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In this paper, an optimized hyper beamforming method is presented based on a hyper beam exponent parameter for receiving
linear antenna arrays using a new meta-heuristic search method based on the Firefly algorithm (FFA). A hyper beam is
derived from the sum and difference beam patterns of the array, each raised to the power of a hyper beam exponent par-
ameter. As compared to the conventional hyper beamforming of the linear antenna array, FFA applied to the hyper beam
of the same array can achieve much more reduction in sidelobe level (SLL) and improved first null beam width (FNBW),
keeping the same value of the hyper beam exponent. As compared to the uniformly excited linear antenna array with inter-
element spacing of l/2, conventional non-optimized hyper beamforming and optimal hyper beamforming of the same
obtained by real-coded genetic algorithm, particle swarm optimization and Differential evolution, FFA applied to the
hyper beam of the same array can achieve much greater reduction in SLL and same or less FNBW, keeping the same
value of the hyper beam exponent parameter. The whole experiment has been performed for 10-, 14-, and 20-element
linear antenna arrays.
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I . I N T R O D U C T I O N

Beamforming is a signal processing technique used to control
the directionality of the transmission and reception of the
radio signals [1]. This is achieved by distributing the elements
of the array in such a way that signals at a particular angle
experience constructive interference, whereas others experience
destructive interference. Beamforming can be used at both
transmitting and receiving ends in order to achieve spatial
selectivity. Hyper beamforming [2] refers to the spatial proces-
sing algorithm used to focus an array of spatially distributed
elements (called sensors) to increase the signal-to-interference
plus noise ratio (SINR) at the receiver. This beamforming pro-
cessing improves significantly the gain of the wireless link over
a conventional technology, thereby increasing range, rate, and
penetration [3–5]. It has found numerous applications in
radar, sonar, seismology, wireless communication, radio
astronomy, acoustics, and biomedicine [6]. It is generally classi-
fied as either conventional (switched and fixed) beamforming
or adaptive beamforming. Switched beamforming system
[7, 8] is a system that can choose one pattern from many pre-
defined patterns in order to enhance the received signals. Fixed
beamforming uses a fixed set of weights and time delays (or
phasing) to combine the signals received from the sensors in

the array, primarily using only information about the locations
of the sensors in space and the wave direction of interest [2].
Adaptive beamforming or phased array is based on the
desired signal maximization mode and interference signal mini-
mization mode [9–11]. It is able to place the desired signal at
the maximum of the main lobe. Hyper beamforming/any
other beamforming offers high detection performance such as
beamwidth, target-bearing estimation and reduces false alarm,
sidelobe suppression. A new optimized hyper beamforming
technique is presented in this paper, and the Firefly algorithm
(FFA) is applied to obtain optimal hyper beam patterns of
linear antenna arrays.

The classical gradient-based optimization methods are not
suitable for optimal design of hyper beamforming of linear
antenna arrays because of the following reasons: (i) highly
sensitive to the starting points when the number of solution
variables and hence the size of the solution space increase,
(ii) frequent convergence to local optimum solution or diver-
gence or revisiting the same suboptimal solution, (iii) require-
ment of continuous and differentiable objective function, (iv)
requirement of the piecewise linear cost approximation (linear
programming), and (v) problem of convergence and algor-
ithm complexity (non-linear programming). Hence, evol-
utionary methods have been employed for the optimal
design of hyper beamforming of linear antenna arrays with
better parameter control.

Different evolutionary optimization algorithms such as
simulated annealing algorithm [12], genetic algorithm (GA)
[13–17] etc. have been widely used for the synthesis of
design methods capable of satisfying the constraints. When
considering the global optimization methods for antenna
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arrays design, GA seems to be the promising one. Although
standard GA [here referred to as real-coded genetic algorithm
(RGA)] has a good performance for finding the promising
regions of the search space, however, finally, the RGA is
prone to revisiting the same suboptimal solutions.

Particle swarm optimization (PSO) is an evolutionary
algorithm developed by Kennedy and Eberhart [18]. PSO is
simple to implement and its convergence may be controlled
via a few parameters [19–27]. The limitations of the conven-
tional PSO are that it may be influenced by premature conver-
gence and stagnation problem.

The Differential evolution (DE) algorithm was first intro-
duced by Storn and Price in 1995 [28]. Like the RGA, it is a
randomized stochastic search technique enriched with the
operations of crossover, mutation and selection [29–39] and
prone to premature convergence and stagnation. Hence, to
enhance the performance of the optimization algorithms in
global search (exploration stage) as well as local search
(exploitation stage), an alternative technique such as FFA
[40–44] has been suggested for the optimization of hyper
beamforming in this paper.

The rest of the paper is arranged as follows. In Section II,
the design equations of hyper beamforming of linear
antenna array are formulated. Section III briefly discusses
the evolutionary techniques RGA, PSO, DE, and FFA
employed for the designs of linear antenna arrays. Section
IV describes the simulation results obtained by using the tech-
niques. Finally, Section V concludes the paper.

I I . D E S I G N E Q U A T I O N S

In hyper beamforming for linear antenna array the inter-
element spacing of l/2 in either direction is considered. The
sum beam can be created by summation of the absolute
values of complex left and right half beams, as shown in
Fig. 1. The difference beam is the absolute magnitude of the
difference of complex right beam half beam and left half
beam signals. Furthermore, the difference beam has a
minimum in the direction of the sum beam at zero degree
as shown in Fig. 2. The resulting hyper beam is obtained by
subtraction of the sum and the difference beams, each raised
to the power of the exponent u.

Consider a broadside linear array of N equally spaced isotro-
pic elements as shown in Fig. 3. The array is symmetric in both
geometry and excitation with respect to the array center [2].

For broadside beams, the array factor is given in (1) [7].

AF(u) =
∑N

n=1

Inej(n−1)Kd [ sin u cosw−sin u0 cosw0], (1)

where u is the angle of radiation of electromagnetic plane
wave; u0 is the angle where the highest maximum of the
angle is attained in u [ [2p/2, p/2]; d is the spacing
between elements; K is the propagation constant; N is thetotal
number of elements in the array; and In is the excitation
amplitude of the nth element.

In this case, for the linear antenna arrays f0 ¼ 0. The
equations for the creation of the sum, difference and simple
hyper beam patterns in terms of two half beams are as
follows (2) (3) [2]:

Sum pattern, Sum(u) = RL| | + RR| |; (2)

Difference pattern, Diff (u) = RL − RR| |; (3)

where

RL =
∑N/2

n=1

Inej(n−1)Kd [ sin u cosw−sin u0 cosw0],

RR =
∑N

n=N/2+ 1

Inej(n−1)Kd [ sin u cosw−sin u0 sinw0].

Fig. 1. Sum beam pattern for the 10-element linear array for u ¼ 1.

Fig. 2. Difference beam pattern for the 10-element linear array for u ¼ 1.

Fig. 3. Geometry of an N-element linear array along the x-axis.
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The hyper beam is obtained by subtraction of the sum and
difference beams, each raised to the power of the exponent u;
the general equation of the hyper beam is a function of the
hyper beam exponent u given in (4) [2].

AFHyper(u) = RL| | + RR| |( )u− RL − RR| |( )u{ }1/u, (4)

where u ranges from 0.2 to 1. If u lies below 0.2, the hyper
beam pattern will contain a large spike height at the peak of
the main beam without changing the overall hyper beam
pattern. If u is more than 1, the sidelobes of the hyper beam
will be more as compared to those of the conventional radi-
ation pattern.

All of the antenna elements are assumed to be isotropic.
Only amplitude excitations and inter-element spacing are
used to change the antenna radiation pattern. The cost func-
tion (J) for improving the sidelobe level (SLL) of the radiation
pattern of the hyper beam linear antenna arrays is given in (5).

J = Max|AFHyper(umsl1, In)|/|AFHyper(u0, In)|
+ Max|AFHyper(umsl2, In)|/|AFHyper(u0, In)|. (5)

umsl1 is the angle where the maximum sidelobe
AFHyper(umsl1, In) is attained in the lower band of the hyper
beam pattern. umsl2 is the angle where the maximum sidelobe
AFHyper(umsl2, In) is attained in the upper side band of the
hyper beam pattern. In J, both the numerator and the denomi-
nator are in absolute magnitude. Minimization of J means
maximum reduction of SLL. RGA, PSO, DE, and FFA are
employed individually for minimization of J by optimizing
the current excitation weights of the elements and inter-
element spacing. Results of the minimization of J and SLL
are described in Section IV.

I I I . O P T I M I Z A T I O N T E C H N I Q U E S
E M P L O Y E D

A) Real coded genetic algorithm
RGA is mainly a probabilistic search technique, based on the
principles of natural selection and evolution. At each gener-
ation, it maintains a population of individuals where each
individual is a coded form of a possible solution of the
problem at hand called chromosome. Chromosomes are con-
structed over some particular alphabet, e.g., the binary alpha-
bet {0, 1}, so that chromosomes’ values are uniquely mapped
onto the real decision variable domain. Each chromosome is
evaluated by a function known as cost function, which is
usually the objective function of the corresponding optimiz-
ation problem [13–17]. The basic steps of RGA are shown
in Table 1.

B) Particle swarm optimization
PSO is a flexible, robust population-based stochastic search or
optimization technique with implicit parallelism, which can
be easily handled with non-differential objective functions,
unlike traditional gradient-based optimization methods.
PSO is less susceptible to getting trapped on local optima
unlike GA, simulated annealing, etc. Kennedy and Eberhart
[18] developed a PSO concept similar to the behavior of a

swarm of birds [19–27]. PSO is developed through a simu-
lation of bird flocking and fish schooling in multi-dimensional
space. Bird flocking optimizes a certain objective function.
Each particle knows its best value so far (pbest). This infor-
mation corresponds to the personal experiences of each par-
ticle. Moreover, each particle knows the best value so far in
the group (gbest) among all of the pbests. Namely, each par-
ticle tries to modify its position using the following
information:

† The distance between the current position and the pbest.
† The distance between the current position and the gbest.

Mathematically, the velocities of the vectors are modified
according to the following equation:

Vk+1
i = CFa × (wk+1 ∗ Vk

i + C1 ∗ rand1 ∗ (pbesti − Sk
i )

+ C2 ∗ rand2 ∗ (gbestk − Sk
i )), (6)

where Vi
k is the velocity of vector i at iteration k; w is the

weighting function; C1 and C2 are called social and cognitive
constants, respectively; randi is the random number between
0 and 1; Si

k is the current position of vector i at iteration k;
pbesti is the pbest of vector i; gbestk is the gbest of the group
of vectors at iteration k. The first term of (6) is the previous
velocity of the vector. The second and third terms are used
to change the velocity of the vector. Without the second and
third terms, the vector will keep “flying” in the same direction
until it hits the boundary. The parameter w corresponds to a
kind of inertia and tries to explore new areas. Here, the vector
is termed for the string of real current excitation weight coef-
ficients (N number) and uniform inter-element spacing (01
number). Total variables ¼ nvar ¼ N + 1 in each vector.
Normally, C1 ¼ C2 ¼ 1.5–2.05 and the Constriction Factor
(CFa)is given in (7).

CFa = 2

2 − w− ���������
w2 − 4w

√∣∣ ∣∣ , (7)

where

w = C1 + C2 and w . 4. (8)

For C1 ¼ C2 ¼ 2.05, the computed value of CFa ¼ 0.73.

Table 1. Steps for the RGA.

Step 1 Initialize the real chromosome strings of the np population,
each consisting of a set of coefficients of current excitation
weights and inter-element spacing J

Step 2 Decoding the strings and evaluation of each string
Step 3 Selection of elite strings in order of increasing J values from

the minimum value
Step 4 Copying the elite strings over the non-selected strings
Step 5 Crossover and mutation generate the off-springs
Step 6 Genetic cycle updation
Step 7 The iteration stops when the maximum number of cycles is

reached. The grand minimum J and its corresponding
chromosome string or the desired solution of coefficients
of optimal current excitation weights and optimal
inter-element spacing are finally obtained
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The best values of C1, C2, and CFa are found to vary with
the design sets (Table 2).

Inertia weight (wk+1) at (k + 1)th cycle is given in (9).

wk+1 = wmax −
wmax − wmin

kmax
× (k + 1), (9)

where wmax ¼ 1.0; wmin ¼ 0.4; kmax ¼ maximum number of
iteration cycles. The searching point/updated vector in the sol-
ution space can be modified by (10).

Sk+1
i = Sk

i + Vk+1
i . (10)

C) DE algorithm
The crucial idea behind the DE algorithm [28–39] is a scheme
for generating trial parameter vectors and adds the weighted
difference between two population vectors to a third one.
Like any other evolutionary algorithm, the DE algorithm
aims at evolving a population of NP, D-dimensional parameter
vectors, so-called individuals, which encode the candidate sol-
utions, i.e.,

xi,g
�� = x1,i,g , x2,i,g , ..., xD,i,g

{ }
, (11)

where i ¼ 1, 2, 3,. . ., NP. The initial population (at g ¼ 0)
should cover the entire search space as much as possible by
uniformly randomizing the individuals within the search
constrained by the prescribed minimum and maximum
parameter bounds: �xmin = x1,min, ..., xD,min

{ }
and �xmax =

x1,max , ..., xD,max
{ }

.

For example, the initial value of the jth parameter of the ith
vector is

xj,i,0 = xj,min + rand 0, 1( ) ∗ xj, max − xj,min
( )

, (12)

where j ¼ 1, 2, 3,. . ., D.
The random number generator, rand (0,1), returns a uni-

formly distributed random number from within the range
[0,1]. After initialization, DE enters a loop of evolutionary
operations: mutation, crossover, and selection.

1) mutation

Once initialized, DE mutates and recombines the population
to produce new population. For each trial vector xi, g at
generation g, its associated mutant vector �vi,g =

v1,i,g , v2,i,g , ..., vD,i,g
{ }

can be generated via a certain mutation
strategy. Five most frequently used mutation strategies in the
DE codes are listed as follows:

"DE/rand/1":�vi,g = �xr′1,g + F �xr′2,g − �xr′3,g

( )
, (13)

"DE/best/1":�vi,g = �xbest,g + F �xr′1,g − �xr′2,g
( )

, (14)

"DE/rand − to − best/1":�vi,g = �xi,g + F �xbest,g − �xi,g
( )

+ F �xr′1,g − �xr′2,g
( )

,
(15)

"DE/best/2":�vi,g = �xbest,g + F �xr′1,g − �xr′2,g
( )

+ F �xr′3,g − �xr′4,g

( )
,

(16)

"DE/rand/2": v�i,g = �xr′1,g + F �xr′2,g − �xr′3,g

( )

+ F �xr′4,g − �xr′5,g

( )
.

(17)

The indexes r1
′ , r2

′ , r3
′ , r4

′ , and r5
′ are mutually exclusive inte-

gers randomly chosen from the range [1, NP], and all are
different from the base index i. These indexes are randomly
generated once for each mutant vector. The scaling factor F
is a positive control parameter for scaling the difference
vector. xbest,g is the best individual vector with the best
fitness value in the population at generation “g”. In the
present work, (15) has been used.

2) crossover

To complement the differential mutation search strategy, a
crossover operation is applied to increase the potential diver-
sity of the population. The mutant vector vi,g exchanges its
components with the target vector xi,g to generate a trial
vector:

�ui,g = u1,i,g , u2,i,g , ..., uD,i,g
{ }

. (18)

Table 2. Steps for PSO.

Step 1 Initialization: Population (swarm size) of particle vectors,
nP ¼ 120; maximum iteration cycles ¼ 100; N number of
current excitation weights and one number uniform
inter-element spacing, total optimizing coefficients equal
nvar ¼ N + 1; fixing values of C1, C2 as 1.5; minimum
and maximum values of current excitation coefficients,
Imin ¼ 0, Imax ¼ 1; minimum and maximum values of
inter-element spacing, dmin ¼ 0.5l, dmax ¼ l;
initialization of the velocities of all of the particle vectors

Step 2 Generation of initial particle vectors, each vector consisting
of current excitation weights and uniform inter-element
spacing randomly with limits; computation of initial J
values of the total population, nP

Step 3 Computation of population based minimum J value and
computation of the personal best solution vectors ( pbest),
group best solution vector (gbest)

Step 4 Updating the velocities as per (6); updating the particle
vectors as per (10) and checking against the limits of
current excitation weights coefficients and one number
uniform inter-element spacing; finally, computation of the
updated J values of the particle vectors and
population-based minimum J value

Step 5 Updating the pbest vectors, gbest vector; reuse of the updated
particle vectors as initial particle vectors for step 4

Step 6 Iteration continues from step 4 till the maximum iteration
cycles or the convergence of minimum J values; finally, gbest
is the vector of optimal current excitation weights
(N number) and uniform inter-element spacing (01 number)
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In the basic version, DE employs the binomial (uniform)
crossover defined as

uj,i,g =
vj,i,g , if (randi,j 0, 1( ) ≤ Cr or j = jrand

)
,

xi,j,g , otherwise,

{
(19)

where j ¼ 1, 2,. . ., D.
The crossover rate Cr is user-specified constant within the

range (1,0), which controls the fraction of parameter values
copied from the mutant vector. jrand is a randomly chosen
integer in the range [1,D]. The binomial crossover operator
copies the jth parameter of the mutant vector �vi,g to the corre-
sponding element in the trial vector �ui,g if randi,j(0,1) ≤ Cr or
j ¼ jrand. Otherwise, it is copied from the corresponding target
vector �xi,g .

3) selection

To keep the population size constant over subsequent gener-
ations, the next step of the algorithm calls for selection to
determine whether the target or the trial vector survive to
the next generation, i.e., at g ¼ g + 1. The selection operation
is described in (20):

�xi,g+1 =
�ui,g , if f �ui,g

( )
≤ f �xi,g

( )
,

�xi,g , otherwise,

{
(20)

where f (x) is the J (in this work) to be minimized. Hence, if
the new vector yields an equal or lower value of J, it replaces
the corresponding target vector in the next generation; other-
wise, the target is retained in the population. Hence, the popu-
lation either gets better (with respect to the minimization of
the cost function) or remains the same in fitness status, but
never deteriorates.

The above three steps are repeated generation after gener-
ation until some specific termination criteria are satisfied.

4) control parameter selection of de

Proper selection of control parameters is very important for
the success and performance of an algorithm. The optimal
control parameters are problem-specific. Therefore, the set
of control parameters that best fit each problem have to be
chosen carefully. Values of F lower than 0.3 may result in pre-
mature convergence, while values greater than 1 tend to slow
down the convergence speed. Large populations help maintain
diverse individuals, but also slow down convergence speed. In
order to avoid premature convergence, F or NP should be
increased or Cr should be decreased. Larger values of F
result in larger perturbations and better probabilities to
escape from the local optima, while lower Cr preserves more
diversity in the population, thus avoiding the local optima.

5) Algorithmic description of DE
Step 1. Generation of initial population: Set the generation
counter g ¼ 0 and randomly initialize the D-dimensional
Np individuals (parameter vectors/target vectors), �xi,g =

x1,i,g , x2,i,g , ..., xD,i,g
{ }

, where i ¼ 1,2,3,. . .,NP. The initial
population (at g ¼ 0) should cover the entire search space as
much as possible by uniformly randomizing the individuals
within the search constrained by the prescribed minimum
and maximum parameter bounds: �xmin = x1,min, ..., xD,min

{ }
and �xmax = x1,max , ..., xD,max

{ }
.

Step 2. Mutation: For i ¼ 1 to NP, generate a mutated
vector, �vi,g = v1,i,g , v2,i,g , ..., vD,i,g

{ }
corresponding to the

target vector �xi,g via mutation strategy (15).
Step 3. Crossover: Generation of a trial vector �ui,g for

each target vector �xi,g , where �ui,g = u1,i,g , u2,i,g , ..., uD,i,g
{ }

.
for i ¼ 1 to NP; jrand ¼ [rand(0,1)∗D]; for j ¼ 1 to D.

uj,i,g =
vj,i,g , if randi,j 0, 1( ) ≤ Cr or j = jrand

( )
,

xi,j,g , otherwise.

{

Step 4. Selection: for i ¼ 1 to NP,

�xi,g+1 =
�ui,g , if f �ui,g

( )
≤ f �xi,g

( )
,

�xi,g , otherwise.

{

Increment the generation count g ¼ g + 1.

D) Firefly algorithm
FFA, developed by Yang [40], is inspired by the flash pattern
and characteristics of fireflies. The basic rules for the FFA are:

† All of the fireflies are unisex so that one firefly will be
attracted to other fireflies regardless of their sex.

† Attractiveness is proportional to their brightness, thus for
any two flashing fireflies, the less bright one will move
toward the brighter one, and the brightness decreases as
their distance increases. If there is no brighter one than a
particular firefly, it will move randomly.

† The brightness of a firefly is affected or determined by the
landscape of the cost function. For a minimization
problem, the brightness can simply be inversely pro-
portional to the value of the cost function. In this work,
the cost function is J.

In the simplest case for the minimization optimization pro-
blems, the brightness B of a firefly at a particular location x can
be chosen as B(x) ¼ 1/f(x), where f(x) is J in this work.
However, the attractiveness b is relative; it should be seen in
the eyes of the beholder or judged by the other fireflies.
Thus, it will vary with the distance rij between firefly i and
firefly j. For a given medium with a fixed light absorption coef-
ficient,g, the light intensity varies with the distance r. That is

B = B0e−gr , (21)

where B0 is the original light intensity; r is the Euclidean dis-
tance between the fireflies. As a firefly’s attractiveness is pro-
portional to the light intensity seen by adjacent fireflies, the
attractiveness/repulsiveness b of a firefly can be defined by

b = b0e−gr2
, (22)

where b0 is the attractiveness (positive sign)/repulsiveness
(negative sign) at r ¼ 0.

The distance between any two fireflies i and j at xi and xj,
respectively, is the Euclidean distance.

rij = xi − xj

∥∥ ∥∥ =

������������������∑D

k=1

xi,k − xj,k
( )2

√√√√ , (23)
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where xi,k is the kth component of the special coordinate xi of
the ith firefly; D is the dimension of each xi and xj.

The movement of a firefly i is attracted by another more
attractive (brighter) firefly j or repelled by more repulsive
(less bright) firefly j and is determined by

xi = xi + b0e−gr2
ij (xj − xi) + a rand − 1

2

( )
(24)

where the second term is due to the attraction or repulsion.
The third term is randomized with a control parameter a,
which makes the exploration of search space more efficient.
Usually, b0 ¼ 1, a [ [0,1] for most applications. By adjusting
the parameters g, a and b0, the performance of the algorithm
can be improved.

Steps of FFA are as follows:

Step 1: Generate initial firefly vectors xi ¼ (xi1,. . .,xiD) (i ¼
1,. . .,120), where D ¼ N + 1 (N element excitations I [ [0,1]
plus the common inter-element spacing d [ [l/2,l]). Set the
maximum allowed number of iterations to 100. b0 ¼ 0.6, g ¼
0.2, and a ¼ 0.01 (these values, and the population size, 120,
were determined as optimal in a series of 30 preliminary trials.
Step 2: Computation of initial J of the total population.
Step 3: Computation of the initial population based best sol-
ution (gbest) vector corresponding to the historical population
best and least J value.
Step 4: Update the firefly positions:

(a) Compute the square root (rsqrt) of the Euclidean dis-
tance between the first particle vector and the second
particle vector as per (23).

(b) Compute b with the help of b0 as per (22).
(c) If J of second particle is ,J of first particle, then, update

the first particle as per (24) with +b0 (case of attrac-
tion), otherwise with 2b0 (case of repulsion).

I V . N U M E R I C A L R E S U L T S

Each algorithm was run 100 times to get its best solutions. The
best results are reported in this work. Population size chosen
for RGA, PSO, DE, and FFA is 120. Best control parameters
for the RGA are: Crossover rate ¼ 0.8; Crossover taken is
two point crossover; mutation rate ¼ 0.05; type of mutation
is Gaussian mutation; selection, probability ¼ Roulette
wheel, 1/3. Best control parameters for PSO are: C1, C2 ¼

1.5, 1.5; vi
min, vi

max ¼ 0.01, 1.0; wmax, wmin ¼ 1.0, 0.4. Best par-
ameters for DE are: Cr ¼ 0.3; F ¼ 0.5. Best parameters for FFA
are: a,g, b0 ¼ 0.01, 0.2, 0.6. These best parameters have been
determined after 30 trial runs of each algorithm.

A) Analysis of radiation patterns of hyper
beam without optimization
This section gives the experimental results for various hyper
beams of non-optimized linear antenna array designs. Three
linear antenna array designs considered are of 10-, 14-, and
20-element sets, each maintaining uniform inter-element
spacing. Reduction of main beam width [first null beam
width (FNBW)] and SLL can be controlled by varying the
hyper beam exponent value u, thereby obtaining different
hyper beam patterns. The results show that the SLL reduction
increases as the exponent value u decreases. For 10-, 14-, and

20-element linear arrays, with u ¼ 1, SLL reductions are
219.91, 220.10, and 220.20 dB, respectively, whereas with
u ¼ 0.5, the SLL reduces to 232.78, 233.02, and
233.20 dB, respectively, as shown in Figs 4–9 and Table 3.
The uniform linear array shows the respective SLL values as
212.97, 213.11, and 213.20 dB. Therefore, the optimization
technique applied to the hyper beam yields much more
reduction of SLL in comparison to that of the uniform
linear array and non-optimized hyperbeam case. Main beam
width (FNBW) remains unaltered or has been improved for
all of the cases of FFA unlike RGA, DE, and PSO.

B) Analysis of radiation patterns of hyper
beam with optimization by RGA, PSO,
DE, and FFA
This section gives the experimental results for various opti-
mized hyper beam antenna array designs obtained by the
RGA, PSO, DE, and FFA techniques. The parameters of the
RGA, PSO, DE, and FFA are set after many trial runs. It is
found that the best results are obtained for the initial popu-
lation (np) of 120 chromosomes and maximum number of
generations, Nm as 100. With the RGA, for selection oper-
ation, the method of natural selection is chosen with a selection
probability of 0.3. Crossover is randomly selected as a dual
point. The Crossover ratio is 0.8. Mutation probability is
0.05. Each RGA, PSO, DE, and FFA technique individually
generates a set of optimized, non-uniform current excitation
weights, and optimal uniform inter-element spacing for same
three sets of linear antenna arrays. Tables 4 and 5 show the
SLL, FNBW, and optimal current excitation weights with the
hyper beam exponent values u ¼ 0.5, and u ¼ 1, respectively,
for the optimally excited hyper beam linear antenna array
with optimized uniform inter-element spacing (d [ [l/2,l])
using RGA, PSO, DE, and FFA. Figures 4–9 depict the radi-
ation patterns of linear antenna arrays with the exponent
values u ¼ 0.5 and u ¼ 1 for sets of 10, 14, and 20 number
of elements, respectively, with optimized non-uniform exci-
tations and optimized fixed inter-element spacing, as obtained
by the techniques. Figures clearly show improvement of SLL
and FNBW by optimization of hyper beam.

1) analysis of radiation patterns of hyper

beam with u ¼ 0.5 and optimization by rga,

pso, de, and ffa

The following observations are made from Table 4, in which
the exponent value u ¼ 0.5. For the 10-element array, RGA,
PSO, DE, and FFA yield SLL values 2100.6, 2117.2,
2151.9, and 2168.5 dB, respectively, of the optimized
hyper beam pattern against the SLL of 232.78 dB of the non-
optimized hyper beam pattern. Similarly, for the same array,
RGA, PSO, DE, and FFA yield FNBW values 41.048, 39.608,
34.568, and 26.648, respectively, of the optimized hyper
beam pattern against the FNBW of 33.128 of the non-
optimized hyper beam pattern. For the 14-element array,
RGA, PSO, DE, and FFA yield SLL values 296.21, 2113,
2125.8, and 2149.7 dB, respectively, of the optimized
hyper beam pattern against the SLL of 233.02 dB of the non-
optimized hyper beam pattern. Similarly, for the same array,
RGA, PSO, DE, and FFA yield FNBW values 25.928, 25.208,
23.048, and 20.168, respectively, of the optimized hyper
beam pattern against the FNBW of 23.048 of the non-
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optimized hyper beam pattern. For the 20-element array,
RGA, PSO, DE, and FFA yield SLL values 283.69, 288.71,
2101.9, and 2115.1 dB, respectively, of the optimized
hyper beam pattern against the SLL of 233.20 dB of the non-
optimized hyper beam pattern. Similarly, for the same array,
RGA, PSO, DE, and FFA yield FNBW values 19.448, 18.728
and 188, 11.528, respectively, of the optimized hyper beam
pattern against the FNBW of 16.568 of the non-optimized
hyper beam pattern. The figures as well as Tables clearly

show improvement of the SLL and FNBW by FFA-based
optimization.

2) analysis of radiation patterns of hyper

beam with u ¼ 1 and optimization by rga, pso,

de, and ffa

The following observations are made from Table 5, in
which the exponent value u ¼ 1. For the 10-element

Fig. 5. Best array pattern found by the FFA for the 14-element array with improved SLL and FNBW at u ¼ 0.5.

Fig. 4. Best array pattern found by the FFA for the 10-element array with improved SLL and FNBW at u ¼ 0.5.
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array, RGA, PSO, DE, and FFA yield SLL values 246.76,
258.88, 264.57, and 289.33 dB, respectively, of the opti-
mized hyper beam pattern against the SLL of 219.91 dB
of the non-optimized hyper beam pattern. Similarly, for
the same array, RGA, PSO, DE, and FFA yield FNBW
values 36.72, 35.28, 34.56, and 30.968, respectively, of the
optimized hyper beam pattern against the FNBW of
33.128 of the non-optimized hyper beam pattern. For the

14-element array, RGA, PSO, DE, and FFA yield SLL
values 246.76, 251.4, 261.71, and 272.93 dB, respect-
ively, of the optimized hyper beam pattern against the
SLL of 220.10 dB of the non-optimized hyper beam
pattern. Similarly, for the same array, RGA, PSO, DE,
and FFA yield FNBW values 25.208, 24.488, 23.768, and
19.448, respectively, of the optimized hyper beam pattern
against the FNBW of 23.048 of the non-optimized hyper

Fig. 6. Best array pattern found by the FFA for the 20-element array with improved SLL and FNBW at u ¼ 0.5.

Fig. 7. Best array pattern found by the FFA for the 10-element array with improved SLL and FNBW at u ¼ 1.

188 gopi ram et al.

https://doi.org/10.1017/S175907871300086X Published online by Cambridge University Press

https://doi.org/10.1017/S175907871300086X


beam pattern. For the 20-element array, RGA, PSO, DE,
and FFA yield SLL values 242.85, 252.97, 261.19, and
273.24 dB, respectively, of the optimized hyper beam
pattern against the SLL of 220.20 dB of the non-optimized
hyper beam pattern. Similarly, for the same array, RGA,
PSO, DE, and FFA yield FNBW values 18.728, 188,
17.288, and 13.688, respectively, of the optimized hyper
beam pattern against the FNBW of 16.568 of the

non-optimized hyper beam pattern. The figures as well as
Tables clearly depict improvement of the SLL and FNBW
by FFA-based optimization.

The FFA efficiently computes N number of near global
optimal current excitation weights and one number optimal
uniform inter-element separation for each hyper beam linear
antenna array to have maximum SLL reduction and improved
FNBW.

Fig. 8. Best array pattern found by the FFA for the 14-element array with improved SLL and FNBW at u ¼ 1.

Fig. 9. Best array pattern found by the FFA for the 20-element array with improved SLL and FNBW at u ¼ 1.
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Table 3. Initial values of SLL and FNBW for uniform linear array having uniform excitation (In ¼ 1) and d ¼ l/2 inter-element spacing.

N SLL (dB) for uniform
linear array with
(In 5 1) and
d 5 l/2

SLL of hyper beam
non-optimized (dB)
at u 5 0.5, (In 5 1)
and d 5 l/2

SLL of hyper beam
non-optimized (dB)
at u 5 1, (In 5 1)
and d 5 l/2

FNBW (deg) for
uniform linear array
with (In 5 1)
and d 5 l/2

FNBW of hyper beam
non-optimized (deg)
at u 5 0.5, (In 5 1)
and d 5 l/2

FNBW of hyper beam
non-optimized (deg)
at u 5 1, (In 5 1)
and d 5 l/2

10 212.97 232.78 219.91 33.12 33.12 33.12
14 213.11 233.02 220.10 23.04 23.04 23.04
20 213.20 233.20 220.20 16.56 16.56 16.56

Table 4. SLL, FNBW, optimal current excitation weights, and optimal inter-element spacing for hyper beam pattern of linear array with hyper beam
exponent (u ¼ 0.5), obtained by RGA, PSO, DE, and FFA for different sets of arrays.

N Algorithms Optimized current excitation weights
and [I1, I2, I3, I4. . .. . ..IN]

Optimal
inter-element
spacingIn (l)

SLL of hyper
beam with
optimization (dB)

FNBW of hyper
beam with
optimization
(deg)

10 GA 0.2844 0.5240 0.8813 0.9032 0.5441 2100.6 41.04
0.4231 0.8425 0.4564 0.6402
0.3414 0.3853

PSO 0.2398 0.6414 0.9123 0.9722 0.5717 2117.2 39.60
0.4312 0.9502 0.4327 0.6582
0.3571 0.3982

DE 0.1029 0.3802 0.6258 0.9394 0.8470 2151.9 34.56
0.7907 1.0000 0.5211 0.5538
0.2118 0.2156

FFA 0.2490 0.4210 0.1819 0.6099 0.9460 2168.5 26.64
0.8929 0.5685 0.6123 0.6745
0.3250 0.1579

14 GA 0.3631 0.2555 0.4905 0.0043 0.5878 296.21 25.92
0.6114 0.5778 0.8634 0.5042
0.5782 0.5913 0.7502 0.5545
0.2878 0.3431

PSO 0.2319 0.1857 0.6027 0.5089 0.6036 2113 25.20
0.7906 0.4163 0.6275 0.7212
0.9097 0.2907 0.2525 0.2755
0.5506 0.3615

DE 0.2297 0.3701 0.3080 0.2229 0.7949 2125.8 23.04
0.6599 0.9495 0.6941 0.8597
0.4157 0.7559 0.7305 0.2389
0.3759 0.0982

FFA 0.3124 0.3709 0.5444 0.3167 0.8760 2149.7 20.16
0.8885 0.9115 0.9869 0.9916
0.9243 0.6967 0.9560 0.4002
0.1592 0.1990

20 GA 0.2505 0.3933 0.4881 0.4829 0.5361 283.69 19.44
0.3027 0.6697 0.3436 0.9551
0.5974 0.8952 0.5252 0.9773
0.4056 0.6612 1.0000 0.1577
0.8144 0.3284 0 0.5558

PSO 0.1675 0.2453 0.2113 0.5168 0.5353 288.71 18.72
0.6011 0.5661 0.7962 0.2148
0.8279 0.2476 0.9888 0.3429
0.8064 0.1836 0.2281 0.1792
0.4317 0.6579 0.2244 0.3467

DE 0.1567 0.1345 0.5561 0.4817 0.5852 2101.9 18
0.9529 0.7651 0.9420 0.7511
0.6736 0.5927 0.9889 0.8862
0.4313 0.4025 0.2891 0.3316
0.4286 0.4649 0.4306 0.3195

FFA 0.0737 0.3285 0.4033 0.5217 0.9520 2115.1 11.52
0.8113 0.9979 0.9665 0.7002
0.7260 0.7769 0.9957 1.0000
0.9467 0.4586 0.2044 0.2364
0.5734 0.6510 0.4416 0.2468
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V . C O M P A R A T I V E
E F F E C T I V E N E S S A N D
C O N V E R G E N C E P R O F I L E O F R G A ,
P S O , D E , A N D F F A

The algorithms can be compared in terms of the J values,
Figs 10 and 11 show the convergences of the log10 (J ) values
obtained as RGA, PSO, DE, and FFA are employed,
respectively. As compared to RGA, PSO, and DE which
yield suboptimal higher values of J, the FFA converges to

the least minimum J values in finding the near-global
optimal current excitation weights and optimal inter-element
spacing of the hyper beam of the antenna arrays. With a view
to the above fact, it may finally be inferred that the perform-
ance of the FFA algorithm is the best among the algorithms.
Figures 10 and 11 portray the convergence profiles of
minimum J for the 10-element array sets, for u ¼ 0.5 and 1,
respectively. Table 6 shows the execution times of RGA,
PSO, DE, and FFA. From the same table it is clear that the
execution times of the FFA are all less than those of RGA,

Table 5. SLL, FNBW, optimal current excitation weights, and optimal inter-element spacing for hyper beam pattern of linear array with hyper beam
exponent (u ¼ 1), obtained by RGA, PSO, DE, and FFA for different sets of arrays.

N Algorithms Optimized current excitation weights
and [I1, I2, I3, I4. . .. . ..IN]

Optimal
inter-element
spacingIn (l)

SLL of hyper
beam with
optimization (dB)

FNBW of hyper
beam with
optimization
(deg)

10 GA 0.1339 0.1010 0.4353 0.3657 0.6503 246.76 36.72
0.6166 0.5295 0.6264 0.4194
0.3935 0.2296

PSO 0.3889 0.4254 0.2096 0.7456 0.6436 258.88 35.28
0.7961 0.4382 0.3525 0.5002
0.1764 0.1603

DE 0.2057 0.4820 0.9658 0.9686 0.9974 264.57 34.56
1.0000 0.9881 0.5582 0 0
0.0086

FFA 0.1431 0.3331 0.7904 0.7837 0.6822 289.33 30.96
0.8057 0.9664 0.7236 0.2823
0.3939 0.2024

14 GA 0 0.4146 0.6005 0.7859 0.7903 0.5824 246.76 25.20
0.7755 0.4159 0.9358 0.2159
0.3125 0.4533 0 0.6501 0.1934

PSO 0.1011 0.2588 0.3020 0.5343 0.6698 251.4 24.48
0.6365 0.6937 0.5245 0.8198
0.3813 0.4761 0.3815 0.4803
0.1301 0.3374

DE 0.1822 0.4092 0.3052 0.3611 0.7436 261.71 23.76
0.5660 0.8365 0.6771 0.7047
0.4664 0.6376 0.5091 0.3593
0.0822 0.1951

FFA 0.0000 0.0559 0.3976 0.6918 0.9828 272.93 19.44
0.9234 0.9165 0.9799 0.9966
0.9171 0.6335 0.5352 0.4790
0.4668 0.2407

20 GA 0.2739 0.0772 0.4652 0.3369 0.5587 242.85 18.72
0.4341 0.6162 0.5613 0.8008
0.4211 0.7082 0.6840 0.8283
0.3579 0.4822 0.3872 0.7091
0.3145 0.3415 0.1838 0.4675

PSO 0.5918 0.0903 0.4110 0.0131 0.5961 252.97 18
0.6447 0.1519 0.7800 0 0.8548
0.8593 0.6530 0.7593 0.9763
0.9991 0.7571 0.8972 0.5175
0.7424 0.2818 0.2433

DE 0.0938 0.1489 0.2668 0.5640 0.6638 261.19 17.28
0.6043 0.8496 0.8847 0.7082
0.6143 0.7392 0.8163 0.8767
0.7024 0.3612 0.2068 0.3691
0.3646 0.5144 0.3815 0.1665

FFA 0.1513 0.3224 0.4109 0.5525 0.9869 273.24 13.68
0.3320 0.4109 0.5534 0.9734
0.8671 0.9796 0.9428 0.9907
0.7807 0.9722 0.9538 0.7113
0.3323 0.2590 0.2029 0.0035
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PSO, and DE. The simulation programming was performed in
MATLAB language using MATLAB 7.5 on a dual core (TM)
processor, 2.88 GHz with 2 GB RAM.

V I . C O N C L U S I O N S

In this paper, a novel FFA is used for finding the optimal sets
of non-uniformly excited (0 , In ≤ 1) hyper beamforming of
receiving linear antenna arrays, each with optimal uniform

inter-element spacing (l/2 ≤ d , l).Three broad cases of
arrays are considered in the study. The first two cases are:
(i) conventional uniformly excited (In ¼ 1) linear antenna
arrays with inter-element spacing, d ¼ l/2 and (ii) non-
optimized uniformly excited (In ¼ 1) hyper beamforming of
linear antenna arrays with inter-element spacing, d ¼ l/2.
The last one is of actual concern, which is the hyper beam-
forming of linear antenna arrays with optimized inter-element
spacing (l/2 ≤ d , l) along with optimized non-uniform

Fig. 10. Convergence profile of the FFA in case of 10-element linear antenna array at u ¼ 0.5.

Fig. 11. Convergence profile of the FFA in case of 10-element linear antenna array at u ¼ 1.
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excitations (0 , In ≤ 1). The optimization algorithms con-
sidered are RGA, PSO, DE and the proposed FFA. The exper-
imental results reveal the following observations regarding
SLL reductions: (a) FFA-based optimal design of hyper beam-
forming (hyperbeam exponent, u ¼ 0.5) of 10-, 14-, and
20-element linear antenna arrays offer considerable respective
reductions of 155.53, 136.59, and 111.90 dB in SLL as com-
pared to the corresponding case (i). Similar considerable
SLL reductions have occurred for u ¼ 1 also; (b) the same
FFA-based designs for the same hyper beam exponent yield
respective SLL reductions of 135.72, 116.68, and 81.90 dB
with respect to the corresponding case (ii). Similar consider-
able SLL reductions have occurred for u ¼ 1 also. Regarding
FNBW, the following observations are: (a) the same
FFA-based designs for u ¼ 0.5 yield FNBW improvements
of 6.488, 2.888, and 5.048, respectively, for the arrays, as com-
pared to both the corresponding cases (i) and (ii). Similar
FNBW improvement occurs for the other hyper beam expo-
nent also. The above-mentioned results of the FFA are the
best grand optimal results as compared to those of RGA,
PSO, and DE. It is also found that the proposed FFA-based
technique takes the least execution times for finding all of
the optimal hyper beamforming designs of the linear
antenna arrays. The other algorithms are entrapped in sub-
optimal solutions and corresponding sub-optimal designs in
higher execution times.
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