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ABSTRACT
Background: The public health response to an influenza pandemic or other large-scale health emer-

gency may include mass prophylaxis using multiple points of dispensing (PODs) to deliver counter-
measures rapidly to affected populations. Computer models created to date to determine “optimal”
staffing levels at PODs typically assume stable patient demand for service. The authors investigated
POD function under dynamic and uncertain operational environments.

Methods: The authors constructed a Monte Carlo simulation model of mass prophylaxis (the Dynamic
POD Simulator, or D-PODS) to assess the consequences of nonstationary patient arrival patterns on
POD function under a variety of POD layouts and staffing plans. Compared are the performance of a
standard POD layout under steady-state and variable patient arrival rates that may mimic real-life
variation in patient demand.

Results: To achieve similar performance, PODs functioning under nonstationary patient arrival rates
require higher staffing levels than would be predicted using the assumption of stationary arrival rates.
Furthermore, PODs may develop severe bottlenecks unless staffing levels vary over time to meet
changing patient arrival patterns. Efficient POD networks therefore require command and control
systems capable of dynamically adjusting intra- and inter-POD staff levels to meet demand. In addition,
under real-world operating conditions of heightened uncertainty, fewer large PODs will require a
smaller total staff than many small PODs to achieve comparable performance.

Conclusions: Modeling environments that capture the effects of fundamental uncertainties in public
health disasters are essential for the realistic evaluation of response mechanisms and policies. D-PODS
quantifies POD operational efficiency under more realistic conditions than have been modeled
previously. The authors’ experiments demonstrate that effective POD staffing plans must be responsive
to variation and uncertainty in POD arrival patterns. These experiments highlight the need for
command and control systems to be created to manage emergency response successfully. (Disaster
Med Public Health Preparedness. 2009;3(Suppl 2):S121–S131)

Key Words: emergency preparedness, antibiotic prophylaxis, decision support models, theoretical
models, anthrax

The global public health response to the 2009
influenza A (H1N1) pandemic will include
large-scale vaccination campaigns, which

likely will involve the creation of vaccination centers
at which a portion of or the entire population of a
given geographical region will receive medications or
vaccinations within a short period of time. For the past
several years, US public health agencies have planned
for rapid countermeasure dispensing campaigns in re-
sponse to infectious disease and other emergency sce-
narios.1–3 These clinics, called points of dispensing, or
PODs, are now an integral part of emergency response
planning as part of the Centers for Disease Control and
Prevention’s (CDC’s) Cities Readiness Initiative. Large
metropolitan areas such as New York City, for example,

have made public plans to activate hundreds of PODs
within hours of certain health emergencies.

The operational effectiveness of POD systems de-
pends crucially on many factors.2,4 Public health
planners must determine how many PODs to deploy,
where to locate them, and how to design and staff
each individual POD. In many POD layouts, the tasks
associated with dispensing medications or other
countermeasures (eg, collecting patient information,
prescribing a dosage or medication, packaging drugs)
are divided among several service stations. Patients
move from station to station in 1 of a few possible
paths, depending on their specific conditions and
circumstances. The efficiency of POD-based mass

RESEARCH

Disaster Medicine and Public Health Preparedness S121

https://doi.org/10.1097/DMP.0b013e3181be9c39 Published online by Cambridge University Press

https://doi.org/10.1097/DMP.0b013e3181be9c39


prophylaxis systems may be conceptualized as consisting of
operations at 2 interrelated levels: at the level of individual
PODs that make up a geographic network of dispensing
facilities and at the level of the network as a whole. The
efficiency of each POD depends on a number of factors,
crucially whether staffing at each station is sufficient to meet
patient demand. Staffing plans may be based on ad hoc
estimates, past experience, or quantitative models, which in
turn depend for their accuracy on assumptions made about
the lengths of time required to process different patient types
(eg, families of different sizes, elderly people, disabled indi-
viduals), the percentages of various patient types that follow
each possible route through the POD, and the pattern of
arrivals throughout the time the POD is in operation. A
number of research groups have developed modeling envi-
ronments for designing and evaluating the performance of
alternative POD staffing plans. Three of the most detailed
systems have been developed at Weill Cornell Medical Col-
lege, Georgia Institute of Technology, and the University of
Maryland. These research efforts are summarized below.

Hupert and colleagues at Weill Cornell Medical College
developed the Bioterrorism and Epidemic Outbreak Response
Model (BERM), a tool that has been widely used since 2004
to calculate POD staffing levels.5 Although early versions of
the model used algebraic calculations in an Excel worksheet,
the current version (http://www.simfluenza.org) is a Web-
based optimization and simulation tool that assumes patients
arrive at each POD according to a stationary Poisson process,
which can represent naturalistic variability around a constant
mean. Using a modified Jackson queuing network model and
an optimization algorithm, BERM calculates the minimum
staffing levels needed at each station to achieve a desired
level of performance. Although these results are beneficial as
a starting point for planners, it is highly unlikely that in the
absence of some external flow control, patients will arrive at
PODs at a constant mean rate.

At the Institute for Systems Research of the University of
Maryland, Hermann and others developed the Clinic Plan-
ning Model Generator (CPMG, downloadable at http://www.
isr.umd.edu/Labs/CIM/projects/clinic), another queuing model-
based capacity-planning tool that estimates POD perfor-
mance based on user-specified inputs and allows patients to
arrive either individually or in batches (as if people came by
buses or children came with school classes). Aaby and col-
leagues6 from the Montgomery County (Maryland) Depart-
ment of Health and Human Services used the results of a live
exercise to validate their inputs for this simulation model,
and then evaluated different clinic designs and operational
policies using this model. CPMG was created to quickly
provide quantitative estimates of appropriate POD staffing
levels and to analyze the performance of the clinic based on
those suggestions. One powerful aspect of CPMG is its ability
to create a customized clinic layout; however, like the orig-
inal BERM, the model assumes stationary arrival rates when
it calculates the staff required for each station, patient

throughput, patient time spent in the system, and the effect
of changing the number of stations. Thus, although CPMG is
helpful in evaluating different clinic designs and suggesting
layout and operational guidelines, its output is similarly po-
tentially unreliable because stationary patient arrival rates are
unlikely in a real emergency.

Partly in response to these limitations, Lee and colleagues at
the Georgia Institute of Technology developed RealOpt, a
tool that can be used to evaluate staffing levels and develop
a customized layout for a POD.7 The model uses a heuristic-
algorithmic design and may be used in real time as a decision
support system during an actual dispensing campaign.
RealOpt is intended by its creators to aid in strategic plan-
ning before and operational modeling during an emergency
mass-dispensing event, because its primary aim is to rapidly
recalculate locally optimal staffing levels during operations.
This model’s focus on local optimization poses an interesting
question: does optimizing locally always translate into in-
creased global efficiency of the POD network, and, if not, what
general lessons for network design may be drawn from its results?

Although these 3 tools provide POD planners with the
means to calculate human resources and to determine results
of certain staffing level decisions, they do not sufficiently
represent the fundamental uncertainties that would exist in
any public health emergency situation, nor do they link the
effects of that uncertainty to requirements for prophylaxis
systems that quickly and reproducibly respond to changing
operational environments. We sought to investigate these
issues with a new model that more fully represents variation
and uncertainty in patient arrivals, allows calculation of staff
requirements to match patient demand over time, and con-
siders resources to fulfill patient needs.

To accomplish these goals, we created a flexible Monte Carlo
simulation model called the Dynamic POD Simulator
(D-PODS) that represents the dynamics of patient flow
within a POD in a probabilistic way. This experimental
platform permits exploration of potential outcomes of differ-
ent mass prophylaxis campaign designs under varying patient
demand profiles. We used this model to attempt to answer 4
key operational questions about POD systems: What are the
operational consequences of trying to match patient arrival
patterns with time-varying staffing patterns? If staffing levels
are changeable, how sensitive do they need to be to operating
conditions in order to have an appreciable outcome benefit?
Do staffing requirements for a multi-POD system depend on
the number of PODs in the network, and if so, by how much?
What type of command and control system would be required
to achieve these modeled staff reassignment plans?

METHODS
Model Overview
D-PODS allows users flexibility in designing POD station lay-
outs; patient types, routing, and care requirements (represented
as probabilistic station- and type-specific processing times), and
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non-stationary type-specific patient arrival processes. We used
the output of this model to evaluate the consequences of oper-
ating the POD system in a variety of operating scenarios and
under varying command and control regimes.

When determining the optimal staffing at each station in the
POD, D-PODS uses a “waiting time tolerance” to determine
staffing levels. This tolerance is the maximal average time
spent waiting in each queue and can vary by station and time
of day; however, in all of the runs reported here, it was set to
5 minutes. The D-PODS staffing calculator provides estima-
tions that are based on standard G/G/s queuing approxima-
tions.8 These queuing approximation functions generate
staffing levels based on 3 inputs: an expected patient arrival
pattern, a probability distribution of processing times for each
station, and a desired average patient waiting time for each
station (W). If the patient arrival rate during the staffing
interval is constant, then D-PODS will calculate staffing
levels such that the average patient waiting time will ap-
proach W in the limit as the number of patients served
increases to infinity. If patient arrival rates are not constant,
then the staffing calculator conservatively estimates the ar-
rival rate using the maximum patient arrival rate during the
interval. This has the effect of making the average patient
waiting time lower than the maximum allowed, W.

Individual POD
For the purpose of the analyses reported here, we chose to
represent and evaluate the operations of a generic 4-station
POD, including greeting, triage, medical evaluation, and drug
dispensing.4 The station layout and routing probabilities are
shown in Figure 1. Patients of various types (eg, single adult,
family, limited mobility) arrive at the POD according to
either a stationary (fixed average rate) or nonstationary
(moving average rate) Poisson process and move from station
to station according to transition probabilities. The number
of staff at each station may vary over the simulated time
horizon as described below. At each station, patients wait in
a queue for an available staff; service times are assumed to be
triangular (minimum-mode-maximum). Once they have re-
ceived service, patients immediately join the queue for the next
station or depart from the POD; we assume that patient travel
time within a POD is negligible. For simplicity, in the
analyses presented here we did not consider limitations on
the POD’s total building capacity, although D-PODS does
permit users to set such a limit. We assume that no
patients abandon their queues, no matter how long they
have waited.

Model Parameters
To illustrate how the simulation model can be used to assess
the effectiveness of POD system management policies, we
have chosen parameters to reflect a network that is set up to
respond to an airborne anthrax attack. Studies have shown
that antibiotic dispensing to prevent symptomatic inhala-
tional anthrax is most effective if administered within 2 to 3
days of exposure.9–13 Given the expected delay for detection

and response to a covert anthrax release, current guidance from
the CDC’s Cities Readiness Initiative calls for antibiotics to be
dispensed to the entire affected population within 48 hours of
the decision to do so.1,14 We, therefore, set the duration of the
prophylaxis campaign to 48 hours and assumed that patients
arrive for either 18 or 22 hours each day (with PODs closed at
other times for restocking and cleaning). Under the assumption
of a mean per-POD throughput rate of 500 patients per hour,
each POD is expected to serve a total of 9000 to 11,000 people
per day (individual patients or heads of household). To further
simplify our analysis, we assumed that all arriving patients are of
the same “type,” which means that the service time distributions
are the same for all patients.

Staffing Experiments
We consider 2 types of staffing policies: a constant staffing
policy and 1 of 4 time-varying policies (plans 1–4). Under
the constant staffing policy, staff at each POD station remain
unchanged throughout the simulated POD activation, whereas
these levels change over time when a time-varying policy is
used. Under plans 2 through 4, we assume a pool of available
staff on-call who may be brought into the POD or sent away
throughout the work day in 2-hour increments, corresponding
to arrival rate. Plan 1 assumes that there is the perfect ability to
forecast and adjust staff to accommodate the maximal arrival

FIGURE 1
Baseline POD layout and patient flow.
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rate seen in the next 2-hour shift; in this sense, it is the most
fictional of the staffing plans. Plan 2 assumes that 30 minutes
before each potential staffing change, POD managers can ob-
serve the average patient arrival rate to the POD (L) that is
occurring at that moment. Using the Buzacott and Shanthiku-
mar queuing formula mentioned above, a set of staffing levels
can be calculated to keep the average patient waiting time to 5
minutes at each station, assuming that patients arrived at this
projected rate of L patients per hour. The staffing level in the
next 2-hour time segment is then adjusted to meet workforce
requirements resulting from this projection.

To better understand staffing plan 2, consider the following
example. Suppose that at 4 PM, we can change the number of
staff working at each station in the POD; this may involve
calling in new staff or sending people home, as well as
shifting workers between stations. However, we need to de-
clare our decisions to the workforce by 3:30, so that current
workers can prepare to move around or go home and new
staff have time to travel to the POD. So, just before 3:30, we
determine the average current patient arrival rate for the past
half hour (suppose that on average, we have been seeing 50
patients arrive every 5 minutes, which is equivalent to 600
patients per hour). We then use the Buzacott and Shanthi-
kumar queuing formula to determine the optimal staffing levels
for each station in the POD, assuming that patients continue to
arrive at an average rate of 600 patients per hour. At 6 PM we
will have a chance to reassign and rearrange staff once again, so
we will repeat this estimation process at 5:30 PM.

Staffing plan 3 is similar to plan 2, except that staffing levels
are based on patient arrival rates that occurred 1 hour, not 30
minutes, before each staffing change. In the example above,
if we were set to have a staffing change at 4 PM, we would
calculate staffing levels just before 3 PM. Therefore, if an average
of 55 patients were arriving every 5 minutes from 2:30 to 3 PM,
we would calculate new staffing levels assuming that patients
continue to arrive at an average rate of 660 patients per hour
(which is equivalent to 55 patients per 5 minutes).

Like plan 1, staffing plan 4 presumes that we can perfectly
forecast the patient arrival rates at the beginning and the end
of each staffing interval. In contrast to plan 1, however, plan
4’s staffing level is based on the average (not the maximum)
of these 2 numbers, again using the Buzacott and Shanthi-
kumar formula to maintain the desired per-station waiting
time. In the example above, this would mean that before the
staffing change must be made at 4 PM, we could look at our
forecasting mechanism and see exactly the average arrival
rate from 4 PM to 4:30 PM and the average arrival rate from
5:30 PM to 6 PM. We would then average these 2 numbers and
use the average to calculate staffing levels using the Buzacott
and Shanthikumar formula.

Model Scenarios
Patient arrivals are modeled as a Poisson process, which is
commonly used to represent random arrivals to a system clus-

tered around a mean value. In the base case, the mean arrival
rate remained stationary at 500 patients per hour throughout the
model run. We altered these arrival conditions to create time-
varying (or nonstationary) Poisson processes as noted in Figures
2 and 3. Figure 2 shows progressively increasing and decreasing
arrival rates during the operation of the POD. Figure 3 defines 3
scenarios (A, B, C) that exhibit complex time-varying proper-
ties that could mimic diurnal variation in patient arrival.

Implementation
We programmed the Monte Carlo simulation in Visual Basic
for Applications within a Microsoft Excel workbook. Each
reported scenario was run for 10 iterations for clarity of
graphical presentation; results with higher numbers of repli-
cations did not produce quantitatively different outcomes
(see Appendix for details).

RESULTS
A POD clinic designed to process a stationary mean arrival
rate of 500 patients per hour within the target 5-minute
per-station average waiting time required 42 active staff (5
assigned for greeting, 17 for triage, 9 for medical evaluation,
and 10 for dispensing). In simulation runs, a total of 17,966
patients could be evaluated and treated during two 18-hour
clinic days (SD 120.2), using a total of 738 total staff hours
for a patient-to-staff-hour ratio of 24.3. Average transit time
through this POD was 8.4 minutes (SD 0.5 min).

Nonstationary Arrival Rates: Simple Ascending
and Descending
Our first experiment looked at the performance of this POD
setup (ie, designed for a stationary mean of 500 patients per
hour for 18 hours) under nonstationary arrival processes with
ascending or descending arrival rates averaging between 100
and 900 patients per hour for 2-hour increments, but with an
overall daily average of 500 patients per hour (Fig. 2). With
steadily increasing arrivals, the daily throughput of the POD
dropped by 21.7% from 9014 people (SD 124.4) to 7061 people
(SD 33.2), with just over 1900 people left untreated on average
at the end of each workday (Fig. 4, top). Greeting was the
bottleneck station, with an average queue of 305.0 patients (SD
9.8) and staff utilization rising from 19% in the first interval to
100% for the final 6 hours of clinic operation. Because of
significant overstaffing in the early hours of clinic operations,
however, average staff utilization was only 76% at greeting, 75%
at dispensing, 73% at triage, and 42% at medical evaluation.

In contrast, daily throughput in the descending arrival sce-
nario was almost identical to that in the stationary arrival
scenario (8996 people, SD 80.6), but with virtually no queue
at the close of business (Fig. 4, bottom). This was because the
front loading of arrivals led to considerably higher full-day
staff utilization than in the ascending arrival scenario (greet-
ing and dispensing 96%, triage 93%, and medical evaluation
52%), with a resulting midday average queue length of
1186.1 (SD 52.7) at the greeting station.
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When staffing levels were adjusted according to model sug-
gestions (ie, based on queueing equations), there were no bot-
tlenecks or appreciable queues at any of the POD stations in
either the increasing or decreasing arrival scenarios. Total 2-day
throughput for the former was 17,929 patients (SD 58.2) and
17,991 patients (SD 186.9) for the latter. The variation in
recommended staffing levels across arrival rates from 100 to 900
people per hour was 2 (40% of baseline staffing) to 9 staff (180%
of baseline) at the greeting station; 4 (24%) to 29 (171%) for
triage; 4 (44%) to 14 (156%) for medical evaluation; and 3
(30%) to 18 (180%) for dispensing. Because in these 2 scenarios
patient arrival rates changed only in 2-hour increments, each of
the staffing plans 1 through 4 yielded equivalent results.

Nonstationary Arrival Rates: Diurnal Variation
We next simulated a 20-hour POD (open from 5 AM until 1
AM the following morning) with 1 of the 3 nonstationary

arrival scenarios that exhibit diurnal variation but average
500 patients per hour during a 24-hour period (Fig. 3, curves
A, B, or C). When the POD operated with a constant staffing
plan, average patient throughput time ranged from approxi-
mately 90 minutes for the most variable arrival regime (sce-
nario A) to 50 minutes for the least variable (scenario C). In
contrast, when the POD operated with flexible staffing plan
1, this average throughput time dropped to approximately 5
minutes under each arrival scenario (Fig. 5, top). Plan 1 also
performed better than the other flexible plans, although even
the worst performing of these plans (plan 3, with adjustments
based on arrivals observed 1 hour before staffing interval) was
able to achieve a 30% reduction in throughput time com-
pared to invariant staffing (Fig. 5, bottom). The “cost” of
these performance improvements is increased staff require-
ments, ranging from approximately 10% to 14% additional
staff for plan 1 across the different arrival scenarios (data

FIGURE 2
Increasing (top) and decreasing (bottom) nonstationary patient arrival patterns with 18-h POD (10 simulation runs, 5-min
intervals, with upper 95% confidence bound highlighted by circles).

Mass Prophylaxis Workforce Planning

Disaster Medicine and Public Health Preparedness S125

https://doi.org/10.1097/DMP.0b013e3181be9c39 Published online by Cambridge University Press

https://doi.org/10.1097/DMP.0b013e3181be9c39


shown) to approximately 5% to 7% additional staff for plan
3 (data not shown).

Of the 9 potential combinations of nonstationary arrival
scenarios and flexible staffing plans, several comparisons il-
lustrate well the tradeoffs involved in designing effective
POD staffing plans under conditions of uncertainty. First, we
evaluated POD functioning under arrival scenario A (with
the greatest diurnal variation) comparing the constant staff-
ing plan against plans 1 and 4, which are similar in their
requirement of knowledge of both current and future patient
demand at the POD. Figure 6 (top panel) shows that the
queue at the greeting station under the constant staffing plan
has a daily bimodal distribution reaching maxima of approx-
imately 750 and 1500 to 2000 people. When staff is adjusted
to meet maximum anticipated arrival in each 2-hour period
(plan 1), this queue is reduced by almost 100-fold (to intra-
day peaks of approximately 20 [Fig. 6, middle]). In contrast,
adjusting the staff to meet the average 2-hour arrival rate
(plan 4) resulted in a 10-fold decrease in queue length and
smoothing of the diurnal variation in queue size (although as
noted in Figure 5, bottom, this led to only a minimal differ-
ence in combined POD service and waiting times between
plans 1 and 4). Queues at downstream stations (triage and
dispensing) were minimal (maximum �5 people) with the
constant staffing plan (because greeting formed a bottle-
neck); under the flexible plans these queues were minimally
larger (maximum �20).

Because it would be difficult if not impossible to accurately
forecast future arrival rates to a POD except when this
component of POD system design is under direct control (ie,
if patients are bused on a schedule to the POD), staffing plans
1 and 4 may be thought of as hypothetical experiments. In
contrast, plans 2 and 3 are more realistic and could be
implemented in any POD with the proper communications

system and on-call staffing arrangement. In fact, the on-the-
fly staffing adjustments considered in these plans are similar
to the tactical information the RealOpt program is explicitly
designed to provide to POD managers.

When we applied staffing plan 3 (adjustment based on arrival
rate 1 hour before work shift) to arrival scenario C, which has
the least diurnal variation of the nonstationary arrival sce-
narios, the results were notable for 3 findings (Fig. 7). First,
adjustment according to this more realistic staffing plan
yields only a 5-fold reduction in maximal queue length (to
approximately 400 people—far larger than for plans 1 or 4),
but succeeds like the hypothetical plans in smoothing out the
large diurnal variation in entry queues seen under a constant
staffing regime. Second, the queues at downstream stations
(Fig. 7, middle and bottom) are not simple recapitulations of
the greeting queue, but instead have both different maxima
(averaging approximately 250 across the simulation runs
shown for triage and 50 for the dispensing station) and
different peak times (generally appearing in the second half
of each day after the initial greeting bottleneck resolves).
These queues are notable as well for their rapid appearance
and disappearance as staff utilization varies due to the com-
bined but asynchronous effect of changing arrivals and staff
numbers. Third, these downstream queues demonstrate dra-
matic run-to-run variation, giving the graphs a scattershot
appearance that only worsens with increasing numbers of
simulation iterations. This means that the “mean perfor-
mance” of a POD system likely will not reflect the experience
of individual PODs, making coordination between incident
commanders and POD managers all the more critical for
managing patient movement between and through PODs.

CONCLUSIONS
POD-based mass prophylaxis operations initiated in response
to public health emergencies are almost certain to be con-
ducted against a backdrop of considerable uncertainty regard-
ing population behavior, availability of countermeasures, and
operational capability of dispensing centers. In this context,
there are 2 important implications of our experimental results
that show that patient waiting times and queue lengths at
PODs are minimized in an environment in which staffing
levels are appropriately calculated to match average patient
arrival rates. In a straightforward sense, these results strongly
suggest that a responsive and robust POD system can exist
only if systems are in place to dynamically assess and then
continuously recalculate staff requirements throughout a
mass prophylaxis campaign. This requires 2 separate techni-
cal capabilities: situational awareness of queue dynamics both
outside and inside PODs15 and computer modeling–based or
protocol-based capability to assess how to appropriately ad-
just staffing and resource levels in the face of these dynamic
changes. If this type of response capability is not created,
then 1 of 2 outcomes will occur: Either significantly larger
numbers of staff will have to be put into operation to handle
unanticipated peaks in patient arrival, or patients will have long
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waits on average to be served. Neither of these 2 outcomes is
desirable. Models like RealOpt aim to accomplish just this sort
of on-the-fly optimization of staffing in relation to patient in-
flux, but such optimization tools are only as good as the com-
mand and control system that can provide an integrated picture
of staffing requirements across a POD network.

These observations may be extended beyond the workforce to
management of critical resources such as consumable medical
supplies and durable equipment. Thus, we can extend our
conclusion by stating that creating a command and control
system that balances loads throughout the POD network by
moving patients or resources among PODs is essential for
managing system operations effectively. An extension of this

modeling approach can be used to demonstrate that to serve
the same number of patients, fewer larger PODs require a
smaller total staff than many smaller PODs (see Appendix).
Building larger PODs would also help mitigate the impact of
uncertainty by decreasing variance across POD sites. Using
larger PODs may help planners create command and control
environments in which demand for services at each POD can
be assessed and responded to in a reasonable time frame
without information overload. Determining the optimal size
of a POD for a particular scenario is the focus of future work.

APPENDIX: MONTE CARLO SIMULATION MODEL
Standard Monte Carlo simulations use a single future event
list (FEL), which keeps track of the events that are scheduled
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to occur, such as arrivals and departures from different queues
and service locations. To decrease run time of the model, we
chose to create 5 FELs, 1 for each service station (arrivals to
outside the POD, greeting, triage, medical evaluation, and
drug dispensing). With 5 FELs, each list of scheduled activ-
ities in the simulation is much smaller and quicker to search
through and insert a new item in sorted order. For the 5 FELs
to operate in time sequence, an extra step must be added to
the simulation method to determine which FEL has the
earliest event at its head. The simulation compares the heads
of each FEL to determine the list that contains the earliest
event. The simulation then processes that event. The simu-

lation continues to operate as a typical Monte Carlo simula-
tion by performing the tasks relating to the event found.
Thus, changing a single FEL to 5 multiple FELs reduces the
time for inserting an event, with a slight compromise in
additional time for removing an event.

POD Size
Consider an extremely simple example: Suppose that there
are 10 small PODs, to which an average of 500 patients arrive
each hour. Compare this network to 1 large POD that sees an
average arrival rate of 5000 patients per hour. Both systems
will experience the same total expected daily patient de-
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FIGURE 5
POD performance metrics for nonstationary arrival scenarios A–C with constant versus flexible staffing plan 1.
Comparison of POD throughput time under arrival scenario C for staffing plans 1–4.
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FIGURE 6
Queues at greeting for arrival scenario A (extreme diurnal variation) under constant staffing, staffing plan 1 (forecasting
maximal arrival rate in next period), and staffing plan 4 (forecasting average arrival rate in next period).
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FIGURE 7
Queues at greeting, triage, and dispensing for arrival scenario C (mild diurnal variation) and staffing plan 3 (forecasting
demand 1 hour before staffing change).
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mand. For each system, we calculated the staffing levels
necessary to limit average patient waiting times to 5 minutes
at each station within the PODs.

We find that each of the small PODs uses 984 staff-hours to
provide an average patient waiting time of 6.72 minutes; this
gives a total of 9840 staff-hours to operate the POD network.
The large POD requires only 8664 staff-hours to provide an
average patient waiting time of 6.28 minutes. Thus, almost
15% more staff-hours are required to operate a system of small
PODs, which provides slightly worse service to patients.
These staff-hour calculations do not even account for the
additional overhead that would likely be required to operate
a POD network that is more widely distributed over many
locations, as seen in Table 1.
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TABLE 1
Model Parameters

Parameter Value Unit

General point of dispensing
operations

Duration of campaign 2 Days
Hours of operation per day 22 Hours
Baseline arrival rate 500 Per hour
Maximum average allowable

queue per station 5 Minutes
Patient routing

Probability that a patient at the
greeting station will require
medical evaluation 0.05 NA

Probability that a patient at the
triage station will require
medical evaluation 0.05 NA

Probability that a patient will
be sent to a health center
after medical evaluation 0.05 NA

Processing time
Service time distribution for

greeting/entry station
Triangular

(0.25–0.50–1) Minutes
Service time distribution for

triage station Triangular (1–2–3) Minutes
Service time distribution for

medical evaluation station
Triangular

(2.5–5–10) Minutes
Service time distribution for

drug dispensing station
Triangular

(0.5–1–2) Minutes
Arrival distributions Variable (Fig. 3)
Simulation iterations per scenario 10

Mass Prophylaxis Workforce Planning

Disaster Medicine and Public Health Preparedness S131

https://doi.org/10.1097/DMP.0b013e3181be9c39 Published online by Cambridge University Press

https://doi.org/10.1097/DMP.0b013e3181be9c39

