a real-time routing system. Also, the fall in speed during the manoeuvre, results in
a longer passage time. Consequently, over larger geographic areas, both distance and
number of turns will contribute to the total time spent traversing a route. Thus
minimizing the number of turns is a desirable objective. Although the Chang, Jan and
Parberry algorithm may cover the aspect of varied terrain (among other improve-
ments), its data structure based on that of the original Lee’s method makes it unable
to include the cost of a turn in path length.

There are a number of methods (invented mostly for VLSI and automatics
purposes) that cover the Minimum Bend Path and Shortest Minimum Bend Path
problems. Unfortunately, determining the Shortest Minimum Bend Path is of no
value for long distance sea routing. Instead, the objective is finding shortest paths
with bend penalizing. Bend penalizing issue has also been considered in a number
of works but the methods presented there are either not sufficiently fast or not
applicable for higher geometries.

The article proposes the solution to this problem. A new data structure has been
designed so as to reflect the cost of all course alterations in each cell’s arrival time. An
algorithm utilizing this structure has been implemented. The algorithm takes input
parameters : user specified values of the course alterations time costs (penalties) and
returns thedeterminedpath.Ageneralmethodof ship routingwith collisionavoidance,
based on this algorithm and alternative to the method of Chang, Jan and Parberry is
introduced here. This method distinguishes two separate schemes for two use cases.

The first case is that the system (application of the method) is located on the own
ship only. Given the source, destination and the raster chart of the area, the method
determines the shortest route for the own ship. The route is followed until a poten-
tially colliding target (another ship) is detected. Then, the give-way ship is determined
according to the international regulations for preventing collisions at sea. If the own
ship is to give way, a new route is determined in such a way that the two ship domains
have no common cells at any time. Although usually the passage is regarded as safe if
the own ship domain is not penetrated by the target ship, here a stronger condition is
applied. The requirement that none of the cells may belong to both ship domains at
the same time is an extra safety buffer.

The second case is that of the system located in the VTS centre, responsible for
planning the routes for all ships within the certain restricted area. Given a priority
policy (which may override the common regulations) the method determines the
priority order of all ships in the region. Then, in turn from highest to lowest priority,
for each ship, its shortest route is found in such a way, that the lower priority ship
does not collide with any of the higher priority ships.

Section 2 is a presentation of a new routing algorithm that overcomes the limi-
tations of the previous ones. In Section 3, a method for the system located on the
own ship is presented. Section 4 describes a complementary method for the restricted

28 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


area VTS system that utilizes the same routing algorithm. Finally the conclusions
are presented in Section 5. All use of the term ‘algorithm’ in the text refers to
the algorithm introduced in section 2, unless stated otherwise. The term ‘method’ is
later used for an application utilizing this algorithm.

2. ROUTING ALGORITHM WITH TURN PENALTIES. Since
detailed description of both Lee algorithm and its upgraded version by Chang, Jan
and Parberry is beyond the scope of this paper, it is assumed here that the reader is
familiar with the Chang, Jan and Parberry article for this journal. For the reader’s
convenience the same notation as in Chang, Jan and Parberry paper is used
here. To simplify the presentation, only the 4-geometry version is described. The
algorithm in general, however, works also for higher geometries.

2.1. A concept of the turn penalty. In the paper it is assumed, that whenever a
ship alters its course, the dynamics of this manoeuvre (the fall in speed in particular)
results in a significantly longer passage time, than it would take the ship to cover the
same distance without altering its course. This time difference, called the delay in
the paper, should therefore be taken into account when determining a route. The fact
of the course alteration manoeuvres being time consuming is the main reason for
introducing a concept of the turn penalty. The other one is that the less complex
routes (consisting of the lesser number of straight lines) may be preferred for safety
reasons. Course alteration might be dangerous in the close presence of obstacles or
misleading for other ships. Hence the idea of the turn penalty parameters in a routing
algorithm. The turn penalty parameter value might be set separately for each course
alteration angle by the system operator. The exact value of the parameter might be
equal to the delay time of the dynamic manoeuvre or larger – to enforce determining
less complex routes.

2.2. Data structure. The static data is stored in an array containing three fields
for every cell :

SL (Sea/Land) – Integer number field, its value indicates whether a cell is sea
or landmass (or any other static obstacle). Its value is 1 for sea, infinity for a
landmass.
GAT (Gate Arrival Time) – A sub-array of the floating point numbers. The size of
the array is equal to the maximum number of the neighbouring cells and is 8 for
4-geometry. Each field of this sub-array contains the gate arrival times for different
incoming gates of the current cell. Gate arrival time is the time it takes to travel
from the source cell to the current cell via certain neighbour of the current cell.
VIS (Visited) – Boolean field, its value indicates whether a cell has already been
visited (inserted to temp-list) or not. True for a visited cell, false otherwise.

The dynamic data is stored in circularly used lists : L1 … Ln and one extra temporary
list temp-list. The number n of the lists that are used depends strictly on the maximum
course alteration cost specified and thus is configured indirectly via algorithm input
parameters.

n=ceiling (maximum {single-step distances}

+maximum {specified course alteration costs}

+1), where maximum {single-step distances} is
ffiffiffi
2

p
for 4-geometry:

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 29

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


2.3. Algorithm overview. The key difference between the new solution and that
proposed by Chang, Jan and Parberry is a replacement of each cell’s AT (Arrival
Time) field with GAT array. The idea of incoming gates arrival times makes it
possible to take into account course alteration costs without sacrificing the linear
complexities that characterized the previous versions. Every time a cell data is up-
dated, the arrival time of the appropriate gate is modified depending on the direction
of the neighbouring cell that has initiated the update operation. The new candidate
value of the gate arrival time field is determined according to the following formula:

GATnew, j, gate number=minimum {GATi, 1+distancei, j+delaygate number, 1 , ... ,

GATi, 8+distancei, j+delaygate number, 8},

where: i and j are indexes of the neighbouring cells, gate_number is the current gate of
the cj cell and numbers from 1 to 8 denote all gates of the ci cell. Delay values
(penalties) are equal to zero for two gates of the same direction and have appropriate
parameter values d1, d2 or d3 for two gates whose direction difference is 45, 90 or 135
degrees respectively. The present GAT value is replaced with the candidate value if
the new value is lesser than the current one.

Figure 1 illustrates the way the GAT array values of the wave front cells are
updated. A formal description of the algorithm is given in Appendix A.

2.4. Computational complexity. For each cell ci, whose distance from the source
cell is equal or lesser than that of the destination cell, the following actions are
performed:

– each of its neighbours cj is checked and possibly updated,
– for each of its neighbours cj, each of the gates of the cell ci is checked.

This gives a total of (2*l)* (2*l)*n steps for the worst case, where l is a constant
denoting geometry level (eight neighbours and eight gates for 4-geometry) and n is
the number of cells, whose distance from the source cell is equal or lesser than that of
the destination cell. Thus the computational complexity of the proposed solution
is O(n).

→

∞ ∞ ∞

∞ ∞ ∞

∞

∞ ∞ ∞

∞

∞ ∞ ∞

∞

∞

∞ ∞ ∞

∞

∞

∞ ∞ ∞

∞ ∞ ∞

∞

∞

∞

∞ ∞ ∞

∞

∞
→

√

Figure 1. Left: A 90-degree turn. Right: A 45-degree turn.

30 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


2.5. Example results for proposed algorithm vs. Chang, Jan and Parberry
method. Figure 2 presents examples of results for the new routing method and the
Chang, Jan and Parberry algorithm. It has been assumed that costs of direction
changes are: 1, 2 and 3 for 45, 90 and 135-degree turns respectively. In the figures, two
different solutions for the same task are visualized. The proposed algorithm finds a
route with two turning points as opposed to the Chang, Jan and Parberry method,
which determines a route with six turning points. Thus the total path lengths and
penalties for both methods are :

For the Chang, Jan and Parberry route:

Basic path length=8+5*
ffiffiffi
2

p
� 15�07

Total penalties=5*d1+1*d2=7

Total path cost=basic path length+total penalties � 22�07

For the proposed route:

Basic path length=10+4*
ffiffiffi
2

p
� 15�65

Total penalties=2*d1=2

Total path cost=basic path length+total penalties � 17�65

As illustrated above, taking a seemingly longer (3.8%) route results in a much lower
(22%) overall path cost.

3. SHIP-ORIENTED ROUTING SCHEME WITH COLLISION
AVOIDANCE. The algorithm in the version described above is a general-
purpose routing tool. When ship routing is considered however, collision avoidance
rules must be applied. Whenever there are two potentially colliding ships, the inter-
national regulations for preventing collisions at sea determine which one is to give
way to the other. This decision is made, depending on the positions and courses of

Figure 2. Left: Route determined by the Chang, Jan and Parberry algorithm. Right: Route

determined by the proposed algorithm with direction change costs (penalties) d1=1, d2=2,

d3=3.

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 31

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


both ships. The resulting collision avoidance manoeuvre must fulfill the following
conditions:

– the alteration of course must be large enough to be apparent to another ship – at
least 15 degrees,

– the alteration of speed should only be applied if necessary, that is, if the alteration
of course alone does not guarantee safe passage or the course alteration necessary
is too large to be accepted (economical reasons),

– ships should keep a safe distance, while collision avoidance action is taken.

All three requirements are met in the method presented in this section. To fulfill the
third condition, the domain conception has been used. Usually the route is considered
to be safe if the own ship domain is not penetrated by the target ship. Here however, a
stronger condition is applied. None of the cells may belong to both ship domains
at the same time. In this way, an extra buffer space is reserved for the own ship
manoeuvrings. A distance is hence regarded as safe if the domains of the two ships
have no common cells at any given time.

3.1. Collision avoidance by course alteration. To make the key idea more vivid,
the Chang, Jan and Parberry scheme will be discussed first. To guarantee a safe
passage for both ships, their scheme includes marking potential collision area as
impassable for the give-way ship. This proves to be an extremely strong condition,
which might even lead to not finding a valid route, when such exists. Such case is
exemplified in Figure 3. Because of the limited size of the figures and the need to
include all relevant information, only the largely simplified situations are shown in
the paper, with ship domains limited to several adjacent cells. All methods however,
have been tested extensively with real size domains and much larger maps.

In Figure 3, two ships are on their way to approach a strait. Their positions,
courses and speeds are such that the ships would collide, if neither of them alters its
course or speed. According to the Chang, Jan and Parberry scheme, the whole colli-
sion area – a significant part of the strait in this case – will be marked as impassable

Figure 3. Left: Two ships potentially colliding. Right: An area marked as impassable for the

second ship.

32 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


for the second ship and consequently – a valid route will not be determined. Obviously
this is an extreme example, but it turns out that because of marking a whole region as
impassable, sub optimal trajectories are often found instead of optimal ones.

The solution to eliminate this drawback is to bring in the idea of an area being
impassable at a certain time interval, instead of being impassable in general. This task
involves three steps:

– determining both the impassable cells and time values corresponding to them, with
linear or sub linear computational complexity,

– storing this data in a way that guarantees constant access time,
– utilizing this data in the routing algorithm without affecting its original linear

computational complexity.

The realization of the first step is fairly easy. Let us call the give-way ship an own ship
and the other one – the target ship from now on. For every cell occupied by the target
ship, during a certain time unit, a cell’s domain is determined, based on the ship’s
course. (In the implementation of the method, Fuji domain [2] has been used,
although it is feasible to apply any other). The whole domain area including the cell
occupied by the target ship should be impassable for the own ship within this time
unit. If the target ship’s position is undetermined (the ship traverses two or more
adjacent cells instead of one) for this time unit, the ship’s domain is a sum of domains
for all cells traversed. The resulting marking of the cells is shown in Figure 4.

The values for each cell denote the time intervals when these cells are impassable
for the own ship. Since the domain size is constant, the whole step is completed in
a time proportional to the length of the fragment of the target ship route being
considered.

The next step – making this data accessible in a constant time is essential for
sustaining the linear computational complexity of the algorithm. This can be done on
the implementation level by means of a dictionary, a map or an associative array
object, depending on the programming environment. The particular entry key might
be a pair of a cell index and time unit, for which the cell is impassable.

0

1

3

4

6 8 9 10 11 12

1-3

1-3

1-3

1-4

3-4 3-6

3-4

4-6

4-6 4-7

6-7

7-9

6-9

6-7

7-10

7-10 9-11

9-11

9-11 10-12

10-12

10-12

11-13

11-13

11-13 12-14

12-14

12-149-10

Figure 4. Left : Ship domain moving in time. Right: Cells occupied by ship domain.

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 33

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


The realization of the third step requires modification of the basic routing
algorithm. The candidate time value of a particular gate (para 2.2) is only updated
with the lesser time value, if the domain determined for this cell has no common cells
with the target’s domain, for the appropriate time units. According to the second
step, checking whether this requirement is met, is done in constant time; hence
the original linear complexity is not affected. In Figure 5 (left) the solution
generated by the proposed method is shown. In Figure 5 (right) it is shown that
the condition for safety is met, that is, no cell belongs to both ship domains at the
same time.

In short, the routing with collision avoidance method algorithm is as follows.

1. Given the start, destination, a raster map and turn penalties of the own ship,
find the shortest route using the routing algorithm.

2. Follow the route until another target ship is detected or destination point is
reached.

3. Check whether there is a danger of collision (domains have common cells for
any future time value), provided, that the target ship keeps its course.

4. In case of collision risk – determine the give-way ship, in case of no risk –
return to step 2.

5. If own ship is to give way, find a new route with a modified routing algorithm,
taking a current position for a start position. Depending on the preferences,
original destination point might be kept (this would likely result in a completely
different route from now on) or a point (a set of points) on the original route,
past the potential collision area might be chosen for a destination (this enables
own ship to follow originally determined route from the closest safe point on).

6. Follow the new route until the next target ship is detected (return to point 3.)
or a destination point is reached.

As presented above, points 1 and 5 have linear complexities. Points 3 and 4 are
completed within constant time and points 2 and 6 are continuous real time
processes, not a part of the routing method itself.

1-2 1-2

1-31-3

2-4

3-6

4-8

6-8 6-9 8-10 9-11 10-12 11-13 12-14 13-15 14-16

12-14

12-14

11-139-117-106-96-7
8-108-9

4-6 4-7

4-63-6

3-41-41-3

1-3 1-3

3-4

6-7

10-12 11-13 12-14 13-15 14-16

11-1310-12

10-12

9-117-10

8 9-11

4-9 8-10 9-11 10-12 11-13 12-14 13-15

10-129-10 9-11

14-16

11-13 12-14

15-17

15-17

15-17

7-9

3-4

2-4

Figure 5. Left : Route for the second ship found by the proposed method. Right: Cells occupied

by ship domains in time units.

34 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


3.2. Collision avoidance by speed reduction only. If course alteration alone does
not guarantee a safe passage for own ship, the routing algorithm will inform the
system, that there is no valid route. Also, the system may not accept a proposed route
if the course alteration is too large – a 60-degree turn is often taken as a value beyond
which speed alteration might be considered. A solution based on speed altering only,
may enable own ship to take advantage of the shortest route – the route determined
originally.

Let us denote :

– the current time unit by t0,
– the latest time unit when the target ship (or its domain) occupies a cell by tTS,i,j,
– the earliest time unit when the own ship (or its domain) would occupy a cell, had its

speed not changed by tOS,i,j,
– the delay time, before the speed reduction is initiated by tD,
– the time between initialization and the end of the speed reduction operation by tR,
– the desired time unit when the own ship domain may safely reach a cell by

tkOS, i,j,
– current speed by V,
– a reduced speed which results in collision avoidance for a cell ci, j by Vki,j
– a reduced speed which results in collision avoidance for all cells by Vk

The collision will be avoided, if for each of the critical cells ci,j, an associated time
value tOS,i,j is replaced with tkOS,i,j such, that :

t0OS, i, j>tTS, i, j

Time unit :

t0OS, i, j=tTS, i, j+1

meets this requirement. In Figure 6 (left), tkOS,i,j values are shown in the upper parts of
the cells.

V

t

t t +t t t t+ +

V

’V

Figure 6. Left : Time units, when cells in the potential collision area might be safely reached by

own ship. Right: Assumed model of the speed reduction dynamic.

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 35

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


The time unit when the own ship would reach a cell without reducing its speed
ci, j is :

tOS, i, j=t0+
si, j
V

,

where V is the current speed value (speed value in the moment t0), and si, j is the
distance between the current ship position and cell ci, j. To simplify the calculations it
is assumed that the speed changes from V to Vk linearly. The reduction begins after
some delay time tD and is completed after time tD+tR. The dynamics of the speed
reduction is presented in Figure 6 (right). The distance that the ship covers before its
speed is reduced to Vk is :

sR=V � tD+
V+V0

2
� tR

Therefore the distance that the ship covers with the speed Vki,j, before it reaches the
cell ci,j is :

s0i, j=si, jxV � tDx
V+V0

i, j

2
� tR

Thus the time, when the cell may be safely reached by the ship is :

t0OS, i, j=t0+tD+tR+
si, jxV � tDx

V+V0
i, j

2 � tR
V0

i, j

The distance to the cell ci,j is :

si, j=V � (tOS, i, jxt0),

Hence Vki,j is :

V0
i, j=V �

(tOS, i, jxt0xtDx tR
2 )

t0OS, i, jxt0xtDx tR
2

V0
i, j=V �

tOS, i, jxt0xtDx tR
2

� �
tTS, i, jxt0xtDx tR

2 +1

Vk that is safe for all cells ci,j is the minimum of all Vki, j :

V0=V �mini, j
tOS, i, jxt0xtDx tR

2

tTS, i, jxt0xtDx tR
2 +1

� �

The determined reduced speed value Vk guarantees that the own ship will not collide
with the target. In reality however, often only the speed values corresponding to the
basic engine room telegraph commands are considered when performing a speed
reduction manoeuvre. In such case, the speed determined would have to be rounded
down to the nearest engine room telegraph command speed.

The time necessary to determine the new speed value is proportional to the number
of cells in the potential collision area. Thus the linear complexity of the routing
algorithm is not affected.

36 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


3.3. Collision avoidance including course and speed alteration. If neither course
nor speed alteration alone does not result in a satisfactory route, collision avoidance
by both course and speed alteration must be applied. The system will determine the
speed value that is closest to the current speed and still enables the algorithm to find
a safe route. The method for this is a binary search algorithm with the routing
algorithm used to determine, whether a certain speed reduction results in a satisfac-
tory route. In Figure 7 (left), routes of both ships and cells occupied by their domains
are shown. The reduction of the own ship’s speed was 25% of the original value.
In the Figure 7 (right), the same route (a result of both course alteration and speed
reduction of 25% of the original value) is compared to routes from previously
described cases : course alteration only and speed reduction only (60% of the original
value). The alternative trajectories (course alteration only and speed reduction only)
have been marked by grey icons.

The number of steps it takes for a binary search method to find the
appropriate speed value within the range from the current speed to minimal speed
possible is :

m= log2
current speedxminimal speed

search step

� �

For each of these steps, it is checked whether a certain speed value meets the safety
requirements, that is, whether a valid route can be found for this speed value.
Therefore the resulting computational complexity for this case is O(m*n), where m is
given by the equation above and n is the number of cells within the area. In case, when
only speed values corresponding to the engine room telegraph commands are con-
sidered during manoeuvrings, it would be enough to determine that of the speed value
corresponding to the telegraph commands which is closest to the current speed and
results in satisfactory trajectory found by the routing algorithm. The computational

Figure 7. Left: Cells occupied by ship domains in time units for a route obtained as a result of

both course alteration and speed reduction (25%). Right: A route obtained as a result of

both course alteration and speed reduction (25%) compared to course alteration only and speed

reduction only (60%).

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 37

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


complexity would then be O(k*n), where:

k=log2(number of engine room telegraph commands):

4. VTS-ORIENTED ROUTING SCHEME WITH COLLISION
AVOIDANCE. Vessel Traffic Services (VTS) are popular systems for ship
traffic control in restricted areas. While international regulations for preventing
ship collisions at sea are always binding at open waters, VTS systems for restricted
areas may override them with their own rules and priority policies. For instance,
some ships might be given higher priority because of carrying an environment
threatening load or for other safety or economic reasons. Therefore, there is a need
for routing methods that would enable VTS system to perform central automatic
route planning in accordance with its priority policy. The method presented below,
is suitable for that purpose, while taking advantage of the general routing algor-
ithm described in section 2.

1. All ships within or approaching the restricted area are sorted in descending
order, according to the priority policy in force.

2. The ships routes are determined in turn, starting with the ship of the highest
priority. For each ship, its route is found with the routing algorithm in such
way, that the ship would not collide with any of the ships of higher priority
(ship domains would not have common cells at any given time). To determine
a safe route system uses the method described in section 4.1 first and if it there
is a need for speed alteration – method from section 4.2.

3. Whenever a new ship approaches the area, it is given an appropriate priority
and its route is determined. This route may not collide with any previously
found.

4. All ships follow their routes until they reach their destination points or some
emergency situation occurs.

5. In a state of emergency, the set of ships that cannot follow their original routes
is determined. New routes are found for these ships in an appropriate order.
New routes may not collide with those previously found. If a safe route cannot
be found for given speed value, a speed is altered.

4.1. Collision avoidance by course alteration only. In this case the method works
similarly to the one described in section 3.1, except that instead of assuming
unchanged course of the target ship, all routes of the higher priority target ships are
known. Therefore the task is to find a route that does not collide with any previously
determined. An example is given in Figure 8. The cells marked as impassable by two
higher priority ships for some time intervals, limit the possible routes of the lower
prioritized ship in Figure. The route determined by the system for this ship is shown
in Figure 8 (right). The priority policy in this example is such that the ship trajectories
are determined in the following order: first Ship1, then Ship2, and then Ship3.
The resulting computational complexity for finding a single ship’s route in this case
is O(n).

4.2. Collision avoidance including course and speed alteration. If course alteration
alone does not guarantee a safe passage for own ship, or the route determined may

38 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


not be accepted for economical reasons, speed reduction must be taken into account.
However, when more than two ships in the same area have to be considered, the
method of collision avoidance by speed reduction only, may not return an acceptable
solution in general. Instead, routing with collision avoidance by both speed and
course alteration has to be performed. Unfortunately, because there are more than
two ships in the area in general, all potential reduced speed values have to be checked
sequentially, instead of binary search for the two-ship problem. An algorithm
performing this is presented below.

1. For speed values within range from current speed to minimal speed, with a
given search step, try to find a route.

2. When a first acceptable route is found, return the route and the reduced speed
value.

The number of steps the algorithm has to proceed to find the appropriate speed value
within the range from the current speed to minimal speed possible, for the worst case
is :

m=
current speedxminimal speed

search step

The resulting computational complexity for finding a single ship’s route in this case is
O(m*n), where m is given by the equation above and n is the number of cells within
the area. However, in case when only the engine room telegraph command speeds are
considered, the computational complexity would be still O(k*n), where k would be
the number of the engine room telegraph commands.

5. CONCLUSION. In the paper a general searching method on the raster
plane was presented. Owing to its new data structure, the algorithm is capable
of including costs of direction changes in the total cost of an optimal path, while

Figure 8. Left : Two routes and the cells occupied by two ship domains. Right: Solution

determined by the proposed method – three routes.

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 39

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


keeping the linear computational time and space complexities. Therefore, when
costs of the direction changes are significant, the benefits of using the solution
proposed here might be considerable and hence – the solution – superior to those
previously known. In navigation the most obvious fields where the algorithm may
be adapted are real-time routing and collision avoidance systems, since ship course
alterations might be expensive or even risky in presence of obstacles. A routing
method with collision avoidance, based on the algorithm has been introduced. Two
separate schemes may be applied to on-ship routing systems and VTS systems
respectively. The method includes speed reduction, if necessary, and is reliable to
determine a safe route, if only such exists. Its additional advantages are simplicity
of implementation and possibility of inclusion of any of the currently known ship
domains.

ACKNOWLEDGEMENTS

The author would like to thank Prof. A. S. Lenart for his help and advice.

APPENDIX A : ALGORITHM FORMAL DESCRIPTION

The procedures INSERT and CLEAR perform the same functions as those in the
Chang, Jan and Parberry method. The function GET_GATE_NUMBER (ci,cj)
returns the number of the incoming gate of the cell cj, through which we travel from
the cell ci. The procedure RETRACE retraces from the destination cell to the source
cell and forms the output LLpath list. However, the rule of choosing the back way cells
is different from that of Chang, Jan and Parberry procedure. Here the cell is chosen
whose sum of di (is{1,2,3}) modifier and the arrival time value of previous (closer to
destination) cell’s incoming gate is minimal.

Algorithm 4-GEOMETRY-ROUTER-WITH-TURN-PENALTIES (Cell-map, S,D,
d1, d2, d3, LLpath)
Input : Cell-map, S, D, t1, t2, t3
Output : LLpath

begin

bucket_index=0;
Lbucket_index=S;
VISS=TRUE;
temp-list=Ø;
path-exists=FALSE;
all-lists-empty=FALSE;

number-of-lists=ceiling(
ffiffiffi
2

p
+ maximum{d1, d2, d3}+1);

while (all-lists-empty=FALSE) do
if (D cell in Lbucket_index) then

{
path-exists=TRUE;
break while ;

}
for each cell ci in Lbucket_index do

40 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


{
for each cell cj neighbouring ci do

{
if (SLj=1) then

{
if (VISj=FALSE) then

{
VISj=TRUE;
INSERT(cj, temp-list) ;

}
Case 1: 2-geometry neighbours

distance=1;
Case 2: diagonal neighbours

distance=
ffiffiffi
2

p
;

gate_number=GET_GATE_NUMBER(ci,cj) ;
GATnew=GATi, gate_number+distance ;
for each gate gk of the cell ci do

{
Case 1: gate_number is the same direction as gk

delayk=0;
Case 2: gate_number and gk difference is 45 degrees

delayk=d1 ;
Case 3: gate_number and gk difference is 90 degrees

delayk=d2 ;
Case 4: gate_number and gk difference is 135 degrees

delayk=d3 ;
GATnew, k=GATi, k+distance+delayk ;
if (GATnew, k<GATnew,) then GATnew=GATnew, k ;

}
if (GATnew <GATj, gate_number) then GATj, gate_number=GATnew ;

}
}

}
CLEAR(Lbucket_index)
if (temp-listlØ) then
{

for each cell cj in temp-list do
{

k=floor(minimum{GATj, 1, … GATj, 8}) mod number-of-lists ;
INSERT(cj,Lk) ;

}
CLEAR(temp-list) ;

}
else bucket_index=(bucket_index+1) mod number-of-lists ;
all-lists-empty=TRUE;
for each list Li do

{
if (LilØ) then

NO. 1 A NEW METHOD OF SHIP ROUTING ON RASTER GRIDS 41

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528


{
all-lists-empty=FALSE;
break for

}
}

end while ;

if (path-exists=TRUE) then RETRACE(Cell-map(GATD), LLpath)
else path does not exist ;
end;

REFERENCES

[1] Chang, K. Y., Jan, G. E, Parberry, I. (2003). A Method for Searching Optimal Routes with Collision

Avoidance on Raster Charts. The Journal of Navigation, 56, 371–384.

[2] Fuji, Y. and Tanaka, K. (1971). Traffic capacity. The Journal of Navigation, 24, 543–552.

[3] Lee, C. Y. (1961). An algorithm for path connection and its applications. IEEE Trans. Electron.

Comput., EC-10, 346–365.

42 RAFAL SZLAPCZYNSKI VOL. 59

https://doi.org/10.1017/S0373463305003528 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003528

