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Numerical simulations with single-step chemistry and detailed transport are used to
study premixed hydrogen/air flames in two-dimensional channel-like domains with
periodic boundary conditions along the horizontal boundaries as a function of the
domain height. Both unity Lewis number, where only hydrodynamic instability
appears, and subunity Lewis number, where the flame propagation is strongly
affected by the combined effect of hydrodynamic and thermodiffusive instabilities are
considered. The simulations aim at studying the initial linear growth of perturbations
superimposed on the planar flame front as well as the long-term nonlinear evolution.
The dispersion relation between the growth rate and the wavelength of the perturbation
characterizing the linear regime is extracted from the simulations and compared with
linear stability theory. The dynamics observed during the nonlinear evolution depend
strongly on the domain size and on the Lewis number. As predicted by the theory,
unity Lewis number flames are found to form a single cusp structure which propagates
unchanged with constant speed. The long-term dynamics of the subunity Lewis
number flames include steady cell propagation, lateral flame movement, oscillations
and regular as well as chaotic cell splitting and merging.
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1. Introduction
Premixed combustion has been the subject of extensive experimental, theoretical

as well as numerical work, concerning both applications and aspects of fundamental
interest. The recent progress in computational capabilities has made numerical studies
of flames at scales comparable to laboratory experiments feasible, thus increasing
their importance in combustion research. Although in most practical applications
combustion occurs in a turbulent environment, the study of laminar flames and
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the transition to corrugated flames is important for understanding the fundamental
mechanisms of turbulent flame propagation and the complex flame–flow interactions
involved.

The planar flame, the simplest form of combustion illustrating the propagating
nature of premixed flames, is amenable to analysis that provides fundamental
understanding of the intrinsic instabilities observed in laboratory experiments; see for
example Markstein (1951), Palm-Lewis & Strehlow (1969), Groff (1982), Sivashinsky
(1983), Clavin (1985), Bradley et al. (2000) and Bradley, Cresswell & Puttock (2001),
Law (2006) and Matalon (2007). Excluding acoustic and buoyancy effects, a planar
premixed flame can be rendered unstable by hydrodynamic and thermodiffusive
mechanisms. The hydrodynamic instability is due to the gas expansion that results
from the heat released by the chemical reactions, which induces a flow that tends to
convect any flame perturbation further away from the planar shape. Thermodiffusive
instabilities result from the disparity of the diffusion rates of heat away from and mass
towards the flame.

The destabilizing effect of thermal expansion was discovered by Darrieus (1946)
and Landau (1944), who neglected the influences of diffusion, treating the flame
as a surface of density discontinuity that propagates into the fresh mixture at a
constant speed. The unconditionally unstable conclusion of Darrieus and Landau was
recognized to be inconsistent with experimental observations, which led Markstein
(1964) to re-examine the stability analysis complementing the assumption regarding
the flame speed with a curvature correction, diffusive in nature, and showing that it
may introduce stabilizing influences on the short-wavelength disturbances.

Thermodiffusive effects were studied using a flame model which assumes that the
flow field is unaffected by the flame, effectively considering constant gas density
(Barenblatt, Zeldovich & Istratov 1962; Sivashinsky 1977b). In the absence of the
hydrodynamic instability, the planar flame was found stable provided the effective
Lewis number of the mixture Leeff is near unity; otherwise, due to the disparity of
the diffusion rates of heat and mass, instabilities in the form of cells or spontaneous
oscillations occur. For mixtures with Leeff sufficiently less than one, the molecular
diffusivity of the deficient reactant in the mixture is significantly larger than the
thermal diffusivity of the mixture, leading to an intensification of the reaction rate at
the convex toward the reactants segments of the flame front and its weakening at the
concave parts, and hence to the formation of cells on the flame surface. An oscillatory
instability is predicted for mixtures with Leeff sufficiently larger than one, but the
predicted critical value of the Lewis number is quite large and inaccessible to common
combustible mixtures, except when heat losses are significant.

The coupled effects of hydrodynamic and thermodiffusive instabilities were studied
systematically by Frankel & Sivashinsky (1982), Matalon & Matkowsky (1982) and
Pelce & Clavin (1982), exploiting the multi-scale nature of the problem characterized
by a thin flame with relatively large corrugations and no limitation on the thermal
expansion ratio σ ≡ ρu/ρb, where ρu and ρb are the densities of the unburned
and burned gas, respectively. These results were later generalized for a two-reactant
(fuel and oxidizer) model, allowing for temperature-dependent transport and mixtures
ranging from lean to rich conditions (Matalon, Cui & Bechtold 2003). The resulting
asymptotic solution is effectively a long wave approximation of the dispersion relation,
with the leading term, positive for all σ and proportional to the wavenumber k,
describing the Darrieus–Landau instability. The correction terms, of the order of k2,
are the thermodiffusive effects, which have stabilizing influences when Leeff exceeds
a critical value Le∗eff , and destabilizing influences otherwise. The critical value Le∗eff
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depends on thermal expansion, and for all σ is slightly below one. Short wave
stabilization for Leeff < Le∗eff appears only at higher order in k, terms that have not
been computed in general, except for the constant density case (Sivashinsky 1977b).
The instability is thermodiffusive in nature leading to cellular flames characterized
by cells of dimensions proportional to the wavelength of the fastest growing mode
predicted by the linear stability theory which, as noted, is known only in the limit
σ → 1. The flame development beyond the instability threshold was studied primarily
within the context of a diffusive-thermal model (Michelson & Sivashinsky 1977;
Denet & Haldenwang 1992; Kurdyumov et al. 2009). Although the early development
appears driven by thermodiffusive effects, thermal expansion is likely to play an
important role that becomes substantial as the flame grows larger. The formation of
cellular flames for realistic values of thermal expansion σ , and the flame development
well within the nonlinear regime are some of the objectives of this work.

For Leeff > Le∗eff diffusion effects stabilize short wavelength disturbances, i.e. with
wavelength λ < λc (defined below), so that when limited to a finite domain of width
L < λc the planar flame remains absolutely stable. In wider domains, the instability
is hydrodynamic in nature. The flame development was studied extensively within
the context of the weakly nonlinear Michelson–Sivashinsky equation (Sivashinsky
1977a; Michelson & Sivashinsky 1977, 1982; Bychkov 1998; Vaynblat & Matalon
2000a,b; Karlin 2002), valid for weak thermal expansion, and more recently for
realistic values of the thermal expansion within the context of a fully-nonlinear
hydrodynamic model (Rastigejev & Matalon 2006a,b; Creta & Matalon 2011); see
also Bychkov & Liberman (2000). In the hydrodynamic model, the flame is treated as
an interface propagating at a speed that depends on flame stretch and modulated by
a Markstein length, a parameter of the order of the flame thickness that mimics the
effects of diffusion, mixture strength and stoichiometry. It has been established that
unlike the cellular flames resulting from a thermodiffusive instability, the flame beyond
the bifurcation point where the planar flame looses stability evolves into a single
cusp-like structure that fills the entire domain L and propagates at a speed significantly
larger than the laminar flame speed. It has also been noted that background noise and
weak turbulence may trigger self wrinkling of the flame front (Creta, Fogla & Matalon
2011).

The accurate investigation of the interactions between flow, chemistry and transport
processes on the initial (linear) as well as the long-term (nonlinear) evolution of the
propagating front must take into account the finite flame thickness, and can only
be achieved by solving the complete system of the reactive Navier–Stokes equations.
Denet & Haldenwang (1995) solved the low Mach number form of the equations
in two-dimensional domains and extracted the growth rate that was compared with
the dispersion relation of Pelce & Clavin (1982). Good agreement was found at the
low wavenumber limit even at relatively low values of the activation energy, but
discrepancies were observed when the band of unstable wavenumbers became large for
low Lewis numbers. It was further found that the growth rates were not sensitive to
viscosity. In a series of papers, Kadowaki studied the influence of the hydrodynamic
and the hydrodynamic/thermodiffusive instabilities on planar as well as circular flames
over a wide range of Lewis numbers with and without gravitational forces (see the
review paper of Kadowaki & Hasegawa (2005) and the references therein). Sharpe
(2003) employed a shooting method to investigate the linear stability of planar
premixed flames for different values of the activation energy and thermodynamic
and transport properties. The comparison with the high activation energy asymptotic
expressions showed that for low Le the numerical dispersion relation differs from
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the theoretical expression. The long-time propagation was numerically simulated in
domains with heights equal to approximately six and twelve times λmax , the wave
length of the linearly most unstable mode, by Kadowaki, Suzuki & Kobayashi (2005),
while Yuan, Ju & Law (2005) and Sharpe & Falle (2006) considered narrower domains
(one to three λmax and one to two λmax , respectively). Larger domains of up to 10.6λmax
were considered in (Yuan, Ju & Law 2007).

Interesting dynamic characteristics (cell formation, lateral flame movement, cell
splitting and merging in wide domains and stable cellular flame propagation in narrow
domains) were identified in these studies, but a systematic investigation of the effect of
the domain size and the sequence of transitions leading to the formation of different
cellular patterns has not been presented before. It should also be noted that all these
works considered transport and thermodynamic properties that did not depend on the
local conditions.

The present work is based on highly resolved numerical simulations of the low
Mach number reactive Navier–Stokes equations with the chemistry described by an
overall one-step reaction and variable thermodynamic and transport properties. The
computations were carried out for a hydrogen/air mixture with reaction orders and
kinetic parameters specified such that the computed laminar flame speed matches
the value obtained with a detailed reaction mechanism. The study addresses both
types of instabilities: (i) the thermodiffusive instability, characterized by values of the
Lewis numbers representative of the lean hydrogen/air flame, which correspond to an
effective Lewis number Leeff = 0.404 for the mixture, and (ii) the hydrodynamic
instability characterized by unity Lewis numbers for all species. Although the
initial flame development is triggered by one of the two instability mechanisms,
the nonlinear evolution is subject to both hydrodynamic and thermodiffusive effects
with different consequences when the effective Lewis number of the mixture is
equal to or significantly below one. In order to control the relative importance of
the two instability mechanisms, the simulations were conducted in two-dimensional
rectangular domains with variable height. Detailed chemistry and transport effects
were incorporated in the recent study of the short- and long-term dynamics of lean
premixed hydrogen/air flames at pressure p = 5 atm (Altantzis et al. 2011). Detailed
chemistry simulations of propagating hydrogen flames were also performed by other
authors with different objectives. Patnaik et al. (1988) showed that the appearance
of patterns resembling cellular flames is due to thermodiffusive instability. Grcar,
Bell & Day (2009) found significant difference between the results obtained using
a mixture-averaged and a multicomponent diffusion model for a propagating lean
(φ = 0.37) premixed hydrogen/air flame, while Day et al. (2009) studied the effect of
turbulence on the cellular burning structures. While the effect of detailed chemistry is
not yet clear, the recent study of Sharpe & Falle (2011) with a two-step model taking
into account intermediate species into the flame structure found no qualitatively new
cellular dynamics than those obtained with single-step models.

The influence of the instability mechanisms on the long-term evolution of a flame
front is important since the distortion of the planar geometry induces high propagation
velocities and stretch rates. Numerical studies conducted so far on unsteady stretch
effects on the propagation characteristics of premixed flames have predominantly
considered the turbulent case (e.g. Haworth & Poinsot 1992; Peters et al. 1998; Chen
& Im 1998; Chakraborty & Cant 2004), while unsteady aerodynamic and curvature
effects on the propagation of unstable self-wrinkled laminar flames have not been
investigated in detail.
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2. Problem setup
2.1. Governing equations

At the low-Mach number limit, acoustic wave propagation can be filtered out, and
the governing equations can be efficiently integrated while density variations due to
heat release and composition variations are fully taken into account (Chu & Kovasznay
1958; Rehm & Baum 1978). The governing equations are the conservation equations
for mass, momentum, energy and species together with the equation of state:
Continuity

∂ρ

∂t
+∇ · (ρu)= 0. (2.1)

Momentum

ρ

(
∂u
∂t
+ u ·∇u

)
=−∇p1 +∇ · (µS) (2.2)

S =∇u+ (∇u)T−2
3
(∇ ·u)I. (2.3)

Energy

ρcp

(
∂T

∂t
+ u ·∇T

)
=∇ · (λ∇T)−

Ng∑
i=1

hiω̇i − ρ
( Ng∑

i=1

cp,iYiVi

)
·∇T (2.4)

cp =
Ng∑
i=1

cp,iYi. (2.5)

Species

ρ

(
∂Yi

∂t
+ u ·∇Yi

)
=−∇ · (ρYiVi)+ ω̇i i= 1, . . . ,Ng (2.6)

Equation of state (ideal gas law)

p0 = ρRT/W̄. (2.7)

In the low-Mach-number formulation, equation (2.1) is replaced by (2.8) below,
which is obtained by combining the continuity (2.1), energy (2.4), species (2.6) and
state (2.7) equations:

∇ ·u=− 1
ρ

(
∂ρ

∂t
+ u ·∇ρ

)
= 1
ρ

Ng∑
i=1

hi
W̄

Wi
(−∇ ·ρYiVi + ω̇i)

+ 1
ρcpT

[
∇ · (λ∇T)−

Ng∑
i=1

hiω̇i − ρ
( Ng∑

i=1

cp,iYiVi

)
·∇T

]
. (2.8)

In (2.1)–(2.8), hi, ω̇i,Yi,Vi,Wi, cp,i are the enthalpy, chemical production term,
mass fraction, diffusion velocity, molecular weight, and heat capacity of species
i, respectively, while λ is the thermal conductivity, p1 and p0 the so-called
‘hydrodynamic’ and the ‘thermodynamic’ pressures, W̄ the mean molecular weight
and cp the mixture heat capacity. We use I to denote the identity matrix and the
species diffusion velocities Vi are given by Fick’s law

Vi =−(Di/Xi)∇Xi, (2.9)
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Di and Xi = YiWi/W̄ being the ith species mixture-averaged diffusivity and mole
fraction, respectively. Pressure diffusion, thermal diffusion and body forces are not
taken into account.

2.2. Computational domain and solution method
The equations are discretized in space using the spectral element method (Patera 1984;
Deville, Fischer & Mund 2002) in a computational domain that is split into rectangular
conforming elements. The solution, data and geometry are expressed as sums of tensor
products of order Np Legendre polynomials based on the Gauss–Lobatto–Legendre
quadrature points. The discretized equations are solved with a parallel code based on
the incompressible flow solver nek5000 (Fischer, Lottes & Kerkemeier 2008) using
a high-order splitting scheme for low-Mach-number reactive flows (Tomboulides, Lee
& Orszag 1997). A semi-explicit integration scheme is used for the continuity and
momentum equations, while the energy and species equations are solved implicitly
using CVODE (Byrne & Hindmarsh 1999). Further details on the mathematical
formulation, the numerical method as well as validation of the approach along with
asymptotic analysis and numerical benchmark tests can be found in Tomboulides et al.
(1997) and Tomboulides & Orszag (1998).

We consider a lean premixed H2/air mixture with equivalence ratio φ = 0.6,
at temperature and pressure equal to T = 298 K and p = 5 atm, respectively. The
chemistry is described by the single-step global reaction

H2 + 0.5O2→ H2O (2.10)

with the following reaction rate expression

r = A exp
(
− Ea

RT

)
[H2]a [O2]b . (2.11)

According to Sun et al. (1999), at φ = 0.6 the reaction orders with respect to
H2 and O2 are a = 1.6 and b = 0.1, respectively, while the activation energy is
Ea = 40.3 kcal mol−1. The pre-exponential factor A was adjusted so that the laminar
flame speed computed with the PREMIX code (Rupley, Kee & Miller 1995) from
Chemkin’s suite matches the value of SL = 51.4 cm s−1 obtained with the detailed
mechanism of Li et al. (2004). Detailed transport properties using the mixture-
averaged formulation are computed using the Chemkin transport library (Kee et al.
1996a), while the thermodynamic properties and chemical reaction rate are evaluated
with Chemkin (Kee, Rupley & Miller 1996b). The planar flame thickness is related
to the adiabatic flame temperature Tb, the unburned mixture temperature Tu and the
maximum temperature gradient in the one-dimensional flame as

δT = Tb − Tu

max(dT/dx)
, (2.12)

and defines the reference length scale. Using the laminar flame speed as the reference
velocity, the reference time is defined as tref = δT/SL.

The Lewis numbers of the fuel and oxidizer in the fresh mixture are LeH2 = 0.39
and LeO2 = 1.62, respectively. For the actual values of Le, the pre-exponential
factor was found to be A = 1.077 × 1016 (mol cm−3)

−0.7 s−1, the adiabatic flame
temperature was Tb = 1839.5 K and the flame thickness was δT = 5.14 × 10−3 cm,
resulting in a Zel’dovich number, expansion coefficient and Prandtl number equal
to β = Ea(Tb − Tu)/(RT2

f ) = 9.235, σ = ρu/ρb = 6.173 and Pr = 0.506, respectively.
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In order to isolate the effect of hydrodynamic instability on the propagation of the
planar front, unity Lewis number flames were also simulated by setting the species
diffusivities equal to the thermal diffusivity. In the unity Le case, the corresponding
values are A= 2.087× 1015 (mol cm−3)

−0.7 s−1, Tb = 1848.1 K, δT = 5.74× 10−3 cm,
β = 9.205, σ = 6.201 and Pr = 0.506.

The simulations were performed in two-dimensional rectangular domains with fixed
length equal to 200δT and height ranging from 3δT to 80δT . In the following, the
corresponding cases will be referred to as hH , where H denotes the domain height
in units of δT . Around the flame, uniform quadrilateral elements with δx = δy = 0.5δT

and polynomial order N = 10 in each direction were used so that the flame thickness
is resolved with 21 grid points, corresponding, for the Leeff < 1 case, to a resolution
of approximately 2.45 µm, and for the Leeff = 1 case of 2.73 µm. At the inflow (left
boundary), Dirichlet boundary conditions are used for the velocity (uniform profile
with uin = SL) and temperature (Tin = 298 K), and flux boundary conditions for the
species mass fractions. Zero-Neumann boundary conditions were prescribed for all
variables at the outflow (right boundary), while periodicity was imposed along the
top and bottom horizontal boundaries. In order to minimize boundary effects, the
planar flame profile obtained using PREMIX was placed at x = 130δT and the flame
evolution was followed until x = 60δT . Furthermore, since the employed low-Mach-
number formulation does not suffer from acoustic wave reflections at the inflow and
outflow boundaries, the domain does not need to be as large as with fully compressible
solvers. It should be noted that in narrow domains where the flame is stable, the one-
dimensional solution remained stationary during long time integration, and the highly
resolved solution of PREMIX could be accurately reproduced with only eight points
within the flame thickness. In order to further check the resolution independence of the
solution, some simulations were repeated with lower polynomial orders. It was found
that the linear and nonlinear behaviour as well as the sequence of dynamics were
unaffected when the δT was resolved by 12 points.

Unless otherwise noted, all variables reported below are non-dimensionalized with
respect to δT, SL, tref ,Tin and the properties of the inflowing mixture.

2.3. Theoretical considerations

The analysis of Matalon et al. (2003) assumes that the mixture consists of two
reactants, fuel and oxidizer, with the chemistry described by a single-step overall
reaction characterized by an activation energy and arbitrary reaction orders. The flame
is assumed thin in comparison to the hydrodynamic length scale, transport properties
vary with temperature and density varies throughout the flame. In examining the
stability of a planar flame front they derived a dispersion relation expressing the
growth rate ω as a function of the perturbation wavenumber k, which in dimensionless
form reads

ω = ω0k − δ[B1 + β(Leeff − 1)B2 + PrB3]k2, (2.13)

where ω0, B1, B2 and B3 are functions only of the thermal expansion coefficient σ .
To accommodate the different characteristic length used in this paper, the coefficient
multiplying the second-order term on the right-hand side must be defined as δ = δT/lth,
where

lth = λu

ρucpSL
. (2.14)
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The scaling is δ = 4.1 and 3.7 for the unity and subunity Lewis number cases,
respectively. The coefficients appearing in (2.13) are

ω0 =
√
σ 3 + σ 2 − σ − σ

σ + 1
(2.15)

B1 = σ2
[

σ(2ω0 + σ + 1)
(σ − 1)[σ + (σ + 1)ω0]

∫ σ

1

λ(x)

x
dx+ 1

σ + (σ + 1)ω0

∫ σ

1
λ(x) dx

]
(2.16a)

B2 = σ2
[

(1+ ω0)(σ + ω0)

(σ − 1)[σ + (σ + 1)ω0]
∫ σ

1
ln
(
σ − 1
x− 1

)
λ(x)

x
dx

]
(2.16b)

B3 = σ2
[

2(σ − 1)
σ + (σ + 1)ω0

λ(σ)− 2
σ + (σ + 1)ω0

∫ σ

1
λ(x) dx

]
(2.16c)

where λ(x) expresses the variation of the transport properties with temperature, and
Leeff is the effective Lewis number defined below. Although derived for a general
functional dependence λ(T), the stability results were presented in Matalon et al.
(2003) only for the special case λ = T (without being explicitly stated) and with a
minor typo in the coefficient B2 (there is an extra factor σ − 1 in the numerator).
For constant transport properties, λ = 1, and these relations reduce to those derived
by Frankel & Sivashinsky (1982), Matalon & Matkowsky (1982) and Pelce & Clavin
(1982) when the different notation used in these publications is properly accounted for.

The first-order term in (2.13) ∼k expresses the growth due to the Darrieus–Landau
instability (since ω0 > 0 for all σ ), while the second-order term ∼k2 represents
the influences of diffusion with the coefficients B1, B2 and B3 corresponding to
thermal conduction, mass diffusion and viscosity effects, respectively. Since σ > 1,
B1,B2 and B3 are always positive, the terms expressing thermal conduction and
viscous diffusion are always stabilizing, while mass diffusion can be stabilizing
or destabilizing depending on the effective Lewis number of the mixture. When
Leeff < 1, the mass diffusion term becomes negative and plays a destabilizing role. The
combined diffusion terms, therefore, act to destabilize the flame when Leeff < Le∗eff ,
with the critical value Le∗eff obtained by setting ω = 0 in (2.13), is slightly less than
one. It should be noted that the increase in viscosity that results from the increase
in temperature across the flame has a stabilizing effect on the flame, and when the
viscosity is assumed constant and independent of temperature, the coefficient B3 = 0
and viscous effects play a secondary role compared with all other diffusion effects.

The dispersion relation (2.13) was used for comparison with the data obtained
from the simulations. The fit of the thermal conduction coefficient profile along the
one-dimensional solution of PREMIX by a power-law expression showed that λ= T0.7.
The effective Lewis number of the fresh mixture is

Leeff = LeE + LeDA

1+ A
(2.17)

A= G(a, b;ϕ)
bG(a, b− 1;ϕ) − 1 (2.18)

G(a, b;ϕ)=
∫ ∞

0
ς a (ς + ϕ)b e−ς dς (2.19)

ϕ = β(Φ − 1), (2.20)
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where Φ = φ−1 when φ < 1 and Φ = φ for φ > 1, with φ the equivalence ratio and
a and b the reaction orders of the excess and the deficient reactant, denoted by the
subscripts E and D, respectively. For the conditions considered, Leeff = 0.404, which is
very close to the fuel Lewis number (LeH2 = 0.39) as expected for lean mixtures.

The asymptotic relation (2.13) is in fact the expansion of the exact dispersion
relation in powers of k. For Leeff < Le∗eff , when both coefficients in the expansion
become positive, stabilization at large k comes from higher-order terms which have not
been derived under general conditions. They are included, however, in the dispersion
relation obtained by Sivashinsky (1977b) when considering only thermodiffusive
instability and ignoring the effects of thermal expansion and viscosity, thus effectively
setting σ = 1. The implicit dispersion relation in that case takes the form

F(ω, k,Le)= (Le− q)(p− r)

Le− q+ p− 1
− β

2
, (2.21)

where, accounting for the different reference length scale,

p= 1
2

[
1+

√
1+ 4(δω + δ2k2)

]
(2.22)

q= Le

2

[
1+

√
1+ 4(δωLe+ δ2k2)

Le2

]
(2.23)

r = 1
2

[
1−

√
1+ 4(δω + δ2k2)

]
. (2.24)

In the work of Sivashinsky (1977b), the hydrodynamic problem is separated from the
reaction–diffusion problem, and the only factors considered are heat conduction and
mass diffusion. Consequently, the stability properties of the planar flame front depends
only on the Lewis and Zel’dovich numbers.

2.4. Flame stretch and flame speed
In the simulations presented below the flame front was identified by a temperature
isoline and the results processed to compute linear growth rates, as well as flame
speeds, curvature, strain rate, and flame stretch. The instantaneous fronts were
decomposed into their Fourier components and the evolution of the dominant modes
was followed in time. The linear growth rate of each Fourier mode was obtained from
the slope of the temporal variation of the logarithm of the growth.

The flame speed can be defined in different ways (Poinsot & Veynante 2005). The
‘local displacement speed’, i.e. the flame front speed relative to the flow, is defined as

Sd = 1
|∇T|

[
−

Ng∑
i=1

hiω̇i +∇ · (λ∇T)− ρ
( Ng∑

i=1

cp,iYiVi

)
·∇T

]
(2.25)

with all quantities evaluated along the temperature isoline chosen to define the flame
front. It takes into account the heat release rate (HRR; first term in the brackets) and
the heat flux (the last two terms representing the heat conduction term and the heat
transfer through species diffusion, respectively). The last term which is identically zero
when the heat capacities of the species are equal is found to be orders of magnitude
smaller than the other two terms. As will be shown below, the incorporation of the
heat flux in the definition of the local flame speed is necessary in order to understand
the evolution of the front. Flame speed definitions such as the local consumption speed
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are based solely on the local reactivity (Poinsot & Veynante 2005), and cannot be used
to explain the behaviour of wrinkled flames propagating in non-uniform flows.

The ‘absolute propagation velocity’, the propagation velocity of the flame front
with respect to the fixed laboratory frame of reference, is w = Sdn + u, where
n = −∇T/|∇T| is the local flame normal vector pointing towards the fresh mixture
and u the local flow velocity.

Wrinkling of the flame front affects the local reactivity through the thermodiffusive
effect, the heat conduction from the reaction zone to the unburned mixture, and the
flow non-uniformity through the hydrodynamic instability. The first two effects are
induced by the front curvature, while the latter is expressed by the strain rate. The
combined effect of curvature and strain is the stretch rate. Curvature is defined as the
divergence of the flame normal vector n,

κ =∇ ·n. (2.26)

Flame stretch can be obtained using the computationally convenient expressions
(Matalon 1983; Chung & Law 1984; Candel & Poinsot 1990),

K = 1
A

dA

dt
= at + Sdκ (2.27a)

=−n ·∇ × (u× n)+ (w ·n)(∇ ·n), (2.27b)

where A is the flame area and the total aerodynamic strain rate of the flame front is
(Williams 1985)

at = (δij − ninj)
∂ui

∂xj
. (2.28)

The first term in (2.27b) expressing the tangential strain rate is equal to the divergence
of the tangential flow velocity

∇ ·ut =∇t ·ut =−n ·∇ × (u× n)= at − (u ·n)∇ ·n. (2.29)

The normal strain acting on the flame surface (last term of (2.29)) depends on
flame curvature through the modification of n with respect to the Cartesian frame
of reference. The normal and tangential strain rates counteract each other, so
that negatively curved (concave towards the fuel) regions experience compressive
(i.e. negative) tangential strain and expansive (i.e. positive) normal strain. The opposite
occurs along positively curved (convex) regions. The tangential strain rate obtained by
subtracting the normal strain rate from the total aerodynamic strain rate, incorporates
the effects of both aerodynamic strain and curvature. The effect of normal and
tangential straining on the propagation of the flame has been recently discussed by
Creta & Matalon (2011). The relation of the flame displacement speed with stretch
rate and curvature as well as the individual contribution of each of the terms
constituting the flame stretch will be examined below for the two cases considered,
unity and sub-unity Lewis numbers.

With respect to the effect of heat conduction on Sd and its dependence on curvature,
the decomposition of the heat conduction into contributions in the normal and
tangential directions

∇ · (λ∇T)= ∂n(λ∂nT)+∇t · (λ∇tT)
=−n ·∇(λ|∇T|)− λ|∇T|(∇ ·n) (2.30)

clearly shows the explicit dependence of heat conduction in the tangential direction
(and thus of the displacement speed) on curvature.
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3. Results and discussion
3.1. Linear stability of the flame

Linear stability analysis provides the range of unstable wavenumbers, the maximum
amplification rate and the most unstable wavenumber, and as such allows for direct
comparison of the numerical results with theoretical predictions. It also furnishes
useful information in understanding the formation of cellular structures during the
long-time flame propagation.

For most of the domain heights simulated, two types of initial conditions were
considered. First, in order to avoid mode locking on the initial perturbation wavelength,
the response of the flame to the omnipresent numerical noise was followed in time.
At the employed resolution, the noise amplitude is very low (and its amplification
requires correspondingly long times), but its spectrum spans an extended range. In
addition to this ‘self-excitation’, the planar front was perturbed into a sinusoidal
shape ∆ = A0 sin(kny), where A0 is the initial perturbation amplitude and kn is the
wavenumber kn = 2πn/h, n = 1, 2, . . . . The comparison of the growth rates obtained
with the two approaches showed that for the thermodiffusively unstable flame a value
of A0 = 0.001 resulted in growth rates that were very close to each other with the
largest deviation (from the unperturbed case) being 2.6 % for the h6 domain. In the
Leeff = 1 cases where the growth rates are much lower, the amplitude of the initial
perturbation magnitude was taken as A0 = 0.1. Comparison with growth rates obtained
using A0 = 0.001 for the h10 case showed negligible differences.

The growth rates ω extracted from the simulations are plotted in figure 1(a) as
a function of the wavenumber k for both Lewis numbers and compared with the
theoretical dispersion relations of Landau (1944), Sivashinsky (1977b) and Matalon
et al. (2003).

3.1.1. Hydrodynamically unstable flames
For the conditions considered in this study, the critical Lewis number obtained by

setting the coefficient of the second-order term in (2.13) equal to zero is Le∗eff = 0.547,
so that for Leeff > 0.547 the theoretical expression is able to capture the stabilizing
effect of diffusive processes at high wavenumbers. On the other hand, the theoretical
dispersion relation diverges when Leeff < 0.547 and high-wavenumber stabilization
cannot be predicted.

When the species diffusivities are forced to be equal to the thermal diffusivity,
the maximum growth rate of the resulting Leeff = 1 flames is ωmax = 0.202 at
the most unstable wavenumber of kmax = 0.314 (h = 20δT), whereas the neutral
stability wavenumber is kc = 0.692 corresponding to a wavelength of h ≈ 9δT . The
numerical results in this case can be compared with the theoretical predictions (2.13)
because for unity Lewis numbers Leeff > Le∗eff and, indeed, there is very good
agreement for k < 0.16. For higher wavenumbers, the agreement is still qualitatively
good, but deteriorates gradually for k > 0.2. Similar discrepancies were reported by
Denet & Haldenwang (1995), Yuan et al. (2007) and Sharpe (2003) who compared
computed growth rates with the equivalent theoretical predictions (albeit with constant
thermodynamic and transport properties) of Pelce & Clavin (1982), Matalon &
Matkowsky (1982) and Frankel & Sivashinsky (1982).

The worsening agreement for high wavenumbers suggests that terms of order higher
than second in k in the dispersion relation become increasingly important. Since
for Leeff = 1 flames the thermodiffusive instability plays no role, high-wavenumber
stabilization can only be due to diffusion. The higher-order terms would most likely
correspond to the combined effects of viscosity, thermal conduction or mass diffusion.
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) Comparison of the
dispersion relation extracted from the simulations for unity as well as low Leeff , with the
theoretical expressions of Matalon et al. (2003) (MCB, for both Leeff cases), and Sivashinsky
(1977b) (for Leeff = 0.404). (b) Expanded view at the low-wavenumber limit.

Considering constant transport properties, Denet & Haldenwang (1995) found that
viscosity has a minor effect for Leeff = 1 flames, but as noted by Matalon et al. (2003)
when viscosity is allowed to vary with temperature, its effect is comparable to other
diffusion effects.

3.1.2. Thermodiffusivelly and hydrodynamically unstable flames
When realistic transport is considered, the effective Lewis number of the lean

hydrogen/air mixture (φ = 0.6) becomes Leeff = 0.404 < Le∗eff , and the range of
unstable modes and the growth rates is more than doubled (figure 1a). The neutral
stability wavenumber kc = 1.974 (corresponding to hc = 3.183δT) is assessed through
linear interpolation between the perturbation wavenumbers k = 2.094 (h = 3δT) and
k = 1.795 (h = 3.5δT) whose growth rates are negative and positive, respectively.
Stabilization of smaller wavelength perturbations is due to the effects of transverse
mass diffusion and heat conduction at small scales. The maximum growth rate is
ωmax = 1.691, corresponding to a most unstable wavenumber kmax = 1.105 (h= 6δT).

Although the ω–k curves for the two cases (Leeff = 0.404 and 1) differ significantly,
they both tend to the Darrieus–Landau limit when k→ 0, as shown in the close up
limited to low wavenumbers (figure 1b). Furthermore, an inflection point appears
between k = 0.157 and k = 0.314 (corresponding to the domains h40 and h20,
respectively) in the low Leeff case. This confirms the assertion that for low Lewis
number the asymptotic approximation (2.13) is inadequate and the expansion of the
dispersion relation must include terms corresponding to orders higher than k2. A
nonlinear fit of the simulation data with a polynomial expression containing only first-,
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FIGURE 2. (Colour online) (a) Evolution of the flame front defined by the T = 3 isoline
at times differing by one time unit; (b) time history of the amplitudes of the k4 (initial
perturbation to a four-cell structure, amplitude decreasing in time) and k2 (two-cell structure,
amplitude increasing in time) Fourier modes.

second- and fourth-order terms in k yields ω = 2.641k − 0.884k2 − 0.111k4, with a
stabilizing term of the order k4.

Although the implicit dispersion relation (2.21) of Sivashinsky (1977b) does not
correctly predict the behaviour near k = 0 (being limited to σ = 1), it does account
for higher-order wavenumber effects. The neutral stability wavenumber from the
simulations is in reasonable agreement with the value of kc=2.14 obtained from (2.21).
On the other hand, the growth rates extracted from the simulations are larger than the
predicted values by a factor that is close to the thermal expansion coefficient. If ω
in (2.21) is rescaled to take into account the actual value of the thermal expansion
coefficient, effectively substituting ω by ω/σ , the magnitudes of the growth rates are
matched quite well.

In order to compare the growth rates of different modes, perturbations of
wavelength λ < h were also imposed in some cases. The simulations with perturbation
wavelengths of λ = h, h/2, h/4 in the h10 domain (corresponding to k1, k2 = 2k1, k4 =
4k1), and λ = h/2, h/3, h/4 (k2, k3, k4 modes) in the h20 domain showed that the
linear growth rates of specific wavelengths are independent of the domain height. For
example, the growth rate of the λ = h/2 mode in the h20 domain was found to be
equal to that of the λ= h mode in the h10 domain.

In the h10 case, the initial temporal evolution of the displacement of the flame front
defined by the T = 3 isoline shows that the k4 mode is damped quickly, while the k2

mode is amplified slowly and after the initial transient the flame acquires an almost
planar shape (figure 2a). This can be more clearly seen in figure 2(b) showing the
time history of the amplitudes of the k2 and k4 Fourier modes of the flame front;
all other modes had negligible amplitude. The damping of the initial k4 perturbation
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is expected since, according to the numerical dispersion relation, its wavenumber
lies outside the instability range. The perturbed flame initially reverts to the planar
shape; however, due to the intrinsic instability of the k2 mode, two cells emerge after
some time with wavelength equal to λ = 5δT . The amplitude of the k2 mode grows
exponentially in time with a growth rate equal to that obtained from the numerical
dispersion relation (figure 1a). In all cases considered, the number of cells appearing
initially is equal to the integer multiple of the mode with the highest growth rate that
can be accommodated in the domain.

3.2. Nonlinear evolution
The perturbation imposed on the flame front creates convex (flame crests) and
concave (flame troughs) towards the fresh mixture segments along the flame
front. The resulting modification of the flow field ahead of the flame leads to
divergence/convergence of the streamlines upstream of the crest/trough. The flow-
induced stretch, in turn, flattens the region around the crest at the expense of the
trough. When the domain height is such that k1 < kc, the perturbation is amplified,
the flame speed becomes larger than SL and the front propagates towards the inlet.
After an initial period of linear growth, different modes can get excited and interact
nonlinearly.

Narrow domains are characterized by the strong stabilizing effect of viscosity,
transverse heat conduction and mass diffusion and result in a single-cusp flame
structure directly. More interesting dynamics are observed in wider domains, where
diffusive processes weaken and additional modes can be excited, leading to the
appearance of smaller cells along the flattened convex flame segment.

3.2.1. Hydrodynamically unstable flames
As shown in figure 3(a,b) for h 6 20δT , the flame front defined by the T = 3 isoline

evolves into a single-cusp structure with a depth increasing with h. Once this stable
front shape is acquired, the flame propagates without changing shape towards the
unburned mixture with a constant velocity higher than SL. The speed of the stably
propagating flame front with respect to the stationary laboratory frame of reference
will be referred to in the rest of the text as the ‘global propagation rate’, SA. On the
other hand, the propagation speed with respect to the incoming fresh mixture velocity
will be called the ‘global displacement rate’, SD = SA + uin.

In the wide domains (h40 and h80 shown in figure 3(c,d), respectively), the
initially perturbed k1 mode is amplified and, after saturation, single-cusp structures are
obtained, characterized by an extended low-curvature crest which becomes susceptible
to secondary instabilities. In all cases, the smaller structures formed on the crest move
along the front and disappear at the trough restoring the single-cusp shape. In order to
investigate the influence of noise on flame behaviour, simulations in the wide domains
were also performed with lower resolution. The disturbances were sustained for longer
times but eventually the flame always acquired a single-cusp shape similar to the thin
flame predictions of Rastigejev & Matalon (2006a) and Creta & Matalon (2011).

The temporal evolution of the leading Fourier modes together with the
corresponding curves for the temporal evolution of the integral of the non-dimensional
HRR (integral HRR = ∫V

∑N
k=1ω̇khk dV/(t−1

ref ρref cp,ref Tref )) over the whole domain are
plotted in figure 4. The dominance of the k1 mode, observed in all cases, clearly
shows the tendency of the flame to propagate with a single-cusp shape. Only in
the h40 domain, structures of wavelength k2 appear and their amplitude temporarily
exceeds that of the k1 mode (figure 4c). This may be attributed to the fact that
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FIGURE 3. Propagation of the flame front defined by the T = 3 isoline at times differing by 5
time units in the (a) h= 10δT , (b) h= 20δT , (c) h= 40δT and (d) h= 80δT domains.

the secondary modes of wavelength λ = 20δT were found to exhibit the maximum
amplification in the linear stability analysis. In the h80 case, the k1 mode remains
dominant throughout the whole simulation time. The temporal evolution of HRR
directly reflects the transient formation of smaller structures along the flame front
(increase of HRR) as well as the merging of the small-scale structures (decrease of
HRR).

The propagation characteristics of the single-cusp flames propagating with a constant
velocity and without changing shape are exemplified by the analysis of the h10 case
(figure 5). The normal component of the local absolute propagation velocity, which
will be referred to as the absolute propagation speed, Sa = Sd + u · n, the density-
weighted displacement speed Ŝd = ρSd/ρu, and the curvature κ along the flame front
defined by the T = 1.15 (close to the upstream boundary of the preheat zone) and
T = 3 isolines, are extracted at t = 80, after the flame has acquired its steady structure.

The density-weighted displacement speed corrects Sd for volumetric expansion
effects and can be directly compared with SL indicated by the straight line Ŝd = 1
in figure 5(b). At the leading (flame crest) and trailing (flame trough) points of the
front where the flame normal aligns with the streamwise direction, the tangential
velocity is zero and the absolute propagation speed is equal to the global propagation
rate. It reaches its maximum value Sa = 0.1 at the leading and trailing points, and its
minimum at the points of zero curvature (marked by the vertical dashed and dotted
lines for the T = 3 and T = 1.15 isoline, respectively) where the angle between the
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FIGURE 4. (Colour online) Temporal evolution of the amplitude of the first few Fourier
modes of the flame shape and of the heat release rate (HRR) in the (a) h10, (b) h20, (c) h40,
(d) h80 domains.

streamwise and the normal direction becomes the largest. As expected, the value of
the global propagation rate is independent of the temperature isoline chosen to define
the front. The effect of curvature on the density-weighted displacement speed can
be inferred from figure 5(b,c). Positively-curved regions are characterized by Ŝd < SL,
while at negatively curved regions Ŝd > SL; only at points of zero curvature, Ŝd = SL.

Since Le = 1, the mass diffusing in the reaction zone compensates for the heat loss
via conduction to the fresh mixture. As a result, reactivity remains constant along
the flame, and the main term contributing to the variation of the displacement speed
in (2.25) is thermal conduction, which depends on curvature (equation (2.30)). The
variation of heat conduction (HC) along the flame front is plotted in figure 5(d) for the
stable single-cell as well as for the planar frame in the h10 domain. Heat conduction
upstream from the reaction zone along the convex (κ > 0) segment of the front is
weaker than that of the planar front; the opposite occurs along the κ < 0 region. The
normal, HCn = ∂n(λ∂nT), and tangential components, HCt = ∇t · (λ∇tT), of HC are
plotted in figure 5(e,f ), respectively. The higher values of HCn in negatively-curved
regions reflect the focusing effect which transfers heat from a larger flame surface area
to preheat the unburned mixture engulfed in these regions. The explicit dependence of
HCt on curvature (equation (2.30)) explains its variation along the flame (figure 5f ).
In κ > 0 segments, HCt < 0 since heat is conducted away from these regions towards
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FIGURE 5. (Colour online) Unity Le flame in the h10 domain: (a) absolute propagation
speed (b) density-weighted displacement speed and (c) curvature of the stably propagating
single-cusp flame front defined by the T = 1.15 and T = 3 isolines. Heat conduction (HC)
along the flame front upstream from both the stably propagating single-cusped flame and the
planar flame front defined by the T = 3 isoline: (d) total HC, (e) normal and (f ) tangential
components of HC.

the colder mixture upstream of the flame. For Le = 1 flames, the relative effect of the
focusing of heat (dependence of HCn on curvature) on the variation of the total heat
conduction along the flame is weaker than that of HCt: along the T = 3 isoline, HCt

contributes approximately 80 % to the variation of heat conduction along the flame.
However, the value of the total heat conduction is dominated by HCn.

The divergence of the stream lines upstream from the convex flame segment results
in a reduction of the flow velocity ahead of the flame. In addition, the effect
of curvature on thermal conduction leads to a reduced displacement speed of the
convex segment in comparison to the speed of the planar front. On the contrary, the
convergence of the flow streamlines at the concave part reflects an increase in the
incoming flow velocity which balances the increased displacement speed of the flame
front. During stable propagation, the flame acquires the shape which balances the
variations of the flow field with the variations of the displacement speed.

The density-weighted displacement speed Ŝd along the T = 3 front was computed for
the single-cusp structures in all cases considered. The values of Ŝd at the flame trailing
and leading points are plotted in figure 6(a,b), respectively. The single-cusp structure
is stable in the h10 and h20 domains and the extracted values are valid after the initial
transient. In the h40 and h80 domains, the values plotted are at time instants t = 257
and t = 252, respectively, when the flame acquired the single-cusp shape. At the
concave segment, Ŝd increases with h, following the continuous increase of curvature
(figure 6a), solely due to the influence of the flame geometry on the upstream heat
conduction. On the other hand, as the domain height is increased, the curvature at the
convex part diminishes asymptotically to the zero value of the planar flame, and Ŝd

tends to the value of the planar front (figure 6b). The low curvature at the convex
segment and the resulting low stretch rates cannot stabilize high wavenumber modes
and small-scale cells appear. The important point though is that at long times these
cells move towards and are annihilated at the trough with the flame acquiring again its
single-cusp structure.
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FIGURE 6. Displacement speed and curvature of (a) the concave (trough) and (b) the convex
(crest) part of the single-cusp shape flame.

The effect of the domain height on flame surface area and propagation rate is
summarized in figure 7. The flame surface area, Lf , defined as the arclength of the
T = 3 isoline when the single-cusp shape is obtained, increases linearly with the
domain height as Lf = a(h − hc) + hc with a = 1.285 (figure 7a), where the stability
threshold determined by the linear stability analysis is hc = 9.08δT . For h 6 hc, the
flame area increases as Lf = h, as indicated by the dashed line which is extrapolated
to h = 80δT in figure 7(a). The normalized increase of Lf with respect to the domain
height, dL = (Lf − h)/h at the limit of large h is then

lim
h→∞

Lf − h

h
= lim

h→∞
h(a− 1)− hc(a− 1)

h
= a− 1, (3.1)

a being the slope determined above. The value determined by (3.1) to be
approximately 28.5 % establishes an asymptotic upper limit for dL.

The normalized increase of the global displacement rate U = (SD − SL)/SL shown
in figure 7(b) follows the same trend as dL and increases asymptotically to the value
determined above. This results in an upper limit for both the global propagation and
global displacement rate that becomes independent of the domain height (figure 7c).
The global displacement rate is equal to the ratio of the actual flame length to the
domain height, SD ≡ Lf /h. The bifurcation at h = hc marking the transition from the
stable planar flame to the accelerated single-cusped flame (figure 7b) is in close
quantitative agreement with the results of Creta & Matalon (2011).

An upper limit for the increase of the global displacement rate of stationary
curved flames was also predicted in the studies of Bychkov (1998), who took into
account the effects of thermal expansion in a weakly-nonlinear model first proposed by
Sivashinsky (1977a), and with the thin flame studies of Rastigejev & Matalon (2006a),
and more recently by Creta et al. (2011) and Creta & Matalon (2011) taking into
account realistic density variations. Our results agree well with Bychkov (1998), where
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FIGURE 7. Effect of the domain height on (a) flame length, (b) increase rate of the
global displacement rate U = (SD − SL)/SL, and (c) ratio of the increase rate of the global
displacement rate over the flame length increase normalized by the planar flame length.

the asymptotic limit of the increase of the global displacement rate is around 28 %
for expansion coefficient σ = 6.2. The upper limit of Rastigejev & Matalon (2006a)
was approximately half the one computed here, while the incorporation of the effect
of hydrodynamic strain on the flame propagation speed by Creta et al. (2011) resulted
in values closer to the ones obtained here with the upper limit for a flame with
σ = 5.5 being 24.5 %. The ratio of the propagation rate to dL is very close to unity
for all domain heights considered, indicating that in Le= 1 flames the propagation rate
reflects the normalized increase of the flame area.

Earlier theoretical studies of Vaynblat & Matalon (2000a,b) predicted that for Lewis
number larger than Le∗eff , the flame acquires a single-cusp stably propagating structure
for any domain size. This prediction was initially proved for weak-thermal expansion
and later confirmed for realistic density variations in numerical studies (Rastigejev
& Matalon 2006a; Creta & Matalon 2011), based on a fully-nonlinear hydrodynamic
model but with the flame treated as a surface of density discontinuity. It was shown
that secondary modes are amplified and smaller structures can appear as a result of
numerical noise, but these small-scale structures were not sustained during propagation
and they finally disappear at the cusp. The results of the current study, which resolves
the finite flame thickness are in agreement with these predictions, at least for the
domains considered h 6 80δT .

3.2.2. Thermodiffusivelly and hydrodynamically unstable flames
In this case, the combined effects of the hydrodynamic and the thermodiffusive

instabilities lead to intensification of the reactivity at positively-curved and weakening
at negatively-curved segments. The locally increased reactivity and the modification
of the flow field due to thermal expansion result in flattening of the positively-curved
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segment, rendering it susceptible to perturbations of lower wavelength and leading to
the formation of small-wavelength cells along the flame front.

After the initial linear growth, secondary modes are amplified as the flame crest
starts to flatten. The increased curvature at either side of the crest results in
intensification of the thermodiffusive effects, higher local reactivity at the crest edges,
and its broadening at the expense of the trough. Depending on the domain height,
when the crest is flat enough to become unstable with respect to perturbations with
wavenumbers higher than that of the initial mode, the initial crest splits into two
smaller cells whose tips are the edges of the initial cell. This cell-splitting is a typical
pattern formation mechanism in thermodiffusively unstable flames when hydrodynamic
effects are not taken into account (Denet & Haldenwang 1992; Kang, Baek & Im
2006).

Figure 8 shows the propagating T = 3 isoline and the corresponding time history
of the HRR. In the h3 domain (not shown), the flame remains planar and stationary
during time integration for 200 time units. In the h3.5 domain, the planar flame
becomes unstable and after a transient period of linear growth a single cell forms
which maintains its shape and propagates at constant speed towards the inflow
(figure 8a), a behaviour that can also be inferred from the HRR signal (lower plot
of figure 8a). Along the front, the influence of curvature on the reactivity is significant
even in narrow domains and the HRR at the crest edges is approximately 40 times
larger than at the trough.

Owing to this non-uniformity of the reactivity along the flame, the propagation
rate of the flame when it acquires its final shape is no longer related only to the
flame area. For the h3.5 domain, the global displacement rate is SD = 2.68SL, while
the increase of the flame area is only ∼47 % (figure 9a). The global displacement
rate of the stably propagating flame is approximately 43 % larger than the upper limit
assessed previously for the Le = 1 flames. This can be understood by comparing the
density-weighted displacement speed (figure 9b) and the curvature (figure 9c), with the
corresponding values of the Le = 1 flame (figure 5). Curvature is larger in absolute
value along the low Le flame, strongly affecting heat conduction upstream of the flame
and resulting in the higher values of Ŝd along both the concave and the convex regions.
In the concave region, the influence of curvature on heat conduction leads to higher
values of Ŝd. In the convex region, although the positive curvature effects tend to
decrease the displacement speed below SL, the observed values remain higher than the
laminar flame speed as a result of the increased reactivity.

In the h4 domain, the tip flattens further and the reactivity at the lower cell edge is
intensified more than at the upper, eventually leading to loss of symmetry (figure 8b).
The asymmetric cell acquires a lateral velocity component and the cell propagates with
a constant global propagation rate of 0.8SL and 2.77SL in the lateral and streamwise
direction, respectively. The numerical investigation of the lateral flame movement by
Kadowaki (1997) showed that it occurs in Le < 1 flames over a narrow range of
domain heights. Neither curvature nor Ŝd differ substantially at the cell edges in
figure 9(d–f ), where the negatively curved region corresponds to the cusp and the two
local minima of Ŝd mark the cell edges. In contrast, the variation of Sa is large at the
edges reflecting the significant effect of cell formation on the flow field. Since Sa is
varying strongly along the flame in comparison to the displacement speed, the term
that contributes to the modification of Sa is the normal component of the flow velocity.

As h is increased further, the dynamical behaviour of the flame is enriched by the
appearance of interacting high-wavenumber modes. Following the formation of the
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time unit (upper plot) and temporal evolution of the integral heat release rate (lower plot):
(a) h= 3.5δT ; (b) h= 4δT ; (c) h= 4.5δT ; (d) h= 5δT ; (e) h= 5.5δT ; (f ) h= 6δT .

larger cell in the h4.5 domain, and while the flame propagates toward the unburnt
mixture, the single HRR maximum is split into two and two regions of increased
reactivity appear at the sides of the crest. Since the domain is too low to allow
secondary modes to develop fully, the dynamics of the flame are determined by the
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FIGURE 9. (Colour online) Thermodiffusively unstable flames: normal component of
(a,d) the absolute propagation velocity, (b,e) density-weighted displacement speed
and (c,f ) curvature of the stable single-cusp flame. (a–c) Flame defined by the T = 1.15
and T = 3 isolines in the h3.5 domain. (d–f ) Flame defined by the T = 3 isoline in the h4
domain.

interaction of the k1 and k2 modes. After two oscillations of the symmetric flame
(25 6 t 6 32) during which the region of increased reactivity shifts to the crest sides,
the further increase of the reactivity at the upper cell edge results in symmetry
breaking and induces lateral movement of the oscillating front. In contrast to the h4

case, and as indicated by the oscillatory profile of the HRR signal (figure 8c), the
lateral velocity varies as the flame oscillates between an almost symmetric and an
asymmetric shape. The maximum temperature varies between 2115.8 K (asymmetric
flame) and 2050.2 K (almost symmetric flame).

Symmetry-breaking phenomena are characteristic of diffusionally imbalanced flames
since they are a consequence of the variable reactivity along the flame. As discussed in
the previous section, perturbations of the cellular front of Le = 1 flames are corrected
by the modification of the displacement speed due to curvature effects and finally
disappear at the trough. In thermodiffusively unstable flames, the perturbation on the
front leads to the additional modification of the reactivity, which in turn results in local
intensification of the reaction in convex parts and further increase of the displacement
speed, thus amplifying the perturbation.

The narrowest simulated height that allows two distinct cells to appear is h = 5.0δT .
During propagation, one of the cells increases at the expense of the other, leading
to the formation of a short-lived single cell, which quickly splits again into two in
a quasi-periodic manner (figure 8d). During the nonlinear interaction of the unstable
modes, the wavenumber of the cells formed after splitting is temporarily higher than
the critical wavenumber obtained by the dispersion relation.

In the h = 5.5 domain, the dominance of the secondary mode results in the
formation of a two-cell flame structure that propagates stably as shown in figure 8(e).
Once formed, the two-cell flame remains unchanged and the identical cells have
wavenumbers larger than the stability threshold obtained by the linear stability analysis.
The global displacement rate in this case is SD = 3.1SL, while the area increases by
only ∼52.5 %. Formation and propagation of a two-cell flame is also observed in the
h = 6δT domain (figure 8f ). In this case, however, the two-cell structure propagates
for 25.8< t < 38.1 until a short-lived single cell forms. This cell splits again to return
to a two-cell structure (t > 42.5) which has the same propagation rate as before the
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FIGURE 10. (Colour online) Isocontours of temperature of the flame propagating in the
h= 20δT domain at (a) t = 20, (b) t = 22.4, (c) t = 27, (d) t = 30.2, (e) t = 40 and (f ) t = 48
(Leeff = 0.404).

merging and splitting. Owing to the long time interval needed for the appearance of
the single cell, it was not possible to check whether the merging–splitting process is
periodic.

In larger domains (h > 10δT), the effect of hydrodynamic instability is even more
significant, while the stabilizing effect of transverse diffusion weakens. In contrast
to all previous cases where either periodic or stable patterns appeared, the nonlinear
propagation regime is characterized by the interaction of a larger number of modes.
After the initial linear growth of the disturbance, the number of cells that form is equal
to the integer multiple of the most unstable mode that can be accommodated in the
domain. During propagation, the small cells merge increasing their wavelength, and
the cell-merging process continues until large-scale structures are formed as will be
discussed below.

In the h = 20δT domain, three cells form initially (corresponding to ≈20/6
cells with the highest growth rate that can be accommodated, figure 10b),
which, following a transient merging process result in a single cusped-like
structure, (figure 10d). This structure propagates stably for a short period of time,
until one of the two cells disappears at the through and the flame acquires a single-
cusp shape (figure 10f ), which is short-lived since the front curvature is low and thus
more susceptible to instabilities. Similar behaviour was reported by Yuan et al. (2005)
in domains with height equal to 3λmax , which is close to our h = 20δT domain. The
dominance of the k1 mode is shown in figure 11(a); modes of lower wavelengths
prevail only for short time intervals immediately after the early growth stages of the
imposed perturbation. Similar behaviour was observed for the flame propagating in the
h40 domain.

In the largest domain considered in this study, 13 (≈80/6) cells form initially
(figure 12a). During propagation, the cells merge until two large structures appear
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the h20 domain, (b) the first five Fourier modes and of HRR in the h80 domain (Leeff = 0.404).

at t ∼ 30 (figure 12d). Subsequently, these also merge to form a single cusped-
like structure propagating towards the inflow with a large number of smaller cells
appearing along its sides where curvature and stretch rate are low (figure 12f ). The
wavelength of the cells appearing along the sides is approximately equal to the
wavelength exhibiting the highest growth rate, λ = 6δT . Similar results concerning
the characteristic wavelengths of the emerging cellular structures were reported in
the experimental study of Bradley et al. (2000), which considered thermodiffusively
unstable spherically expanding flames. The temporal evolution of the amplitudes of the
first five modes together with the time history of HRR is shown in figure 11(b). The
dominant influence of low-wavenumber modes k1 and k2 can be clearly seen. The k2

mode exhibits the highest amplitude until the k1 mode prevails. The considerable
growth of the amplitude of this mode is reflected in the steep increase of the integral
heat release rate occurring at the same time, i.e. around t ∼ 33. The dominance of
the first two modes, corresponding to cusped-like structures, during the nonlinear
evolution of Le = 1 flames was discussed in the previous section. The simulation
results presented in this section suggest that this is also the case for Le < 1 flames
at long times. While in our study the dominance of the k1 mode and the subsequent
single-cell structure is always present after the initial transient, the simulations of
Kadowaki et al. (2005) of a flame with Le = 0.5 propagating in a similarly large
domain, showed that this single-cell structure is sustained only for small time intervals.
It should be noted that because of the different choice for the reference length (lth

instead of δT), the total time simulated in the two studies is comparable.

3.3. Effect of flame stretch on Sd

As discussed in § 2.4, the local stretch rate can be computed using two expressions.
While the total stretch rate is the same, the different terms appearing in these
expressions provide interesting additional information. Figure 13 was constructed from
the results along the T = 3 isoline of the Le = 1 flame propagating stably in the h20

domain. As expected, the two expressions for the stretch provide the same total stretch
(figure 13a). In the laminar flow considered here, wrinkling of the front results solely
from the intrinsically unstable nature of the flame. Since the stretch rate sign is the
same as that of the local rate of change of the frontal area, the stretch rate is positive
along the crest and negative along the trough.
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FIGURE 12. (Colour online) Isocontours of temperature of the Leeff = 0.404 flame
propagating in the h80 domain at (a) t = 16.6, (b) t = 18.6, (c) t = 21.2, (d) t = 30.6,
(e) t = 39.0 and (f ) t = 44.6.

The individual contributions of the strain rate and curvature on the total flame
stretch computed using expressions (2.27a,b) are plotted in figure 13(b,c), respectively.
Curvature effects expressed by the Sdκ term are larger in absolute value than the total
flame stretch, particularly along the concave regions where curvature is an order of
magnitude larger. Since the flame propagates in a laminar flow, the contribution of
aerodynamic strain is much lower than curvature. Expression (2.27b) on the other hand
shows that the relative influence of the divergence of the tangential flow velocity term
incorporating the dominant curvature effects is much more significant than the term
expressing the effect of flame motion.

It should be pointed out that for the T = 3 isoline, at is negative along the convex
and positive along the concave front segments. This variation seems counterintuitive
at first, since divergence (convergence) of the flow streamlines upstream from
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FIGURE 13. Unity Le flame front in the h20 domain defined by the T = 3 isoline: (a) stretch
rate along the flame computed by (2.27a,b); (b,c) variations of the terms constituting the total
stretch rate along the flame; (d,e) dependence of curvature and stretch on the definition of the
flame front (variation across the flame).

the positively (negatively) curved segments would be expected to produce positive
(negative) aerodynamic strain. However, for the finite-thickness flames considered here,
this behaviour depends on the isoline chosen to define the front (figure 14): far
upstream from the reaction zone (T < 1.2 region to the left of the solid line in
figure 14), the streamlines diverge (converge) ahead of the convex (concave) region. In
order to ensure mass and momentum conservation across the flame, the reverse is true
as the flow approaches the reaction zone (T > 3.5 region to the right of the dashed line
in figure 14).

In addition to the variation of the aerodynamic strain across the flame, flame stretch
is also modified through the variation of both Sd and κ . The combined effect of the
two terms results of (2.27a) in the dependence of the total stretch on the isoline
chosen to define the flame. As shown in figure 13(d,e), the variation of stretch rate
across the flame follows that of curvature, confirming the weak effect of aerodynamic
strain on the flame propagation. Downstream of the T = 3.5 isoline, the variation
of curvature and stretch rate across the flame is not significant, and the relation
between the displacement speed and the above-mentioned quantities (expressed by the
Markstein number) does not show significant variation. Concerning the variation of
stretch rate along the flame front, there is no qualitative difference between unity and
subunity Le flames that propagate stably. However, since Le = 1 flames are subjected
only to hydrodynamic instabilities, the wrinkling of the front is low and stretch effects
are moderate.
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FIGURE 14. (Colour online) Streamlines of the flow field in the h20 domain showing the
modification of the aerodynamic strain across the flame (Leeff = 1, temperature isolines:
T = 1.2 (solid line) and T = 3.5 (dashed line)).

The dependence of the density-weighted displacement speed of the T = 3 isoline
and the normal component of the absolute propagation speed of the hydrodynamically
unstable flames propagating in the h20 and h80 domains on curvature and stretch
rate are plotted in figure 15. Since in this case reactivity remains constant, Ŝd

varies linearly and monotonically with curvature reflecting the linear relation of heat
conduction with curvature (figure 15a). On the other hand, due to the incorporation of
aerodynamic strain, the relation between Ŝd and stretch rate (figure 15b) deviates from
linearity. In addition, for K > 0 the displacement speed is not a single-valued function
of the stretch rate. This is due to points along the flame front which exhibit the same
Ŝd but experience different stretch rate due to different aerodynamic strain.

The interaction of the laminar flow field and the hydrodynamically unstable flames
is shown in figure 15(c,d). No qualitative differences are observed between the relation
of Sa with curvature and stretch rate. The minimum value of Sa is obtained at zero
curvature. At the negatively curved region, Sa increases with the absolute value of
curvature, as does the flow velocity, due to the contribution of the positive tangential
heat conduction. In contrast, the decreased flow velocity upstream from the convex
flame segment is balanced by the reduced displacement speed resulting from the
negative tangential heat conduction. The equality of the Sa values at the leading point
of the crest (lowest κ < 0) and the trailing point of the trough (highest κ > 0) can be
clearly seen. Along the flame, the values of Sa are larger for the flame propagating in
the h20 than in the h80 domain. Since the values of Ŝd are the same for the two cases,
the difference in the Sa values results from the influence of the flow velocities via the
flame curvature. The curvature profile along the T = 3 isoline in the narrow domain is
steeper. Thus, through the effect of the hydrodynamic instability the larger divergence
(convergence) of the streamlines upstream from convex (concave) regions reflects the
intensified variation of the flow field upstream from the flame front.
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FIGURE 15. Dependence of (a,b) the density-weighted displacement speed and (c,d) normal
component of the absolute propagation velocity on curvature and stretch rate, respectively,
in the h20 (open circles) and h80 (filled circles) domains (Le = 1, flame front defined by the
T = 3 isoline; the h80 data are at t = 255 and 285).

The effect of thermodiffusive instability is presented in figure 16, plotting the heat
release rate, Ŝd and Sa versus curvature and stretch rate for the stably propagating
single-cell flame in the h3.5 domain (open circles) and the flame propagating in the h80

domain at representative time instants (filled circles). The appearance of small-scale
cellular structures together with the variation of reactivity play a crucial role in the
modification of the local propagation characteristics of the flame. The relation of
reactivity with curvature and with stretch rate plotted in figure 16(a) clearly shows that
increased curvature enhances burning intensity and the reactivity at the crest (κ > 0) is
orders of magnitude larger than at the trough (κ < 0).

Despite the weakened reactivity at the trough, Ŝd increases due to the contribution of
heat conduction, (figure 16b,e). Furthermore, the relations between Ŝd with curvature
and stretch rate are not monotonic, as it is found to be negatively correlated with
negative curvature/stretch and positively correlated with positive curvature/stretch,
reflecting the effects of heat conduction and reactivity. The minimum value of Ŝd

occurs around the zero curvature region. Large scattering of the values in the wider
domain is observed, stemming from the presence of a large number of cellular
structures of different wavelengths along the flame. The scattering increases as the
domain height is increased, but qualitatively the correlations remain unaffected.

The flow-flame interactions plotted in figure 16(c,f ) appear to be uncorrelated
with curvature and stretch. Large scattering of the values appears around moderately
curved regions, while the negative values for the h80 domain indicate that flame front
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FIGURE 16. (Colour online) Dependence of (a,d) the heat release rate, (b,e) the density
weighted displacement speed and (c,f ) normal component of the absolute propagation
velocity on curvature and stretch rate, respectively, in the h3.5 (open circles) and h80 (filled
circles) domains (low Le, flame front defined by the T = 3 isoline; the h80 data are at
t = 25, 30, 33).

segments are convected downstream by the flow. Such segments are either newly
formed troughs that get amplified, or small short-lived cells that cannot be sustained
and are convected while they merge to form larger-scale cells.

4. Conclusions
The dynamics of propagating intrinsically unstable planar lean premixed

hydrogen/air flames (φ = 0.6, p = 5 atm, Tu = 298 K) were investigated in two-
dimensional domains with heights h ranging between 3 and 80 thermal flame
thicknesses. A global reaction tuned to match the laminar flame speed computed using
a detailed reaction mechanism was used to describe the kinetics, and composition and
temperature dependent thermodynamic and transport properties were employed in the
simulations. The mixture is characterized by an effective Lewis number significantly
lower than unity (Leeff = 0.404), so that the perturbed planar flame is subjected to
thermodiffusive and hydrodynamic instability. In order to understand and distinguish
the thermodiffusive and hydrodynamic effects, the case of species mass diffusivities
equal to the thermal diffusivity was also considered. In both cases, the initial linear
growth of low-amplitude perturbations superimposed on the planar flame as well as the
long-term evolution of the front were investigated.

The growth rates during the initial linear response to the imposed perturbations
were computed and compared with theoretical dispersion expressions based on linear
stability. In the subunity Lewis number case, the numerical growth rate curve
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exhibits an inflection point at low wavenumbers and identifies the range of unstable
wavenumbers (0 6 k 6 1.974) and the wavenumber of maximum amplification kmax .
The dispersion relation obtained from the hydrodynamic theory, which properly
accounts for hydrodynamic effects including gas expansion and incorporates diffusion
systematically in the analysis, is a long-wave asymptotic approximation to the exact
relation derived up to second order in k. As a result, the agreement between theoretical
predictions and computed results deteriorate as the wavenumber k increases. Although
for unity Lewis number flames both results remain qualitatively comparable, in the
Le < 1 case the hydrodynamic theory is not able to capture the low-wavelength
stabilizing diffusive effects for the mixture considered in this study and predicts an
unconditionally unstable flame. On the other hand, the instability threshold is found to
agree reasonably well with the predictions of the thermodiffusive theory, despite the
gross simplification of constant density it presumes.

The effect of diffusive processes on the long-term dynamics of the flame was
systematically investigated by varying the domain height. In agreement with the
hydrodynamic theory, the hydrodynamically unstable Le = 1 flames acquire a single-
cell structure which propagates with a constant absolute velocity towards the inflow.
Owing to the low stretch rate along the convex flame segment, modes of higher
wavenumber are occasionally excited, but they eventually disappear at the trough and
the flame reverts to its preferred shape. On the other hand, the dynamic behaviour of
diffusionally imbalanced flames was found to depend on the domain height. In narrow
domains, where the thermodiffusive effects are dominant, stable or quasi-periodic
structures are obtained. Lateral flame movement resulting from the locally increased
reactivity at one of the crest sides and the associated loss of symmetry is observed
over a narrow range of domain heights. As h is further increased, the effect of the
hydrodynamic instability on flame wrinkling becomes more important, and in large
domains it is the dominant mechanism. This is reflected in the dominance of the
single-cusp structure of wavelength equal to the domain height, which is similar to the
Le = 1 case. In this case, however, small-scale cellular structures form continuously
along the low curvature sides of the cusp, which move towards and are annihilated at
the flame trough.

The influence of flame shape on the propagation characteristics of the unstable
fronts was analysed. Although reactivity remains constant along the Le = 1 flames,
the flame propagation speed relative to the incoming flow is modified due to heat
conduction and its strong dependence on flame curvature. Consequently, flame speed
definitions such as the local consumption speed which is solely based on reactivity are
not appropriate, and the displacement speed incorporating in addition diffusive effects
should be used instead. For thermodiffusively unstable flames, both reactivity and heat
conduction vary locally and their relative contribution in the local displacement speed
Sd depends on the flame curvature. In positively curved (convex) regions, increased Sd

results from enhanced reactivity. In concave regions where reactivity is lower by an
order of magnitude in comparison to the convex regions, Sd is nevertheless higher due
to the dominant influence of the tangential heat conduction. The increase of the global
displacement rate SD of the stably propagating flames over the laminar flame speed is
always equal to the increase of the flame area for Le = 1 flames, and asymptotically
reaches an upper limit of approximately 28.5 %, in good agreement with results
obtained in the context of the hydrodynamic theory. In contrast, low Le flames with
realistic transport in narrow domains have global flame speeds significantly larger than
the corresponding flame area increase.

Finally, the effects of stretch on the propagation characteristics of the flame were
studied in detail to identify the individual contributions of pure aerodynamic strain
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and curvature effects. It was shown that for hydrodynamically unstable flames, the
local density-weighted displacement speed Ŝd scales linearly with curvature, but, due
to unsteady aerodynamic effects, it is nonlinearly related to stretch rate. For this
case, a unique Markstein number valid for negative as well as positive curvatures
can be defined. In thermodiffusively unstable flames, the dependence of reactivity on
local curvature counteracts the effect of curvature on heat conduction. As a result, Ŝd

is nonlinearly related to both stretch and curvature and, in contrast to unity Lewis
number flames, it varies in a non-monotonic way. Since Ŝd is negatively correlated
with negative curvature and positively correlated with positive curvature, different
Markstein numbers should be defined in each regime.
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