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Spanwise localized control for drag reduction in
flow passing a cylinder
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Active and passive controls for drag reduction in flow around a cylinder are obtained
by computing the sensitivity of drag with respect to surface velocity perturbations
and roughness, respectively. Both controls are concentrated around the separation line
and localized in the spanwise direction, producing suction effects to the separating
boundary layers. In the wake, the control induces localized vertical displacements and
streamwise stretches of the upper and lower vorticity sheets, and subsequently delay the
vortex shedding and push the local pressure minimum away from the cylinder. Instead
of suppressing separation and recirculation as commonly observed in two-dimensional
controls, the present three-dimensional control extends the recirculation zone to produce
a virtual surface converting the bluff body flow to a streamlined body flow. Through
this mechanism, the control reduces drag by 20 % at maximum control velocity 2 %
of the free-stream velocity (or momentum coefficient 10−4) at Reynolds number Re =
190. The control is much more efficient than the previously tested spanwise uniform
suction or periodic suction/blowing, both requiring maximum control velocity above
8 % (or momentum coefficient above 10−3) to achieve similar drag reduction effects.
The power savings ratio, defined as the ratio of the control-reduced drag power and
the maximum input power, is above 20, up to Re = 1000, the highest Reynolds number
considered in this work. This ratio reduces slightly to 17.8 when the control is simplified
to spanwise localized suction around the separation lines in order to facilitate practical
implementations.

Key words: drag reduction, vortex shedding, wakes

1. Introduction

Drag reduction in flow passing a circular cylinder is a canonical problem in fluid
mechanics as it is related to extensive engineering applications and incorporates rich
fluid physics, including the separation of boundary layers, vortex shedding, hydrodynamic
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stabilities, etc. Numerous control techniques have been developed for drag reduction in
flow around cylinders and, depending on the energy input, they can be broadly classified
as active and passive controls (Choi, Jeon & Kim 2008).

In active drag reduction, spanwise-uniform forcing imposed on the cylinder surface,
denoted as two-dimensional (2-D) control in this work, has been extensively investigated
by testing various actuations such as blowing/suction, surface rotation, etc. For example,
the blowing control has been shown to reduce drag 14 % in flow passing a circular cylinder
at a blowing flow rate 0.145 (normalized by the free-stream flow rate) and a maximum
relative control velocity (with respect to the free-stream velocity as will be used in the
following) approximately 0.37 at Reynolds number Re = 90. A temporally sinusoidal
rotation of a circular cylinder at Re = 15 000 has been reported to reduce drag up to
80 % in an experimental work (Tokumaru & Dimotakis 1991) and 70 % in a similar 2-D
simulation work (Shiels & Leonard 2001). Later Fujisawa, Tanahashi & Srinivas (2005)
conducted experimental measurement of forces acting on a rotating circular cylinder at
Re = 2000 and reported drag magnification at a high rotating frequency (five times the
vortex shedding frequency) and 30 % drag reduction at a low rotating frequency (vortex
shedding frequency). Instead of using prescribed rotary velocity, Lu et al. (2011) used the
lift coefficient as the feedback signal to calculate the rotating velocity of a circular cylinder
and achieved drag reduction over 10 % at Re = 200. Most recently, Palkin et al. (2018)
achieved a drag reduction up to 88 % in flow passing a circular cylinder at Re = 1.4 × 105

by rotating the cylinder at the optimal combination of frequency and magnitude. Rather
than imposing a uniform rotation, Shukla & Arakeri (2013) studied the optimal distribution
of surface rotation control around the whole surface of a circular cylinder to minimize the
power loss in the limit of Re � 1. The obtained optimal control was observed to reduce
drag up to 77 % at a maximum relative control velocity 1.5 and Re = 100.

Spanwise-dependent forcing, referred to as three-dimensional (3-D) control in the
following, has been shown to be more effective than 2-D control (Park et al. 2006; Guercio,
Cossu & Pujals 2014a). Poncet et al. (2008) found that a 2-D optimal control is no longer
optimal in 3-D domains, and a spanwise-varying streamwise control is more effective
owing to the generation of streamwise vortex braids in a circular cylinder flow at 300 ≤
Re ≤ 1000. Kim & Choi (2005) applied steady blowing/suction varying sinusoidally in
the spanwise direction on the upper and lower surfaces of a cylinder and observed that
a symmetric (‘in-phase’) control forcing reduces drag significantly and also suppresses
vortex shedding more efficiently than base bleeding. They achieved approximately 20 %
drag reduction at a maximum relative control velocity 0.1 at Re = 100. The mechanism of
this control is attributed to the phase mismatch in the spanwise direction, similar to effects
induced by spanwise geometry variation.

In passive drag reduction, the configuration of the body is modified and the control
action does not require energy inputs. Such shape modifications target at the separating
boundary layer or the unsteady vortex shedding in the wake for drag reduction. For
example, dimples on the cylinder surface induces pairs of vortices to energize the boundary
layer and subsequently reduce drag from Re = 4 × 104 to Re = 3 × 105 (Bearman &
Harvey 1993). Spanwise waviness introduced to either the front or rear stagnation face has
been shown to suppress vortex shedding and reduce drag in flow around both circular and
rectangular cylinders (Bearman & Owen 1998; Darekar & Sherwin 2001; Owen, Bearman
& Szewczyk 2001). The control mechanism revealed in these works is similar to the 3-D
active control reviewed above. Splitter plates, either rigid or flexible, have been also tested
owing to its simple geometry and effectiveness in drag reduction and the suppression
of lift fluctuations (Bearman 1965; Bagheri, Mazzino & Bottaro 2012). Other surface
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Spanwise localized control for drag reduction

modifications, including helical strakes, bumps, small tabs and so forth, were also reported
to be effective in controlling the flow around a cylinder by attenuating the vortex shedding,
as summarized in a review paper (Choi et al. 2008).

In all these efforts, the control forcing is either prescribed or computed from an
optimization process or a sensitivity analysis without iterative optimizations, which can
be regarded as a suboptimal computation (Min & Choi 1999). Sensitivity analyses in fluid
dynamics have been focused on the structural sensitivity of stability to feedback forcing
(Giannetti & Luchini 2007; Pralits, Brandt & Giannetti 2010), and the sensitivity of modal
and non-modal instabilities with respect to base flow modifications (Brandt et al. 2011;
Lashgari et al. 2014; Mao 2015a). The calculation involves the integration of the adjoint of
the linearized Navier–Stokes (NS) equation, which has been widely used in non-normality,
sensitivity and receptivity studies (Chomaz 2005; Schmid 2007; Mao, Blackburn &
Sherwin 2012; Boujo & Gallaire 2014; Luchini & Bottaro 2014; Meliga et al. 2014), as well
as in the shape optimization and optimal control investigations (Mohammadi & Pironneau
2004; Jameson & Ou 2010; Bueno-Orovio et al. 2012). In sensitivity analyses of flow
passing a bluff body, Hwang, Kim & Choi (2013) computed the sensitivity of absolute
instability with respect to spanwise wavy base flow modifications, Guercio, Cossu &
Pujals (2014b) studied the optimal spanwise periodic blow/suction that suppresses parallel
wake instability, and Tammisola et al. calculated the second-order sensitivity of instability
to blowing/suction and surface roughness (Tammisola et al. 2014; Tammisola 2017). In
these sensitivity investigations, the base flow is 2-D and control forcing with a prescribed
spanwise wavenumber was adopted to modify the base flow. It is still unclear if these
sensitivity analyses can be extended to high-Reynolds-number 3-D base (or uncontrolled)
flow for effective suppression of wake instabilities and drag reduction. Also it is unknown
if a superposition of spanwise waves can be more efficient in controlling the wake flow
than a single wave.

This work aims at answering these questions. The active control will be modelled
as active boundary perturbations (velocity perturbations on the cylinder surface) while
passive control will be considered as passive boundary perturbations (surface roughness).
An algorithm for the sensitivity of drag to perturbations will be established. The
calculation can be regarded as the first step of an optimization and only requires one call of
the NS equation and the adjoint equation. This algorithm can be regarded as a combination
of those developed for sensitivity of drag to external forcing (Meliga et al. 2014) and
sensitivity of instability to boundary perturbations (Tammisola et al. 2014; Tammisola
2017). It will be shown that when the boundary perturbation is of the passive type,
the formula of the sensitivity of force is distinctively different from that of instabilities.
This algorithm is then applied to flow past a circular cylinder at 190 ≤ Re ≤ 1000.
As the spanwise-dependent controls have been demonstrated to be more effective than
spanwise-independent ones, efforts will be devoted to addressing the spanwise variation
of the control forcing.

2. Algorithms

2.1. Governing equations and definitions
Assuming the flow to be incompressible and Newtonian and considering the control as the
boundary perturbation on the cylinder surface, the perturbed flow is governed by the NS
equations:

∂tû + û · ∇û + ∇p̂ − Re−1∇2û = 0, with ∇ · û = 0, (2.1)
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where û and p̂ are the perturbed velocity and pressure, respectively, and Re is the Reynolds
number based on the free-stream velocity and the cylinder diameter.

The perturbed flow can be decomposed as the sum of an unperturbed flow (synonymous
to base flow in sensitivity, stability and non-normality studies), which is itself a solution
to the NS equations, and a perturbation-induced flow, i.e. (û, p̂) = (U, P) + (u, p), where
U , u, P and p are the unperturbed velocity, perturbation velocity, unperturbed pressure
and perturbation pressure, respectively. Then we substitute this decomposition into the
NS equations (2.1) and linearize the convection term (assuming the perturbation u is
small enough that the interaction of this perturbation with itself is negligible) to reach
the linearized NS equation

∂tu + U · ∇u + u · ∇U + ∇p − Re−1∇2u = 0, with ∇ · u = 0, (2.2)

where the initial condition of u is set to zero so as to exclude effects of initial perturbations
on the development of boundary perturbations. Similar to the velocity and pressure terms,
the force acting on a solid body can also be decomposed into two components, namely an
unperturbed force and a perturbation-induced force, as f̂ = F + f .

To simplify notations in the following derivations, we define scalar products

(a, b) =
∫

Ω

a · b dΩ, 〈a, b〉 = τ−1
∫ τ

0

∫
Ω

a · b dΩ dt, (2.3a,b)

[d, e] = L−1
z

∫
B

d · e dB, {d, e} = L−1
z τ−1

∫ τ

0

∫
B

d · e dB dt, (2.4a,b)

where Ω denotes the spatial domain, B represents the surface of the cylinder where the
boundary perturbation is imposed, τ is a final time, Lz is the spanwise length of the
domain, a, b ∈ Ω × [0, τ ] and d, e ∈ B × [0, τ ].

We also define a boundary norm:

‖X‖ = [X , X ]1/2, (2.5)

which is the square root of the square integration of X defined on the perturbed boundary.
The magnitude of a boundary perturbation can be measured by its boundary norm.

2.2. Sensitivity of forces to active boundary perturbations
In this section, the algorithm for sensitivity of forces to active control (or active boundary
perturbations) is briefly introduced. The details of derivation can be found in Mao (2015b).

The active boundary perturbation can be modelled as Dirichlet-type velocity boundary
conditions of (2.2), denoted as u(B, t). The spatial and temporal dependence of this
perturbation is decomposed as

u(B, t) = g(t)ua(B, ω) cos(ωt), (2.6)

in order to reduce the dimension of its discretized form. Here ua(B, ω) denotes the spatial
dependence of the perturbation, ω represents the frequency, and g(t) is a numerical factor
defined as

g(t) = (1 − e−σ1t2). (2.7)

This numerical factor sets u(B, 0) = 0 and therefore eliminates the incompatibility of the
boundary perturbation with the zero initial condition of u. Here σ1 is a relaxation factor
and σ1 = 100 is adopted throughout this work. Clearly when the final time τ → ∞, ua(B)
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represents the magnitude of the boundary perturbation. This decomposition of the spatial
and temporal dependences is particularly useful in open-loop flow control problems, where
the control forcing is typically steady or periodic in time.

Considering that the force acting on a solid body is commonly time-dependent, when
studying the perturbation-induced force, it is sensible to adopt its (quasi) mean value,
whose component in direction K can be written as

f̄K = τ−1
∫ τ

0
f · KR(t) dt = {pn − Re−1∂nu, KR(t)}, (2.8)

where f = L−1
z

∫
B( pn − Re−1∂nu) dB is the perturbation-induced force per unit spanwise

length. Thus f̄K can be interpreted as the perturbation-induced time-averaged force per unit
spanwise length in the K direction. Here R(t) = 1 − e−σ2(t−τ)2

is a numerical factor and
σ2 = 100 is adopted throughout this work. This factor generates a zero adjoint velocity
boundary condition, which is compatible with the zero initial condition of the adjoint
velocity (see appendix A). Since all the variables involved in the governing equations have
been non-dimensionalized, the force coefficient is two times the force.

Considering the definition of the Gâteaux differential, the gradient of the force
with respect to the active perturbation, denoted as ∇ua f̄K , satisfies f̄K = [∇ua f̄K , ua].
Combining (2.6), (2.8) and (A3) from adjoint analyses in appendix A, this gradient can
be expressed as

∇ua f̄K = τ−1
∫ τ

0
( p∗n − Re−1∂nu∗)g cos(ωt) dt, (2.9)

where p∗ and u∗ are solutions of the adjoint equation (A2) with appropriate initial and
boundary conditions. Such an adjoint method has been extensively used in sensitivity,
receptivity and non-normality calculations and shape optimization (Barkley, Blackburn &
Sherwin 2008; Shinohara et al. 2008; Jameson & Ou 2010). If the boundary perturbation
is restricted, e.g. to the wall-normal direction, the corresponding gradient should be the
product of the right-hand side of (2.9) and the unit wall normal n. It is noted that the
formula of gradient in (2.9) can be also obtained by defining a Lagrangian functional and
applying the variational principle.

This gradient represents the sensitivity of force with respect to active boundary
perturbations. The norm of this sensitivity quantifies the controllability of the force with
respect to the boundary perturbation, and the distribution of the sensitivity is parallel with
the (linearly) most effective perturbation to modify the force. Therefore, the sensitivity can
be scaled as a control, whose induced force is the product of the norms of the sensitivity
and the control in the linear limit (Mao 2015b).

2.3. Sensitivity of forces with respect to passive boundary perturbations
In the present linear framework, we only consider the surface-normal roughness or
surface undulation, denoted as r in figure 1(a). The more complex roughness with both
surface-normal and surface-tangential components leads to cavities on the surfaces (see
figure 1b). This form of roughness cannot be modelled as surface velocity perturbations
under the linear assumption and will not be considered in the following. It would be
possible to study this roughness by computing the sensitivity of forces with respect to
the surface geometry directly.

The magnitude of the roughness can be evaluated by the boundary norm ‖r‖ (see (2.5)).
As shown in figure 1, after adding roughness, the surface coordinate changes from B to
Br = B + rn, where n is the unit wall-normal vector towards the body.
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r

B : smooth surface

Br : surface with roughness

r

B : smooth surface

Br : surface with roughness

(b)

(a)

Figure 1. Schematic plot of (a) surface-normal roughness and (b) surface-normal and surface-tangential
roughness. Here r represents the roughness. The solid lines denote the smooth surfaces without roughness
B, dashed lines represent surfaces with roughness Br and dotted lines illustrate the direction of roughness.

As discussed above, when there is no roughness, the flow is unperturbed and the
boundary condition on the perturbation boundary is U(B, t) = 0. When roughness is
considered, the flow is the sum of the unperturbed flow and the perturbation flow, and
the boundary condition is imposed on the rough surface as û(Br, t) = 0. This condition
can be expanded as

û(Br, t) = û(B, t) + r∂nû(B, t) + O(r2) = 0. (2.10)

Substitute û = U + u into this equation and linearize with respect to r (and the
perturbation velocity which is induced by the roughness) to reach

u(B, t) = −r∂nU . (2.11)

Therefore, the flow around the rough surface can be obtained by studying an unperturbed
flow and a perturbation flow, both of which have boundary conditions defined on the
smooth surface B.

When passive perturbations are considered, the surface becomes Br and the force acting
on this rough surface is

f̂ (Br) =
∫

Br

(p̂n − Re−1∂nû) dBr, (2.12)

where, in the integration on the right, all the variables are defined on the rough surface.
It will be shown below that all the terms in the above equation (p̂, n, û and dBr) can be
represented by variables defined on the smooth (unperturbed) surface, provided that the
magnitude of the perturbation is small enough.

As stated in § 2.1, the pressure and velocity variables at Br can be decomposed as
the sum of a base variable and a perturbation variable. If the boundary perturbation or
roughness is small, the base and perturbation variables at Br can be linearized to reach

p̂(Br) = P(Br) + p(Br) ≈ P(B) + p(B) + r∂nP(B),

û(Br) = U(Br) + u(Br) ≈ U(B) + u(B) + r∂nU(B).

}
(2.13)

On the far right, the first term denotes the base flow variables on the smooth surface, the
second one refers to the perturbations on the smooth surface and the third term stems from
the difference of the base flow on B and Br.
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Spanwise localized control for drag reduction

The unit normal defined on the rough surface can be also expressed in terms of variables
defined on the smooth surface through linearization:

n(Br) = n(B) − m∂mr, (2.14)

where m is the tangential unit vector along the smooth surface and therefore is normal
to n. The first term on the right is the ‘base’ vector and the second one is related to the
roughness.

Through similar linearization, the differentiation of the rough surface can be written as
a function of the differentiation of the smooth surface:

dBr = dB + rm · ∂mn dB. (2.15)

The first term on the right is the ‘base’ differentiation of the smooth surface, while the
second term is related with the roughness.

Substituting (2.13), (2.14) and (2.15) into (2.12),

f̂ (Br) = F (B) + f (B) + f 1(B) + f 2(B) + f 3(B), (2.16)

where

F =
∫

B
(Pn − Re−1∂nU) dB, (2.17)

f (B) =
∫

B
(pn − Re−1∂nu) dB, (2.18)

f 1(B) =
∫

B
(r∂nPn − Re−1r∂n2U) dB, (2.19)

f 2(B) =
∫

B
−Pm∂mr dB, (2.20)

f 3(B) =
∫

B
(Pn − Re−1∂nU)(rm · ∂mn) dB. (2.21)

Comparing the forces on smooth and rough surfaces, the force induced by roughness is

f̂ (Br) − F (B) = f (B) + f 1(B) + f 2(B) + f 3(B). (2.22)

Then the (quasi) mean force induced by roughness in direction K becomes

f̄K = τ−1
∫ τ

0
(f̂ (Br) − F (B)) · KR(t) dt = {pn − Re−1∂nu + rH , KR(t)}, (2.23)

where H = ∇P − Re−1∂n2U − Re−1∂nU∇ · n. Some identities are used to derive this
equation, e.g. ∂mm + n(m · ∂mn) = 0 and m · ∂mn = ∇ · n.

Combining (2.11), (A3) and (2.23), the mean force induced by roughness in direction K
can be reformulated as

f̄K = [∇rf̄K , r], (2.24)

where

∇rf̄K = τ−1
∫ τ

0
[−∂nU · ( p∗n − Re−1∂nu∗) + R(t)K · H ] dt (2.25)

is the gradient of the mean force with respect to the roughness r. To calculate this gradient,
the unperturbed flow should be computed first through integrating the NS equations and
then the adjoint variables are solved by integrating the adjoint equation (A2).
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(a) (b)

20
Inflow

Far field

Far field

Outflow

Azimuthal

control

Wall-normal

control

Spanwise control

0y

–20

0.5

0

–0.5–40

0 50

x
100 0

x
1150

Figure 2. Mesh and boundary conditions in (a) the entire domain and (b) the subdomain around the cylinder.
The three components of the control are marked in (b).

This gradient represents the sensitivity of force with respect to surface roughness.
Similarly as discussed in § 2.2, it can be proved that the roughness-induced force reaches
maximum ‖∇rf̄K‖ · ‖r‖ (or minimum −‖∇rf̄K‖ · ‖r‖) when r is in the same (or opposite)
direction as ∇rf̄K . The norm of the sensitivity represents the controllability of the force
with respect to surface roughness, and the shape of the sensitivity around the perturbed
boundary represents the optimal surface roughness, which is most effective to modify the
force within the linear limit.

3. Problem description, discretization and convergence

The cylinder is centred at (x, y, z) = (0, 0, 0) in the Cartesian system, and the inflow,
outflow and far-field boundaries are located at x = −35, x = 155 and y = ±50,
respectively. Each x–y plane is decomposed into 2310 spectral elements, as shown in
figure 2. In each element, piecewise continuous nodal-based polynomial expansions with
order P are applied. For the perturbed flow, a uniform free-stream velocity condition is
imposed on the inflow and far-field boundaries, and a zero-Neumann and zero-Dirichlet
condition is imposed on the outflow boundary for velocity and pressure, respectively. The
non-zero-Dirichlet velocity perturbation on the surface of the cylinder can be decomposed
into wall-normal, azimuthal and spanwise components, as shown in figure 2(b). This
velocity perturbation is set to zero in base flow calculations. Fourier decomposition is
invoked in the spanwise direction and 32 Fourier modes are calculated (Blackburn &
Sherwin 2004). Time integration is carried out using a velocity-correction scheme. These
numerics are adopted to integrate both the NS equations and the adjoint equation using
a well-validated numerical code which has been applied in direct numerical simulations
(DNS) and hydrodynamic stability studies of vortex flow and flow around solid bodies
(Mao, Blackburn & Sherwin 2013,2015).

In the convergence study of the sensitivity calculation, the Reynolds number is fixed
at Re = 190, which is slightly above the critical condition of mode A instabilities
(Williamson 1996). Unless otherwise stated, the spanwise length is set to Lz = 4, which is
long enough to accommodate mode A (Barkley & Henderson 1996), as shown in figure 3.
We also note that at the present Reynolds number and spanwise length, the breakdown of
mode A to vortex dislocations was not observed (Williamson 1996).

To calculate the sensitivity of drag, i.e. the force in the streamwise direction, the
direction K is set to [1, 0, 0]T. Over the range of parameters studied, the sensitivities at
non-zero frequencies do not yield an effective control at finite control magnitude owing to
the lock-in effect (Mao 2015b) therefore ω = 0 is adopted throughout this work.
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Spanwise localized control for drag reduction

Figure 3. Iso-surfaces of spanwise vorticity 0.4 and −0.4, coloured by streamwise velocity, in unperturbed
flow around a cylinder at Re = 190. The thick solid lines represent the vortex lines associated with the lower
vortex sheet.

(a) (b)

P cP (P, 7) τ cτ (τ, 200)

2 0.981917 20 0.837820
3 0.998968 40 0.987274
4 0.999986 60 0.993974
5 0.999996 100 0.999122
6 1.000000 140 0.999672
7 1 200 1

Table 1. Convergence of the sensitivity of drag to active perturbations in flow past a cylinder at Re = 190 and
ω = 0. (a) The final time is fixed at τ = 40 and the polynomial order in the spectral element method is varied.
Here cP is a correlation factor defined in (3.1). (b) The polynomial order is fixed at P = 6 and the final time is
varied. Here cτ (τ1, τ2) as defined in (3.2) denotes the correlation of sensitivities obtained at two final times.

To evaluate the convergence of the sensitivity with respect to the numerical
discretization, define

cP(P1,P2) = [∇ua f̄K (P1), ∇ua f̄K (P2)]
‖∇ua f̄K (P1)‖ · ‖∇ua f̄K (P2)‖

, (3.1)

where the sensitivity is considered as a function of the polynomial order. From definition,
the deviation of cP(P1,P2) from 1 denotes the difference of the two sensitivities obtained
at polynomial orders P1 and P2.

Therefore, the convergence of cP(P, 7) to 1 denotes the convergence of the sensitivity
with respect to discretization, where the result at P = 7 is taken as the reference. It is seen
from table 1(a) that at polynomial order P = 6, the sensitivity has converged to seven
significant figures. Similarly when doubling the resolution in the spanwise direction, the
change of the sensitivity is within 0.01 %. The convergence of DNS at Re = 1000, the
highest Re considered in this work, is further tested and it is found that at P = 6, the mean
drag converges to two significant figures with respect to that at P = 7. Therefore, P = 6
will be used in all the following simulations.

The convergence of the calculation with respect to the final time is also studied, as shown
in table 1(b). Similarly with (3.1), a correlation factor is defined to evaluate the correlation
of sensitivities obtained at two final times, τ1 and τ2:

cτ (τ1, τ2) = [∇ua f̄K (τ1), ∇ua f̄K (τ2]
‖∇ua f̄K (τ1)‖ · ‖∇ua f̄K (τ2)‖

, (3.2)
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Figure 4. Contours of the sensitivity to active perturbations normalized by the boundary norm at Re = 190 and
ω = 0. Panels (a,b,c) are the wall-normal, azimuthal and spanwise components of the sensitivity, respectively.
The dash-dotted lines represent the mean separation lines.

where the sensitivity is considered as a function of the final time. Taking the sensitivity
obtained at τ = 200 as the reference, the convergence of cτ (τ, 200) to 1 denotes the
convergence of the sensitivity with respect to τ . At τ = 100, the sensitivity converges
to three significant figures (doubling τ results in a 0.1 % change) and this final time is used
in the following investigations.

4. Active drag reduction

4.1. Three-dimensional sensitivities to active perturbations
The normalized sensitivity of drag to active perturbation is decomposed into
surface-normal, azimuthal and spanwise components, as shown in figures 4(a), 4(b)
and 4(c), respectively, where θ is the azimuthal coordinate and θ = 0 at the backward
stagnation point. These three components can be interpreted as the sensitivity to
wall-normal, azimuthal and spanwise active perturbations, respectively. It is noticed
that the sensitivity to wall-normal perturbation is much stronger than the other two,
suggesting that for this flow the drag is more sensitive to wall-normal blowing/suction
than surface displacement in either the azimuthal or spanwise direction. Each of the three
sensitivity components consists of multiple Fourier modes in the spanwise direction. For
example, the wall-normal component is a superposition of spanwise uniform blowing and
periodic blowing/suction. In the azimuthal direction, all three sensitivity components are
concentrated upstream of the separation lines and peak at approximately θ = π/2, similar
to the control to suppress vortex shedding (Guercio et al. 2014a; Tammisola 2017). These
sensitivities are not ideally symmetric (figure 4a), or anti-symmetric (figure 4b,c), due to
the limited number of vortex shedding periods contained in the time interval considered. It
can be expected that these numerical imperfections can be eliminated when the final time
τ is sufficiently large.

The spanwise length Lz has been reported to be a critical factor in the control of
cylinder flow using surface perturbations (Guercio et al. 2014a). The sensitivity of drag
to wall-normal active perturbations obtained at span length Lz = 4, 8 and 12 is illustrated
in figure 5. Other lengths including Lz = 2, 3, 5, 6 were also tested but were not shown here
as the uncontrolled flow does not present 3-D instabilities. Note figure 5(a) is the same as
figure 4(a) but is compressed in the spanwise direction for comparison with figures 5(b)
and 5(c). In each Lz test, the unperturbed flow is obtained from DNS over a sufficiently
long time. At Lz = 8 and 12, the sensitivity, as well as the uncontrolled flow (not shown
for brevity), is approximately a spanwise repeat of that at Lz = 4, confirming that Lz = 4 is
sufficient for the present sensitivity analyses. This span length will be used in the following
drag reduction investigations.

915 A112-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.154


Spanwise localized control for drag reduction

10

(a) (b) (c)

z
5

0

10

5

0

10

5

0
0.5π

θ θ θ
π 1.5π 2.0π 0.5π π 1.5π 2.0π 0.5π π 1.5π 2.0π

–2.0 2.0–1.6 1.6–1.2 1.2–0.8 0.8–0.4 0.4 –2.0 2.0–1.6 1.6–1.2 1.2–0.8 0.8–0.4 0.4 –2.0 2.0–1.6 1.6–1.2 1.2–0.8 0.8–0.4 0.4

Figure 5. Contours of the wall-normal component of the sensitivity normalized by the boundary norm at
Re = 190, ω = 0 and spanwise length 4, 8 and 12 for (a,b,c), respectively. The dash-dotted lines represent the
mean separation lines.
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Figure 6. The active control scaled from sensitivity at Sa = −7 × 10−3, ω = 0 and Re = 190. (a) Spanwise
distribution at various azimuthal locations and (b) dominant spanwise modes, with β denoting the spanwise
wavenumber.

The sensitivity to active perturbations can be scaled as an active control:

ua = Sa
∇ua f̄K

‖∇ua f̄K‖ , (4.1)

where Sa is a scale factor and its absolute value denotes the boundary norm of the
control. According to the definition of the sensitivity, drag reduction can be achieved
by assigning a small and negative value to Sa. Since the wall-normal and tangential
components of the control are generated by different actuators, only the wall-normal
component or blowing/suction is considered. The control is then obtained by scaling
the sensitivity of drag to wall-normal perturbations shown in figure 4(a). The spanwise
distribution of the control at various azimuthal locations is plotted in figure 6(a). A scale
factor Sa = −7 × 10−3 is used, and the selection of this value will be discussed in § 4.2.
The control is concentrated around the centre of the domain in the spanwise direction and
θ = π/2 in the azimuthal direction. Such a localized control can be generated by a limited
number of actuators and will be easier to implement than the spanwise uniform or periodic
controls.

Through Fourier decomposition in the spanwise direction, it is found that this control is
dominated by three modes with spanwise wavenumber β = 0, 1 and 2 within the domain
(corresponding to non-dimensionalized wavelength ∞, 4 and 2), whose boundary norms
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Figure 7. Drag reduction at Re = 190 and various control magnitudes. The control is scaled from sensitivity
of drag to wall-normal active perturbations at ω = 0 (see figure 4a). The drag coefficient, denoted as ĈD, is
averaged over the spanwise direction and will be used in all the following relevant plots.

are 2.2 × 10−3, 6.3 × 10−3 and 2.3 × 10−3, respectively. The distribution of these modes
is shown in figure 6(b). The β = 0 (spanwise uniform) mode is real and consists of a
suction around the separation line and blowing around the backward stagnation point,
similar to the 2-D optimal control to suppress vortex shedding (Mao et al. 2015). The
β = 1 and β = 2 (spanwise periodic) modes are concentrated around the separation line
and reduce to trivial levels at the forward and backward stagnation points. This is slightly
different from the spanwise periodic control to suppress instability (Guercio et al. 2014a),
which peaks at θ = π/2 but has significant magnitude around the stagnation points. Each
of the spanwise modes are symmetric or ‘in-phase’ with respect to the x axis, which has
been shown to be more effective in controlling the wake flow than the ‘out-of-phase’
profile (Kim & Choi 2005; Guercio et al. 2014a).

4.2. Active control effects
The drag reduction effect of the active control is tested in DNS. The history of the drag
coefficient, denoted as ĈD, at various values of the scale factor Sa is presented in figure 7.
We notice that the drag reduces monotonically with |Sa| until Sa = −7 × 10−3, but the
drag oscillation presents a more complicated dependence on Sa. At Sa = −1 × 10−3,
the frequency of drag is almost unchanged, indicating a linear control effect. At Sa =
−3 × 10−3, the oscillation at the frequency of uncontrolled vortex shedding is almost
suppressed but a new oscillation with a lower frequency appears. At higher control
magnitudes, this low-frequency oscillation is further suppressed, and at Sa = −7 × 10−3,
the drag is almost time-independent. At even higher magnitude of the control, the drag
does not further reduce and the oscillation reappears. Therefore, the following studies will
be focused on Sa = −7 × 10−3. Shifting the initial condition of the uncontrolled flow in
time or the spanwise direction and imposing the same control, similar drag reduction was
observed, indicating that the reported control effect is insensitive to the initial condition to
introduce the control.

Apart from Sa, the magnitude of the control can be also evaluated by the momentum
coefficient, which is defined as the square integration of the control around the controlled
boundary and the controlled time interval divided by the dynamic pressure of the
uncontrolled flow. At Sa = −7 × 10−3, corresponding to maximum control magnitude
2 % of the free-stream velocity, the momentum coefficient is 10−4 and the drag reduction
reaches 20 %. To achieve a similar drag reduction effect, the maximum control magnitude
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Figure 8. Drag reduction induced by individual spanwise modes of the control. In panel (a), the control is
the spanwise-decomposed components of the scaled sensitivity of drag to wall-normal active perturbations
at Re = 190, ω = 0 and Sa = −7 × 10−3 (see figure 6b). In panel (b), all the individual modes are scaled to
boundary norm 7 × 10−3.

and momentum coefficient are above 8 % and 0.001, respectively, for both spanwise
uniform suction and spanwise periodic blowing/suction reported in literature (Kim & Choi
2005; Mao et al. 2015).

The present control is suboptimized in both spanwise and azimuthal directions, while it
has been shown that an optimization in the azimuthal direction only (with a prescribed
spanwise wavenumber) lifts the control effect significantly in an effort to suppress
instability in a cylinder flow at Re ≤ 100 (Guercio et al. 2014a). It is also worth noting
that at Sa = −7 × 10−3 the force oscillation is very different from the unperturbed one,
indicating that the perturbation magnitude is out of the linear regime and large enough to
modify the stability characteristics of the ‘base’ flow, or more specifically stabilize the base
flow, as will be detailed in § 4.4. The lift fluctuation (not shown here) was also suppressed
by the control, similar to the drag fluctuation, further confirming the stabilizing of the flow
and the suppression of flow unsteadiness.

It has been discussed in § 4.1 that the present control can be decomposed into
the superposition of spanwise modes with β = 0, β = 1 and β = 2, corresponding to
boundary norm 2.2 × 10−3, 6.3 × 10−3 and 2.3 × 10−3, respectively (see figure 6b).
As both spanwise uniform (β = 0) and spanwise periodic (β /= 0) controls have been
extensively studied, the control effect of each spanwise component of the present control
is studied individually for comparison. From figure 8(a), all three individual modes have
drag reduction effects, while the mode with β = 1, which has a higher magnitude than the
other two modes, reduces much more drag than the other two. The original control scaled
from sensitivity, denoted as ‘full control’, has stronger drag reduction effects than each
of its individual modes but its magnitude is also larger. To compare the drag reduction
effectiveness of these modes, they are scaled to boundary norm 7 × 10−3, the same as
the full control. From figure 8(b), even at the same magnitude, the full control is still the
most effective one, followed by β = 1 and then β = 2 and β = 0. It is also tested that the
β = 1 (or β = 2) complex Fourier mode has similar drag reduction effects as its real or
imaginary part after scaling to the same boundary norm (not shown here). Therefore, over
the parameters studied, the full control, in the form of a superposition of spanwise modes
and localized in both spanwise and azimuthal directions, is more efficient than a single
spanwise wave for drag reduction.
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Figure 9. Controlled drag coefficients at various Reynolds numbers. The control is scaled from sensitivity of
drag to wall-normal active perturbations at ω = 0, Sa = −7 × 10−3 and Re = 190.

The active control is then applied to higher Reynolds numbers to test its robustness, as
shown in figure 9. At Re = 1000, the highest Reynolds number considered in this work, the
uncontrolled drag coefficient is 1.0066, agreeing well with that reported in the literature
by both numerical simulations and experiments (Wieselberger 1921; Henderson 1997).
Similarly, with the Re = 190 case, at Re = 300 and Re = 1000, significant drag reduction
up to 20 % and the suppression of force oscillations can be observed. It is noted that at
these higher Reynolds numbers, mode A becomes disordered but the control obtained at
Re = 190 is still effective, since it targets the 2-D shedding vortices. A similar result has
been observed at Re = 300 where mode B appears (Poncet et al. 2008). These results
suggest that in optimal control studies, when the sensitivity or gradient calculation at high
Re diverges owing to the chaotic dynamics of the flow (Wang & Gao 2013), the sensitivity
obtained at lower Re can be a good approximation and yields significant control effects.

The benefit of the control can be evaluated by the ratio of the saved drag power and
the actuation power to generate the control. For the present blowing/suction control, the
dimensionless ideal actuation power can be defined as (Naito & Fukagata 2014; Mao et al.
2015)

ẆB = −
{

p̂ + 1
2

u2
a + 4

Re
ua, ua

}
, (4.2)

where p̂ is the controlled pressure and ua is the wall-normal control velocity (uan = ua).
This idealized actuation power has been reported to be negative in a 2-D blowing/suction
control of cylinder flow, where the actuators are distributed all around the cylinder surface
with a maximum control velocity 0.4 (Naito & Fukagata 2014). A negative power suggests
that the control can be achieved by extracting power from the flow if all the actuators
are ideally coordinated (the flow power extracted from one actuator can be applied to
drive another actuator). Clearly such a coordination complicates the actuation system
significantly and is impractical in real applications. Therefore, a maximum possible
actuation power is defined to measure the control cost in a more practical manner:

ẆB-max =
{
|p̂| + 1

2
u2

a + 4
Re

|ua|, |ua|
}

. (4.3)

For the control used above at Sa = −7 × 10−3, the ideal, maximum actuation power and
drag coefficients are shown in table 2. The power savings ratio, defined as the ratio of
control-reduced drag power and maximum input power, is over 20, indicating that the
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Re ĈD at Sa = 0 ĈD at Sa = −7 × 10−3 ẆB ẆB-max Power savings ratio

190 1.26 1.02 5.7 × 10−4 4.1 × 10−3 26.8
300 1.24 1.06 6.2 × 10−4 4.9 × 10−3 20.0
1000 1.00 0.80 5.2 × 10−4 4.3 × 10−3 23.3

Table 2. The uncontrolled drag coefficient (ĈD at Sa = 0), controlled drag coefficient (ĈD at Sa = −7 ×
10−3), ideal actuation power, maximum actuation power and power savings ratio at various Reynolds numbers.
The control is scaled from the sensitivity of drag to wall-normal perturbations at Re = 190 and ω = 0. The
power savings ratio is defined as the ratio of the control-reduced drag and the maximum actuation power
ẆB-max.

3

2
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0
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0.5π π 1.5π 2.0π

θ

–0.020 –0.012 0.016–0.004 0.008

Figure 10. Distribution of the simplified control. Positive contour levels denote suction control.

energy saved due to the control is over 20 times the energy to generate the control.
This ratio is much higher than that of a 2-D suboptimal control, which is in the range
1.3–2.5 (Naito & Fukagata 2014). It is worth noting that for surface rotation control, e.g.
the perfect slip (free rotation of the surface driven by the flow), the actuator power is zero
by definition (Shukla & Arakeri 2013).

4.3. Drag reduction effect of the simplified control
To facilitate experimental implementations, the control obtained from (4.1) at
Sa = −7 × 10−3 is further simplified by retaining only the suction velocity above 0.005, as
shown in figure 10. This reduced control consists of two suctions localized in the spanwise
and azimuthal directions and can be generated by only two actuators. Drag under this
simplified control is shown in figure 11. Clearly this control produces a prominent drag
reduction effect but weaker than that of the full control scaled from the sensitivity (see
figure 9). At Re = 1000, the drag reductions of the full control scaled from the sensitivity
and the simplified control are 20 % and 15 %, respectively.

Then the actuation power is computed, similarly as performed for the full control. The
two costs are ẆB = 5.2 × 10−4 and ẆB-max = 4.1 × 10−3 at Re = 1000, corresponding to
power savings ratio 17.8. Therefore, the simplified control still presents significant drag
reduction effects at a cost below 6 % of the saved energy.
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Figure 11. Drag reduction under the simplified control in figure 10.

4.4. Mechanism of drag reduction
In this section, the flow fields are analysed to reveal the mechanism of drag reduction
induced by the active control. Figure 12(a) illustrates the uncontrolled contour of
instantaneous spanwise vorticity on the z = 0 plane, while figures 12(b) and 12(c) show the
controlled flow at Sa = −5 × 10−3 and Sa = −7 × 10−3, respectively. In the near wake,
the averaged vortex sheets are not attached to the wall by the control as has been observed
in optimal 2-D control, which delays boundary-layer separation, stabilizes the wake flow
and subsequently suppresses vortex shedding (Mao 2015a). Alternatively, the sheets are
pushed away from each other and are attenuated, which suppresses and delays the vortex
shedding. As the vortices are associated with local pressure minimum, marked by the black
circles in the figure, the control pushes the low-pressure region further downstream away
from the cylinder. Similar observations were obtained on other z planes and they were not
shown here for brevity.

The pressure distribution is further illustrated using the spanwise and temporally
averaged flow, as shown in figure 13. It is clear that as the control becomes stronger from
Sa = 0 (without control) to −7 × 10−3, the pressure in the wake is significantly increased
and the local pressure minimum is pushed away from the cylinder as observed in the
instantaneous field in figure 12. The control has little impact on the boundary separation
(the separation point is marked as back squares in figure 13) but enlarges the recirculation
zone. Again these are opposite with 2-D optimal controls which suppress the boundary
layer separation and the generation of recirculation bubbles, and imply a different control
mechanism.

The streamlines in figure 13 illustrate a virtual surface covering the cylinder and the
near wake recirculation zone, and the drag acting on this surface can be considered as
the drag on the cylinder. When there is no control, this virtual surface is short and closes
in the low-pressure region, and the flow around this surface is similar to flow around a
bluff body at low Reynolds number without separation. When the control is imposed, this
virtual surface is extended downstream and closes downstream of the region with local
pressure minimum, and the flow around the surface resembles flow around a streamlined
body.

The time and spanwise averaged pressure distribution on the surface of the cylinder
is further plotted in figure 14. It is seen that the pressure is almost unmodified by the
control around the fore part of the cylinder but is significantly increased downstream of
the separation lines. This observation confirms that the control reduces drag by lifting the
base pressure, a direct consequence of the suppression of wake oscillation. In this process,
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Figure 12. Contours of the instantaneous spanwise vorticity on the z = 0 plane. The black circles mark the
points where pressure reaches local minimum. The control is scaled from the wall-normal sensitivity at Re =
190 and ω = 0, and the magnitude of the control is Sa = 0 (without control), −5 × 10−3 and −7 × 10−3 for
(a,b,c), respectively.

the attached boundary layer is not changed prominently, as has been seen in figures 12
and 13.

The 3-D structures are further examined to reveal the mechanism of vortex sheet
attenuation. As shown in figure 15(a), in the near wake, the spanwise localized suction
control distorts the vortex sheets towards the cylinder surface at around z = 2, resulting in
the localized vertical displacement of the other sheet. For example, the localized upward
motion of the lower sheet owing to the suction effect on the surface pushes the upper
sheet upwards, denoted as ‘y-displacement’ in figures 15(a) and 15(b). The displaced
part of the vortex sheet generates an induced velocity on the other parts, and causes the
streamwise stretch of the overall vortex sheet, marked as ‘x-stretch’ in figure 15(c). Clearly
the ‘y-displacement’ and the ‘x-stretch’ reduce the interaction of the vortex sheets by
pushing them away from each other, and attenuate their strength in the spanwise averaged
sense (also see figure 12). In this process, the flow becomes more inhomogeneous in
the spanwise direction, which can be observed by comparing the vortex lines shown in
figures 3 and 15(a).

The development of the control induced flow is schematically plotted. Figure 16(a)
shows the flow patten at z = 0 or the uncontrolled vortex shedding scenario. Figure 16(b)
illustrates the effects of spanwise localized (around z = 2) suction on the vortex shedding,

915 A112-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.154


X. Mao and B. Wang

–1

2(a)

(b)

(c)

1y

0

2

1y

0

2

1y

0

–0.60 –0.45 –0.30 –0.15 0 0.15 0.30 0.45 0.60

–0.60 –0.45 –0.30 –0.15 0 0.15 0.30 0.45 0.60

–0.60 –0.45 –0.30 –0.15 0 0.15 0.30 0.45 0.60

0 1 2 3 4 5 6

–1 0 1 2 3 4 5 6

–1 0 1 2
x

3 4 5 6

Figure 13. Streamlines and pressure contours in the spanwise and temporally averaged flow. The control is
scaled from the wall-normal sensitivity at Re = 190 and ω = 0, and the magnitude of the control is Sa = 0
(without control), −5 × 10−3 and −7 × 10−3 for (a,b,c), respectively.

–0.6

–0.4

–0.2

p̂ 0

0.2

0.4

Re = 190,  uncontrolled

Re = 190, controlled

Re = 300, uncontrolled

Re = 300, controlled

Re = 1000, uncontrolled

Re = 1000, controlled

1.5π0 0.5π 2.0ππ

θ

Figure 14. Spanwise and temporally averaged distribution of the pressure on the surface of the cylinder. In
the controlled cases, the control magnitude is Sa = −7 × 10−3.
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Suction of the upper sheet

by the upper surface suction

(a)

(b) (c)

Suction of the lower sheet

by the lower surface suction

y-displacement of the upper sheet

y-displacement of the upper sheet

y-displacement of the lower sheet

x-stretch of the upper sheet

x-stretch of the upper sheet

x-stretch of the lower sheet

Figure 15. Iso-surfaces of spanwise vorticity 0.5 (red) and −0.5 (blue) at Sa = −7 × 10−3 and Re = 190.
Panels (a,b,c) are 3-D, side (x–y plane) and top (x–z plane) views of the same surface, respectively. The flow
field is repeated in z to highlight the spanwise variation. The thick solid lines in panel (a) represent the vortex
lines associated with the lower vortex sheet.

which was displaced in the vertical direction to be away from the x axis. Then figure 16(c)
shows that the displaced part of the vortex sheet generates an induced velocity in the x
direction to the other parts of the sheet. This induced velocity stretches the vortex sheet
in the x direction and attenuates it significantly as illustrated in figure 16(d). It is noted
that this control mechanism is robust and is observed at other control levels and Reynolds
numbers.

Therefore, the drag reduction effect observed in the present work stems from both a
suppression of vortical structure interactions via the y-displacement, and the attenuation
of the vortex structures via the x-stretch. Similar stretch of the wake structure and its
induced spanwise mismatch has been observed before in drag reduction and instability
investigations using spanwise periodic forcing (Kim & Choi 2005; Hwang et al.
2013). This attenuation of wake structures pushes the vortex shedding associated with
local pressure minimum away from the cylinder to generate a drag reduction effect
(Poncet et al. 2008). In the controlled flow, the separation is not postponed and the
recirculation zone is enlarged. This control mechanism is clearly different from those
associated with suppressing separation and attenuating the recirculation by means of
either blowing/suction or surface slip mainly in two dimensions (e.g. Min & Choi 1999;
Delaunay & Kaiktsis 2001; Legendre, Laura & Magnaudet 2009; Shukla & Arakeri 2013;
Mao 2015a) and with some 3-D exceptions (e.g. Shtendel & Seifert 2014).

5. Passive drag reduction

In this section, the sensitivity to passive perturbations and the corresponding passive
control effect on drag will be examined. Firstly, the sensitivity of drag with respect to
passive perturbations is computed, as show in figure 17(a). This sensitivity consists of
spanwise uniform and periodic components both concentrated around the separation lines,
similar to the sensitivity to active perturbations shown in figure 4.
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(a)

Upper sheet

Lower sheet

Normal vortex shedding

y

x

z = 0
(b)

Upper sheet

Lower sheet

y-displacement

y

x

z = 2

y-displacement

(c)

y-displacement

y

x

zDisplacement

induced x-velocity

y-displacement

(d ) y

x

z

x-stretch

x-stretch

y-displacement

y-displacement

Figure 16. Schematics of the drag reduction mechanism. Panel (a) is the vortex shedding at z = 0 showing the
uncontrolled scenario; panel (b) shows the suction effect of the control and its induced y-displacement; panel
(c) illustrates the displacement induced velocity in the streamwise direction; panel (d) presents the stretch in
streamwise direction owing to the induced velocity. Lengths of the arrows in panel (c) represent the magnitude
of the induced velocity. Blue and red denote negative and positive vorticity, respectively.

3

(a)

2

1

0

z

0.5π π 1.5π 2.0π

θ

–2.0 2.0–1.6 1.6–1.2 1.2–0.8 0.8–0.4 0.4
(b)

Figure 17. Panel (a) is the contour of the sensitivity to wall-normal passive perturbations normalized by its
boundary norm at Re = 190. The dash-dotted lines represent the mean separation lines. Panel (b) is the surface
of the cylinder with roughness scaled from the sensitivity at Sr = −0.04.

Then a passive control can be obtained by scaling this sensitivity:

Br = B + Sr
∇rf̄K

‖∇rf̄K‖ , (5.1)

where Sr is a scale factor and its absolute value denotes the boundary norm of the passive
perturbation or surface roughness. The surface of the cylinder with passive control at Sr =
−0.04 is illustrated in figure 17(b).
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1.25

1.20

1.15

1.10

1.05

1.00

ĈD

1000 1050 1100

t
1150 1200

Sr = 0

Sr = –0.01

Sr = –0.02

Sr = –0.04

Sr = –0.06

Sr = –0.08

Figure 18. Passively controlled drag coefficient at Re = 190. The control is scaled from the passive sensitivity
of drag to wall-normal roughness. The surface with passive control at Sr = −0.04 has been illustrated in
figure 17(b).

1.3

1.2

1.1

1.0

0.9

0 50 100

t
150 200

Re = 300, Sr = 0

Re = 300, Sr = –0.04

Re = 1000, Sr = 0

Re = 1000, Sr = –0.04

ĈD

Figure 19. Drag coefficients under passive control (see figure 17(b) for the deformed geometry) at various
Reynolds numbers. The control is scaled from the sensitivity of drag to wall-normal roughness at Sr = −0.04
and Re = 190.

The passive control with a single spanwise wavenumber has been observed to suppress
vortex shedding effectively; surface waviness of maximum height 1.5 % of the cylinder
diameter is sufficient to stabilize the wake oscillation at Re = 100 (Tammisola 2017).
We note that unlike the spanwise uniform or periodic passive control, the present one
presents a ‘concentrated roughness’, where the surface deformation only occurs over a
small portion of the surface in both azimuthal and spanwise directions. Therefore, the
implementation of this control only requires a localized modification of the geometry.

The drag history at various Sr is shown in figure 18. Data was collected from t = 1000
to exclude the initial transient period. The drag history at increasing magnitudes of the
passive control is similar to the active control case. From Sr = −0.01 to Sr = −0.04, both
the drag and the drag oscillation reduce, indicating a stabilization of the flow field. At
Sr = −0.04, the drag reduction reaches 13 %. At even larger magnitude of the passive
control Sr = −0.06, the drag is still reducing but the oscillation becomes prominent. As
Sr = −0.06 corresponds to a significant change of the shape of the cylinder (maximum
height of roughness over 0.12), it will not be analysed in the following.

Similarly, as in the active control studies, this passive control or surface deformation is
also tested at higher Reynolds numbers. As shown in figure 19, the drag reduction is still
significant up to Re = 1000, the highest Reynolds number considered. The mechanism of
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drag reduction is found to be similar to that observed for the active control consisting of a
y-displacement and an x-stretch, and is not repeated here.

6. Conclusion

The well-established algorithm to compute sensitivities of modal and non-modal
instabilities to perturbations is extended to calculate the sensitivity of forces to surface
control forcing in flow past a cylinder. Both active and passive controls, regarded as
boundary velocity perturbations and surface roughness, respectively, are considered. The
sensitivity with respect to active perturbations had been established and applied to 2-D
uncontrolled flow (Mao 2015b) while the passive counterpart is developed in the present
work.

The algorithms are then applied to flow past a circular cylinder at Reynolds number
Re = 190, where the flow field is three-dimensional. Instead of assigning a prescribed
spanwise wavenumber to the perturbations as documented in the literature (Hwang et al.
2013; Guercio et al. 2014a,b; Tammisola et al. 2014), the surface perturbation, as well as
the sensitivity, is represented as a superposition of multiple spanwise Fourier modes.

The sensitivity is further scaled as a control to reduce drag. The active control is
localized in both spanwise and azimuthal directions, and can be decomposed as waves
with spanwise wavenumber β = 0, β = 1 and β = 2. It can be expected that at even higher
Reynolds numbers, this control will be more localized and therefore can be generated
by a limited number of blowing/suction actuators in experiments. At maximum control
magnitude 2 % of the free-stream velocity (or momentum coefficient 10−4), the drag is
reduced by 20 % and the temporal oscillation of drag is almost suppressed. This control is
more effective than each of its spanwise modes with or without scaling the modes to the
same magnitude as the control. To achieve a similar drag reduction effect, a maximum
control magnitude above 8 % (or momentum coefficient above 10−3) is required for
either the uniform suction or periodic blowing/suction reported in literature. The scaled
sensitivity obtained at Re = 190 is then applied to flow at higher Re. The power savings
ratio, defined as the ratio of control-reduced drag power and maximum input power, is
above 20, in the range 190 ≤ Re ≤ 1000. The control is further simplified to spanwise
localized suctions around the separation lines to facilitate experimental implementations.
This simplified control still produces significant drag reduction effects but weaker than
that of the full control. The passive control is also localized in azimuthal and spanwise
directions, and therefore its implementation only requires a localized change of the surface
geometry. Significant drag reduction is also observed in the passively controlled cylinder
flow at Re ≤ 1000 and the mechanism is similar to that observed in active control.

Examining the controlled flow field, it is noticed that the localized suction control
induces a y-displacement and an x-stretch to the vorticity sheets and attenuates their
strength. The attenuation of vortex structures has been observed to stabilize the flow and
reduce drag in spanwise periodic control (Kim & Choi 2005; Hwang et al. 2013; Guercio
et al. 2014b; Tammisola 2017), while the present study indicates that a localized control,
which facilitates physical implementations, is more effective to generate this effect. As
a consequence of the displacement and stretch, the vortex shedding is delayed and the
local pressure minimum is pushed away from the cylinder, which induces a drag reduction
effect. Different from the 2-D control which suppresses boundary-layer separation and
the generation of recirculation bubbles (Min & Choi 1999; Delaunay & Kaiktsis 2001;
Legendre et al. 2009; Shukla & Arakeri 2013; Mao 2015a), the present 3-D control
enlarges the bubble and produces a virtual surface to convert the cylinder flow to a
streamlined body flow.
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Appendix A. Adjoint analyses

Considering integration by parts and the divergence theorem (Barkley et al. 2008), there
is

−〈u∗, ∂tu − L(u)〉 = 〈u, ∂tu∗ + L∗(u∗)〉 − τ−1(uτ , u∗
τ ) + τ−1(u0, u∗

0)

+τ−1
∫ τ

0

∫
∂Ω

n · [−U(u · u∗) + up∗ − u∗p + Re−1(∇u · u∗ − ∇u∗ · u)] d∂Ω dt,

(A1)

where ∂Ω represents all the boundaries of the computational domain; superscript ∗
denotes the adjoint variables; u∗

τ and uτ are the adjoint velocity and perturbation velocity
at t = τ , respectively. Here L is an operator and ∂tu − L(u) = 0 represents the linearized
NS equation (2.2), L∗ is the adjoint operator of L and correspondingly ∂tu∗ + L∗(u∗) = 0
is the adjoint of the linearized NS equation, which can be expanded as

∂tu∗ + U · ∇u∗ − ∇U · u∗ − ∇p∗ + Re−1∇2u∗ = 0 and ∇ · u∗ = 0. (A2)

On the inflow and far-field boundaries, zero-Dirichlet and high-order-Neumann
conditions are used for adjoint velocity and pressure, respectively (Karniadakis,
Israeli & Orszag 1991); on the outflow, a mixed velocity boundary condition
Re−1∂nu∗ + n · (U + u)u∗ = 0 and zero-Dirichlet pressure condition are implemented
(Mao et al. 2013); on the perturbed boundary, a Dirichlet velocity and computed Neumann
pressure conditions are used. Considering the signs of the viscous term and of the
time derivative term, this adjoint equation should be initialized at t = τ and integrated
backwards to t = 0.

Since u satisfies the linearized NS equation and its initial condition is zero,
〈u∗, ∂tu − L(u)〉 = 0 and (u0, u∗

0) = 0. Then if the adjoint variables are solutions of the
adjoint equation initialized by u∗

τ = 0, all the terms in (A1) are zero except the last one.
The choice of boundary conditions for the adjoint variables ensures that the integration
over the inflow, outflow and far-field boundaries in this last term is zero. Therefore, one
obtains

{pn − Re−1∂nu, u∗} = {p∗n − Re−1∂nu∗, u}. (A3)
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