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RELATIVIZING OPERATIONAL SET THEORY

GERHARD JÄGER

Abstract. We introduce a way of relativizing operational set theory that also takes care of
application. After presenting the basic approach and proving some essential properties of this
new form of relativization we turn to the notion of relativized regularity and to the system
OST(LR) that extends OST by a limit axiom claiming that any set is element of a relativized
regular set. Finally we show thatOST(LR) is proof-theoretically equivalent to the well-known
theory KPi for a recursively inaccessible universe.

§1. Introduction. Feferman’s original motivation for operational set the-
ory was to provide a setting for the operational formulation of large cardinal
statements directly over set theory in a way that seemed to him to be
more naturalmathematically than themetamathematical formulations using
reflection and indescribability principles, etc. He saw operational set theory
as a natural extension of the von Neumann approach to axiomatizing set
theory.
The system OST has been introduced in Feferman [7] and further studied
in Feferman [8] and Jäger [12–15, 17, 18]. For a first discussion of opera-
tional set theory and some general motivation we refer to these articles, in
particular to [8]. In addition, Cantini andCrosilla [4,5] andCantini [3] study
the interplay between some constructive variants of operational set theory
and constructive set theory.
A further principal motivation of Feferman [7, 8] was to relate formula-
tions of classical large cardinal statements to their analogues in admissible set
theory. However, in view of Jäger and Zumbrunnen [17] this aim ofOST has
to be analyzed further. It is shown in [17] that a direct relativization of opera-
tional reflection leads to theories that are significantly stronger than theories
formalizing the admissible analogues of classical large cardinal axioms. The
main reason is that simply restricting quantifiers to specific sets and oper-
ations to operations from and to specific sets does not affect the global
application relation and thus substantial strength may be imported—so to
say—through the back door.
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In this paper we take care of this problem by introducing a new way of
relativizing operational set theory such that also application is relativized.
We first present the basic approach and prove some essential properties
of this new form of relativization. Then we turn to relativized regularity
and to the system OST(LR) that extends OST by a limit axiom claiming
that any set is element of a relativized regular set. Finally we show that
OST(LR) is proof-theoretically equivalent to the well-known theory KPi for
a recursively inaccessible universe. This solves a problem that has been open
for many years.

§2. The theoryOST. Nowwe introduce the theoryOST, though not in its
original form but in a slightly modified but essentially equivalent way similar
to that in Zumbrunnen [22]. In presenting the syntax ofOSTwe follow Jäger
and Zumbrunnen [18]. To begin with, let L be a typical language of first
order set theory with the binary symbols ∈ and = as its only relation sym-
bols, with countably many set variables a, b, c, d, e, f, g, u, v, w, x, y, z, . . .
(possibly with subscripts), as well as with the logical symbols ¬, ∨, and ∃.
We further assume that L has a constant � for the collection of all finite von
Neumann ordinals. The formulas of L are defined as usual.
The language L◦ of operational set theory extends L by the binary func-
tion symbol ◦ for partial term application, the unary relation symbol ↓ for
definedness, the binary relation symbol Reg, and a series of constants: (i) the
combinators k and s, (ii) �, ⊥, el, reg, non, dis, and e for logical operations,
(iii) D, U, S, R, and C for set-theoretic operations. The meaning of these
symbols will be specified by the axioms below.
The terms (r, s, t, r1, s1, t1, . . .) of L◦ are built up from the variables and
constants by means of our function symbol ◦ for application to form expres-
sions (r◦s). In the following (r◦s) is often written as (rs) or (if no confusion
arises) simply as rs . We adopt the convention of association to the left so
that r1r2 . . . rn stands for (. . . (r1r2) . . . rn). In addition, we frequently write
r(s1, . . . , sn) for rs1 . . . sn if this seems more intuitive. Self-application is pos-
sible but not necessarily total, and there may be terms which do not denote
an object. We make use of the definedness predicate ↓ to single out those
which do, and (r↓) is read “r is defined” or “r has a value.”
The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L◦ are inductively gener-
ated as follows:

1. All expressions of the form (r ∈ s), (r = s), (r↓), and Reg(r, s) are
formulas of L◦, the so-called atomic formulas.

2. If A and B are formulas of L◦ , then so are ¬A and (A ∨ B).
3. If A is a formula of L◦ and if r is a term of L◦ which does not contain
x, then (∃x ∈ r)A and ∃xA are formulas of L◦.

We shall write (A∧B) for ¬(¬A∨¬B), (A→ B) for (¬A∨B), (A↔ B) for
((A → B) ∧ (B → A)), (∀x ∈ t)A for ¬(∃x ∈ t)¬A, and ∀xA for ¬∃x¬A.
We often omit parentheses and brackets whenever there is no danger of
confusion and make use of the vector notation �r as shorthand for a finite
string r1, . . . , rn of L◦ terms whose length is either not important or evident
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from the context. If �u is the sequence of pairwise different variablesu1, . . . , un
and �r = r1, . . . , rn, then A[�r/�u ] is the formula of L◦ that is obtained from
A by simultaneously replacing all free occurrences of the variables �u by the
L◦ terms �r; in order to avoid collision of variables, a renaming of bound
variables may be necessary. In case the L◦ formula A is written as B[�u ], we
often simply write B[�r ] instead of B[�r/�u ]. Further variants of this notation
will be obvious.
The Δ0 formulas of L◦ are those L◦ formulas that do not contain the
function symbol ◦, the relation symbol ↓, or unbounded quantifiers. Starting
off from the Δ0 formulas of L◦, the Σ1, Π1, Σ, and Π formulas of L◦ are
defined as usual.1

To increase readability we freely use standard set-theoretic terminology;
for example, a ⊆ b, {a1, a2} = b,∪a = b, 〈a1, . . . , an〉 = b, an = b,Tran[a],
Ord[a], and Limit[a] express that a is a subset of b, b is the unordered pair
of a1 and a2, b is the union of a, b is the (Kuratowski) n-tuple formed from
the sets a1, . . . , an, b is the n-times Cartesian product of a, a is transitive,
a is an ordinal, and a is a limit ordinal, respectively. All these predicates
have Δ0 definitions; see, e.g., Barwise [1]. Furthermore, we let the lower case
Greek letters α, �, �, . . . (possibly with subscripts) range over the ordinals.
Given an L◦ formula A[u], we write {x : A[x]} to denote the collection
of all sets x satisfying A[x], and u ∈ {x : A[x]} means A[u]. The collection
{x : A[x]} may be (extensionally equal to) a set, but this is not necessarily
so. Special cases are

V := {x : x↓}, ∅ := {x : x �= x}, B := {x : x = � ∨ x = ⊥},
so that V denotes the collection of all sets (it is not a set itself), ∅ stands for
the empty collection, and B for the unordered pair consisting of the truth
values� and⊥ (it will turn out that ∅ and B are sets inOST). The following
shorthand notation, for n an arbitrary natural number greater than 0,

(f : an → b) := (∀x1, . . . , xn ∈ a)(f(x1, . . . , xn) ∈ b)
expresses that f is an n-ary operation from a to b. It does not say, however,
that f is an n-ary function from a to b in the set-theoretic sense. In this
definition the set variables a and b may be replaced by V and B. So, for
example, (f : a → V) means that f is total on a, (f : V → b) means that
f is an operation assigning an element of b to any set, and (f : a → B)
means that f is an operation assigning a truth value to any element of a.
The logic of OST is the classical logic of partial terms (cf. Beeson [2]
or Troestra and van Dalen [21]), including the common equality axioms.
Partial equality of terms is introduced by

(r � s) := (r↓ ∨ s↓ → r = s)

and says that if either r or s denotes anything, then they both denote the
same object.

1Hence the Δ0, Σ1, Π1, Σ, andΠ formulas ofL◦ are the usual Δ0, Σ1, Π1, Σ, and Π formulas
of L extended by the relation symbol Reg, possibly containing additional constants.
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The nonlogical axioms of OST are divided into four groups and state
that the universe is a partial combinatory algebra, formulate some basic
set-theoretic properties, allow the representation of elementary logical
connectives as operations, and provide for some operational set existence.

I. Applicative axioms.
(A1) kxy = x,
(A2) sxy↓ ∧ sxyz � (xz)(yz).
II. Basic set-theoretic axioms. They comprise: (i) the usual extensionality
axiom; (ii) the infinity axiom

Limit[�] ∧ (∀� ∈ �)¬Limit[�]; (Inf)

(iii) ∈-induction for arbitrary formulas A[u] of L◦,

∀x((∀y ∈ x)A[y]→ A[x]) → ∀xA[x].

III. Logical operations axioms.
(L1) � �= ⊥,
(L2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = � ↔ x ∈ y),
(L3) (reg : V2 → B) ∧ ∀x∀y(reg(x, y) = � ↔ Reg(x, y)),
(L4) (non : B→ B) ∧ (∀x ∈ B)(non(x) = � ↔ x = ⊥),
(L5) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = � ↔ (x = � ∨ y = �)),
(L6) (f : a → B) →

(e(f, a) ∈ B ∧ (e(f, a) = � ↔ (∃x ∈ a)(fx = �))).
IV. Set-theoretic operations axioms.
(S1) Unordered pair:

D(a, b)↓ ∧ ∀x(x ∈ D(a, b) ↔ x = a ∨ x = b).
(S2) Union:

U(a)↓ ∧ ∀x(x ∈ U(a) ↔ (∃y ∈ a)(x ∈ y)).
(S3) Separation for definite operations:

(f : a → B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = �))).
(S4) Replacement:

(f : a → V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).
(S5) Choice:

∃x(fx = �) → (Cf↓ ∧ f(Cf) = �).

This finishes our description of the systemOST. Because of the applicative
axioms the universe is a partial combinatory algebra, and thus we have
�-abstraction: For each L◦ term t we can introduce an L◦ term (�x.t) whose
variables are those of t other than x and is such that

(�x.t)↓ ∧ (�x.t)y � t[y/x].
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Clearly, �-abstraction can be generalized to several arguments by simply
iterating abstraction for one argument, and we set for all L◦ terms t and all
variables x1, . . . , xn,

(�x1 . . . xn.t) := (�x1.(. . . (�xn.t) . . .)).

Often the term (�x1 . . . xn.t) is simply written as �x1 . . . xn.t. Furthermore,
there exists a closed L◦ term fix—a so-called fixed point operator—with

fix(f)↓ ∧ (fix(f) = g → gx � f(g, x)).
Because of the logical operations axioms OST provides a term rep-
resentation for every Δ0 formula of L◦ in the sense of the following
lemma.

Lemma 2.1. Let �u be the sequence of variables u1, . . . , un. For every Δ0
formula A[�u ] of L◦ with at most the variables �u free there exists a closed L◦

term t such that OST proves

t↓ ∧ (t : Vn → B) ∧ ∀�x(A[�x ] ↔ t(�x) = �).
For a proof of this lemma see Feferman [7,8]. For later purposes we need
the following extension of this result.

Theorem 2.2. Let �u be the sequence of variables u1, . . . , un. For every pair
of Σ1 formulas A[�u ] and Π1 formulas B[�u ] with at most the variables �u free
there exists a closed L◦ term t such that OST proves

∀�x(A[�x ]↔ B[�x ]) → (t↓ ∧ (t : Vn → B) ∧ ∀�x(A[�x ] ↔ t(�x) = �)).
Proof. By assumption, A[�u ] is of the form ∃xC [�u, x] and B[�u ] of the
form ∀xD[�u, x], where C [�u, v] and D[�u, v] are Δ0. Now we work in OST
and know that

r0↓ ∧ (r0 : Vn+1 → B) ∧ ∀�x, y(C [�x, y] ↔ r0(�x, y) = �),
r1↓ ∧ (r1 : Vn+1 → B) ∧ ∀�x, y((C [�x, y] ∨ ¬D[�x, y]) ↔ r1(�x, y) = �)
for closedL◦ terms r0 and r1 chosen according to the previous lemma. Thus,
if E abbreviates ∀�x(A[�x ]↔ B[�x ]), we have

E → ∀�x ∃y(r1(�x, y) = �).
Nowwe set s := ��x.C(�y.r1(�x, y)) and t := ��x.r0(�x, s(�x)). ThenE implies
that s and t are defined and that s is an operation from Vn to V and t one
from Vn to B. In addition, it is easy to check that

E → ∀�x(A[�x ] ↔ t(�x) = �).
Hence t is the required closed term. �
An L◦ formula A is called Δ1 with respect to a theory T iff there exist a
Σ1 formula B and a Π1 formula C , both with the same free variables as A,
such that T proves (A↔ B) and (A↔ C ). IfT is a theory containing OST,
then by combining the previous theorem with (the proof of) Lemma 2.1
it is routine work to check that the term representation can be lifted to all
formulas that are Δ0 in one or several Δ1 formulas with respect to T .
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Corollary 2.3. Assume that T is a theory containing OST and let �u be
the sequence of variables u1, . . . , un and A[�u ] an L◦ formula with at most the
variables �u free that is Δ0 in Δ1 with respect to T . Then there exists a closed
L◦ term t such that T proves

t↓ ∧ (t : Vn → B) ∧ ∀�x(A[�x ] ↔ t(�x) = �).

§3. Relativized application. As standard in set theory we write Ap for the
result of replacing all unbounded quantifiers ∃x(. . .) and ∀x(. . .) in A by
(∃x ∈ p)(. . .) and (∀x ∈ p)(. . .), respectively. However, in contrast to this
usual way of relativizing formulas with respect to a given set p, we now
relativize our L◦ formulas A with respect to a set p and a set q ⊆ p3 to
formulas A(p,q); then p is the new universe and q takes care of application
in the sense described below.

Definition 3.1. For all L◦ terms r and q we define the formula (r ∂ q)
by induction on the complexity of r as follows:

1. If r is a variable or a constant of L◦, then (r ∂ q) := (r = r).
2. If r is the L◦ term r1r2, then

(r ∂ q) := (r1 ∂ q) ∧ (r2 ∂ q) ∧ ∃x(〈r1, r2, x〉 ∈ q)
for some variable x not appearing in r1, r2, q.

Think of q as a ternary relation; then (r ∂ q) formalizes that the L◦ term
r is defined if application within r is treated according to q. For us only such
relations are interesting that are compatible with the real term application.
To single those out, we set

Comp[q] := ∀x∀y∀z(〈x, y, z〉 ∈ q → xy = z).

Furthermore, given an L◦ term or a L◦ formula E , we write VarConE [p] for
the L◦ formula that states that all variables and constants appearing in E are
elements of p. The following observation is a straightforward consequence
of the previous definitions and abbreviations.

Lemma 3.2. OST proves for all L◦ terms r, p, and q:
1. (Comp[q] ∧ (r ∂ q)) → r↓.
2. (VarConr [p] ∧ q ⊆ p3 ∧ Comp[q] ∧ (r ∂ q)) → r ∈ p.
However, observe that in general we may have Comp[q] and r↓, but not
(r ∂ q); so it is possible that term r has a value without being defined in the
sense of q.
In a next step this form of relativizing application via q is combined
with restricting the universe of discourse to p and formulated for arbitrary
formulas of the language L◦. Given L◦ terms p, q and an L◦ formula A, we
call p, q suitable for relativizing A iff the variables appearing somewhere in
p or q are different from those appearing in A.

Definition 3.3. For all L◦ formulas A and all L◦ terms p, q that are
suitable for relativizing A we define the formula A(p,q) by induction on the
complexity of A.
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1. For atomic formulas we set:

(r = s)(p,q) := (r ∂ q) ∧ (s ∂ q) ∧ r = s,
(r ∈ s)(p,q) := (r ∂ q) ∧ (s ∂ q) ∧ r ∈ s,
(r↓)(p,q) := (r ∂ q) ∧ r ∈ p,

Reg(r, s)(p,q) := (r ∂ q) ∧ (s ∂ q) ∧ Reg(r, s).

2. If A is the formula ¬B we set A(p,q) := ¬B (p,q).
3. If A is the formula (B ∨ C ) we set A(p,q) := (B (p,q) ∨ C (p,q)).
4. If A is the formula (∃x ∈ r)B we set

A(p,q) := (r ∂ q) ∧ (∃x ∈ r)B (p,q).
5. If A is the formula ∃xB we set A(p,q) := (∃x ∈ p)B (p,q).
Whenever we write A(p,q) we tacitly assume that p, q are suitable for rela-
tivizingA. This form of relativizing formulas of L◦ has a useful substitution
property.
Lemma 3.4. Let x be a variable that does not occur in theL◦ terms p and q.
Then OST proves for all L◦ terms r and s as well as for all L◦ formulas A:
1. (Comp[q] ∧ (r ∂ q)) → ((s[r/x] ∂ q) ↔ (s ∂ q)[r/x]).
2. (Comp[q] ∧ (r ∂ q)) → (A[r/x](p,q) ↔ A(p,q)[r/x]).
The proof of the first assertion is by straightforward induction on the
complexity of the term s . The second assertion is established by induction
on the complexity of A, employing the first assertion.
In general, the relativizations Ap and A(p,q) have different meanings.
However, there is a special case for which they agree.
Lemma 3.5. If A is an L◦ formula that does not contain terms of the form
st, then OST proves for all L◦ terms p, q that

VarConA[p] → (A(p,q) ↔ Ap).
Now the relation Reg comes into play. Reg(p, q) says that set p is regular
with respect to q and has the following intuitive interpretation: (i) p is a
transitive set containing all constants of L◦ as elements, and q is a ternary
relation on p compatible with the general application; (ii) if application is
interpreted in the sense of q, then p satisfies the axioms of OST; (iii) we
claim a linear ordering of those pairs 〈p, q〉 for which Reg(p, q) holds. To
make this precise, we add to OST additional so-called Reg-axioms. Here
TranCon[p] is short for the L◦ formula stating that p is transitive and
contains all constants of L◦.

V. Axioms for Reg.
(Reg1) Reg(d, e) → (TranCon[d ] ∧ e ⊆ d 3 ∧ Comp[e]).
(Reg2) If A is an applicative axiom, logical operations axiom, or set-

theoretic operations axiom with at most the variables �x free such
that neither the variables d, e appear in the list �x, then

Reg(d, e) → (∀�x ∈ d )A(d,e).
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(Reg3) Reg(d1, e1) ∧ Reg(d2, e2) → d1 ∈ d2 ∨ d1 = d2 ∨ d2 ∈ d1.
(Reg4) Reg(d1, e1) ∧ Reg(d2, e2) ∧ d1 ∈ d2 → e1 ∈ d2 ∧ e1 ⊆ e2.

OST + (Reg) is defined to be OST + (Reg1) + · · · + (Reg4). Con-
sidering the previous lemmas and the Reg-axioms, it is easy to see the
(p, q)-relativizations of all axioms of the logic of partial terms and of all
nonlogical axioms of OST can be proved in OST + (Reg). Therefore, the
following theorem follows by induction on the derivations in OST.

Theorem 3.6. LetA be an L◦ formula with at most �x free such that neither
the variables of p nor those of q appear in the list �x. Then we have that

OST � A =⇒ OST+ (Reg) � Reg(p, q) → (∀�x ∈ p)A(p,q).
Observe that the Reg-axioms only state properties of sets satisfying

Reg(p, q); however, they do not claim that there exist p and q for which
we have Reg(p, q). This can be achieved, for example, by the following
axiom, claiming that the universe of sets is a limit of regulars.

VI. Limit of regulars.

∀x∃y∃z(x ∈ y ∧ Reg(y, z)). (Lim-Reg)

In the following wewriteOST(LR) for the extension ofOST by the axioms
(Reg1)–(Reg4) and (Lim-Reg). As we will see later, OST(LR) is proof-
theoretically equivalent to the theory KPi, which describes a recursively
inaccessible universe.
In setting up this equivalence, the notion “d is admissible” in KPi will be
translated into “there exists an x such that (d, x) is regular” in OST(LR).
Accordingly, we define

Ad◦[d ] := ∃xReg(d, x).
However, before turning to the proof-theoretic analysis of OST(LR) in the
following sections, we consider a property of Ad◦[d ], which will play an
important role later.

Lemma 3.7. In OST(LR) we can prove that

Ad◦[d ] ↔ ∀y∀z(Reg(y, z) ∧ d ∈ y → (∃x ∈ y)Reg(d, x)).
Proof. The direction from left to right follows from (Reg4), the direction
from right to left is a consequence of (Lim-Reg). �
This lemma implies in particular that the formulaAd◦[u] is Δ1 with respect
to OST(LR). In view of Corollary 2.3 we thus have term representations of
all L◦ formulas that are Δ0 in Ad◦.

Theorem 3.8. Let �u be the sequence of variables u1, . . . , un and A[�u ] anL◦

formula with at most the variables �u free that is Δ0 in Ad
◦. Then there exists

a closed L◦ term t such that OST(LR) proves

t↓ ∧ (t : Vn → B) ∧ ∀�x(A[�x ] ↔ t(�x) = �).
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§4. The theories KP, KPi, and related systems. The theory KPi is a well-
known theory of iterated admissible sets that extends Kripke–Platek set
theory with infinity by the additional assertion that every set is contained
in an admissible set.2 The least standard model of KPi is L
0 with 
0 being
the first recursively inaccessible ordinal, and we have the proof-theoretic
equivalences

KPi ≡ Δ12-CA+ (BI) ≡ T0,

where Δ12-CA + (BI) the usual system of second order arithmetic with the
axiom of Δ12-comprehension plus bar induction and T0 is a central sys-
tem of explicit mathematics; cf. Feferman [6], Jäger [10], and Jäger and
Pohlers [16].
The theory KPi can be conveniently formulated in the language L∗ =

L(Ad) that extends our language L of first order set theory by a unary
relation symbol Ad for admissible sets. The terms of L∗ are the variables of
L plus the constant �, and the formulas of L∗ are defined in the usual way,
with Ad(u) considered to be a Δ0 formula of L∗ as well.
The underlying logic of KPi is the classical first order logic with equal-
ity. The nonlogical axioms of KPi comprise the Kripke–Platek axioms, the
Ad-axioms, and the limit axiom for admissibles.

I. Kripke–Platek axioms. They consist of: (i) the extensionality axiom; (ii)
pairing andunion; (iii) the infinity axiom (Inf); (iv)∈-induction for arbitrary
L∗ formulas; (v) Δ0 separation and Δ0 collection, i.e., for all Δ0 formulas
A[u] and B[u, v] of L∗,

∃x∀y(y ∈ x ↔ y ∈ a ∧ A[y]), (Δ0-Sep)

(∀x ∈ a)∃yB[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)B[x, y]. (Δ0-Col)

II. Axioms for Ad.
(Ad1) Ad(d ) → Tran[d ] ∧ � ∈ d .
(Ad2) Ad(d ) → (∀x, y ∈ d )({x, y} ∈ d ∧ ∪x ∈ d ).
(Ad3) IfA is an instance of (Δ0-Sep) or (Δ0-Col)with atmost the variables

�x free, then
Ad(d ) → (∀�x ∈ d )Ad .

(Ad4) Ad(d1) ∧ Ad(d2) → d1 ∈ d2 ∨ d1 = d2 ∨ d2 ∈ d1.
III. Limit of admissibles.

∀x∃y(x ∈ y ∧ Ad(y)). (Lim-Ad)

Kripke–Platek set theory KP is the subsystem of KPi obtained from KPi
by deleting the axiom (Lim-Ad). Clearly, the axioms for Ad imply that every
set satisfying Ad is transitive, contains � and is closed under pairing, union,

2The theoryKPi has been introduced in Jäger [9] and is formulated there as a system above
the natural numbers as urelements. This has some advantages in studying subsystems of KPi.
However, in the presence of full ∈-induction, it is obviously equivalent to our formulation
below.
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Δ0 separation and Δ0 collection. Together with the axiom (Lim-Ad) we thus
know that every model of KPi is an admissible limit of admissibles.
By KPi we denote the subsystem of KPi that is obtained from KPi by
restricting the axioms (Ad3) to formulas ofL, i.e., to formulas not containing
the relation symbolAd. It is easy to see thatKPi is of the same proof-theoretic
strength as KPi. For example, the embedding of Δ12-CA + (BI) into KPi, as
presented in Jäger [11], also works for KPi.
Following standard terminology, we call a formula A of L∗ a Δ(KP)
formula iff there exist a Σ formula B and a Π formula C of L∗, both with
the same free variables as A, such that

KP � (A↔ B) ∧ (A↔ C ).
The constructible hierarchy provides for important examples of Δ(KP) for-
mulas. We cannot introduce it here but refer for all relevant details to, for
example, Barwise [1] or Kunen [19]. All we need is that (a ∈ Lα) states that
the set a is an element of the α-th level Lα of the constructible hierarchy
and (a ∈ L) is short for ∃α(a ∈ Lα); besides that (a <L b) means that
a is smaller than b according to the well-ordering <L on the constructible
universe L. The axiom of constructibility is the statement (V = L), i.e.,
∀x(x ∈ L). It is well-known that the assertions (a ∈ Lα) and (a <L b) are
Δ(KP) formulas. In addition, the theories KP + (V=L) and KPi + (V=L)
are of the same consistency strength as KP and KPi, respectively.
In the following we write d |= �KP� to state that d is a transitive standard
model of KP and refer to Barwise [1] and Probst [20] for details. Then we
set

AdL[d ] := ∃�(Limit[�] ∧ d = L�) ∧ d |= �KP�.
If d satisfies AdL[d ], we call it an L-admissible set. Since KP proves the
equivalence of the assertion ∃�(Limit[�] ∧ d = L�) with

∅ ∈ d ∧ Tran[d ] ∧ (∀x ∈ d )(∃� ∈ d )(x ∈ L� ∧ L� ∈ d ),
we conclude that AdL[d ] is a Δ(KP) formula. The first assertion of the
following lemma is immediate from the definition of AdL, the second follows
from the first and some obvious persistency arguments, and the third is by
an inner model construction; see again [1, 20].

Lemma 4.1.

1. If A is a closed L∗ formula that is provable in KP, then we have that KP
also proves

AdL[d ] → Ad .

2. If A[�u ] is a Δ(KP) formula with at most �u free, then KP proves

AdL(d ) ∧ �a ∈ d → (A[�a ]↔ Ad [�a ]).
3. KPi+ (V=L) � ∀x∃y(x ∈ y ∧ AdL[y]).
Now let P be a fresh n-ary relation symbol and write L∗(P) for the exten-
sion of L∗ by P. We call an L∗(P) formula that contains at most u0, . . . , un
free and that is Δ with respect to KP an n-ary Δ(KP) operator form and let
A[P, u0, . . . , un] range over such forms. Given another formula B[v1, . . . , vn]
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with distinguished variables v1, . . . , vn we write A[B[.], r0, . . . , rn] for the
result of substituting B[s1, . . . , sn] for each occurrence of P(s1, . . . , sn) in
A[P, r0, . . . , rn].
For modeling OST(LR) in KPi we will later work with a specific Δ(KP)
operator form. But first we turn to a central recursion theorem, available for
arbitrary Δ(KP) operator forms.
Theorem 4.2. LetA[P, u0, . . . , un] be an n-ary Δ(KP) operator form. Then
there exists a Σ formula FA[u0, . . . , un] of L∗ with at most u0, . . . , un free such
that FA[u0, . . . , un] is Δ(KP) and KP proves

FA[α, �a] ↔ (�a ∈ Lα+� ∧ A[(∃� < α)FA[�, .], α, �a])
for all ordinals α and sets �a = a1, . . . , an.
Proof. In Jäger and Zumbrunnen [17] it is shown that for every Δ(KP)
operator form A[P, u0, . . . , un] there exists a Σ formula FA[u0, . . . , un] that
satisfies the equivalence stated in our theorem. It is easy to check that this
formula is Δ(KP). �
In view of Lemma 4.1 we can relativize the Δ(KP) formula FA[u0, . . . , un]
that comes with the Δ(KP) operator formA[P, u0, . . . , un] to allL-admissible
sets.
Corollary 4.3. Assume thatA[P, �u ] is an n-ary Δ(KP) operator form and
that FA[�u ] is associated with A[P, �u ] according to the previous theorem. Then
KP proves for all α and �a = a1, . . . , an that

AdL[d ] ∧ α, �a ∈ d → (F dA [α, �a] ↔ FA[α, �a]).

§5. The proof-theoretic strength of OST(LR). In this section we estab-
lish the proof-theoretic equivalence of the theories OST(LR) and KPi by
showing that: (i) KPi can be embedded into OST(LR), and (ii) OST(LR) is
interpretable in KPi+ (V=L).
The first part is easy. Given an L∗ formula A, we write A◦ for the result of
substituting the L◦ formula Ad◦[s] for each occurrence of Ad(s) in A, thus
translating A into an L◦ formula. Then we have the following embedding
result.
Theorem 5.1. For all L∗ formulas A we have that

KPi � A =⇒ OST(LR) � A◦.

Proof. Because of Because of (Reg1)–(Reg3), and (Lim-Reg) it is clear
that the translations of (Ad1), (Ad2), (Ad4), and (Lim-Ad) are provable in
OST(LR). In addition, if A[�u ] is a formula of L with at most �u free and an
axiom of KP, then we know from Feferman [8] and Jäger [12] that

OST � A[�a ]
for all �a. Therefore, by Theorem 3.6 we also have

OST(LR) � Reg(d, e) → (∀�x ∈ d )A(d,e)[�x ]
and in view of Lemma 3.5 even

OST(LR) � Ad◦[d ] → (∀�x ∈ d )Ad [�x ]
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for these A[�u ]. This implies that the translations of the axioms (Ad3)
restricted to L formulas are provable in OST(LR). Of course, also the trans-
lations of ∈-induction for arbitrary L∗ formulas, pairing, union and the role
of � create no problems.
It remains to deal with Δ0 separation and Δ0 collection. Here we have to
keep in mind that the Δ0 formulas of L∗ may contain the relation symbol
Ad, and (sub)formulas of the form Ad(u) are translated into the Σ1 formula
Ad◦[u]. Thus if A is a Δ0 formula of L∗, then A◦ is Δ0 in Ad◦, and it follows
from Theorem 3.8 that A◦ can be represented by a closed term. Taking this
into account, we can validate Δ0 separation and Δ0 collection ofKPi as in the
embedding of Kripke–Platek set theory into OST, which is presented—as
mentioned above—in Feferman [8] and Jäger [12].
So OST(LR) proves A◦ for all axioms of KPi. From that our assertion
follows by straightforward induction on the proof of A in KPi. �
For interpreting OST(LR) in KPi + (V=L) we can follow Jäger [12] and
Jäger and Zumbrunnen [17] to a large part. As there, we begin with some
notational preliminaries:

• For any natural number n greater than 0 and any natural number i
we select Δ0 formulas Tupn[u] and (u)i = v formalizing that u is an
ordered n-tuple and v the projection of u on its i-th component; hence
Tupn(〈u0, . . . , un−1〉) and (〈u0, . . . , un−1〉)i = ui for 0 ≤ i ≤ n − 1.

• Then we fix pairwise different elements k̂, ŝ, �̂, ⊥̂, êl, r̂eg, n̂on, d̂is, ê,
D̂, Û, Ŝ, R̂, and Ĉ of �, making sure that they all do not belong to the
collection of ordered pairs and triples; they will later act as the codes of
the corresponding constants of L◦.

TheL◦ terms kx, sx, sxy, . . .will be codedby the ordered tuples 〈k̂, x〉, 〈̂s, x〉,
〈̂s, x, y〉, . . . of the corresponding form. For example, to satisfy kxy = x we
interpret kx as 〈k̂, x〉, and make sure that the translation of application is so
that “〈k̂, x〉 applied to y” yields x.
Next letP be a fresh 3-place relation symbol and extendL∗ to the language

L∗(P) as above. The following definition introduces the Δ(KP) operator
form A[P, α, u, v, w] which will afterwards lead to the interpretation of the
application relation (uv = w).

Definition 5.2. We choose A[P, α, u, v, w] to be the L∗(P) formula
defined as the disjunction of the following formulas (1)–(29):

(1) u = k̂ ∧ w = 〈k̂, v〉,
(2) Tup2[u] ∧ (u)0 = k̂ ∧ w = (u)1,
(3) u = ŝ ∧ w = 〈̂s, v〉,
(4) Tup2[u] ∧ (u)0 = ŝ ∧ w = 〈̂s, (u)1, v〉,
(5) Tup3[u] ∧ (u)0 = ŝ ∧

(∃x, y ∈ Lα)(P((u)1, v, x) ∧ P((u)2, v, y) ∧ P(x, y, w)),

(6) u = êl ∧ w = 〈êl, v〉,
(7) Tup2[u] ∧ (u)0 = êl ∧ (u)1 ∈ v ∧ w = �̂,
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(8) Tup2[u] ∧ (u)0 = êl ∧ (u)1 /∈ v ∧ w = ⊥̂,
(9) u = r̂eg ∧ w = 〈r̂eg, v〉,
(10) Tup2[u] ∧ (u)0 = r̂eg ∧ (u)1 ∈ Lα+1 \ Lα ∧ v ∈ Lα+� ∧

(u)1 = Lα ∧ AdL[Lα] ∧ v = {〈x, y, z〉 ∈ (u)1 : P(x, y, z)} ∧ w =
�̂,

(11) Tup2[u] ∧ (u)0 = r̂eg ∧ (u)1 ∈ Lα+1 \ Lα ∧ v ∈ Lα+� ∧
((u)1 �= Lα ∨ ¬AdL[Lα] ∨ v �= {〈x, y, z〉 ∈ (u)1 : P(x, y, z)}) ∧
w = ⊥̂,

(12) Tup2[u] ∧ (u)0 = r̂eg ∧ (∃� < α)((u)1 ∈ L�+1\L� ∧ v /∈ L�+�) ∧
w = ⊥̂,

(13) u = n̂on ∧ v = �̂ ∧ w = ⊥̂,
(14) u = n̂on ∧ v = ⊥̂ ∧ w = �̂,
(15) u = d̂is ∧ w = 〈d̂is, v〉,
(16) Tup2[u] ∧ (u)0 = d̂is ∧ (u)1 = �̂ ∧ w = �̂,
(17) Tup2[u] ∧ (u)0 = d̂is ∧ (u)1 = ⊥̂ ∧ v = �̂ ∧ w = �̂,
(18) Tup2[u] ∧ (u)0 = d̂is ∧ (u)1 = ⊥̂ ∧ v = ⊥̂ ∧ w = ⊥̂,
(19) u = ê ∧ w = 〈ê, v〉,
(20) Tup2[u] ∧ (u)0 = ê ∧ (∃x ∈ v)P((u)1, x, �̂) ∧ w = �̂,
(21) Tup2[u] ∧ (u)0 = ê ∧ (∀x ∈ v)P((u)1, x, ⊥̂) ∧ w = ⊥̂,
(22) u = D̂ ∧ w = 〈D̂, v〉,
(23) Tup2[u] ∧ (u)0 = D̂ ∧ w = {(u)1, v},
(24) u = Û ∧ w = ∪v,
(25) u = Ŝ ∧ w = 〈Ŝ, v〉,
(26) Tup2[u] ∧ (u)0 = Ŝ ∧ (∀x ∈ v)(P((u)1, x, �̂)∨P((u)1, x, ⊥̂)) ∧

(∀x ∈ w)(x ∈ v ∧ P((u)1, x, �̂)) ∧
(∀x ∈ v)(P((u)1, x, �̂) → x ∈ w),

(27) u = R̂ ∧ w = 〈R̂, v〉,
(28) Tup2[u] ∧ (u)0 = R̂ ∧ (∀x ∈ v)(∃y ∈ w)P((u)1, x, y) ∧

(∀y ∈ w)(∃x ∈ v)P((u)1, x, y),
(29) u = Ĉ ∧ P(v,w, �̂) ∧ (∀x ∈ Lα)(x <L w → ¬P(v, x, �̂)) ∧

(∀x ∈ Lα)¬P(Ĉ, v, x).
It is easy to see that A[P, α, u, v, w] is a 4-ary Δ(KP) operator form and
deterministic in the following sense: from A[P, α, u, v, w] we can conclude
that exactly one of the clauses (1)–(29) of the previous definition is satisfied
for these α, u, v, and w. Now we recall Theorem 4.2 and associate with the
operator form A[P, α, u, v, w] a Σ formula FA[α, u, v, w], which is Δ(KP),
such that KP—and thus also KPi+ (V=L)—proves

FA[α, a, b, c] ↔ (a, b, c ∈ Lα+� ∧ A[(∃� < α)FA[�, .], α, a, b, c]) (*)

for all ordinals α and all sets a, b, c. Definition 5.2 is similar to a definition
in Jäger and Zumbrunnen [17], but clauses (10)–(12) are new. They entail
the following properties of the formula FA[α, u, v, w].
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Lemma 5.3. For all a, b, c, and α we can prove in KP:

1. FA[α, 〈r̂eg, a〉, b, c] → (c = �̂ ∨ c = ⊥̂).
2. (a ∈ Lα+1 \Lα ∧ b ∈ Lα+�) →

(FA[α, 〈r̂eg, a〉, b, �̂] ∨ FA[α, 〈r̂eg, a〉, b, ⊥̂]).
3. FA[α, 〈r̂eg, a〉, b, �̂] → (a ∈ Lα+1 \ Lα ∧ b ∈ Lα+�).
4. FA[α, 〈r̂eg, a〉, b, �̂] → (a = Lα ∧ AdL[Lα] ∧
b = {〈x, y, z〉 ∈ a : (∃� < α)FA[�, x, y, z]}).

5. (a ∈ Lα+1 \Lα ∧ b ∈ L� \ Lα+�) →
(FA[�, 〈r̂eg, a〉, b, ⊥̂] ∧ ¬∃�FA[�, 〈r̂eg, a〉, b, �̂]).

Proof. Because of (*) the first four assertions follow immediately from
Definition 5.2; observe that only the clauses (10)–(12) of this definition
can apply. If a ∈ Lα+1 \ Lα and b ∈ L� \ Lα+�, then α < � and
FA[�, 〈r̂eg, a〉, b, ⊥̂] follows because of (*) and clause (12). Moreover,
from the third assertion we conclude that there exists no � such that
FA[�, 〈r̂eg, a〉, b, �̂]. Thus we also have the fifth assertion. �
To interpret the application (uv = w) of OST(LR) we finally set

Ap[u, v, w] := ∃�FA[�, u, v, w].
Clearly, an application relation has to be functional in its third argument,
but following Jäger and Zumbrunnen [17] we can easily verify that

KP � ∀x∀y∀z1∀z2(Ap[x, y, z1] ∧ Ap[x, y, z2] → z1 = z2),

and thus this important property is satisfied in KP and KPi+ (V=L). Since
FA[α, u, v, w] is a Σ formula ofL∗,Ap[u, v, w] is upward persistent, and since
FA[α, u, v, w] is also Δ(KP), Corollary 4.3 implies an important property
with respect to relativization to L-admissible sets.

Lemma 5.4. In KP we can prove:

1. (d1 ⊆ d2 ∧ Apd1 [a, b, c]) → Apd2[a, b, c].
2. Apd [a, b, c] → Ap[a, b, c].
3. (AdL[d ] ∧ α, a, b, c ∈ d ) → (FA[α, a, b, c]↔ F dA [α, a, b, c]).
In interpretingOST(LR) inKPi+(V=L) we also have to handle assertions

Reg(d, e) stating that the set d is regular with respect to application in
the sense of e. We do this within KPi + (V=L) by claiming d to be an
admissible setLα andby collecting in e those triples that satisfyAp relativized
to d ,

Ad∗[d, e] := AdL[d ] ∧ e = {〈x, y, z〉 ∈ d : Apd [x, y, z]}.
The clauses (10)–(12) of Definition 5.2 take care of the constant reg, and the
following lemma tells us that Ad∗ and r̂eg appropriately reflect the relation
symbol Reg and the constant reg, respectively, if application is treated in the
sense of Ap.
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Lemma 5.5. For all d , e, and α we can prove in KP+ (V=L):

1. Ap[〈r̂eg, d 〉, e, �̂] ∨ Ap[〈r̂eg, d 〉, e, ⊥̂].
2. (AdL[Lα]∧ d, e ∈ Lα) → (ApLα [〈r̂eg, d 〉, e, �̂]∨ApLα [〈r̂eg, d 〉, e, ⊥̂]).
3. Ad∗[Lα, e] → FA[α, 〈r̂eg, Lα〉, e, �̂].
4. FA[α, 〈r̂eg, d 〉, e, �̂] → (d = Lα ∧ Ad∗[d, e]).
5. Ap[〈r̂eg, d 〉, e, �̂] ↔ Ad∗[d, e].
6. (AdL[Lα] ∧ d, e ∈ Lα) → (Ap[〈r̂eg, d 〉, e, �̂] ↔ ApLα [〈r̂eg, d 〉, e, �̂].
7. (AdL[Lα] ∧ d, e ∈ Lα) → (ApLα [〈r̂eg, d 〉, e, �̂] ↔ Ad∗[d, e]).
Proof. Because of (V=L) we know that there exist ordinals α and � such
that d ∈ Lα+1 \ Lα and e ∈ L� . Hence the first assertion follows from
Lemma 5.3.
To prove the second assertion, assume AdL[Lα] and d, e ∈ Lα . Then there
exists an ordinal � < α for which d ∈ L�+1 \ L� , and we distinguish the
following two cases:

(i) e ∈ L�+�. By Lemma 5.3 we then have
FA[�, 〈r̂eg, d 〉, e, �̂] ∨ FA[�, 〈r̂eg, d 〉, e, ⊥̂]

and thus Lemma 5.4 yields

F LαA [�, 〈r̂eg, d 〉, e, �̂] ∨ F LαA [�, 〈r̂eg, d 〉, e, ⊥̂].
Consequently, we have

ApLα [〈r̂eg, d 〉, e, �̂] ∨ ApLα [〈r̂eg, d 〉, e, ⊥̂].
(ii) e /∈ L�+� . Now we choose an ordinal � < α for which e ∈ L� .
Lemma 5.3 now implies

FA[�, 〈r̂eg, d 〉, e, ⊥̂].
Hence an application of Lemma 5.4 gives us

F LαA [�, 〈r̂eg, d 〉, e, ⊥̂],
and ApLα [〈r̂eg, d 〉, e, ⊥̂] is an immediate consequence.

In both cases (i) and (ii) we have what we want, and the second assertion is
proved.
To show the third assertion we assume Ad∗[Lα, e]. Then we have AdL[Lα]
and

e = {〈x, y, z〉 ∈ Lα : (∃� < α)F LαA [�, x, y, z]}.
Obviously, e ∈ Lα+�. Furthermore, by applyingLemma5.4we can conclude
that

e = {〈x, y, z〉 ∈ Lα : (∃� < α)FA[�, x, y, z]}.
In viewof clause (10) ofDefinition 5.2 and equivalence (*) above this implies
FA[α, 〈r̂eg, Lα〉, e, �̂].
Now we turn to the fourth assertion and assume FA[α, 〈r̂eg, d 〉, e, �̂].
Because of equivalence (*) this implies

〈r̂eg, d 〉, e, �̂ ∈ Lα+� ∧ A[(∃� < α)FA[�, .], α, 〈r̂eg, d 〉, e, �̂].
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Only clause (10) of Definition 5.2 applies, yielding that d = Lα, AdL[d ],
and

e = {〈x, y, z〉 ∈ d : (∃� < α)FA[�, x, y, z]}.
As in the proof of the previous assertion we make use of Lemma 5.4 and
conclude that

e = {〈x, y, z〉 ∈ d : (∃� < α)F dA [�, x, y, z]}.
Thus we have Ad∗[d, e]. This completes the proof of the fourth assertion.
The fifth assertion is an immediate consequence of the third and the fourth.
For proving the sixth assertion we assume AdL[Lα] and d, e ∈ Lα. Then
ApLα [〈r̂eg, d 〉, e, �̂] implies Ap[〈r̂eg, d 〉, e, �̂] according to Lemma 5.4. For
the converse direction we make use of the fact that there exists a � < α such
that d ∈ L�+1 \ L� . From Ap[〈r̂eg, d 〉, e, �̂], the equivalence (*), and Def-
inition 5.2 we thus obtain FA[�, 〈r̂eg, d 〉, e, �̂], hence F LαA [�, 〈r̂eg, d 〉, e, �̂]
according to Lemma 5.4. This means that we also have ApLα [〈r̂eg, d 〉, e, �̂],
finishing the proof of assertion six. Assertions five and six imply the seventh
assertion. �
The next lemma provides further indication that Ad∗ is the adequate ana-
logue in the context of admissible sets of the OST(LR) notion of relativized
regularity.

Lemma 5.6. In KP we can prove:

1. Ad∗[d, e] → Tran[d ] ∧ e ⊆ d 3.
2. Ad∗[d1, e1] ∧ Ad∗[d2, e2] → d1 ∈ d2 ∨ d1 = d2 ∨ d2 ∈ d1.
3. Ad∗[d1, e1] ∧ Ad∗[d2, e2] ∧ d1 ∈ d2 → e1 ∈ d2 ∧ e1 ⊆ e2.
4. Ad∗[d, e] ∧ 〈a, b, c〉 ∈ e → Ap[a, b, c].

Proof. The first and the second assertion follow immediately from the
properties of admissible sets. Since admissibles satisfy Δ0 separation and
because of Lemma 5.4 we have the third assertion. Lemma 5.4 also implies
the fourth assertion. �
Now we give the translation of the formulas of L◦ into formulas of L∗.
As in [17] we first introduce for each L◦ term t an L∗ formula Valt[u],
formalizing that t has the value u if the application ofOST(LR) is interpreted
by Ap. In addition, we also consider a relativized version Valt[d, u] in order
to state that term t has the value u provided that application is interpreted
by Apd ; in all relevant cases d will be admissible.

Definition 5.7. For each L◦ term r and variables u and d not occurring
in r we introduce L∗ formulas Valr [u] and Valr[d, u] that are inductively
defined as follows:

1. If r is a variable or the constant �, then Valr[u] and Valr [d, u] are the
formula (r = u).

2. If r is another constant, then Valr [u] and Valr [d, u] are the formula
(r̂ = u).
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3. If r is the term (st), then we set (for x and y chosen so that they do
not occur in r)

Valr[u] := ∃x∃y(Vals [x] ∧ Valt[y] ∧ Ap[x, y, u]),
Valr [d, u] := (∃x, y ∈ d )(Vals [d, x] ∧ Valt[d, y] ∧ Apd [x, y, u]).

Notice that for every term r of L◦ its translation formula Valr [u] is a Σ
formula of L∗; in general, it is not Δ(KP). The translation formula Valr[d, u]
is the restriction of Varr [u] to d and thus a Δ0 formula of L∗. The following
observation is proved by induction on the buildup of r and an immediate
consequence of the functionality of Ap[u, v, w] in its third argument and of
Lemma 5.4.
Lemma 5.8. KP proves for all L◦ terms r and all variables d :
1. ∀x∀y(Valr[x] ∧ Valr [y] → x = y).
2. ∀x(Valr [d, x]→ Valr [x]).
3. ∀x∀y(Valr[d, x] ∧ Valr [d, y] → x = y).
Clearly, the values of terms also satisfy the following substitution property.
Again, its proof is by induction on the buildup of r.
Lemma 5.9. If all variables of the L◦ term r come from the list u1, . . . , un
and if s is the L◦ term r[t1, . . . , tn/u1, . . . , un], then KP proves

n∧
i=1

Valti [ui ] → ∀x(Valr[x] ↔ Vals [x]).

The above treatments of the application of OST(LR) determine canonical
translations of the formulas of L◦ into formulas of L∗.

Definition 5.10. The translations of anL◦ formulaA into theL∗ formula
A∗ and its relativized version A[d ] are inductively defined as follows.
1. If A is the atomic formula (r = s) we set:

A∗ := ∃x(Valr[x] ∧ Vals [x]),
A[d ] := (∃x ∈ d )(Valr[d, x] ∧ Vals [d, x]).

2. If A is the atomic formula (r ∈ s) we set:
A∗ := ∃x∃y(Valr [x] ∧ Vals [y] ∧ x ∈ y),
A[d ] := (∃x, y ∈ d )(Valr [d, x] ∧ Vals [d, y] ∧ x ∈ y).

3. If A is the atomic formula (r↓) we set:
A∗ := ∃xValr [x] and A[d ] := (∃x ∈ d )Valr[d, x].

4. If A is the atomic formula Reg(r, s) we set:

A∗ := ∃x∃y(Valr [x] ∧ Vals [y] ∧ Ad∗[x, y]),
A[d ] := (∃x, y ∈ d )(Valr[d, x] ∧ Vals [d, y] ∧ Ad∗[x, y]).

5. If A is the formula ¬B we set:
A∗ := ¬B∗ and A[d ] := ¬B [d ].
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6. If A is the formula (B ∨ C ) we set:
A∗ := (A∗ ∨ B∗) and A[d ] := (A[d ] ∨ B [d ]).

7. If A is the formula (∃x ∈ r)B we set:
A∗ := ∃y(Valr [y] ∧ (∃x ∈ y)B∗),

A[d ] := (∃y ∈ d )(Valr[d, y] ∧ (∃x ∈ y)B [d ]).
8. If A is the formula ∃xB we set:

A∗ := ∃xB∗ and A[d ] := (∃x ∈ d )B [d ].
If d is admissible, then A[d ] is equivalent to the restriction of A∗ to d .
Before turning to the proof that this ∗-translation provides an embedding
of OST(LR) into KPi + (V=L), we compile some useful properties con-
cerning substitutions of terms in ∗-translation and the relationship between
∗-translations and [d ]-translations.
Lemma 5.11. LetA be a formula ofL◦ with at most the variables u1, . . . , un
free, let t1, . . . , tn be a list of L◦ terms, and set B := A[t1, . . . , tn/u1, . . . , un].
Then KP proves that

n∧
i=1

Valti [ui ] → (A∗ ↔ B∗).

Furthermore, if A is a formula of L, then KP even proves
n∧
i=1

Valti [ui ] → (A↔ B∗).

These assertions are established by induction onA, usingLemma5.9 in the
case of atomic formulas. The following lemma is proved by straightforward
induction on the complexity of the terms r and the formulas A, respectively.
The previous lemma is useful for handling the first assertion.

Lemma 5.12.

1. Let r be an L◦ term whose variables are from the list �u and let d, e be
variables different from �u. Then KP proves that

(Ad∗[d, e] ∧ �u ∈ d ) → ((r ∂ e)∗ ↔ (∃x ∈ d )Valr [d, x]).
2. Let A be an L◦ formula with at most �u free and let d, e be variables
different from �u. If we set B := A(d,e), then KP proves that

Ad∗[d, e] ∧ �u ∈ d → (B∗ ↔ A[d ]).

In Jäger and Zumbrunnen [17] we have interpreted an operational set
theory into a theory of admissible sets. There we have been working with an
inductive definition for translating application very similar to Definition 5.2.
What is new here are the relation symbol Reg and the constant regwith their
corresponding axioms plus the axiom (Lim-Reg).

Theorem 5.13. If A is an applicative axiom, a basic set-theoretic axiom,
a logical operations axiom, or a set-theoretic operations axiom of OST with
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at most the variables �u free, then KP + (V=L) proves for all variables d, e
different from �u that

Ad∗[d, e] ∧ �u ∈ d → A[d ].

Proof. For the treatment of the logical operations axiom (L3) see
Lemma 5.5. In all other cases we only have to follow [12, 17]. �
Corollary 5.14. If A is any axiom (Reg1)–(Reg4), then KP + (V=L)
proves its translation A∗.
Proof. Clearly, for any variables d and e, Reg(d, e)∗ is (logically equiv-
alent to) the formula Ad∗[d, e]. Hence Lemma 5.6 yields our assertion for
the axioms (Reg1), (Reg3), and (Reg4). To prove our claim for (Reg2), let
A be an applicative axiom, a logical operations axiom or a set-theoretic
operations axiom with at most �u free. In view of the previous theorem and
Lemma 5.12 we know that KP+ (V=L) proves

Ad∗[d, e] ∧ �u ∈ d → B∗

for all d, e not from �u, where B stands for the L◦ formula A(d,e). From this
it follows immediately that KP + (V=L) proves A∗ for all instances A of
(Reg2). �
Theorem 5.15. If A is any axiom of OST(LR), then KPi+ (V=L) proves
its translation A∗.
Proof. As in the proof of Theorem 5.13 we observe that with exception of
the logical operations axiom (L3) the translations of all applicative axioms,
basic set-theoretic axioms, logical operations axioms, and set-theoretic oper-
ations axioms can be proved in KPi + (V=L) as in [12, 17] and that the
provability of the translation of the logical operations axiom (L3) follows
from Lemma 5.5. For the translations of the axioms (Reg1)–(Reg4) see the
previous corollary.
Finally, if A is the axiom (Lim-Reg), then A∗ is equivalent to the formula

∀x∃y∃z(x ∈ y ∧ Ad∗[y, z]).
So given an arbitrary set x, Lemma 4.1 implies the existence of an
L-admissible d such that x ∈ d . Furthermore, by Δ0 separation there also
exists the set

z = {〈u, v, w〉 ∈ d : Apd [u, v, w]},
and thus we have Ad∗[d, z]. Hence also the translation of the axiom
(Lim-Reg) is provable in KPi+ (V=L). �
From this theorem we conclude that the system OST(LR) is interpretable
in the theory KPi + (V=L). Moreover, KPi + (V=L) is conservative over
KPi for formulas which are absolute with respect to KP. Together with
Theorem 5.1 we thus obtain the following final result.

Corollary 5.16. The two theories OST(LR) and KPi are proof-
theoretically equivalent.

In this paper a new form of relativizing operational set theory has been
introduced and, based on that, a natural operational set theory of the same
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proof-theoretic strength as the theoryKPi has been formulated andanalyzed.
The heart of the matter in interpretating OST(LR) into KPi is giving an
inductive definition of the application relation. By restricting this application
relation to suitable sets we then can deal with relativized regularity.
This is just one specific application of this new way of relativizing oper-
ational set theory. A uniform version of the limit axiom (Lim-Reg) will be
discussed elsewhere.
In future work various large cardinal notions will be reexamined under the
perspective this new form of relativizing operational set theory, for example
by adding power set and unbounded existential quantification.
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