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Let M be a compact Riemannian manifold with non-empty boundary @M . In this
paper we consider an inverse problem for the second-order hyperbolic
initial-boundary-value problem utt + but + a(x; D)u = 0 in M £ R + , uj@M £ R+ = f ,
ujt = 0 = ut jt = 0 = 0. Our goal is to determine (M; g); b and a(x; D) from the
knowledge of the non-stationary Dirichlet-to-Neumann map (the hyperbolic response
operator) RT , with su± ciently large T > 0. The response operator RT is the map
f ! u

f
¸ j@M £ [0;T ], where u

f
¸ is the normal derivative of the solution of the

initial{boundary-value problem.
More speci¯cally, we show the following.

(i) It is possible to determine Rt for any t > 0 if we know RT for su± ciently large T
and some geometric condition upon the geodesic behaviour on (M; g) is satis¯ed.

(ii) It is then possible to determine (M; g) and b uniquely and the elliptic operator
a(x; D) modulo generalized gauge transformations.

1. Introduction and main result

In this paper we study an inverse problem for the hyperbolic initial{boundary-value
problem

utt + but + a(x; D)u = 0 in M £ R + ; (1.1)

uj@M£R+ = f; ujt= 0 = utjt= 0 = 0; f 2 H1
0 (@M £ R + ) (1.2)

on a compact connected C 1 -Riemannian manifold M , dim M = m > 1, with metric
g = (gjl)m

j;l = 1. The manifold is assumed to have a C 1 -smooth non-empty boundary
@M . The operator a(x; D) is a ­ rst-order perturbation of the Laplace operator ¡ ¢g

on (M; g),

a(x; D) = ¡ ¢g + P + Q: (1.3)

Here, P is a complex-valued C 1 -vector ­ eld, which, in local coordinates x =
(x1; : : : ; xm) on M , has the form P = P l@l, while Q and b are complex-valued
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C 1 -functions on M . The symbol a(x; D) is, in general, not formally symmetric.
Later in the paper we refer to the case (1.1), (1.2) with b(x) 6= 0 and a(x; D) of
form (1.3) as the `generic case’. We also study the `self-adjoint case’,

a(x; D) = a ¤ (x; D); b(x) = 0; (1.4)

where the results are quite di¬erent from the generic case. Here, the adjoint sym-
bol a ¤ (x; D) is considered with respect to a suitable L2(M; d · ) norm, with d · =
² dmg(x), where ² is a positive C 1 -function on M and dmg(x) is the Riemannian
volume on (M; g),

dmg(x) = g1=2 dx1 ¢ ¢ ¢ dxm:

In this case,

a(x; D) = ² ¡1g¡1=2(@j + ipj)g1=2 ² gjl(@l + ipl) + q; (1.5)

with real pj and q.

Remark 1.1. Any second-order uniformly elliptic symbol with real principal part
can be written in the form (1.3) and, in the self-adjoint case, in the form (1.5).

By Hs(A) we denote the Sobolev space of functions on A and by Hs
0(@M £ [0; t])

the space of u 2 Hs(@M £ R) with supp u 2 @M £ [0; t]. We denote by ¸ the
unit normal vector to @M with respect to g and de­ ne the boundary operator
Bu = @ ¸ u ¡ P̧ uj@M£[0;T ], where @ ¸ and P ¸ = ( ¸ ; P )g are the normal derivative
and the normal component of P , correspondingly.

Definition 1.2. Let T > 0. The response operator

RT : H1
0 (@M £ [0; T ]) ! L2(@M £ [0; T ])

is given by the formula

RT (f ) = @ ¸ uf ¡ P ¸ uf j@M£[0;T ];

where uf is the solution of the problem (1.1), (1.2).

In the following, we call the pair f@M; RT g the dynamical boundary data, cor-
responding to problem (1.1), (1.2), and abbreviate it as DBD.

The operator RT can be represented by making use of Green’s function, G =
G(x; t; y; s), of (1.1), (1.2),

(@2
t + b@t + a(x; Dx))G(x; t; y; s) = ¯ y;s(x; t) in M £ R + ;

G(x; t; y; s)j(x;t) 2 @M£R+
= 0; G(x; t; y; s)jt = 0 = Gt(x; t; y; s)jt = 0 = 0:

Indeed, the Schwartz kernel S(x; t; y; s) of the operator RT is then

S(x; t; y; s) = @ ¸ (x)@ ¸ (y)G(x; t; y; s)jx;y 2 @M :

Hence the knowledge of response operator RT is equivalent to the knowledge of the
Cauchy data of G(x; t; y; s) on the lateral boundary

f(x; t; y; s) 2 @M £ [0; T ] £ @M £ [0; T ]g:

In this paper, we consider two problems.
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Problem I. Let @M and RT , with some T > 0, be given. Do these data determine
the operator Rt with any t > 0?

Problem II. Let @M and RT , with some T > 0, be given. Do these data determine
(M; a(x; D); b) uniquely?

Problem I is equivalent to the problem of the unique continuation of Green’s
function along the lateral boundary.

Problem I0. Let @M and the Cauchy data of Green’s function G(x; t; y; s) on the
boundary cylinder (@M £ [0; T ])2, with some T > 0, be given. Do these data deter-
mine the Cauchy data of Green’s function on the whole lateral boundary (@M £
R + )2?

There are at least two reasons why it is important to solve problem I without
solving the inverse problem. First, there is a point of view related to the applications.
Since the methods of solving inverse problems are usually unstable, it is often
e¯ cient to ­ rst generate data on a larger time-interval without doing constructions
inside the manifold and then use the new, larger set of data to solve the inverse
problem. Second, many methods require boundary data to be known for all t; s > 0.
In particular, the inverse boundary spectral problems, that is, the inverse problems
for elliptic operators with a variable spectral parameter, can be considered as the
hyperbolic inverse boundary-value problems with data given on the time-interval
R + . Typical examples of this kind are quantum mechanical or acoustic inverse
problems, when measurements are made at many energy/frequency levels. Thus
problem I gives an opportunity to continue boundary data and then to solve the
inverse problem by a method that is the most suitable for the studied case. In
particular, the method that we use to solve problem II requires the knowledge of
the boundary data on a large time-interval and we ­ rst continue RT onto t > T .

In problem II, we consider how the boundary data can be used to reconstruct the
unknown manifold and the wave operator on it. Physically speaking, problem II
is analogous to the question of ­ nding the speed of the wave propagation and
other physical parameters inside an unknown body by making measurements on its
boundary. This type of problem has been studied quite extensively and numerous
references can be found in [7].

In particular, the inverse boundary-value problem II for operators on manifolds,
or, more precisely, its spectral analogue, was considered in [8{10] for the self-adjoint
case, a(x; D) = a ¤ (x; D). The non-self-adjoint case, a ¤ (x; D) 6= a(x; D), with, how-
ever, b = 0, was studied in [12] and, for a quadratic operator pencil, in [13].

When b 6= 0, the known results concern mainly the Euclidean case M » Rm,
gij = ¯ ij . The scattering analogue of the inverse initial{boundary-value problem
was considered in [18]. For the case when boundary data are prescribed only on a
part of the boundary, we refer to [7]. The inverse boundary spectral problem where
one knows the generalized eigenvalues and the boundary values of the generalized
eigenfunctions of the operator pencil corresponding to wave equation (1.1) was
considered in [15].

Finally, in [17], the uniqueness of the reconstruction of a conformally Euclidean
metric gjl(x) = ¼ (x) ¯ jl in M » Rm and of some lower-order terms (with further
restrictions upon these terms) was proven in the geodesically regular case.
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The assumption b 66= 0 changes the nature of the problem quite dramatically,
because the term but is responsible for the dispersion of the waves governed by (1.1).
Ideologically, this di¬erence in the nature of the problem implies that, to solve the
inverse problem with b 66= 0, we need RT with T > 2t ¤ , where t ¤ is the exact
controllability time (see de­ nition 1.3). On the other hand, when b = 0, it is
su¯ cient to know RT when T > t ¤ (see theorem 1.5). Technically, this result is
based on the consideration of the inde­ nite form (JU f (t); V g(s)) (see, for example,
lemma 3.3) when b 66= 0, rather then semi-de­ nite energy-type forms, which was
used in the self-adjoint case and also the non-self-adjoint case with b = 0 (see, for
example, [9,10,12]).

This paper is based on the boundary-control method introduced in [2] (see
also [3]). In particular, we use here the geometrical formulation of the boundary-
control method [6,11], together with exact controllability results [1].

To formulate our results for problems I and II, we ­ rst consider how large time T
should be and impose some geometric conditions on (M; g) necessary for the generic
case.

To answer positively to problem I, it is clear that the waves sent from the bound-
ary at time t = 0 should be able to reach all points inside M and return back to
the boundary before time t = T . Hence, in the self-adjoint case, we should assume
that T > 2» , where » = maxfdist(x; @M ) : x 2 Mg is the geodesic radius of M .
On the other hand, in the generic case, we should know RT for larger T and, more-
over, should impose the following geometrical condition (for details, see [1]), which
generalizes the condition that the rays of the geometrical optics hit the boundary
transversally.

Definition 1.3. (M; g) satis­ es the Bardos{Lebeau{Rauch condition if there exists
t ¤ > 0 and an open conic neighbourhood O of the set of the not-non-di¬ractive
points (x; t; ¹ ; !) 2 T ¤ (M £ [0; t ¤ ]), x 2 @M , such that any generalized bichar-
acteristic of the wave operator @2

t ¡ ¢g passes through a point of (x; t; ¹ ; !) 2
T ¤ (M £ [0; t ¤ ]) n O, x 2 @M .

(In the future, we refer to t ¤ as to the exact controllability time.)
We can now formulate the ­ rst main result of the paper.

Theorem 1.4. Assume that the following hold.

(i) In the generic case, the Riemannian manifold (M; g) satis¯es the Bardos{
Lebeau{Rauch condition, with exact controllability time t ¤ , and RT is known
for T > 2t ¤ .

(ii) In the self-adjoint case, RT is known for T > 2 » .

Then these data determine uniquely Rt for any t > 0.

Moreover, in x 4 we give a corollary of theorem 1.4 for the case of the inverse prob-
lem with one measurement. Namely, we show that there exists f 2 H1

loc(@M £ R + )
such that the function @ ¸ uf j@M£R+ determines Rt for any t > 0.

Returning to problem II, we ­ rst note that it is well known that, in general,
problem II has a negative answer, since generalized gauge transformations preserve
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the boundary data. This means that, by replacing a(x; D) by a µ (x; D),

a µ (x; D) = µa(x; D)µ¡1; (1.6)

where µj@M = 1, µ 6= 0 on M , we do not change RT . Thus the best we can hope for
is to recover the equivalence class of a(x; D) with respect to the generalized gauge
transformations, namely the set

[a(x; D)] := fµa(x; D)µ¡1 : µ 2 C 1 (M ; C); µj@M = 1; µ 6= 0 on Mg:

We now formulate the second main result of the paper.

Theorem 1.5. In the generic case, let the Riemannian manifold (M; g) satisfy the
Bardos{Lebeau{Rauch condition, with exact controllability time t ¤ . Let @M and RT ,
with T > 2t ¤ , be given. Then these data determine M , b and the equivalence class
[a(x; D)] uniquely.

The analogue of this result for the inverse boundary spectral problem in the self-
adjoint case was proven in [6, 9, 10] (see also [4] for the dynamic inverse problem
with a(x; D) = ¡ ¢g, when the group of gauge transformations is trivial).

Example 1.6. Let us consider a general one-dimensional wave equation for u =
u(y; t),

utt ¡ ~c2(y)uyy + ~b(y)ut + ~p(y)uy + ~q(y)u = 0 in (x; t) 2 [0; ~l] £ R + :

Introducing new coordinates x = x(y), dx=dy = ~c(y), we reduce this equation to

utt ¡ uxx + but + pux + qu = 0 in (x; t) 2 [0; l] £ R + : (1.7)

As the wave speed is equal to 1 for (1.7), » = 1
2 l and (1.7) satis­ es the Bardos{

Lebeau{Rauch condition with t ¤ = l. We consider (1.7) with initial and boundary
conditions

u(x; 0) = 0; ut(x; 0) = 0; u(0; t) = f0(t); u(l; t) = f1(t):

Then the dynamical boundary data is given by the mapping

(f0(t); f1(t)) 7! (ux(0; t); ¡ ux(l; t));

where f0(t); f1(t) 2 H1
0 ([0; T ]) are arbitrary. These data correspond to the mea-

surements that one makes at the boundary on the time-interval [0; T ].
The results presented in this paper imply that the boundary measurements on a

time-interval [0; T ], T > 2l, determine all measurements at any time-interval [0; t].
Furthermore, one can uniquely construct the function b(x) and the equivalence

class
f(p µ ; q µ ) : µ(x) 6= 0; µ(0) = µ(1) = 1g;

where
p µ = p ¡ 2@x(µ¡1); qµ = ¡ @2

x(µ¡1) + p@x(µ¡1) + q:

To ­ nd p, q uniquely, one needs further a priori information about their behaviour.
For instance, if the coe¯ cient p(x) is given, one can reconstruct functions b(x) and
q(x) uniquely. Similar examples are considered in more detail in [8].
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At the end of this section, we explain what we mean by the reconstruction of a
Riemannian manifold (M; g). Since a manifold is an `abstract’ collection of coordi-
nate patches, we construct a representative of an equivalence class of the isometric
Riemannian manifolds, i.e. a metric space X that is isometric to (M; g). After con-
structing X , one can take any suitable local coordinates and construct the vector
­ eld P and the potential Q in these local coordinates.

2. Continuation of data in the self-adjoint case

In this section we consider problem I for the initial{boundary-value problem

uf
tt + a(x; D)uf = 0 in M £ R + ;

uf j@M£R+ = f; uf jt = 0 = uf
t jt= 0 = 0;

where a(x; D) = a ¤ (x; D) with respect to a suitable smooth measure d · = ² dmg(x).
We point out that we do not assume that the Bardos{Lebeau{Rauch condition is
valid.

By ¶ j and ¿ j we denote the Dirichlet eigenvalues and the normalized eigenfunc-
tions of the operator a(x; D) in L2(M; d · ). Also, we choose r satisfying » < r < 1

2 T .
We start with a well-known result on approximate controllability.

Lemma 2.1. The pairs

(uf (2r); uf
t (2r)); f 2 C 1

0 (@M £ [0; 2r])

are dense in H1
0 (M ) £ L2(M).

Proof. For the sake of simplicity, we only prove the statement for the case a(x; D) =
¡ ¢g + q, with real q, and d · = dmg(x). Necessary changes in the general case may
be found, for example, in [10,11].

Assume that a pair

(Á; ¡ ¿ ) 2 (H1
0 (M ) £ L2(M))0 = H¡1(M ) £ L2(M )

satisfy the duality

(uf (2r); Á)(H1
0 ;H ¡ 1) + (uf

t (2r); ¡ ¿ )L2 = 0

for all f 2 C 1
0 (@M £ [0; 2r]). Let

ett ¡ ¢ge + qe = 0 in M £ [0; 2r];

ej@M = 0; ejt = 2r = ¿ ; etjt= 2r = Á:

)

(2.1)

By integration by parts,

0 =

Z

M£[0;2r]

[uf (ett ¡ ¢ge + qe) ¡ (uf
tt ¡ ¢guf + quf )·e] d · dt

=

Z

M

(uf
t (2r) ·¿ ¡ uf (2r) ·Á) d · +

Z

@M

Z 2r

0

f@ ¸ e dSxdt

=

Z

@M

Z 2r

0

f@ ¸ e dSxdt
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for all f 2 C 1
0 (@M £ [0; 2r]). This yields

ej@M£[0;2r] = @ ¸ ej@M£[0;2r] = 0:

Since, by (2.1), e 2 D0(]0; 2r[; H1
0 (M )), Tataru’s Holmgren{John uniqueness theo-

rem (see, for example, [19,21]) is applicable, so that e(r) = et(r) = 0. Hence e = 0
identically on M £ [0; 2r] and thus ¿ = Á = 0.

Consider a bilinear form

E(uf ; uh; t) =

Z

M

[((r + ip)uf (t); (r + ip)uh(t))g + uf
t (t)uh

t (t) + quf (t)uh(t)] d · (x);

where p = (p1; : : : ; pm) and, as usual, (a; b)g = gjlaj
·bl; j; l = 1; : : : ; m. Denote

E(uf ; t) = E(uf ; uf ; t).

Lemma 2.2. The operator Rt determines E(uf ; ug ; t) for f; g 2 C 1
0 (@M £ [0; t]).

Proof. By integration by parts,

@

@t
E(uf ; t)

= 2

Z

M

[((r + ip)uf
t (t); (r + ip)uf (t))g + uf

tt(t)u
f
t (t) + quf (t)uf

t (t)] d · (x)

= 2

Z

M

[a(x; D)uf (t) + uf
tt(t)]u

f
t (t) d · (x) + 2

Z

@M

uf
t (t)@ ¸ uf (t) dSx

= 2

Z

@M

ft(t)Rtf (t) dSx:

Since, by initial conditions, E(uf ; 0) = 0, we can determine E(uf ; t). Since

4E(uf ; ug; t) = E(uf + g; t) ¡ E(uf¡g; t);

this proves the assertion.

Next we show that we can continue data without solving the inverse problem.

Proof of theorem 1.4 in the self-adjoint case. It is su¯ cient to show that RT deter-
mines Rtf for any f 2 C 1

0 (@M £ [0; 2r]) and any t > 0.
Let " = 1

2 (T ¡ 2r) and t0 = 2r+". By lemma 2.1, there exist fn 2 C 1
0 (@M£[0; 2r])

such that

lim
n ! 1

(ufn (2r); ufn

t (2r)) = (uf (t0); uf
t (t0)) (2.2)

in H1
0 (M ) £ L2(M )-topology. We want to show that (2.2) is valid if and only if

lim
n ! 1

E(ugn ; t0) = 0; (2.3)

lim
n! 1

kRt0 + "gnkL2(@M£[t0;t0 + "]) = 0 (2.4)

and, for every h 2 C 1
0 (@M £ [0; 2r]),

lim
n ! 1

E(ugn ; uh; t0) = 0; (2.5)
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where gn(t) = f (t) ¡ fn(t ¡ "). Since the direct problem depends continuously on
initial data [8, 14], we see that (2.2) obviously yields (2.3){(2.5). Thus we assume
that (2.3){(2.5) are valid. We use the eigenfunction expansion ugn (t0) =

P
j an

j ¿ j

and uh(t0) =
P

j bj ¿ j. Then, by (2.3),

lim
n! 1

µ 1X

j = 0

¶ j(an
j )2 + kugn

t k2
L2

¶
= 0: (2.6)

Let 0 6 j¡ 6 j + be such that ¶ j < 0 for j 6 j¡ and ¶ j > 0 for j > j + and
let P be the orthogonal projection in H1

0 (M ) onto the space of the eigenfunctions
corresponding ¶ j = 0, j¡ < j 6 j + .

Using this notation, we rewrite (2.6) in the following form,

X

j6j ¡

¡ ¶ j(an
j )2 =

X

j>j+

¶ j(an
j )2 + kugn

t (t0)k2
L2(M) + o(1); (2.7)

where o(1) goes to zero when n ! 1.
First we show that an

j ! 0 for j 6 j¡. Indeed, assume that there exists k 6 j¡
such that an

k 6! 0. By choosing a subsequence, the sign of an
j with j 6 j¡ depends

only on j. Moreover, without loss of generality, we can assume that an
j > 0, j 6 j¡.

Since (uh(t0); uh
t (t0)) are dense in H1

0 (M ) £ L2(M ), we can choose h such that
its Fourier coe¯ cients (bj) satisfy bj = ¯ j6j ¡ + cj, where k( ¶

1=2
j cj)k`2 < " and also

kuh
t (t0)kL2(M) < ", " 2 ]0; 1

2
[. Then (2.5) yields

X

j6j ¡

¡ ¶ jan
j (1 + cj) =

X

j>j+

¶ jan
j cj + (ugn

t (t0); uh
t (t0))L2(M) + o(1):

Hence, by (2.7),

X

j6j¡

¡ ¶ jan
j (1 + cj)

6
µ X

j>j+

¶ j(an
j )2

¶1=2µ X

j>j+

¶ j(cj)2

¶1=2

+ kugn

t (t0)kkuh
t (t0)k + o(1)

6 "

µ X

j>j+

¶ j(an
j )2

¶1=2

+ "kugn

t (t0)kL2 + o(1)

6
p

2"

µ X

j6j ¡

¡ ¶ j(an
j )2

¶1=2

+ o(1): (2.8)

On the other hand, there exists C > 0, which is independent of ", such that

X

j6j¡

¡ ¶ jan
j (1 + cj) > C

µ X

j6j ¡

¡ ¶ j(an
j )2

¶1=2

:

But for some k 6 j¡, an
k 6! 0. This leads to a contradiction with (2.8).

Thus we have proven that an
j ! 0 for all j 6 j¡. By (2.6), this implies that

(1 ¡ P )ugn (t0) ! 0 in H1
0 (M ) and ugn

t (t0) ! 0 in L2(M ).
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The solution of the initial{boundary-value problem, and also @ ¸ uj@M£[0;t], de-
pends continuously on initial data [8,14], so that

lim
n! 1

°°°°RT gn ¡
X

¶ j = 0

an
j @ ¸ ¿ jj@M

°°°°
L2(@M£[t0;T ])

= 0:

Finally, the linear independence of @ ¸ ¿ jj@M implies that (2.4) can only be valid if
an

j ! 0 for j¡ < j < j + .
Thus (2.2) and (2.3){(2.5) are equivalent.
We can now use lemma 2.2 to construct fn that satisfy conditions (2.2). The

functions yn(t) = ufn (t) for t 2 [2r; T ] are the solutions of the initial-value problem

yn
tt + a(x; D)yn = 0 in M £ [2r; T ];

ynj@M£[2r;T ] = 0; ynjt = 2r = ufn (2r); yn
t jt = 2r = ufn

t (2r):

However, y(t) = uf (t + ") satis­ es the same equation with initial data

yjt = 2r = uf (t0); ytjt = 2r = uf
t (t0):

Then it follows from (2.2) and continuous dependence of solutions on the initial
data [8,14] that

lim
n! 1

@ ¸ ynj@M£[2r;T ] = @ ¸ yj@M£[2r;T ]

in L2-topology. Since we know that yn(t)j@M£[2r;T ] = (RT fn)(t), t 2 [2r; T ], we can
determine RT + "f .

By iterating the above consideration, we get the assertion.

3. Continuation of data and uniqueness results
in the non-self-adjoint case

In this section we study the inverse problem for the initial{boundary-value problem
in the generic case,

uf
tt + buf

t + a(x; D)uf = 0 in M £ R + ; (3.1)

uf j@M£R+
= f; ujt= 0 = utjt= 0 = 0; f 2 H1

0 (@M £ R + ); (3.2)

where a(x; D) is of the form (1.3) and (M; g) satis­ es the Bardos{Lebeau{Rauch
condition. We use the notations

U f (t) :=

µ
uf (x; t)

uf
t (x; t)

¶
2 L2(M )2; J

µ
u1

u2

¶
=

µ
u2 + bu1

u1

¶
; (3.3)

and denote the inner product in [L2(M )]2 with respect to the Riemannian vol-
ume (1.4) by (¢; ¢).

3.1. Adjoint equation

Let vg(x; s) be the solution to the adjoint initial{boundary-value problem

vg
tt + ·bvg

t + a ¤ (x; D)vg = 0 in M £ R + ; (3.4)

vgj@M£R+ = g; vg jt = 0 = vg
t jt= 0 = 0: (3.5)
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We write

V g(t) =

µ
vg(x; t)

vg
t (x; t)

¶
: (3.6)

For the adjoint equation we de­ ne the response operator

RT
¤ : H1

0 (@M £ [0; T ]) ! L2(@M £ [0; T ])

as
RT

¤ (g) = B ¤ vg; B ¤ v := @ ¸ vj@M£[0;T ]: (3.7)

Lemma 3.1. For any t0 > 0, Rt0 determines Rt0
¤ .

Proof. Let f; h 2 H1
0 (@M £ [0; t0]) and let eh be the solution of the backward wave

equation

eh
tt ¡ ·beh

t + a ¤ (x; D)eh = 0 in M £ [0; t0]; (3.8)

ehj@M£[0;t0] = h; ehjt = t0 = eh
t jt= t0 = 0: (3.9)

Notice that for h(t) = g(t0 ¡ t) we have eh(t) = vg(t0 ¡ t). Integration by parts,
together with initial and ­ nal conditions (3.2), (3.9), yield that

0 =

Z t0

0

Z

M

((uf
tt + buf

t + a(x; D)uf )eh ¡ uf (eh
tt ¡ ·beh

t + a ¤ (x; D)eh)) dmg(x)dt

=

Z t0

0

Z

@M

(Bufeh ¡ ufB ¤ eh) dSxdt

=

Z t0

0

Z

@M

(Rt0 f·h ¡ fB ¤ eh) dSxdt:

Since f is arbitrary and Rt0 f is known, we can determine B ¤ ehj@M£[0;t0] for each
h 2 H1

0 (@M £ [0; t0]), and thus ­ nd Rt0
¤ .

3.2. Controllability results and continuation of RT

We denote by L s, s 2 R, the subspace of functions in Hs + 1
0 (M )£Hs(M ) that sat-

isfy the natural boundary compatibility conditions for the hyperbolic problem (3.1),
(3.2) for t =2 supp f (see, for example, [8, 16]) and by L s

ad the analogous subspace
for (3.4), (3.5).

We use the following exact controllability result.

Theorem 3.2 (cf. [1]). Assume that (M; g) satis¯es the Bardos{Lebeau{Rauch con-
dition. Then

fU f (t1) : f 2 Hs + 1
0 (@M £ [0; t0])g = L s; t1 > t0 > t ¤ ; s > 0;

where t ¤ is the exact controllability time.
The analogous result is valid for the adjoint equation.

Lemma 3.3. Assume that we know RT for some T > 0. Then, for any f; g 2
H1

0 (@M £ [0; T ]), t + s 6 T , we can evaluate

(JUf (t); V g(s)) =

Z

M

[uf
t (x; t)vg(x; s)+uf (t)vg

s (x; s)+b(x)uf (x; t)vg(x; s)] dmg(x):
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Proof. By integration by parts,

(@t ¡ @s)(JU f (t); V g(s)) =

Z

M

[(uf
tt + buf

t )vg ¡ uf (vg
tt + ·bvg

t )] dmg(x)

=

Z

@M

[Buf (t)vg(s) ¡ uf (t)B ¤ vg(s)] dSx

=

Z

@M

[RT f (t)g(s) ¡ f (t)RT
¤ g(s)] dSx: (3.10)

As RT and RT
¤ are known, all the functions in the last integral are known. Hence

(3.10) is a di¬erential equation along the characteristic t + s = const: Furthermore,

(JU f (0); V g(s)) = (JU f (t); V g(0)) = 0;

due to initial conditions (3.2), (3.5). Equation (3.10), together with the above initial
conditions, indicates the possibility to ­ nd (JUf (t); V g(s)).

Next we prove that, in the generic case, Rt can be determined for all t > 0.

Proof of theorem 1.4. Let " < 1
2T ¡ t ¤ , T0 = 1

2 T . We will ­ rst prove that when RT

and RT
¤ are given, it is possible to ­ nd RT + " and RT + "

¤ .
Clearly, it is su¯ cient to determine RT + "f for any f 2 H1

0 (@M £ [0; T0]). As
T0 ¡ " > t ¤ then, by theorem 3.2, there exists ~f 2 H1

0 (@M £ [0; T0 ¡ "]) for which

Uf (T0) = U
~f (T0 ¡ "):

Moreover, this function can be found by choosing ~f such that it satis­ es the fol-
lowing equation,

(JU f (T0); V g(T0)) = (JU
~f (T0 ¡ "); V g(T0))

for all g 2 H1
0 (@M £ [0; T0]).

Now let F 2 H1
0 (@M £ [0; T ]) be the function

F (x; t) =

(
~f (x; t) for t 2 [0; T0 ¡ "];

0 for t 2 ]T0 ¡ "; T ]:

Let ¿ = uf jt= T0 and Á = uf
t jt= T0 . Since uf solves the equation

uf
tt + buf

t + a(x; D)uf = 0 in M £ [T0; T + "];

uf j@M£[T0 ;T + "] = 0; uf jt = T0 = ¿ ; uf
t jt= T0 = Á

and uF solves the equation

uF
tt + buF

t + a(x; D)uF = 0 in M £ [T0 ¡ "; T ];

uF j@M£[T0¡";T ] = 0; uF jt = T0¡" = ¿ ; uF
t jt = T0¡" = Á;

we see that

uf (t + ") = uF (t) for t 2 [T0 ¡ "; T ]:
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Hence we get

RT + "f (¢; t) = RT F (¢; t ¡ ") for t 2 [T0; T + "]:

Since, by assertion, (RT F )(¢; t) for t 6 T is known, we reconstruct RT + ". The claim
follows similarly for RT + "

¤ .
By iterating the above procedure with ­ xed T0, we can reconstruct RT + n",

n = 0; 1; 2; : : : . This proves theorem 1.4.

Analogously to lemma 3.3, we can now obtain the following result.

Corollary 3.4. Assume that DBD are given for T > 2t ¤ . Then, for any f; g 2
H1

0 (@M £ R + ) and t; s > 0, we can evaluate (JU f (t); V g(s)).

3.3. Construction of the boundary distance functions

Let rx(y); x 2 M be the boundary distance functions

rx(y) = d(x; y); y 2 @M:

We de­ ne a mapping R : M ! L 1 (@M ) by setting

R(x) = rx:

We are going to show that we can reconstruct the set R(M ) = frx : x 2 Mg.
In the standard boundary-control method, one constructs the projections to the

spaces of the Fourier coe¯ cients of the functions L2(A), A » M . Inspired by this,
we consider the Dirichlet boundary value f as a control parameter of U f (T ) and
de­ ne the following spaces.

Definition 3.5. Let H » L s be a lineal, s > 0, and let

T > 2 maxfdiam M; t ¤ g;

where diam M is the geodesic diameter of (M; g). We de­ ne the control sets Hs(H)
for H by

Hs(H) = ff 2 Hs + 1
0 (@M £ [0; 1

2 T ]) : U f (T ) 2 Hg;

Hs
ad (H) = fg 2 Hs + 1

0 (@M £ [0; 1
2T ]) : V g(T ) 2 Hg:

Let ¡ » M be open, t0 > 0. Denote

M ( ¡ ; t0) = fx 2 M : d(x; ¡ ) 6 t0g: (3.11)

We remark that since M ( ¡ ; t0) = M for t0 > diam M , it is su¯ cient to consider
t0 6 diam M .

Definition 3.6. For s > 0, let

L s( ¡ ; t0) = fU 2 L s : supp U » cl(M( ¡ ; t0))g;

L s
c( ¡ ; t0) = fU 2 L s : supp U » cl(M n M( ¡ ; t0))g

and analogous sets L s
ad ( ¡ ; t0), L s

ad ;c( ¡ ; t0).
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Our next goal is to ­ nd the control sets for the above subsets of L s.

Lemma 3.7. Let RT be given for T > 2t ¤ . Then, for any f 2 Hs + 1
0 (@M £ [0; 1

2
T ]),

s > 0, and any ¡ » @M , t0 2 [0; 1
2 T ], it is possible to determine whether

mg(supp U f (T ) \ M ( ¡ ; t0)) = 0

or not. Here, mg is the Riemannian measure on (M; g).
An analogous statement takes place for the adjoint solutions V g(T ).

Proof. By theorem 1.4, we can assume that we know Rt for any t > 0. In particular,
we know R3T=2.

Recall that, in the assertion, f (x; t) = 0 for t > 1
2 T . Thus, if

mg(supp Uf (T ) \ M ( ¡ ; t0)) = 0;

then, by the ­ nite velocity of the wave propagation,

Buf j¡ £[T ¡t0;T + t0] = 0 and f j¡ £[T ¡t0;T + t0] = 0:

On the other hand, by Tataru’s Holmgren{John theorem [19], the converse is also
true. Since Buf j@M£[0;3T =2] = R3T=2f is known, the statement follows. The claim
for adjoint solutions follows from lemma 3.1.

Corollary 3.8. Let ¡ » @M , t0 > 0 and s > 0. Then DBD determine lineals
Hs( L s( ¡ ; t0)), Hs( L s

c( ¡ ; t0)) and Hs
ad ( L s

ad ( ¡ ; t0)), Hs
ad ( L s

ad ;c( ¡ ; t0)).

Proof. By theorem 3.2,

fU f (T ) : f 2 Hs + 1
0 (@M £ [0; 1

2
T ])g = L s:

Thus, by lemma 3.7, DBD determine Hs( L s
c( ¡ ; t0)) and Hs

ad ( L s
ad ;c( ¡ ; t0)).

For f 2 Hs+ 1
0 (@M £ [0; 1

2
T ]), we have f 2 Hs( L s( ¡ ; t0)) if and only if

(JU f (T ); V g(T )) = 0

for all g 2 Hs
ad ( L s

ad ;c( ¡ ; t0)). Hence we can determine Hs( L s( ¡ ; t0)).
The case Hs

ad ( L s
ad ( ¡ ; t0)) can be considered analogously.

Corollary 3.9. Let ¡ i » @M , t +
i > t¡

i > 0, i = 1; : : : ; I. Denote by MI the set

MI =

I\

i = 1

(M( ¡ i; t +
i ) n M ( ¡ i; t¡

i )): (3.12)

Then DBD determine whether mg(MI) = 0 or not.

Proof. Using intersections of sets described in corollary 3.8, we ­ nd whether L s,
s = 0, contains functions supported in the closure of MI . These kind of functions
exist if and only if mg(MI) 6= 0.

Corollary 3.9 is the basic analytic tool in the reconstruction of R(M).

Theorem 3.10. The response operator RT with T > 2t ¤ uniquely determines R(M ).
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Proof. For every " > 0, we choose a collection ¡ i » @M , i = 1; : : : ; I("), of disjoint
sets such that diam(¡ i) 6 ",

S
·¡ i = @M . Let

p = (p1; : : : ; pI(")); pi 2 Z+ ; t +
i = (pi + 1)"; t¡

i = (pi ¡ 1)": (3.13)

Denote by M ("; p) the set MI (see (3.12)), with t§
i of form (3.13). For every p,

we de­ ne a piecewise constant function rp 2 L 1 (@M ) by setting rp(y) = pi" when
y 2 ¡ i. Using corollary 3.9, we de­ ne whether mg(M ("; p)) > 0 or not and introduce
the set

R"(M ) = frp : p 2 ZI(")
+ such that mg(M ("; p)) > 0g » L 1 (@M ):

As krx ¡ rpk < 2" + max diam(¡ i) when x 2 M ("; p), then

distH (R"(M ); R(M )) 6 3":

Here, distH ( « ; ~« ) is the Hausdor¬ distance between subsets « ; ~« 2 L 1 (@M ).
When " ! 0, we ­ nd the set R(M ) » L 1 (@M ) as the limit of R"(M ).

Let R(M ) » L 1 (@M ) be given. It is shown in [11] that it is possible to uniquely
de­ ne a Riemannian structure on R(M ) such that R : M ! R(M ) is an isom-
etry. In this paper, we use another method to reconstruct (M; g) and also b and
[a(x; D)]. This method is based on an approximation of ¯ -functions. We start with
the following result (see [11]).

Lemma 3.11. R(M) » L 1 (@M ) is homeomorphic to M .

Proof. Obviously, R is continuous. Assume that rx = ry, x; y 2 M . If z 2 @M
is a nearest point to x, rx achieves the minimum h = minz 0 2 @M rx(z0) at z. Thus
x lies on the normal geodesic from z and x = expz(h¸ ), exp being the standard
exponential map on T M . The same holds for y and hence R : M ! R(M ) is one
to one. By de­ nition, it is onto. Since M is compact, R is a homeomorphism.

3.4. Reconstruction of the Riemannian metric and the operator

Let f; g 2 Hs + 1
0 (@M £ [0; 1

2T ]), s > 0. We de­ ne a bilinear form

hf; gi = (JU f (T ); V g(T )):

Let
R("; p) = R(M("; p)); " > 0; p 2 ZI(")

+ : (3.14)

Here, M ("; p) is de­ ned as in the proof of theorem 3.10, i.e. R("; p) is the set of all
boundary distance functions rx with x 2 M ("; p) » M .

Let rx0
2 R(Mn@M ). Then, for any ", there exists p" 2 ZI(")

+ such that x0 2
M ("; p") and

R("; p") ! frx0 g when " ! 0;

i.e. the Hausdor¬ distance between the above sets goes to 0 when " ! 0. By
lemma 3.11, this yields that

M("; p") ! fx0g when " ! 0: (3.15)

Denote by g("); " > 0 a family of functions in H1
0 (@M £ [0; 1

2 T ]) such that
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(i) supp V g(")(T ) » cl(M ("; p"));

(ii) for any f 2 Hs + 1
0 (@M £ [0; 1

2T ]), s < 1
2 m < s + 1, there exists a limit

W x0 (f) = lim
" ! 0

hf; g(")i:

Such families exist. Indeed, it is su¯ cient to take V g(") to be C 1
0 -approximations

to (0; ¯ (¢ ¡ x0)). On the other hand, assume that for every f 2 Hs + 1
0 (@M £ [0; 1

2T ]),
the limit

lim
" ! 0

hf; g(")i = lim
"! 0

(JU f (T ); V g(")(T ))

exists. Then, by the Banach{Steinhaus theorem, there exists

W x0 2 ( L s)0 » Hs + 1
0 (M )0 £ Hs

0(M )0

such that
lim
" ! 0

hf; g(")i = (JU f (T ); W x0 );

where the right-hand side is understood in the distribution sense. Assumption (i)
above, together with (3.15), implies that supp(W x0 ) » fx0g. Since any distribution
supported in a point is a ­ nite sum of derivatives of the ¯ -distribution, and since
W x0 2 Hs

0(M )0 £ Hs + 1
0 (M )0, s < 1

2m < s + 1, it follows that there exists a constant
µ(x0) that

W x0 =

µ
0

µ(x0) ¯ (¢ ¡ x0)

¶
:

Lemma 3.12. Let (M; g) satis¯es the Bardos{Lebeau{Rauch condition and let RT

be given for T > 2t ¤ , where t ¤ is the exact controllability time. Then it is possible
to construct functions g(") such that

W x0 (f ) = µ(x0)uf (x0; t); f 2 Hs+ 1
0 (@M £ [0; 1

2 T ]); t > 0; s < 1
2 m < s + 1

and
µ 2 C0(M ); µj@M = 1; µ 6= 0 on M: (3.16)

Proof. To prove the statement is su¯ cient to show that, for any rx0
2 R(Int(M )),

it is possible to ­ nd a family gx0 ("), " > 0, such that the corresponding W x0 satisfy
assumptions (i), (ii) above and the following conditions.

(iii) W x0 6= 0 for any x0 2 M .

(iv) The function rx0
7! W x0 (f ) has a continuous extension to R(M ) when f 2

C 1
0 (@M £ [0; T ]).

(v) For f 2 C 1
0 (@M £ [0; T ]) and x1 2 @M ,

lim
x0 ! x1

W x0 (f ) = f(x1; T ):

As we already know, such a sequence exists. Indeed, we can take functions gx0 (")
such that V gx0 (")(T ) are smooth approximations to (0; ¯ (¢ ¡ x0))t. On the other
hand, corollary 3.4 makes it possible to algorithmically verify conditions (i){(v).
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Corollary 3.13. Let DBD and rx0
2 R(M) be given. These data determine

µ(x)uf (x0; t) for any t > 0 and f 2 H1
0 (@M £ R + ).

Proof. The statement follows from corollary 3.4 and lemma 3.12.

We want to emphasize that we do not know µ(x) and, henceforth, cannot recon-
struct uf (x; t). However, we have the following.

Theorem 3.14. The DBD determines a metric E on R(M ) such that the metric
space (R(M ); E) is isometric to (M; g).

Proof. Let rx; ry 2 R(Int(M)) and let R("; p") (see (3.14)) be a sequence satisfying

R("; p") ! frxg

when " ! 0. We write h" = diam M ("; p"). By corollary 3.9, we can construct the
set

X(") = ff 2 Hs + 1
0 (@M £ [0; 1

2 T ]) : supp U f (T ) » cl(M ("; p"))g: (3.17)

Let ½ > 0. Assume that d(x; y) > ½ . Then, due to the ­ nite velocity of the wave
propagation and the fact that h" ! 0, there exists "0 such that, for " < "0, we have
the following property.

(A) There is a neighbourhood N of y such that, for any f 2 X("),

Uf jN£ ]T;T + ½ [ = 0:

Using lemma 3.7, we can check if property (A) is satis­ ed.
Now let s(rx; ry) be the supremum of all ½ > 0 for which property (A) is satis­ ed

with some " > 0. Then
s(rx; ry) > d(x; y): (3.18)

On the other hand, assume that x and y are so near to each other that d(x; y) <
1
2
d(x; @M ) and there exists a unique minimal geodesic ® (t) = expx(tv) from x to y.

Let ½ > d(x; y). Then, for every " > 0, there is a solution (uf (x; T ); 0), f 2 X("),
such that (x; T; v; 1) 2 T ¤ (M £ R + ) is in the wavefront set of uf . By the standard
theory of propagation of singularities,

sing supp(uf ) \ fyg£ ]T; T + ½ [ 6= ;:

Thus the function uf cannot vanish in any neighbourhood of y£ ]T; T + ½ [ and
property (A) is not satis­ ed with any ". Thus s(rx; ry) 6 d(x; y). Hence, for y
su¯ ciently close to x, s(rx; ry) = d(x; y).

De­ ne the distance

E(rx; ry) := inf

½ lX

j = 0

s(ryj ; ryj+1 ) : x0 = x; yl = y; yj 2 Int(M ); l > 1

¾
:

For any curve ® » Int(M ), we see that the E-length of R( ® ) is equal to the length
of ® . Hence E(rx; ry) = d(x; y) for any x; y 2 Int(M ). By continuation of E onto
R(@M ), we obtain (R(M ); E), which is isometric to (M; g).
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Thus (R(M); E) can be identi­ ed with (M; g) as a metric space. In order to
construct local coordinates on R(M ), we can ­ rst use the distance E to con-
struct geodesics. By using triangular comparison theorems, we can then ­ nd the
angles between intersecting geodesics. This de­ nes normal coordinates near any
rx 2 R(M ) and, henceforth, the di¬erentiable structure on R(M ).

Using this structure, we can go back to lemma 3.12 and demand (see (iv) in the
proof) that µ 2 C 1 (M ).

Lemma 3.15. The functions

ef (x; t) = µ(x)uf (x; t); x 2 M; t > 0;

where f 2 Hs+ 1
0 (@M £ [0; 1

2 T ]) and µ 2 C 1 (M ) is of the form (3.16), determine
a µ (x; D) and b(x).

Proof. The functions ef (x; t) = µ(x)uf (x; t) are the solutions of the initial{boun-
dary-value problem (see (1.6))

ef
tt + bef

t + a µ (x; D)ef = 0;

ef j@M£R+ = f; ef jt = 0 = ef
t jt = 0 = 0:

)

(3.19)

However, theorem 3.2 implies that, for any x0 2 Int(M), the vectors

(ef (x0; T ); @j(ef (x0; T )); @k@l(e
f (x0; T )); ef

t (x0; t))m
j;k;l = 1;

with di¬erent f 2 C 1
0 (@M £ [0; T ]), span the space C(m2 + 3m+ 4)=2. Hence (3.19)

may be used to determine b and a µ (x; D).
Theorem 1.5 is proven.

4. Results for one measurement and further remarks

In the ­ rst part of this section we analyse the possibility of the reconstruction of
the response operator Rt0 using only one measurement.

Theorem 4.1. For any t0 > 0, there exists f 2 H1
loc(@M £ R + ), f jt= 0 = 0, such

that @ ¸ uf j@M£R+ determines Rt0 .

Proof. Our main tool is the consequence of energy inequality (see, for example, [8,
14]),

k@ ¸ uf kL2(@M£[0;t]) 6 c0ec1tkfkH1
0 (@M£[0;t]); f 2 H1

0 (@M £ [0; t]); (4.1)

where c0 and c1 are independent of t.
For t0 > 0, let (fj : j = 1; : : : ) be an orthonormal basis of H1

0 (@M £ [0; t0]).
Let gn, n = 1; 2; : : : , be a sequence where each fj occurs in­ nitely many times.
Consider

f (x; t) =

1X

n = 1

ecn2

gn(x; t ¡ nt0)

with c > c1t0, where c1 is the constant in (4.1). Assume that @ ¸ uf j@M£R+ is known.
By inequality (4.1), we see that

ke¡cn2

@ ¸ uf (x; t + nt0)j@M£[0;t0] ¡ (Rt0 gn)(x; t)kL2 6 c0ne¡c1nt0 :
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As ne¡c1nt0 ! 0 when n ! 1, this shows that we can determine all Rt0 fj,
j = 1; 2; : : : .

Corollary 4.2. In the generic case, let (M; g) satisfy the Bardos{Lebeau{Rauch
condition. There exists f 2 H1

loc(@M £ R + ), f jt= 0 = 0, such that @ ¸ uf j@M£R+

determines M , b and the equivalence class [a(x; D)] uniquely.
In the self-adjoint case, the Bardos{Lebeau{Rauch condition is not necessary.

We conclude the paper with several remarks.

(i) The Bardos{Lebeau{Rauch condition is always satis­ ed for M » Rm with
the metric gjl = ¯ j;l or its C1-small perturbations (see, for example, [1,20]).

(ii) In the case b = 0 but a(x; D) 6= a ¤ (x; D), an analogue of theorem 1.4 states
that given RT for T > t ¤ determines Rt for all t. Indeed, in this case,
we can use a sesquilinear form uf

t (t)vg(t) ¡ uf (t)vg
t (t). Then an analogue of

lemma 3.3 states that given RT , it is possible to ­ nd the value of this form for
t 6 T . Further proof of theorem 1.4 (with T > t ¤ instead of T > 2t ¤ ) follows
as in x 3.

(iii) The question concerning the minimum time T needed to reconstruct the man-
ifold and the operator remains open. Indeed, in the case b = 0, as we have
just shown, T > t ¤ is su¯ cient. In the self-adjoint case, T > 2» is su¯ cient,
where » is the geodesic radius of (M; g), » 6 1

2 t ¤ . Moreover, it is known that,
in the one-dimensional case, when 2 » = t ¤ , the case b 6= 0 does need time
T > 2t ¤ .

(v) Clearly, the considerations of the paper remain valid for (M; g) satisfying the
Bardos{Rauch{Lebeau conditions for a part of the boundary ¡ » @M .

(iv) Theorem 4.1 remains open if there exists f 2 H1
0 (@M £R + ), that is, a bound-

ary source with ­ nite energy that determines RT . By modifying the proof of
theorem 4.1, we see that this is true if c1 < 0 in inequality (4.1).

(vi) Instead of the boundary operator B = @ ¸ ¡ P̧ , we can use B = @ ¸ ¡ ­ , where
­ is an arbitrary complex-valued C 1 -function on @M .
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