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Abstract
Given an integer g > 2, we state necessary and sufficient conditions for a finite Abelian group to act as a group of
automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to
obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number
of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable
Riemann surfaces.

1. Introduction

The study of groups of automorphisms of Riemann and Klein surfaces is a classical topic initiated by
Schwartz, Hurwitz, Klein and Wiman, among others, at the end of the 19th century. Surfaces with a
nontrivial finite group of automorphisms are of particular importance, since they correspond to the
singular locus of the moduli space of such surfaces. By the uniformization theorem, compact Riemann
and Klein surfaces of algebraic genus greater than one can be seen as the quotient of the hyperbolic
plane under the action of a discrete subgroup of its isometries (a non-Euclidean crystallographic group,
in general, or a Fuchsian group if it only contains orientation-preserving isometries). This approach gave
rise to the use of combinatorial methods, which have proven the most fruitful in computing groups of
automorphisms.

Here, we establish conditions on an Abelian group in order to act on nonorientable Riemann surfaces
of a given genus in Theorem 4.3. Harvey [10] was the first in applying combinatorial methods to obtain
such kind of results (for a cyclic group to act on a compact Riemann surface). For nonorientable surfaces,
we will need the Abelianization of an NEC group, which is computed in Section 3. We also restrict
Theorem 4.3 to cyclic groups, obtaining an extension of the results of Bujalance in [3].

Minimum genus and maximum order problems have been studied for a number of families of groups
using diverse techniques. Some thorough surveys on these topics can be found in [5–7]. One of these
techniques takes advantage of previously established conditions for the existence of surface-kernel epi-
morphisms onto a group of the family. This approach usually provides a shorter proof to the solution to
the minimum genus and maximum order problems, as we will see in Sections 5 and 7. In Section 6, we
obtain the least genus on which act some Abelian group of a given order.

2. Preliminaries

Klein surfaces constitute a generalization of Riemann surfaces that include bordered and nonorientable
surfaces. They broaden the scope of Riemann surfaces by allowing transition functions that may include
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complex conjugation besides analytic functions and domains in the closed upper half-plane C+. This
makes up what is called a dianalytic structure [1]. The topological genus g, the number k of boundary
components, and the orientability are known as the topological type of a Klein surface, and the integer
p = ηg + k − 1 as its algebraic genus, where η = 2 if the surface is orientable and η = 1 otherwise. By
a nonorientable Riemann surface, we mean a nonorientable unbordered Klein surface.

A non-Euclidean crystallographic (NEC) group � is a discrete subgroup of the group of isometries
of the hyperbolic planeH for whichH/� is compact. It is a Fuchsian group if it contains only orientation
preserving isometries; otherwise, it is said to be a proper NEC group. An NEC group with no orientation
preserving elements of finite order is called surface NEC group.

Every compact Klein surface with algebraic genus p > 1 can be represented by the orbit space
H/� for some surface NEC group �, that is, surface NEC groups uniformize compact Klein surfaces.
Furthermore, every group G of automorphisms of H/� is isomorphic to the factor group �/� for
some NEC group � containing the surface NEC group � as a normal subgroup, that is, there is an
epimorphism θ : � → G for which ker θ = � (we say that θ is a surface-kernel epimorphism).

It is well-known that every group of finite order acts on some compact Klein surface of algebraic
genus greater than 1 [4]. A group may act on Klein surfaces of different genera. The minimum genus
problem consists in finding the least genus on which a group acts. When dealing with nonorientable
Riemann surfaces, such minimum (topological) genus is called symmetric cross-cap number of the
group, and is denoted by σ̃ (G). Conversely, several groups may act on some Klein surface of a given
algebraic genus. When the algebraic genus is greater than 1, there are only finitely many such groups.
Computing the largest group order in a family of groups which act on a given genus is what we call the
maximum order problem for that family.

Non-isomorphic NEC groups differ from one another in the signature, which is of the form(
g; ± ; [m1, . . . , mr];

{
(ni1, . . . , nisi ), i = 1, . . . , k

})
. (2.1)

The signature of a Fuchsian group is usually denoted by (g; m1, . . . , mr). For a surface NEC group, it is
of the form (g; ± ; [−]; {(−), k. . ., (−)}). The signature of an NEC group � determines both its algebraic
structure and the topological structure of the orbit space H/�.

The integers mi � 2 are called proper periods, nij � 2 are the link periods, (ni1, . . . , nisi ) are the period
cycles and g is the orbit genus. The orbit space H/� has topological genus g, k boundary components
and is orientable if the sign of the signature is ‘+’ and nonorientable otherwise. The covering map
H→H/� ramifies over r interior points with ramification indices mi and, on each boundary component,
over si points with ramification indices nij. The number ηg + k − 1 is the algebraic genus of H/�, where
η = 2 if the sign of the signature is ‘+’ and η = 1 otherwise. An arbitrary set of such numbers and
symbols define the signature of an NEC group if and only if

ηg + k − 2 +
r∑

i=1

(
1 − 1

mi

)
+ 1

2

k∑
i=1

si∑
j=1

(
1 − 1

nij

)
> 0. (2.2)

The expression in the left side is denoted by μ(�). The hyperbolic area of any fundamental region of
H/� is 2πμ(�). Also, if �′ is a subgroup of � of finite index, then �′ is an NEC group and

[� : �′] = μ(�′)/μ(�), (2.3)

which is known as the Riemann–Hurwitz formula.
The signature provides a presentation of � with the following generators and relations depending on

the sign of the signature:
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x1, . . . , xr (hyperbolic rotations),
c10, . . . , c1s1 , . . . , ck0, . . . , cksk (hyperbolic reflections),
e1, . . . , ek (connecting generators),
a1, b1, . . . , ag, bg if the sign is ‘+’ (hyperbolic translations),
d1, . . . , dg if the sign is ‘−’ (hyperbolic glide reflections),

xmi
i = 1, c2

ij = 1, (cij−1cij)
nij = 1, e−1

i ci0eicisi = 1,

x1 · · · xre1 · · · eka1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1 if the sign is ‘+’ and

x1 · · · xre1 · · · ekd
2
1 · · · d2

g = 1 if the sign is ‘−’.

The last one is called the long relation. (An abstract group with such a presentation is an NEC group
with signature as above if and only if (2.2) is fulfilled.)

For further purposes, the following should be considered. For proper periods, we assume fac-
torizations mi = pμi(p1)

1 · · · pμi(ps)
s with prime numbers p1 < · · · < ps and integers μi(pj) � 0 such that

μ1(pj) + · · · + μr(pj) > 0. For each prime pj, we rearrange the integers μ1(pj), . . . , μr(pj) to obtain
increasing integers μ̂1(pj) � μ̂2(pj) � · · ·� μ̂r(pj) and define m̂i = pμ̂i(p1)

1 · · · pμ̂i(ps)
s . Then, m̂i|m̂i+1 and

there is an integer r̂ such that m̂i = 1 for i = 1, . . . , r − r̂ and m̂i > 1 for the r̂ integers i = r − r̂ + 1, . . . , r.
Moreover (see [13, Section 2]),

r∑
i=1

(
1 − 1

m̂i

)
�

r∑
i=1

(
1 − 1

mi

)
. (2.4)

Henceforth, we will deal with Abelian groups. The torsion subgroup of an Abelian group A is denoted
by T (A). When A is a finitely generated Abelian group, its invariant factor decomposition is A ≈Zn ⊕
Zv1 ⊕ · · · ⊕Zvt for integers n � 0, the torsion-free rank of A, and vi > 1, called invariant factors of A,
with vi dividing vi+1, and primary decomposition A ≈Zn ⊕ Aq1 ⊕ · · · ⊕ Aqλ

, where q1 < · · · < qλ are
the prime numbers dividing the order of A and Aq = {x ∈ A|qmx = 0 for some m � 0} is the q-primary
component of A —the q-Sylow subgroup Sylq(A). We also assume vi = qαi(q1)

1 · · · qαi(qλ)
λ for i = 1, . . . , t,

so 0 � α1(q) � · · ·� αt(q) and Aq ≈Zqα1(q) ⊕ · · · ⊕Zqαt (q) . The integers q
αi(qj)
j are the elementary divisors

of A.
Below it will be helpful to express a finite Abelian group as follows:

A ≈Z n
2 ⊕Zv1 ⊕ · · · ⊕Zvt ,

(for readability,Zv ⊕ n· · · ⊕Zv will be denoted byZ n
v ) where vi > 2 and vi divides vi+1, so that v1, . . . , vt−m

are odd and the m integers vt−m+1, . . . , vt are multiple of 4 for some integer m � t —note that, though
unique, this expression may not coincide with the invariant factor decomposition of A.

3. Abelianization of NEC groups

In this section, we lay out Breuer conditions for the existence of epimorphisms between Abelian groups
and the abelianization of NEC groups.

We are mainly concerned with conditions for the existence of epimorphisms θ : � → A from an
NEC group onto a finite Abelian group. In this context, the Abelianization �ab of � provides significant
information. By the universal property of the quotient group, θ factors (uniquely) through the canonical
homomorphism π : � → �ab. In other words, there is a (unique) epimorphism θ : �ab → A such that
θ = θ ◦ π . Conversely, given an epimorphism θ : �ab → A, the homomorphism θ = θ ◦ π : � → A is
onto.
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Therefore, it is worth considering epimorphisms between Abelian groups. Breuer stated conditions
for the existence of such epimorphisms as a set of inequations on the free-rank and the number of cyclic
factors in the primary decomposition of the Abelian groups [2, lemmas A.1 and A.2]:

Lemma 3.1. Let q be a prime number and R, N1, . . . , Ns, T , n1, . . . , ns be non-negative integers. There
is an epimorphism

ZR ⊕ZN1
q1 ⊕ · · · ⊕ZNs

qs → ZT ⊕Z n1
q1 ⊕ · · · ⊕Z ns

qs

if and only if

R � T and R + Nj + Nj+1 + · · · + Ns � T + nj + nj+1 + · · · + ns

for j = 1, . . . , s. (3.1)

For arbitrary finite Abelian groups A and B, there is an epimorphism ZR ⊕ A →ZT ⊕ B if and only if
there is an epimorphism ZR ⊕ Aq →ZT ⊕ Bq for each prime q dividing the order of B.

The requirements in (3.1) can be rewritten as follows.

Lemma 3.2. Let q be a prime number and R, α1, . . . , αt, β1, . . . , βr be non-negative integers with
αi � αi+1 and βi � βi+1. There is an epimorphism

ZR ⊕Zqβ1 ⊕ · · · ⊕Zqβr → ZT ⊕Zqα1 ⊕ · · · ⊕Zqαt

if and only if the following conditions hold: R � T and if R < T + t, then qαi divides, at least, T + t −
R − i + 1 elementary divisors qβj for i = 1, . . . , T + t − R.

In order to study these conditions for epimorphisms �ab → A, we need to know the structure of �ab

in terms of the signature of �. Here a distinction is made between Fuchsian and proper NEC groups.
For a Fuchsian group �, we find its Abelianization in [2, Lemma A.3].

Lemma 3.3. The Abelianization of a Fuchsian group � with signature (g; m1, . . . , mr) is isomorphic to
Z2g if r = 0 or 1 and

�ab ≈ Z2g ⊕Zm̂r−̂r+1 ⊕ · · · ⊕Zm̂r−1

otherwise.

Now, we compute the Abelianization �ab of a proper NEC group �. When the signature has some
period cycle, �ab is obtained by some considerations on the canonical presentation of �. Otherwise, it
has no period cycle and we compute the Smith normal form ([16][11, Section 3.3][12, Chapter 2]) of
the relation matrix of the Abelianized canonical presentation of �.

Lemma 3.4. The Abelianization of a proper NEC group � with signature (g; ± ;
[m1, . . . , mr]; {(ni1, . . . , nisi ), i = 1, . . . , k}) is �ab ≈ Zηg+k−1 ⊕ T (�ab), where

T (�ab) ≈

⎧⎪⎪⎨⎪⎪⎩
Z2 if k = r = 0,

Zm̂r−̂r+1 ⊕ · · · ⊕Zm̂r−1 ⊕Z2m̂r if k = 0, r > 0,

Z S
2 ⊕Zm̂r−̂r+1 ⊕ · · · ⊕Zm̂r otherwise

(3.2)

is the torsion subgroup of �ab, η equals 2 if the sign of the signature is ‘+’ and 1 otherwise, and

S = #{period cycles with no even link periods} + #{even link periods}.
Proof. When k > 0, we remove one generator ei by the long relation in the Abelianized presentation,

and the other relations only contain generators of finite order. The remaining canonical generators ei,
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ai, bi and di provide the factor Zηg+k−1, while the elliptic generators and their relations turn into Zm1 ⊕
· · · ⊕Zmr ≈Zm̂r−̂r+1 ⊕ · · · ⊕Zm̂r .

The factor Z S
2 originates from the generators cij. There are k + s1 + · · · + sk of such generators; we

remove k of them (each relation e−1
i ci0eicisi = 1 lets us remove ci0 or cisi when Abelianized) and also

those generators cij for which nij is odd (when Abelianized, the relation (cij−1cij)nij = 1 becomes either
cij−1cij = 1 or trivial for odd and even values of nij, respectively).

If k = 0 (hence the sign of the signature is ‘–’ since � is proper), a presentation of �ab is

〈x1, . . . , xr, d1, . . . , dg | xmi
i , x1 · · · xrd

2
1 · · · d2

g , [xi, xj], [xi, dj], [di, dj]〉.
The relation matrix of this presentation is

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2 0

. . .

0

mr

1 · · · 1 1 2
g· · · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The entries εi in the main diagonal of the Smith normal form of R can be computed as follows:
ε1 = ρ1, ε2 = ρ2/ρ1, ε3 = ρ3/ρ2, etc., where ρi is the greatest common divisor of the minor determinants
of order i of R.

Clearly, ρ1 = 1. Non-null 2 × 2 minors of R are mi, 2mi or mi1 mi2 and thus ρ2 = gcd (m1, . . . , mr) =
m̂1. Likewise, non-null 3 × 3 minors take values mi1 mi2 , 2mi1 mi2 or mi1 mi2 mi3 so that ρ3 =
gcd (m1m2, . . . , m1mr, m2m3, . . . , mr−1mr) = m̂1m̂2. In general,

ρk = gcd{mi1 · · · mik−1}1�i1<i2<···<ik−1�r = m̂1 · · · m̂k−1,

ρr+1 = 2m1 · · · mr = 2m̂1 · · · m̂r

for k = 2, . . . , r and thus ε1 = 1, ε2 = m̂1, ε3 = m̂2, . . . , εr = m̂r−1, εr+1 = 2m̂r. Therefore, �ab ≈
Zg−1 ⊕Zm̂r−̂r+1 ⊕ · · · ⊕Zm̂r−1 ⊕Z2m̂r when k = 0.

4. Nonorientable unbordered surface-kernel epimorphisms

In this section, conditions for the existence of nonorientable unbordered surface-kernel epimorphisms
onto an Abelian group are established in terms of its algebraic structure.

We say that a homomorphism θ of a proper NEC group � into a finite group G is nonorientable
unbordered surface-kernel if ker θ is a surface group with signature having sign ‘–’ and no period
cycles. The condition on the sign of the signature means that θ (�+) = G, as stated by Singerman [15,
Theorem 1]. As a consequence, the following result establishes the type of signatures we will deal with.

Lemma 4.1. [3, Corollary 3.3][9, Corollary 2.3] Let A be a finite Abelian group, � a proper NEC
group. If there exists a nonorientable unbordered surface-kernel epimorphism � → A, then every link
period of the signature of � equals 2 and no period cycle has a single link period. If the order of A is
odd, then the signature of � has no period cycle.

Remark 4.2. In order to prove Theorem 4.3, we need to make some considerations on the Smith normal
form of (4.1), which is obtained as follows. There is some orientation-reversing element in the ker-
nel of a nonorientable unbordered surface-kernel epimorphism θ : � → A onto a finite Abelian group
A. Since θ (ci0) = θ (cisi ), we can reorder the product of canonical generators in the expression of such
orientation-reversing element to obtain another orientation-reversing element h with the same image
and an expression like the following:
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h =
⎧⎨⎩h′ · cκ1

10 · · · c
κs1
1,s1−1 · c

κs1+1

2,0 · · · cκS
k,sk−1

h′ · dζ1
1 · · · d

ζg
g · cκ1

10 · · · c
κs1
1,s1−1 · c

κs1+1

2,0 · · · cκS
k,sk−1

for signature sign ‘+’ or ‘–’, respectively, without any of the k canonical reflections cisi , where h’ is a
product of powers of orientation-preserving canonical generators, κ1 + · · · + κS or ζ1 + · · · + ζg + κ1 +
· · · + κS, depending on the signature sign, is odd, and κi = 0 or 1 since c2

ij = 1.
We can factor θ through N = 〈h〉�, the normal subgroup generated by h. By the universal property

of the quotient group, there exists a unique homomorphism φ : �/N → A such that φ ◦ π = θ , where
π : � → �/N is the canonical projection. Since θ and π are onto, φ is onto as well. Now, we factor
φ through (�/N)ab to obtain another epimorphism φ : (�/N)ab → A. We will extract some information
from this epimorphism between Abelian groups by applying lemmas 3.1 and 3.2. It is not mandatory to
compute (�/N)ab; the following considerations will be enough for our purposes.

By Lemma 4.1, we will focus on proper NEC groups with signatures of type (g; ± ; [m1, . . . , mr];
{(−)ε, (2, sε+1. . ., 2), . . . , (2, sk. . ., 2)}). In that case, a presentation of (�/N)ab is

〈x1, . . . , xr, a1, b1, . . . ,ag, bg, e1, . . . , ek, c10, . . . , c1,s1−1, c20, . . . , ck,sk−1 |
xmi

i , x1 · · · xre1 · · · ek, c2
ij, h, [·, ·]〉

(by abuse of notation, we use the same symbols for the generators) if the signature sign is ‘+’ and

〈x1, . . . , xr, d1, . . . , dg, e1, . . . , ek, c10, . . . , c1,s1−1, c20, . . . , ck,sk−1 |
xmi

i , x1 · · · xre1 · · · ekd
2
1 · · · d2

g , c2
ij, h, [·, ·]〉

if the signature sign is ‘–’, where [·, ·] denotes all commutation relations of pairs of generators. We
have removed the generators cisi (by means of the Abelianized relations e−1

i ci0eicisi = 1) and the relations
(cij−1cij)2 = 1 (they become trivial when Abelianized). The relation matrix of this presentation is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 0

. . .

mr

1 · · · 1 1
k· · · 1 2

g· · · 2 0
S· · · 0

· · · · · · ζ1 · · · ζg κ1 · · · κS

2

0
. . .

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

if the signature sign is ‘–’; if the signature sign is ‘+’, remove the g columns containing the submatrix(
2

g··· 2
ζ1 ··· ζg

)
(to lessen clutter, the 2g columns corresponding to the canonical generators ai and bi are

omitted, since they consist of null entries, and also entries corresponding to orientation-preserving
generators in the (r + 2)nd row are not denoted).

Theorem 4.3. Let � be a proper NEC group with signature (g; ± ; [m1, . . . , mr]; {(−)ε,
(2, sε+1. . ., 2), . . . , (2, sk. . ., 2)}), si �= 1, having r2 even proper periods, and A ≈Z n

2 ⊕Zv1 ⊕ · · · ⊕Zvt a non-
trivial Abelian group, where t � 0, vi > 2, vi|vi+1, vi is odd for i = 1, . . . , t − m and 4 | vi if i > t − m
for some integer m � t. Let A2 ≈Z2α1 ⊕ · · · ⊕Z2αm+n be the Sylow 2-subgroup of A, αi � αi+1, w =
ηg + k − 1, S = ε + sε+1 + · · · + sk, η = 2 if ‘+’ is the signature sign of � and η = 1 otherwise. Then,
there exists a nonorientable unbordered surface-kernel epimorphism � → A if and only if the following
conditions hold:
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(i) mi = 2 if t = 0, mi|vt if n = 0 and mi |lcm(2, vt) otherwise for all i.
(ii) If t > w and i ∈ {1, . . . , t − w}, then every elementary divisor of Zvi divides, at least, t − w +

1 − i proper periods.
(iii) If k = 0, r2 > 0 and m + n > g − 2, then 2αi divides, at least, m + n − g + 3 − i proper periods

for i = 1, . . . , m + n − g + 1; if, in addition, g is even, then 2αm+n−g+2−1 divides some proper
period, and there is an odd number of such proper periods if, in addition, g = 2, 2αm+n divides
no proper period and αm+n−1 < αm+n − 1.

(iv) If k = 0 and m + n > 0, then 2αm+n divides either no proper period or, at least, two proper
periods; if, in addition, αm+n−1 < αm+n, then 2αm+n divides an even number of proper periods.

(v) If k = 0 and r2 = 0, then g > m + n, and g > m + 1 if, in addition, n = 0 and m is odd.
(vi) If k > 0, then r2 � m + n − w − S + 1.
(vii) If m + n = 0, then k = 0.
(viii) If m + n = 1, then k = ε.
(ix) If m + n = 2, then si is even for all i.

Proof. Let θ : � → A be a nonorientable unbordered surface-kernel epimorphism.

(i) The order of θ (xi) is mi and the order of every element of A divides the exponent of A (exp A = 2
if t = 0, vt if n = 0 and lcm(2, vt) otherwise).

(ii) This condition follows from Lemma 3.2 applied to the epimorphism �ab → A (we note that vi

is either odd or multiple of 4, so that we do not have to consider the factors Z2 in (3.2)).
(iii) Let k = 0. If g = 1, then ζ1 is odd in (4.1) and it follows that (�/N)ab has null free-rank and

Syl2((�/N)ab) ≈Z2μ̂1(2) ⊕ · · · ⊕Z2μ̂r−1(2) . Now, assume that g > 1 and let 2δ be the greatest power
of 2 dividing any minor of order 2 of the submatrix

(
2

g··· 2
ζ1 ··· ζg

)
of (4.1). These minors have the

form 2(ζi − ζj). If g is even, some ζi is even and thus 2(ζi − ζj) is even but not multiple of 4 in
some cases, since there is also some ζj that is odd; therefore, δ = 1 if g is even. If g is odd, every
ζi may be odd and δ may be greater than 1. If k = 0 and r2 > 0, we obtain from (4.1) that the
free-rank of (�/N)ab is g − 2 and

Syl2(T ((�/N)ab)) ≈Z2μ̂1(2) ⊕ · · · ⊕Z2μ̂r−1(2) ⊕Z2μ̂r (2)+δ

The claim for 2αi and 2αm+n−g+2−1 follows from Lemma 3.2 when applied to the epimorphism
Syl2((�/N)ab) → A2 if g < 3 and Zg−2 ⊕ Syl2(T ((�/N)ab)) → A2 otherwise.

Now, suppose also that g = 2, 2αm+n divides no proper period and αm+n−1 < αm+n − 1. If
2αm+n−1 divides an even number of proper periods, then the last component of θ2(x1 · · · xr) is
doubly even. Also, the last component of either θ2(d1) or θ2(d2) is odd in order to generate
Zαm+n , but both last components cannot be odd (otherwise, every element in ker θ2 would con-
tain an even number of glide reflections and would be orientation-preserving) and thus the last
component of θ2(d2

1d2
2) is singly even. Therefore, the long relation would not be preserved, since

the last component of θ2(x1 · · · xrd2
1d2

2) would be singly even.
(iv) Otherwise, the component of θ2(x1 · · · xr · d2

1 · · · d2
g) corresponding to some factor of order 2αm+n

would be odd and the long relation would not be preserved.
(v) If k = 0 and r2 = 0, the dimensions of the relation matrix (4.1) are (r + 2) × (r + g). Since ζi is

odd for some i ∈ {1, . . . , g} and mi is odd, it follows that ρi is odd for i < r + 2 and ρr+2 is even,
and thus the free-rank of (�/N)ab is g − 2 and its Sylow 2-subgroup is nontrivial cyclic. As
an epimorphism (�/N)ab → A exists, we have g − 2 + 1 � m + n by choosing q = 2 and j = 1
in (3.1), hence g > m + n. So if, in addition, n = 0 then g � m + 1; but m odd and g = m + 1
(even) would be inconsistent with (3.1): g even (and k = 0) implies that some ζi is even (

∑
ζi

is odd) and thus ρr+2 is even but not multiple of 4 (since r2 = 0), so the Sylow 2-subgroup of
(�/N)ab is Z2 (ρi is odd for i < r + 2 since r2 = 0 and some ζi is odd) and we obtain g − 2 � m
for q = 2 and j = 2 in (3.1) and thus g > m + 1.
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(vi) Let R be the matrix (4.1), depending on the signature sign of �. If k > 0, then either some κi

equals 1 or some ζi is odd, say, ζ1 (recall that
∑

ζi + ∑
κi is odd). Then, ρ2 is odd since, in the

r + 1-th and r + 2-th rows of R, there is a 2 × 2-submatrix like
(

1 0
··· 1

)
in the first case, and like(

2 1
ζ1 ···

)
in the second case. Also, ρ1 = 1 since some entry equals 1. Therefore, ε1 = ρ1 = 1 and

ε2 = ρ2/ρ1 is odd in the Smith normal form of R, so the free-rank of (�/N)ab is ηg + k − 2 =
w − 1 and its Sylow 2-subgroup has, at most, r2 + S factors. By (3.1) applied for q = 2 and j = 1
to the epimorphism Zw−1 ⊕ Syl2((�/N)ab) → A2, the free-rank of (�/N)ab and the number of
factors of its Sylow 2-subgroup add up to m + n (the number of factors of A2) or more. Hence,
w − 1 + r2 + S � m + n.

(vii) This condition follows from Lemma 4.1.
(viii) If Syl2(A) ≈Z2α and (ni1, . . . , nisi ) = (2, 2, . . . , 2) is a period cycle of �, then θ (cij−1) = θ (cij) =

2α−1, since both θ (cij−1) and θ (cij) are elements of order 2 in Syl2(A). But then θ (cij−1cij) = 0 and
θ (cij−1cij) cannot have order nij = 2, in contradiction with Theorem [3, Proposition 3.2].

(ix) Assume that Syl2(A) ≈Z2α1 ⊕Z2α2 . By the relation e−1
i ci0eicisi = 1, θ (ci0) = θ (cisi ), and thus si

is even, since θ (cij−1) �= θ (cij) (otherwise θ (cij−1cij) = (0, 0) and θ (cij−1cij) would not have order
nij = 2).

We prove the sufficiency of the conditions by defining epimorphisms θq : � → Aq for each prime q
in the set {q1, . . . , qλ} of prime numbers dividing the order of A, and a surface-kernel epimorphism
θ : � → A as the direct product epimorphism

θ : � → A : g �→ θ (g) = (θq1 (g), . . . , θqλ
(g)).

For readability, we let μi = μi(q) (see Section 3) in the definition of each homomorphism θq. Also,
we assume that μi �μi+1; otherwise, there is a permutation (in general, different for each value of q)
such that μ̂i = μτ (i) and we replace xi by xτ (i) and μi by μ̂i in the definition of θq(xi) below, so that the
order of θ (xi) is mi.

First, we define θ2 (whenever m + n > 0) for k = 0 (the cases not showed here are defined alike) and
k > 0, and then we define θq for q �= 2. Let � = ∑

i 2αm+n−μi (note that, if � is odd, then 2αm+n divides an
odd number of proper periods; recall condition (iv) in that case).

a) k = r2 = 0 and n > 0 (so g > m + n).

θ2(d1) = (1, −1, . . . , −1), θ2(di) = (0, i−1. . ., 0, 1, 0, . . . , 0), i = 2, . . . , m + n,

θ2(di) = (0, . . . , 0), i > m + n, dg ∈ ker θ2 ∩ (� − �+).

b) k = r2 = n = 0 (so g > m + 1 or g = m + 1 is odd).

θ2(d1) = (−1, . . . , −1), θ2(di) = (0, i−2. . ., 0, 1, 0, . . . , 0), i = 2, . . . , m + 1,

θ2(di) = (0, . . . , 0), i > m + 1, either dg or d1 · · · dg ∈ ker θ2 ∩ (� − �+).

c) k = 0, r2 > 0 and m + n � g − 2.

θ2(xi) = (0, . . . , 0, 2αm+n−μi ), i = 1, . . . , r,

θ2(di) = (0, i−1. . ., 0, 1, 0, . . . , 0), i = 1, . . . , m + n,

θ2(dm+n+1) = (−1, . . . , −1, −1 − �/2),

θ2(di) = (0, . . . , 0), i � m + n + 2,

dg ∈ ker θ2 ∩ (� − �+).
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d) k = 0, r2 > 0, m + n > g − 2 and g > 1 is odd.

θ2(xi) = (0, . . . , 0, 2αm+n−μi ), i = 1, . . . , r − m − n + g − 2,

θ2(xi) = (0, . . . , 0, 1, 0, g+r−i−3. . . , 0, 2αm+n−μi ),

i = r − m − n + g − 1, . . . , r − 2,

θ2(di) = (0, . . . , 0, 1, 0, g−i−1. . . , 0), i = 1, . . . , g − 2.

We consider the following cases:

d.1) � is singly even.

θ2(xr−1) = (0, . . . , 0, 1, 0, g−2. . ., 0, 2αm+n−μr−1 ),

θ2(xr) = (−1, . . . , −1, 0, g−2. . ., 0, 2αm+n−μr ),

θ2(dg−1) = (0, . . . , 0, −1, g−2. . ., −1, −�/2),

θ2(dg) = (0, . . . , 0),

dg ∈ ker θ2 ∩ (� − �+).

d.2) � is doubly even.

θ2(xr−1) = (0, . . . , 0, 1, 0, g−2. . ., 0, 2αm+n−μr−1 ),

θ2(xr) = (−1, . . . , −1, 0, g−2. . ., 0, 2αm+n−μr ),

θ2(dg−1) = (0, . . . , 0, 1),

θ2(dg) = (0, . . . , 0, −1, g−2. . ., −1, −1 − �/2),

d1 · · · dg−2 · d1+�/2
g−1 · dg ∈ ker θ2 ∩ (� − �+).

d.3) � is odd and � − 1 is singly even.

θ2(xr−1) = (0, . . . , 0, 1, 0, g−3. . ., 0, 1, 1),

θ2(xr) = (−1, . . . , −1, 0, g−3. . ., 0, −1, 0),

θ2(dg−1) = (0, . . . , 0, −1, g−2. . ., −1, −(� − 1)/2),

θ2(dg) = (0, . . . , 0),

dg ∈ ker θ2 ∩ (� − �+)

d.4) � is odd and � − 1 is doubly even.

θ2(xr−1) = (0, . . . , 0, 1, 0, g−3. . ., 0, 1, 1),

θ2(xr) = (−1, . . . , −1, 0, g−3. . ., 0, −1, 0),

θ2(dg−1) = (0, . . . , 0, 1),

θ2(dg) = (0, . . . , 0, −1, g−2. . ., −1, −1 − (� − 1)/2),

d1 · · · dg−2 · d1+(�−1)/2
g−1 · dg ∈ ker θ2 ∩ (� − �+).

When k > 0, we define θ2(c10) = (0, . . . , 0, 2αm+n−1) and consider the sequence

(c20, . . . , cε0, cε+1,0, . . . , cε+1,sε+1−1, . . . , ck0, . . . , ck,sk−1)

containing S − 1 elements—we rule out the elements c10 and cisi for i > ε. We subsequently assign
(2α1−1, 0, . . . , 0), (0, 2α2−1, 0, . . . , 0), etc—beginning again with (2α1−1, 0, . . . , 0) if there are more than
m + n elements in the sequence. Also, we define θ2(cisi ) = θ2(ci0) for i > ε.

We consider the sequence ag, bg . . . , a1, b1, ek−1, . . . , e1, xr, . . . , x1 or dg, . . . , d1, ek−1, . . . , e1,
xr, . . . , x1 according to the signature of � and subsequently assign (0, . . . , 0, 1), (0, . . . , 0, 1, 0), . . . ,
(0, min (n,S−1). . . . . . , 0, 1, 0, . . . , 0) to its first m + n − min (n, S − 1) elements and (0, . . . , 0) to the rest, but we
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let the last component be ( . . . , 2αm+n−μi ) in case of an elliptic generator xi; also, let θ2(dg) = (0, . . . , 0)
if m = 0. Finally, let

θ2(ek) = (0, min (n,S−1). . . . . . , 0, −1, . . . , −1, −2, ηg−1. . . . . ., −2, δ − �),

where δ = −1 if g = 0, δ = 0 if g > 0 and sign(�) is ‘+’, and δ = −2 otherwise. We observe that
dg (if m = 0), c10dp

g (for some even integer p) or c10ap
g or c10ep

k−1 (for some integer p) belong to
ker θ2 ∩ (� − �+).

With the above definition for θ2, we can easily find, for each component of A2, an element in � whose
image is a generator (an odd number) of that component and null for the other components, so that θ2 is
onto.

Now, let q �= 2 be a prime number dividing |A| and Aq ≈Zqα1 ⊕ · · · ⊕Zqαt be the q-Sylow subgroup
of A (some factors of Aq may be trivial, i.e., α1 = · · · = αt

′ = 0 for some t′ < t). Let

γ1 = e1, . . . , γk−1 = ek−1, γk = a1, γk+1 = b1, . . . , γw−1 = ag, γw = bg,

or

γ1 = e1, . . . , γk−1 = ek−1, γk = d1, . . . , γw = dg,

according to the sign of the signature of �. We define θq as follows (note that r + w � t by condition
(ii)):

θq(ci0) = (0, . . . , 0), i = 1, . . . , k,

θq(xi) = (0, . . . , 0, qαt−μi ), i =
{

1, . . . , r − t + w if t > w,

1, . . . , r if t � w,

θq(xi) = (0, t−r−w+i−1. . . . . . . . . . . ., 0, 1, 0, r+w−i−1. . . . . . . . ., 0, qαt−μi ),

i = r − t + w + 1, . . . , r if t > w,

θq(γi) = (0, . . . , 0), i = 1, . . . , w − t if t < w,

θq(γi) = (0, t−w+i−1. . . . . . . . ., 0, 1, 0, w−i. . . . . ., 0), i =
{

1, . . . , w if t � w,

w − t + 1, . . . , w if t < w,

θq(ek) =
{

(−1, . . . , −1, δ, ηg−1. . . . . ., δ, −u + δ) if t > ηg > 0,

(δ, . . . , δ, −u + δ) if t � ηg or g = 0,

where u = ∑r
i=1 qαt−μi . The homomorphism θq is onto by condition (ii).

The homomorphism θ is also onto. For, consider an elementary divisor qαi(q) of A and the generator
h = (0, . . . , 0, 1, 0, . . . , 0) of some cyclic factor

H = {0} ⊕ · · · ⊕ {0} ⊕Zqαi (q) ⊕ {0} ⊕ · · · ⊕ {0}
of Aq. Then, h = θq(g) for some g ∈ �. Obviously, θ (g) may have nontrivial components in some other
primary component Aq

′ for a prime q′ �= q, but not the element exp A
qαt (q) θ (g) since exp A

qαt (q) θq
′ (g) is trivial when-

ever q′ �= q. Moreover, exp A
qαt (q) θ (g) has order qαi(q) since gcd (q, exp A/qαt (q)) = 1. Hence, 〈θ (gexp A/qαt (q)

)〉 =
H.

It also preserves the long relation and the order of xi, cij and cij−1cij. We have emphasized an element
in ker θ2 ∩ (� − �+), say h, for each case in the definition of θ2. Since vt is odd (let vt = 1 if t = 0), the
element hvt belongs to ker θ ∩ (� − �+) and thus θ (�+) = A.

When A is cyclic, Theorem 4.3 reads as follows.

Theorem 4.4. Let � be a proper NEC group with signature (g; ± ; [m1, . . . , mr]; {(−)k}) and N =
2αq > 1 be an integer, q odd. Let w = ηg + k − 1, η = 2 if ‘+’ is the signature sign of � and η = 1
otherwise. Then, there exists a nonorientable unbordered surface-kernel epimorphism � →ZN if and
only if the following conditions hold:
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i. mi|N for all i.
ii. If N > 2 and w = 0, then every elementary divisor of ZN divides some proper period.
iii. If k = 0, g = 2 and some proper period is even, then 2α divides some proper period.
iv. If k = 0 and N is even, then 2α divides an even number of proper periods.
v. If k = 0 and no proper period is even, then g > 1 if N is singly even and g > 2 if N is doubly

even
vi. If N is odd, then k = 0.

This result gathers theorems 3.5, 3.6 and 3.7 in [3], yet it rounds out Theorem 3.6 with a complete
set of necessary and sufficient conditions.

5. Symmetric cross-cap number of an Abelian group

In this section, we develop a new way of achieving the expression for the symmetric cross-cap number
of an Abelian group by means of Theorem 4.3.

The symmetric cross-cap number of a cyclic group was obtained by Bujalance in [3] from the above
mentioned theorems 3.5, 3.6 and 3.7, so that, by the same token, it can also be obtained from Theorem 4.4
herein:

Theorem 5.1.

σ̃ (ZN) =

⎧⎪⎪⎨⎪⎪⎩
3 if N = 2,

(q − 1) (N/q − 1) + 1 if N is not prime and q2 � N,

(q − 1) (N/q − 1) + q otherwise,

(5.1)

where q is the smallest prime divisor of N.

Remark 5.2. The symmetric cross-cap number of the groups Z 2
2 , Z 3

2 and Z2 ⊕Z2u (u > 1) was obtained
in [9, Proposition 6.4]:

σ̃ (Z 2
2 ) = 3, σ̃ (Z 3

2 ) = 4, σ̃ (Z2 ⊕Z2u) = 2u, (5.2)

By Theorem 4.3, we can obtain signatures of NEC groups attaining such topological genera: (0; +
; [−]; {(2, 2, 2)}), (0; + ; [−]; {(2, 2, 2, 2)}) and (0; +; [2, 2u]; {(−)}), respectively, fulfill conditions of
Theorem 4.3 and it can be proved that any other signature fulfilling such conditions yields a greater or
equal topological genus.

Theorem 5.3. [9, propositions 6.1, 6.2 and 6.3] The symmetric cross-cap number of a noncyclic Abelian
group A different to Z 2

2 , Z 3
2 and Z2 ⊕Z2u (u � 2) is σ̃ (A) = 2 + |A| μ∗, where μ∗ is, with the notation of

Theorem 4.3,

a) t − 1 − 1

v1

− · · · − 1

vt−n

if n � m,

b) t − 1 − 1

v1

− · · · − 1

vt−ε

+ δ

2vt−ε

if 2m < m + n < 2t,

c) t − 1 if 2m < m + n = 2t,

d) t − 1 + m + n − 2t + 1

4
if 2t < m + n,

ε = (m + n − δ)/2, δ = 1 if m + n is odd and δ = 0 otherwise.
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Proof. We first tackle odd order Abelian groups, so that n = m = 0 and we only consider case a),
for which μ∗ = −1 + ∑t

i=1

(
1 − 1

vi

)
. For, note that the signature (1; − ; [v1, . . . , vt]; {−}) defines an

NEC group �∗ and fulfills conditions of Theorem 4.3. Now we prove that, if � is another NEC group
with signature (g; − ; [m1, . . . , mr]; {−}) fulfilling conditions of Theorem 4.3, then μ(�∗) �μ(�) =
g − 2 + ∑r

i=1

(
1 − 1

mi

)
.

If t � g − 1, then μ(�∗) < −1 + t < −1 + t + ∑r
i=1

(
1 − 1

mi

)
� g − 2 + ∑r

i=1

(
1 − 1

mi

)
= μ(�).

Suppose now that t > g − 1. By (2.4), we may assume that m1| · · · |mr, since μ(�̂) �μ(�) if �̂ is an
NEC group with signature (g; − ;[m̂r−̂r+1, . . . , m̂r]; {−}). By condition (ii) of Theorem 4.3, v1 | mr+g−t,
. . ., vt−g+1 | mr, hence

∑t−g+1
i=1

(
1 − 1

vi

)
�

∑r
i=r−t+g

(
1 − 1

mi

)
�

∑r
i=1

(
1 − 1

mi

)
(recall that r − t + g � 1

by condition (ii) of Theorem 4.3). It follows that μ(�∗) �μ(�) if g = 1, and also if g > 1 since∑t
i=t−g+2

(
1 − 1

vi

)
<

∑t
i=t−g+2 1 = g − 1.

Now, we consider Abelian groups of even order. Let �∗ be an NEC group with signature

a) (0; + ; [v1, . . . , vt−n]; {(−)n+1})
b) (0; + ; [v1, . . . , vt− m+n−δ

2 −1, (δ + 1)vt− m+n−δ
2

]; {(−)
m+n−δ

2 +1})
c) (0; + ; [−]; {(−)t+1})
d) (0; + ; [−]; {(−)t, (2, m+n−2t+1. . . , 2)})

respectively. This NEC group fulfills conditions of Theorem 4.3 and μ(�∗) = μ∗. Now, we prove that it
follows from Theorem 4.3 that μ∗ �μ(�) for any other NEC group � fulfilling such conditions.

We can assume that � has signature

(0; + ; [m1, . . . , mr]; {(−)k−1, (2, s. . ., 2)}), (5.3)

where mi|mi+1, k > 0, s �= 1, s is even if m + n = 1 and s = 0 if m + n = 0. For, the signa-
ture (g; ± ;[m̂r−̂r+1, . . . , m̂r]; {(−)ε, (2, sε+1. . ., 2), . . . , (2, sk. . ., 2)}) defines an NEC group �̂ that ful-
fills conditions of Theorem 4.3 and, by (2.4), μ(�̂) �μ(�) if the signature of � is (g; ± ;
[m1, . . . , mr]; {(−)ε, (2, sε+1. . ., 2), . . . , (2, sk. . ., 2)}) also fulfilling such conditions (we can easily see that
also μ(�̂) > 0 in that case). Therefore, we can assume that m1| · · · |mr. Moreover, consider an NEC
group �o with signature (0; + ; [m1, . . . , mr]; {(−)ηg+k−1, (2, s. . ., 2)}), where s = ∑k

i=1 si and η, g and
k are the parameters of � (note that �o has ηg + k period-cycles, and thus it is a proper NEC group:
ηg + k − 1 � 0 since � is proper). It is straightforward to check that μ(�o) = μ(�) and �o fulfills the
conditions of Theorem 4.3 if � does.

So assume that � has signature (5.3) and let w = k − 1, μ = μ(�) = w − 1 + ∑r
i=1

(
1 − 1

mi

)
+ s

4

and w∗ = n, (m + n − δ)/2, t and t for cases a), b), c) and d) in the definition of μ∗ in Theorem 5.3,
respectively.

If t � w, then μ∗ � t − 1 � w − 1 �μ for cases a), b) and c). For case d), if m + n − 2w − s +
1 � 0, then μ� w − 1 + s

4
� w − 1 + m+n−2w+1

4
= μ∗ + w−t

2
�μ∗, and, if m + n − 2w − s + 1 > 0, then∑

(1 − 1/mi) � (m + n − 2w − s + 1)/2 by condition (vi) and μ� w − 1 + m+n−2w−s+1
2

+ s
4
= μ∗ +

m+n−2t−s+1
4

�μ∗.
Otherwise, t > w. If t > w > w∗ (that discards cases c) and d)), then μ∗ < w∗ − 1 + ∑t−w

i=1

(
1 − 1

vi

)
+∑t−w∗

i=t−w+1 1 = w − 1 + ∑t−w
i=1

(
1 − 1

vi

)
� μ since v1|mr−t+w+1, . . . , vt−w|mr by condition (ii).

If t > w = w∗ (we discard cases c) and d) as well), then, in cases a) and b) with m + n even (δ =
0), μ∗ = w − 1 + ∑t−w

i=1

(
1 − 1

vi

)
� μ by condition (ii) as above. In case b) with m + n odd (δ = 1),

1 − 1
2vt−w

= 1 − 1
vt−w

+ 1
2vt−w

� 1 − 1
mr

+ s
4

provided that s � 2, and, if s = 0, then there is, at least, m +
n − 2w = m + n − (m + n − 1) = 1 even proper period by condition (vi) (note that S − 1 = w if s = 0)
and thus 2vt−w|mr since vt−w is odd (note that t − w � t − m since, in case b), w∗ � m). Therefore, μ∗ �μ

either if s > 0 or s = 0.
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Finally, suppose that t > w and w∗ > w. We proof that μ∗ < μ for case a) (cases b), c) and d) are
established similarly). To lessen clutter, we rename the first t − w integers vi by defining v′

1 = · · · =
v′

r−t+w = 1, v′
r−t+w+1 = v1, . . ., v′

r = vt−w. Hence, v′
i|mi for all i by condition (ii), and thus 1 − 1

v′
i
� 1 − 1

mi
.

For case a) we have t � m � n = w∗ > w. We consider the following partition of {1, . . . , r}:

r−t+w

A
n−w−s+1

t−m

B
m−n

t−n

C
n−w

t−w

(#A < t − m in the figure, but #A may be greater than t − m). Let A =∅ if n − w − s + 1 � 0. In case
that s = 0, let #A = n − w.

Note that 4|v′
i if i ∈ B ∪ C and v′

i is odd otherwise, and μ∗ = n − 1 + ∑
i �∈C (1 − 1

v′
i
).

If w + s > n (hence s � 2 since w < n), then
∑

C

(
1 − 1

mi

)
+ s

4
> 3(n−w)

4
+ n−w

4
= n − w since 4|mi for

i ∈ C, and thus μ > w − 1 + ∑
i �∈C (1 − 1

mi
) + n − w �μ.

If w + s − 1 < n and s � 2, then m + n − 2w − s + 1 > 0 since m � n > w, and, by condition (vi), mi is
even if i ∈ A ∪ B ∪ C and thus r � m + n − 2w − s + 1 = #{A ∪ B ∪ C}. Let C = C1 ∪ C2, with C1 = {r −
n + w + 1, . . . , r − s + 1} and C2 = {r − s + 2, . . . , r}, #C1 = #A, #C2 = s − 1. For i ∈ A, v′

i is odd and mi

is even, hence 2v′
i|mi. Also, 4|mj for j ∈ C1, hence 4v′

i|mj if i ∈ A. Then
∑

A

(
1 − 1

mi

)
+ ∑

C1

(
1 − 1

mi

)
�∑

A

(
1 − 1

2v′
i

)
+ ∑

A

(
1 − 1

4v′
i

)
= n − w − s + 1 + ∑

A

(
1 − 1

2v′
i
− 1

4v′
i

)
> n − w − s + 1 + ∑

A

(
1 − 1

v′
i

)
.

As 4|mi for i ∈ C2 and #C2 = s − 1,
∑

C2

(
1 − 1

mi

)
+ s

4
� (s − 1)

(
1 − 1

4

) + s
4
= s − 1 + 1

4
� s − 1.

If w + s − 1 < n and s = 0, then C2 =∅, #A = #C = n − w and
∑

A∪C

(
1 − 1

mi

)
> n − w +∑

A

(
1 − 1

v′
i

)
. It follows that μ∗ �μ if either s � 2 or s = 0.

6. Least symmetric cross-cap number of Abelian groups of a given order

An easy consequence of the results of the previous section is the following: for a given integer N > 1,
we find the least topological genus of any nonorientable Riemann surface of topological genus g > 2 on
which some Abelian group of order N acts. For ease and by abuse of notation, we denote it by σ̃ (N) (it
is not the symmetric cross-cap number of a group but the least symmetric cross-cap number attained in
a family of groups).

Theorem 6.1. The least symmetric cross-cap number of Abelian groups of order N > 1 is

σ̃ (N) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3 if N � 4,

6 if N = 16,

N if N > 4 is prime, and

(q − 1) (N/q − 1) + 1 otherwise,

where q is the smallest prime divisor of N.

Remark 6.2. For a proof of Theorem 6.1, we refer the reader to that of Theorem 2 in [14], both
proofs are exactly alike since the cross-cap number of an Abelian group A relates with its real genus
straightforwardly: σ̃ (A) = ρ(A) + 1.
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Remark 6.3. The Abelian group of order N acting on genus σ̃ (N) is unique (Z2 ⊕Z2 ⊕Z2 ⊕Z2 for
N = 16 and either ZN or Zq ⊕ZN/q otherwise) unless N = 4 or 8.

7. Maximum order problem

The maximum order problem for Abelian groups acting on Riemann surfaces of genus g > 1 was solved
in [2, Corollary 9.6], and in [8, Section 4.5] for Abelian groups acting on compact bordered Klein
surfaces of algebraic genus p > 1. We now obtain the corresponding result for compact nonorientable
Riemann surfaces, which expands that of Bujalance for cyclic groups [3, Corollary 4.4]. It follows easily
from theorems 4.3 and 6.1.

Corollary 7.1. The largest order of an Abelian group acting on a compact nonorientable Riemann
surface of topological genus g > 2 is 16 if g = 6 and 2g otherwise.

Proof. If g = 6, then the largest order is 16 since, by Theorem 6.1, σ̃ (16) = 6 and σ̃ (N) � N/2 > 6 if
N > 16 (note that (q − 1)(N/q − 1) + 1 = N/2 + (q − 2)(N − 2q)/2q � N/2 if q � 2).

If g = 8, then the largest order is 16 since σ̃ (Z2 ⊕Z8) = 8 and σ̃ (N) � N/2 > 8 if N > 16.
Otherwise, g �= 6 or 8. In that case, σ̃ (2g) = g and thus the largest order is, at least, 2g. But no Abelian

group of order greater than 2g acts on compact nonorientable Riemann surfaces of topological genus
g. For, consider an Abelian group A of order N that acts on genus g �= 6 or 8, so g � σ̃ (N). If N �= 16,
then σ̃ (N) � N/2 by Theorem 6.1 and thus N � 2g. Now, suppose that N = 16, hence g � σ̃ (16) = 6. If
g > 8, then 16 < 2g. Finally, no Abelian group of order 16 acts on genus 7; indeed, σ̃ (A) > 7 for any
Abelian group A of order 16 other than Z 4

2 and, if A ≈Z 4
2 acts on genus 7, then 5/4 = 4w − 4 + 2r + s

for some nonnegative integers w, r, s by Theorem 4.3 and the Riemann-Hurwitz formula (2.3), which
is not possible since 4w − 4 + 2r + s ∈Z.
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