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Core dynamics of a strained vortex:
instability and transition
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(Received 27 July 2000 and in revised form 29 May 2001)

We study the instability of a laminar vortex column (in an external orthogonal strain
field) to an axisymmetric core size perturbation, and the resulting transition to fine-
scale turbulence. The perturbation, which evolves as a standing wave oscillation (i.e.
core dynamics, CD), is inviscidly amplified by the external strain. Analysis of a weakly
strained Rankine vortex explains the physical mechanism of instability: resonant
interaction between the perturbation – the azimuthal wavenumber m = 0 wave – and
m = ±2 waves. The CD instability (CDI) – a type of elliptic instability – experiences
the fastest growth when the CD oscillation frequency equals vortex column’s fluid
angular velocity, such matching occurring only at specific discrete values of the axial
wavenumber k. At this resonant frequency, the net effect of the swirl-induced tilting
of perturbation vorticity and the CD-induced tilting of base flow vorticity is such
that perturbation vorticity is continually aligned with the stretching direction of
the external strain. Such strain–vorticity locking occurs for all m; hence all waves
are unstable, the instability oscillation frequency being dependent on m. In a viscous
Gaussian-like vortex, CDI has low-strain, low-Re and high-k cutoffs – consequences of
the competing effects of inviscid amplification and viscous damping. Direct numerical
simulation reveals two physical-space mechanisms of transition: (i) formation of a thin
annular vortex sheath surrounding a low-enstrophy ‘bubble’ (similar to axisymmetric
vortex breakdown) and the sheath’s subsequent roll-up into smaller ‘vortexlets’; and
(ii) folding and reconnection of core vortex filaments giving rise to additional fine-
grained random vorticity within the bubble – both mechanisms caused by CD-induced
intense axial flow within the vortex column. The resulting finer tubular vortices (similar
to ‘worms’) have in turn their own CD, and thus this transition scenario suggests
a physical-space cascade process in developed turbulence (as well as a concomitant
anti-cascade process during the bubble’s collapse phase). Additionally, we show that
bending waves, in spite of their faster growth, effect surprisingly much slower transfer
of energy into fine scales than CDI does, and hence are less effective than CDI in
vortex transition and in turbulence cascade.

1. Introduction
The effect of an external non-axisymmetric strain on a vortex is known to be

destabilizing, the research focus so far having been on modes that bend the vortex axis,
i.e. on bending waves, BW (see, e.g., Eloy & Le Dizès 1999; Leblanc & Cambon 1998;
Robinson & Saffman 1984). In this paper, we focus on how the strain also promotes
the growth of axial waves (may alternatively be called ‘bulging’ or ‘varicose’ waves),
i.e. perturbations that cause core vorticity variation without deflecting the vortex
axis. Our study is motivated by the observation that coherent structures (vortices)
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in turbulence have non-trivial axial structure, such as non-uniform core area, axial
inhomogeneity of core vorticity distribution, and helical vortex lines. These features are
of course coupled: helical vortex lines induce axial flow that stretches/compresses core
vorticity; and, vice versa, non-uniformity of core vorticity (or core area) causes vortex
lines to become coiled due to the axial variation of swirl; and so on. ‘Core dynamics’
(CD), i.e. the evolution of a vortex due to its internal, or core, vorticity distribution –
distinct from the self-induced motion of the vortex due to non-rectilinearity of its axis
often studied by the local induction approximation (Batchelor 1967) – is prevalent in
many flows. During vortex reconnection, filaments containing reconnected vorticity
(i.e. bridges) reveal CD (Melander & Hussain 1988). Vortices undergoing the typical
localized pairing (such as helical pairing in a mixing layer) together behave like a
single structure with a large core variation and evolve via CD (Schoppa, Hussain &
Metcalfe 1995). A vortex subjected to non-uniform axial stretching develops core-area-
varying waves (Verzicco, Jiménez & Orlandi 1995; Marshall 1997). Intense fine-scale
vortices in isotropic turbulence (the so-called ‘worms’), whose radii are typically
' η (Kolmogorov lengthscale) and whose lengths are ' λ (Taylor microscale) (e.g.
Vincent & Meneguzzi 1994; Jiménez & Wray 1998), unavoidably have CD because
of their limited axial length. Simulation of an isolated finite-length vortex by Samuels
(1998) revealed coiling of vortex lines and hence axial flow – a simple consequence of
CD – which he termed ‘instability’, although the CD in this case involves no instability.

Motivated by the vortex breakdown phenomenon, a number of studies have ad-
dressed axisymmetric waves on an isolated vortex column, usually with axial flow (see,
e.g., Lundgren & Ashurst 1989; Leibovich & Kribus 1990). Leonard (1994) developed
a theory of nonlinear axisymmetric waves based on the coupling between core area
variation and meridional flow, and showed that very large core area variations can
develop in the presence of axial flow. This paper, which expounds Pradeep (1999) and
Hussain (1998), considers CD in a vortex without axial flow.

Melander & Hussain (1994, hereinafter cited as MH) studied an isolated vortex
column, without axial flow, that initially has sinusoidally varying core size. The
immediate CD-induced coiling of vortex lines makes the perturbation evolve as a
standing wave driven by the mutual coupling of differential angular velocity along a
vortex line and self-induced meridional flow, i.e. radial and axial velocity components
ur and uz (discussed in § 2.2). CD involves no instability in the absence of external
strain and is sustained indefinitely in the inviscid limit. In a viscous flow, CD is
damped. The oscillation frequency increases as the vortex Reynolds number (Re ≡
circulation/viscosity) is increased, with a finite inviscid limit. CD is thus a specific case
of waves on a vortex column known since Kelvin (Kelvin 1880; Saffman 1992). (For
a recent study of Kelvin vortex waves, see Arendt, Fritts & Andreassen 1997.) These
waves, identified by azimuthal wavenumber m, include both bending and axial waves:
m = 1 and m = −1 are bending waves, while waves of all other m do not deflect the
vortex axis and are therefore axial waves. (The MH flow corresponds to the nonlinear
m = 0 wave.) All Kelvin vortex waves are neutrally stable in an inviscid flow.

A vortex segment in turbulence is not of course isolated, but is advected and
strained by the induced velocity of adjacent vortex filaments. A first approximation
of the external effect is uniform plane strain orthogonal to the vortex, which deforms
the vortex core into an elliptic shape (Kida 1981; Moffatt, Kida & Ohkitani 1994;
Jiménez, Moffatt & Vasco 1996). The elliptic vortex is unstable to three-dimensional
perturbations, as shown by Moore & Saffman (1975) and Tsai & Widnall (1976).
To understand the growth of BW on a vortex ring, Tsai & Widnall considered a
weakly strained Rankine vortex column perturbed with m = 1 and m = −1 waves,
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both having the same axial wavenumber k. The π-periodic strain couples m with
m ± 2 waves (S. Le Dizès 1999, personal communication). For m = ±1, Tsai &
Widnall found that for certain discrete values of k at which the oscillation frequency
of both modes is zero, there is resonant amplification (i.e. instability). Finite strain
broadens the discrete k values at which instability occurs, the bandwidths increasing
with increasing strain (Robinson & Saffman 1984).

Pierrehumbert (1986) analysed elliptic vortex instability in an unbounded flow
formed by the superposition of uniform strain and uniform vorticity. Bayly (1986)
developed a theory of the ‘elliptic instability’ in terms of waves of the form u′ =
u(t) exp[ik(t) · x] that are supported by a flow in solid-body rotation, where k is
inclined at angle α to the vortex axis. The perturbation rotates about the wavevector
k with a frequency Ω cos α, where Ω is the base flow vorticity. In the limit of
vanishing strain rate, k itself rotates about the vortex axis with the frequency Ω/2 in
the direction opposite to that of the perturbation. The two rotations, therefore, cancel
when α = 60◦; an infinitesimal strain then causes exponential perturbation growth by
stretching (Waleffe 1990). The range of α for which instability occurs increases with
increasing strain rate. Waleffe recovered the Kelvin wave eigenmodes by superposing
rotating Fourier modes, linking the Kelvin wave and elliptic instability analyses. The
elliptic instability can be interpreted as the ultra-short-wave Kelvin wave instability
(Saffman 1992).

The elliptic instability is generic to strained vortices: Stuart vortex (Stuart 1967;
Pierrehumbert & Widnall 1982); two-dimensional Taylor–Green vortex (Sipp &
Jacquin 1998; Lundgren & Mansour 1996), Stuart and Taylor–Green vortices with sys-
tem rotation (Leblanc & Cambon 1998; Sipp, Lauga & Jacquin 1999); Lamb–Oseen
vortex (Eloy & Le Dizès 1999); vortex dipoles (Leweke & Williamson 1998; Billant,
Brancher & Chomaz 1999); and Burgers vortex in an additional non-axisymmetric
strain (Eloy & Le Dizès 1999). Pierrehumbert (1986) proposed elliptic instability as a
fundamental cascade mechanism because the instability’s broadband (in k) growth be-
haviour implies that a wide range of scales (limited only by viscous cutoff) can simul-
taneously appear once an elliptic eddy is formed, for example, via Kelvin–Helmholtz
roll-up of a shear layer. This cascade hypothesis is supported by the experiments
of Malkus (1989). In their simulation of a vortex in a rectangular box, Lundgren
& Mansour (1996) introduced simultaneous three-dimensional perturbations (Fourier
modes) over a range of k values, and observed transition to a turbulent flow con-
taining fine-scale vortices. While their visualizations show a BW to be the dominant
feature of the flow, vortex core variations (i.e. CD) are also evident, but not explored.

So far, most studies of strained vortex instability have focused on the BW, which in
general is the most unstable mode of an inhomogeneous vortex. Herein, we focus on
the instability triggered by an axisymmetric core-area-varying perturbation, i.e. CD
instability (CDI). We find that CDI occurs via the resonant growth of m = 0 and
±2 waves, analogous to the growth of superposition of m = ±1 waves in the case
of BW. BW and CDI are both particular types of elliptic instability. CDI has been
observed before – in the Stuart vortex (Schoppa et al. 1995) and in a vortex dipole
(Billant et al. 1999)†. Despite its weaker growth in practical vortices, CDI can be
dominant in a number of flows. For example, intense CDI, triggered in a mixing
layer via helical pairing of spanwise rolls, causes transition more rapidly than other
mechanisms (Schoppa et al. 1995). CDI is likely in worms, which are subjected to

† A referee brought to our attention that Gledzer & Ponomerev (1992) analysed the linear
stability of both CDI and BW in an elliptic cylindrical container, and that Mason & Kerswell
(1999) performed weakly nonlinear analysis of the two instabilities.
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simultaneous axial stretching and compression (Jiménez & Wray 1998); modelling a
worm by an axisymmetric vortex placed in a non-uniform (zero-mean) axial strain,
Verzicco & Jiménez (1999) showed that the vortex survives local compression (by the
imposed strain) by developing large-amplitude core area variations. An additional
plane strain, typical for worms, is likely to cause instability at large Taylor microscale
Reynolds numbers (Reλ). Waves are triggered on a coherent vortex column via its
interaction with ambient fine-scale turbulence (Miyazaki & Hunt 2000). Melander
& Hussain (1993a) showed that the vortex column organizes the surrounding fine-
scale turbulence into polarized (right- or left-handed vorticity) ‘threads’ that wrap
around the vortex; like-handed threads pair to form larger ring-like structures in an
anticascade process. An idealization of such a flow, namely a vortex surrounded by
rings of alternating sign, was studied by Marshall (1997), who found that the column
develops core-area-varying waves.

Our objective is to understand linear and nonlinear CDI in a simple flow. We
first analyse CDI in a weakly strained Rankine vortex (§ 2). The focus is on the
physical interpretation of instability in terms of how sustained stretching occurs at
resonance between m = 0 and m = ±2 waves. This physical mechanism is seen also
to operate for more complex waves (i.e. those with larger |m|). The effect of viscosity
and large strain on linear stability is then studied in a Gaussian-like vortex (§ 3).
In § 4, nonlinear CDI evolution (obtained via direct numerical simulation, DNS) is
shown to result in transition to turbulence via the formation of numerous tubular
vortices, and the physical-space mechanisms of transition are identified. We then
compare nonlinear CDI and BW evolutions (§ 5), and discuss the unexpected result
that fine-scale turbulence generation is more rapid for CDI. Concluding remarks
appear in § 6.

2. Linear CDI of an (inviscid) Rankine vortex
2.1. Stability analysis

We consider an axisymmetric Rankine vortex column of uniform vorticity Ω0 and core
radius R0. It is well known that the vortex supports small-amplitude three-dimensional
waves. In cylindrical polar coordinates (r, θ, z), these waves have the form,

f = f̃(r)eikz+imθ+σt + c.c., (2.1)

where f is any perturbation quantity (velocity, pressure, etc.), with k being the axial
wavenumber, m the azimuthal wavenumber (which is of course an integer), and
σ = σr + iσi, σr being the growth rate and σi the wave oscillation frequency; ‘c.c.’
denotes the complex conjugate. All waves (2.1) are neutrally stable (σr = 0) on an
isolated vortex (see Saffman 1992).

Superimposing on the vortex a weak irrotational stagnation-point flow,

Ur(r, θ) = −ε∗r sin 2θ, Uθ(r, θ) = −ε∗r cos 2θ, Uz = 0,

yields the base flow:

Ur(r, θ) = −εr sin 2θ + O(ε2),
Uθ(r, θ) = r − εr cos 2θ + O(ε2),
P (r, θ) = r2/2− 1 + O(ε2),

 r 6 R(θ),

Φ = θ − 1
4
ε(r2 − r−2) sin 2θ + O(ε2), r > R(θ),

(2.2)
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(a) (b)

εr sin2θUr = – 1
2

εr cos2θU
θ
 = – 1

2

θ
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Ωz = 2
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y

x
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θ

z

ω

zp

zp/2

z0

Figure 1. Schematics of base flows. (a) A Rankine vortex in weak irrotational strain.
(b) A Gaussian-like vortex with sinusoidal core perturbation in plane shear.

where the scaled strain rate ε(≡ 4ε∗/Ω0) � 1, P is pressure, and Φ is the velocity
potential of the irrotational flow outside the vortex core. Here, we have scaled the
velocities by Ω0R0/2 and the velocity potential by Ω0R0

2/2, with R0 as the lengthscale
and 2/Ω0 the timescale. R(θ) represents the elliptic vortex core boundary. The ellipse
major and minor axes are inclined at 45◦ to the strain’s principal axes, which are
along the lines θ = π/4, −3π/4 (compression) and θ = 3π/4, −π/4 (stretching). The
base flow (2.2) is sketched in figure 1(a), with the scaled quantities and the coordinate
system indicated.

We subject the flow to a small-amplitude three-dimensional perturbation, which is
expanded as a perturbation series in ε:

f =
∑
m

[(f(0)
m + εf(1)

m )eikz+imθ+(σ
(0)
m +εσ

(1)
m )t] + c.c.+ O(ε2). (2.3)

By inserting (2.3) into the linearized governing equations, one obtains an hierarchy
of eigenvalue problems. The boundary conditions are that the core boundary is a
material surface and that pressure is continuous across this boundary. In addition,
the perturbation is required to be non-singular at r = 0 and as r →∞.

Axisymmetric core perturbation. Because of the strain, an axisymmetric core pertur-
bation ceases to be axisymmetric, i.e. the m = 0 perturbation generates m = 2 and
m = −2 waves. To solve for the CDI eigenmode, we need to consider a perturbation
that has m = 0,±2 azimuthal components in (2.3). In fact, only one of m = +2 and
m = −2 is required because of two symmetry properties of the governing equations.
The first (conjugate) symmetry,

f(j)
−m(−k) = f(j)∗

m (k), σ(j)
−m(−k) = σ(j)∗

m (k) (2.4)

(where ∗ denotes complex conjugation) is the consequence of the base flow being real.
The second symmetry is obtained by changing the sign of k but not of m. Then,

f(j)
m (−k) = f(j)

m (k), (2.5a)

u(j)
z,m(−k) = −u(j)

z,m(k), (2.5b)

σ(j)
m (−k) = σ(j)

m (k). (2.5c)

Here, f(j)
m represents radial or azimuthal velocity, or pressure or velocity potential;

u(j)
z,m is the axial velocity component uz of the m-mode. Note that the second symmetry

(2.5) implies a change in the sign of m/k and hence a change from a right-handed
helical perturbation to a left-handed one, or vice versa. Further, since the sign of the
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axial phase velocity Im{σ(j)
m }/k is reversed, the left-handed and right-handed waves

travel in opposite directions along the vortex axis and with the same speed. Using
(2.4) and (2.5), the eigenmode for the case of resonance between m = 0 and −2 can
be recovered from the eigenmode of the m = 0, 2 case. We therefore focus on the
m = 0, 2 case in the following.
O(ε0) solution. At O(ε0), the m = 0 and m = 2 waves evolve independently, and

the oscillation frequencies σ(0)
m satisfy the well-known dispersion relation (§ 12.1 of

Saffman (1992)),

kK ′m(k)Jm(ηm) + (σ(0)
m + im)Km(k)Am = 0, m = 0, 2, (2.6)

where

η2
m ≡ −k

2(σ(0)
m + i2 + im)(σ(0)

m − i2 + im)

(σ(0)
m + im)2

, (2.7a)

and

Am ≡ − (σ(0)
m + im)dJm(ηmr)/dr|r=1 + 2imJm(ηm)

(σ(0)
m + i2 + im)(σ(0)

m − i2 + im)
. (2.7b)

Here Jm and Km are the Bessel and modified Bessel functions of order m respectively.
Salient features of the eigenvalues σ(0)

m are reviewed below.
At any k value, there is an infinite number of discrete σ(0)

m that satisfy (2.6). All σ(0)
m

are imaginary and are bounded, with

−i(2 + m) < σ(0)
m < i(2− m). (2.8)

Eigenvalues σ(0)
m occur in pairs, both associated with the same η2

m value: there is one
σ(0)
m corresponding to +(η2

m + k2)1/2 and another corresponding to −(η2
m + k2)1/2. As k

increases, the σ(0)
m approach the upper bound in (2.8) for +(η2

m + k2)1/2 and the lower
bound for −(η2

m + k2)1/2. The eigenvalues with the smallest η2
m are the closest to the

bounds at any given k. As η2
m increases, so does the number of radial oscillations in

the eigenmode. We pursue here the simpler modes, i.e. those with the lowest few η2
m

values. The first few eigenvalues σ(0)
m (k) for m = 0,±2 are plotted in figure 2, where

some interesting ‘crossing-points’ are identified by + and ×× symbols.
The m = 0 and m = 2 waves have different oscillation frequencies, i.e. σ(0)

0 (k) 6=
σ

(0)
2 (k), except at specific discrete values of k at which the purely imaginary eigenvalues

σ
(0)
0 = σ

(0)
2 (≡ σ(0)), e.g. points in figure 2 identified by + marks. At the crossing-points,

resonance between m = 0 and m = 2 waves can lead to perturbation growth in the
presence of an external strain. That is, the m = 0 wave interacts with the base flow to
force the m = 2 wave, and vice versa. As this forcing has the same frequency as the
wave oscillation, resonant growth of wave amplitude is possible. We now explore the
instability at the crossing-points.
O(ε1) solution. The O(ε1) eigenvalue problem is solved analytically following Tsai &

Widnall (1976). Only the results are discussed here, and some details of the solution
are given in Appendix A.

Briefly, manipulation of the governing equations yields a single equation for the
pressure perturbation p(1)

m . This equation for pressure and the potential-flow equation
are solved, and the boundary conditions at the core edge are enforced. This procedure
yields a linear inhomogeneous system involving σ(1)

m and the unknown amplitudes of
p(1)
m and φ(1)

m . The solution of the linear system must satisfy a solvability condition,
which is the expression for σ(1)

m . One finds that for wave amplification to occur,

σ
(1)
0 = σ

(1)
2 (≡ σ(1)).
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rm
(0)

m = –2

m = 0

1′
2′

4′ 5′
6′

7′ 8′
(a′)

(b′) (c′) (e′)
(c) (e)

(d)2(a)

4 7 8
5

6
m = 2

3

( f )
( f ′)

3′

(b)

Figure 2. Oscillation frequency σi ≡ Im{σ(0)
m } vs. axial wavenumber k for m = 0 (solid lines), m = 2

(dashed lines) and m = −2 (dotted lines); + denotes m = 0, 2 crossing-points. Growth rates Re{σ(1)}
at + points appear in table 1; ×× denotes m = 0,−2 crossing-points. Note that curves (a′–d′) are for
progressively increasing +(η2

m + k2)1/2 and curves (a–d) are the sister curves, i.e. for progressively
decreasing −(η2

m + k2)1/2. There is an infinity of curves between (d) and (d′) for m = 0 (not shown),
as also between (f) and (f′) for m = 2 case. Among all the curves in the range −2i < σ(0)

m < 0,
curves (a) and (e) are the only ones without a crossing-point at σ(0) = −i.

Crossing point k σ(0) σ(1)

4 3.3093 −0.9962i 0.5376
7 5.1723 −1.0027i 0.5678
8 7.0228 −1.0036i 0.5666
1 1.1927 −0.8425i 0.4627
6 4.7662 −1.2614i 0.1375
5 4.1230 −1.1561i 0.1171
2 2.0651 −0.6731i 0.0898
3 2.1904 −1.2571i 0.0997

Table 1. CDI wavenumber k, oscillation frequency σ(0) and growth rate σ(1) for + points in
figure 2, listed in order of decreasing growth rate.

The growth rate σ(1) has been computed for the + points in figure 2 and is given
in table 1. At all + points, σ(1) is real and positive, i.e. instability occurs at all these
points; the growth rate however is not the same at all points. A striking feature is
that the largest growth occurs whenever σ(0) ' −i (i.e. + points 4, 7 and 8 in figure 2).
This growth rate is the same irrespective of k. Recall that the angular velocity is
scaled by 2/Ω0. Thus, σ(0) = −i implies that the CD oscillation frequency equals the
vortex column’s fluid angular velocity. This frequency condition for maximum growth
is discussed in the following subsection (§ 2.2).

The peak CDI growth rate value (at + point 7) of 0.5678ε nearly equals the value
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(a) k = 3.31 (b) k = 5.17 (c) k = 7.02

t = 0

t = T/4

Figure 3. ωz contours in the z0 plane for modes with maximum growth (+, points 4,7 and 8 in
figure 2) with k values indicated. Eigenmodes are shown at two phases of the oscillation. Dashed
contours indicate −ωz . Arrows outside the circular core denote strain principal axes.

obtained for BW by Tsai & Widnall (1976) of 0.57ε. (For an unbounded elliptic vortex,
Waleffe (1990) found that instability growth rate has an upper bound of 0.5625ε. As
the perturbation is increasingly localized near the axis with increasing k, the k → ∞
limit in our flow corresponds to a vortex of infinite core size. With increasing k,
we find that the growth rate does asymptote to 0.5625ε, decreasing from 0.5678ε at
k = 5.17 to 0.5625ε for k > 525.78.) The equal growth of CDI and BW instabilities is
a feature contrary to that of vortices with inhomogeneous core vorticity profiles. For
example, in the Stuart vortex, CDI has approximately half the growth rate of BW
instability (Pierrehumbert & Widnall 1982; Schoppa et al. 1995) – BW being the most
unstable mode and CDI the second most unstable mode. We find similar weaker CDI
growth in a Gaussian-like vortex (§ 3.2), and discuss there the possible reason for this
difference between Rankine and inhomogeneous vortices. Figure 3 shows the axial
vorticity perturbation ωz distributions of the fastest growing eigenmodes, at k = 3.31,
5.17 and 7.02 (+ points 4, 7 and 8 respectively in figure 2). Since the eigenmodes are
oscillatory, the ωz distribution in any z-plane is different at different phases of the
oscillation. Figure 3 shows the eigenmodes at two (opposite) phases: t = 0 (top row)
and t = T/4 (bottom row), where T is the oscillation time period. As k increases, the
number of nodes in the radial profile of ωz increases. Also, as expected, regions of
higher perturbation vorticity (ωz) are progressively confined closer to the axis. This
feature is also true of other components of perturbation vorticity (not shown).

Note that there is an infinite number of crossing-points where σ(0) = −i, and that
there are such crossing-points even as k → ∞. Since the growth rate 0.57ε seems
to be independent of k, we expect that all waves with σ(0) = −i amplify equally.
This short-wave nature of the instability, combined with the increasing localization of
perturbation near the axis with increasing k, suggests that CDI should be insensitive
to the curvature of the vortex axis. CDI should thus occur even in vortices whose
axes are curved, such as vortex rings.

Standing wave oscillation. The eigenmodes due to the superposition of m = 0 and
m = 2 waves (+ points in figure 2) travel in the +z-direction as the axial phase
velocity Im{σ(0)}/k < 0. The corresponding CDI eigenmodes due to superposition of
m = 0 and m = −2 waves (×× points) travel in the −z-direction, with axial phase
velocity Im{σ(0)}/k > 0. (Note that crossing-points 1 and 1′, 2 and 2′, etc. have the
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same k.) Both eigenmodes have the same oscillation frequency and growth rate – a
consequence of (2.4) and (2.5). As an axisymmetric core size perturbation triggers
both eigenmodes, a standing wave oscillation emerges. The vortex dynamics of this
standing wave are discussed below.

2.2. Physical interpretation of instability

To understand the frequency condition for maximum growth, we focus on the eigen-
mode vortex dynamics, amenable to interpretation in terms of vortex tilting and
stretching. We first consider CD in the absence of any external strain. The perturba-
tion evolves as a periodic expansion and contraction of core size, and hence coiling,
uncoiling, and then reverse coiling of vortex lines. The evolution of perturbation
vorticity during this oscillation explains why the instability occurs when the CD
frequency equals the fluid angular velocity.

CD oscillation with no strain. An axisymmetric perturbation to the Rankine vortex
satisfies the linearized vorticity equation

D

Dt

 ωr
ωθ
ωz

 =

 −ωθωr
0

 +2
∂

∂z

 ur
uθ
uz

 , (2.9)

T1 T2

where D/Dt ≡ ∂/∂t+U · ∇; the lower-case quantities correspond to the perturbation.
Here we have used the scaled velocity and vorticity values. Recall that our timescale
is 2/Ω0; therefore, base-flow vorticity magnitude equals 2, and angular velocity Uθ/r
(= ∂Uθ/∂r, for the Rankine vortex) equals 1.

The first term on the right-hand side in (2.9) (call it T1) describes the tilting by
the vortex swirl of ωr into ωθ , and vice versa. Let ω⊥ denote the the perturbation
vorticity vector in an axial plane (perpendicular to the z-direction), i.e. ω⊥ ≡ (ωr, ωθ).
We can see from (2.9) that T1 rotates ω⊥ in the +θ-direction. More precisely, this
rotation has the same sense as that of Uθ (which in our coordinate system is along
+θ; see figure 1a). The rate at which T1 rotates ω⊥ equals 1, i.e. it equals the angular
velocity of fluid in the vortex.

The second term on the right-hand side in (2.9) (term T2) represents the tilt-
ing/stretching of the vortex column’s axial vorticity by the gradients of CD-induced
perturbation velocity. Since ur and uz are induced by ωθ , and uθ by ωr or ωz , T2
introduces couplings between the various components of perturbation vorticity. These
couplings produce the core size oscillation that is CD (MH).

Consider a segment of a vortex tube that is given a sinusoidal axisymmetric core
size perturbation (figure 4a) such that all vortex lines are initially uncoiled (i.e. each
vortex line lies totally in a meridional plane, i.e. ωθ = 0). Since a vortex tube encloses
the same circulation 2πr(Uθ +uθ) at all z, net angular velocity (Uθ +uθ)/r on the tube
surface at z1 (where core radius is reduced) is greater than that at z2 (where core radius
is increased) (figure 4a). It follows that a vortex line passing through fluid particles
A in plane z1 and B in plane z2 (figure 4a) will immediately thereafter become coiled
(figure 4b), since vortex lines are material in an inviscid flow. That is, an (ωr, 0, ωz)
perturbation generates ωθ , hence both uz and ur . The axial flow stretches Ωz at z2

and compresses Ωz at z1 (via the z-component T2 term in (2.9)). Thus, there is core
contraction where the core is expanded (e.g. z2), and vice versa, causing the core size
variation (hence ωz and ωr) to be reduced. As the core size variation is being reduced,
the vortex lines become increasingly coiled because of the persisting differential swirl
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(a)

(b)

(c) (d )

(e) ( f )

Vortex line
Vortex tubeωv<r̂

A
B

θ̂

z

x

z2

z1

y

Meridional
streamline

A
θ̂

B

ωv

r̂

ωv<θ̂

B

θ̂
r̂

B

ωv

θ̂

r̂

r̂

B

θ̂

ωv<r̂ ωv

B

θ̂

r̂

+Ωz ¦z

¦uz

–Ωz ¦z

¦uz

Figure 4. Illustration of CD evolution on a vortex tube between planes z1 and z2. Vortex lines lie
on an axisymmetric vortex surface. (a) t = 0, (b) T/8, (c) T/4, (d) 3T/8, (e) T/2, (f) 5T/8.

between A and B, i.e. because (Uθ +uθ)/r|A 6= (Uθ +uθ)/r|B . Thus, at the instant when
the vortex tube becomes cylindrical (figure 4c), vortex lines on the tube surface are
coiled. Meridional flow (ur, uz) induced by the coiled lines continues to stretch Ωz at
z2 and to compress Ωz at z1. Thereby, the core size variation begins to reverse from
that shown in figure 4(a). Reversal of the core size variation also reverses the sign of
the differential swirl, and hence the vortex lines now begin to uncoil (figure 4d). The
meridional flow continues to increase the core size variation until the vortex lines are
fully uncoiled (figure 4e). At this stage, the core size variation is equal and opposite to
that initially (figure 4a). The evolution so far (i.e. from figures 4a to 4e) corresponds
to half a cycle of the m = 0 standing wave oscillation, which continues indefinitely.
(A subsequent stage of the oscillation is shown in figure 4f.)
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(a) (b) (c) (d ) (e)

3π /4 π /4

π θ = 0
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B!B
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θ

r

B!

B
B
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Figure 5. Illustration of vorticity locking (in z2-plane of figure 4). Among the eight particles shown,
only B and B′ have strain vorticity locking. Five phases of oscillation (a–e) here correspond to
phases (a–e) in figure 4.

For the CD oscillation shown in figure 4, corresponding phases of the ω⊥ evolution
in plane z2 are illustrated in figure 5. The ω⊥ distribution in figure 5 is shown on a
circle (within the core); the particles remain on the circle in the limit of infinitesimal
perturbation amplitude. Panels (a–e) in figure 5 correspond respectively to the panels
(a–e) in figure 4. Notice that during the oscillation, ω⊥ has different orientations at
different times, the orientation changing by 180◦ during half a cycle of the oscillation
(panels a–e, figures 4, 5). Now superimpose an infinitesimal uniform strain field on the
vortex. Since the strain direction is the same everywhere in the flow and the orientation
of ω⊥ changes continually, a fluid particle experiences both vorticity stretching and
compression (at different times) due to the external strain. This is true for every fluid
particle in the flow. Thus, there need not be any net vorticity amplification and hence
no instability.

Strain–vorticity locking. Vorticity amplification will definitely occur if a fluid particle
experiences continual stretching. This means that a fluid particle must have ω⊥
perpetually aligned with the strain’s stretching direction, i.e. ‘strain–vorticity locking’.
For ω⊥ of a fluid particle B to be aligned with the strain at all times, B must occupy
the azimuthal locations shown in figure 5(a–c). That is, during the evolution from
figure 5(a) to figure 5(c), B is advected through an angle of 90◦. Since this period
corresponds to a quarter-cycle of the CD oscillation, it follows that for strain–vorticity
locking to occur the CD oscillation frequency and the fluid angular velocity must
be equal. (Could B be advected from (a) to (c) by an additional 360◦? This is not a
possibility as the locking will be disrupted in between. Thus, locking can occur only
at this unique frequency.) Such alignment locking results in exponential amplification
of the fluid’s perturbation vorticity.

Because the perturbation is axisymmetric, only certain fluid particles (B and B′
in figure 5, which occupy azimuthal locations separated by 180◦) experience pure
stretching. Also, there are fluid particles whose vorticity always remains along the
strain’s compressive direction (those initially at θ = π/4 and θ = 5π/4; figure 5a);
perturbation vorticity magnitude of these particles is therefore reduced. Thus, an
m = 0 perturbation does not remain axisymmetric in the presence of the strain
field, but develops an azimuthally π-periodic (i.e. |m| = 2) component. The |m| = 2
component grows continually from zero amplitude until the amplitudes of m = 0
and |m| = 2 are exactly equal. When this happens, the |m| = 2 mode cancels m = 0
along the compressive direction; the two modes add along the stretching direction.
At locations where m = 0 vorticity is aligned with neither the stretching nor the
compressive directions of strain, the additive |m| = 2 mode ‘tilts’ m = 0 vorticity
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(a) (b) (c)

θ

r

Figure 6. Strain–vorticity locking in CDI eigenmode of figure 3(a). ω⊥ distribution in zπ/2 (see
figure 1b) is shown at three phases of the oscillation: (a) t = 0 (maximum core area variation; no
vortex line coiling), (b) t = T/8 and (c) t = T/4 (no core area variation; maximally coiled vortex
lines). An expanded view of the square box in the top row is shown underneath.

toward the stretching direction. Thereby, the perturbation evolves such that ω⊥ is
continually stretched by the external strain.

The analytical solution obtained in § 2.1 verifies the above qualitative explanation.
Figure 6 shows the ω⊥ distribution at three phases of the oscillation: t = 0 (maximum
core size variation; no vortex line coiling), t = T/8 and t = T/4 (no core size
variation; maximally coiled vortex lines) for the same eigenmode as in figure 3(a).
At each phase, there is a patch of fluid (marked by a box in the figure with an
expanded view underneath) with ω⊥ aligned with the strain. This patch moves in the
+θ-direction from θ = π/4 to θ = 3π/4 during the time t = 0 to t = T/4. Note that
perturbation vorticity alignment is perfect only at one point, varying by a few degrees
within the patches shown. Such strain–vorticity locking is not restricted to particular
z-planes but occurs all along the vortex column (shown in Appendix B).

Locking for non-axisymmetric perturbations. It is also shown in Appendix B that
locking occurs for resonant combinations of waves other than m = 0,±2. The
oscillation frequency at which locking occurs depends on m. Locking occurs trivially
for BW instability (m = ±1 waves), as the eigenmode is non-oscillatory (i.e. the
perturbation field is steady in the absence of strain). The locking mechanism of
growth presented here is consistent with with the interpretation of Waleffe (1990)
that ‘it is possible to choose initial conditions such that the average vorticity is, and
stays, in the stretching direction’. (His figures 1 and 2 are the BW analogue of our
figures 3 and 6.) A strained vortex has therefore a wide variety of unstable modes in
addition to CDI and BW†. The growth of unstable modes with |m| > 1 can explain

† Following the submission of this paper, we became aware of an experimental study by Eloy,
Le Gal & Le Dizès (2000), in which different Kelvin wave instabilities were realized in a rotating
non-axisymmetric cylindrical container.
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unusual vortex phenomena, such as the breakup of a vortex into a number of helical
filaments, which have been observed in turbulent flows; see, e.g., Cadot, Douady &
Couder (1995).

3. CDI of a viscous vortex in shear: linear stability
We next consider linear CDI in a more practical flow, namely a viscous vortex

column embedded in an orthogonal shear flow of finite (i.e. non-infinitesimal) strength.
A Gaussian-like core vorticity profile is chosen, such a profile being typical of vortices
in viscous and turbulent flows. The choice of uniform shear, instead of pure strain, has
been dictated by our Fourier pseudospectral DNS algorithm. (Note that a plane shear
(ux = −γy) is the superposition of saddle or straining flow (ux = −γy/2, uy = −γx/2)
and solid-body rotation (ux = −γy/2, uy = γx/2).) It is the straining component of
the shear that is responsible for CDI growth. The essential instability mechanism is
unaffected by the vortical component of the shear.

3.1. Base flow

The two-dimensional base flow comprises an axisymmetric vortex column, having
a ‘compact Gaussian’ vorticity profile (i.e. a Gaussian-like profile with compact
support):

Ωz(ζ) = Ω0 exp[−4ζ2/(1− ζ2) + 4(ζ4 + ζ6 + ζ8)], ζ 6 1

= 0, ζ > 1, (3.1)

where ζ ≡ r/r0, with r = (x2 + y2)1/2 and r0 being the core radius; Ω0 is the peak
vorticity magnitude. Note that Ωz is continuous and smooth. The vortex column is
embedded in a uniform shear flow,

Ux(y) = −γy, (3.2)

having axial vorticity of the same sign (+ωz) as the vortex, i.e. the shear strength γ > 0.
This base flow, along with the coordinate system used, is illustrated in figure 1(b).

The CDI growth rate depends on the shear strength γ, the Reynolds number Re,
and the perturbation axial wavenumber k. In the following, the relative shear strength,
s ≡ γ/Ω0, is varied between 0 and 0.25 by changing the value of γ and keeping Ω0

fixed (Ω0 = 1 in all cases); Re (defined below) is varied between 400 and 5000, and k
between 0.4 and 2.5. The timescale τ is the eddy turnover time, given by

τ = πr2
0/Γ = 4.494/Ω0,

where Γ is the vortex circulation. The vortex Reynolds number Re ≡ Γ/ν, where ν
is the kinematic viscosity.

As the strain deforms the vortex into an elliptic shape, the base flow is initially
(inviscidly) unsteady, but progressively becomes steady. The L2-norm of the difference
between flow fields closely separated in time (by ' τ/10) is computed, and when the
norm drops to a hundredth of its initial value, the flow field is taken to be sufficiently
steady for stability analysis. This procedure is repeated for every different s value.

The base flow obtained is illustrated (for s = 0.1) in terms of streamlines and
vorticity contours in figure 7(a). Note that a two-dimensional flow is inviscidly steady
when streamlines and vorticity contours coincide. Figure 7(a) shows such coincidence
everywhere in the flow except for small deviations near the core edge, implying that
the flow is nearly steady. The vorticity contours are approximately elliptic, and the
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(a) (b)

0.10

0.16

0.21

0.26
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–0.04

Figure 7. (a) Two-dimensional base flow: elliptic Gaussian vortex in uniform shear. Coincidence
of |Ωz | contours (dotted) and streamlines (solid) implies steadiness. (b) Contours of Sijωiωj/ωkωk
for only ω aligned with the stretching direction (shown by arrow). Thick dash-dot contour is
Ωz = 0.2Ω0.

(a) (b)

Figure 8. ωz contours (dotted lines denote −ωz) in the zπ-plane (see figure 1b) for CDI eigenmode
shown at two phases: (a) t = 0, maximum area variation; no vortex line coiling, (b) t = T/4, no
area variation; maximum coiling. Outer boundary denotes Ωz = 0.2Ω0 contour. Eigenmode shown
for k = 1, s = 0.1, Re = 5000. The outer contours are very close as it is early in the CDI evolution.

major and minor axes of these ellipses are aligned at 45◦ to the principal axes of the
external strain, which lie along lines y = −x (stretching) and y = x (compression).
Figure 7(b) shows contours of Sijωiωj/|ω|2 (where Sij is the strain rate tensor) only
for ω along the stretching direction of the external strain. The significance of the
radial and azimuthal non-uniformity of this stretching rate is discussed later.

Numerical technique. Details of the Fourier pseudospectral algorithm used to com-
pute the CDI growth rate are given in Appendix C. Briefly, the base flow obtained
by the procedure described above is ‘frozen’. The linearized Navier–Stokes equa-
tions, initialized with a random three-dimensional perturbation having a single axial
wavenumber k, are solved. The perturbation is integrated until the most unstable
eigenmodes of the vortex become (energetically) dominant. The fastest growing mode
is BW, whose growth rate is twice that of CDI. Time-integration alone therefore does
not yield the CDI eigenmode. To obtain this mode, BW and CDI are separated via an
orthogonalization-based procedure (Mamun & Tuckerman 1995), which also yields
the eigenmode growth rate (σ = σr + iσi). Once an eigenmode has been obtained for a
given set of s, k and Re values, the mode is used to initialize subsequent computations
in which one or more of these parameters are changed. This procedure reduces the
computational effort and also allows an estimate of growth rate cutoffs. When the
value of k is changed, the perturbation (i.e. its amplitudes for all (x, y) Fourier modes)
is adjusted so as to satisfy the divergence-free condition for vorticity.

3.2. Stability analysis results

CDI eigenmode. The CDI eigenmode (figure 8) is, not too surprisingly, qualitatively
similar to that of the Rankine vortex (figure 3). The ωz perturbation is shown at two
phases of the oscillation: t = 0 (maximum core area variation; no coiling of vortex
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(a) t = 0 (b) t = T/8 (c) t = T/4

(d )

Figure 9. Eigenmode ω⊥ distribution in the zπ/2-plane (see figure 1b). (a–c) CDI eigenmode of
figure 8; (d) BW. (a) t = 0 (maximum area variation; no coiling of vortex lines), (b) t = T/8,
(c) t = T/4 (no core area variation; maximally coiled vortex lines). Box in a–c encloses a patch of
fluid with strain–vorticity locking. Expanded view of box is displayed underneath. Dashed lines are
Ωz = 0.2Ω0 contour.

lines) and t = T/4 (no core area variation; maximally coiled vortex lines), where T is
the oscillation period. When the core is most expanded, there is an elliptic region of
−ωz at the axis, surrounded by two regions of +ωz . When vortex lines are maximally
coiled, there are four azimuthally distributed cells of alternately signed ωz . The ω⊥
≡ (ωr, ωθ) distribution is shown in figure 9 at three phases of the oscillation: t = 0,
T/8, and T/4. At each stage, there are two patches of fluid with ω⊥ ≡ (ωr, ωθ) along
the stretching direction of the external strain. One of the patches is marked by a box
with its expanded view underneath. The patch moves in the +θ-direction, i.e. in the
direction of the column’s fluid angular velocity, from θ = 5π/4 to θ = π/4 during the
time t = 0 to t = T/4. This is similar to the Rankine vortex eigenmode in figure 6.
Sustained stretching due to strain–vorticity locking causes perturbation growth. The
similarity between the Rankine and Gaussian-like vortex eigenmodes suggests that
the instability is insensitive to the profile of vorticity or strain, and hence generic
to vortices in external strain. Note however that unlike the Rankine vortex, the ω⊥
stretching rate is not uniform in the vortex core, as shown in figure 7(b). This non-
uniformity causes the vorticity amplification rate to be different at the different phases
of the oscillation in figure 9(a–c). The perturbation energy growth rate consequently
oscillates, as discussed below.
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(a)
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Figure 10. (a) CDI E3D evolution for k = 1, Re = 5000.
(b) Evolution of ωz and E3D growth rate in CDI.

CDI energy growth. The instantaneous growth rate of three-dimensional energy E3D

is not steady, but oscillates with twice the frequency of the CD oscillation and increases
with increasing shear strength s (figure 10). To understand the oscillatory growth, we
plot in figure 10(b) the instantaneous growth rate d(logE3D)/dt, whose average over
one period is 2σr . The figure also shows the peak of perturbation vorticity ωz (at the
axis in the z0-plane; see figure 1b). When ωz is large, so is the core area variation
and when ωz is zero on the axis, there is no core area variation. The growth rate is
the largest at the phase (t = T/8) intermediate to those of maximum core variation
and maximum vortex line coiling (figure 10). Insight into the growth rate oscillation
is obtained by examining the ω⊥ stretching rate in regions of locking. Recall that
the strain field is azimuthally non-uniform, with the maximum strain rate being on
the major axis of the elliptic core and the minimum strain rate on the minor axis
(figure 7b). Fluid with strain–vorticity locking lies in the region of the largest strain
at t = T/8 (figure 9b). This is also the phase at which the growth rate is the largest.
At other phases, the stretching is weaker, and hence the instantaneous growth rate.

Faster growth of BW. In this flow, BW growth rate is approximately twice that
of CDI. To understand this, we consider the strain rate due to the external shear
(estimated by taking the azimuthal average of the distribution in figure 7b). The
interaction between the vortex (3.1) and the shear (3.2) makes the strain rate radially
non-uniform. The strain rate is the largest on the vortex axis, where it is ≈ 3 times
that outside the core and decreases with increasing radius. In BW, strain–vorticity
locking occurs at the axis, as shown in figure 9(d). In CDI, on the other hand, locking
occurs away from the axis (figure 9a–c) and therefore in regions of weaker strain
than in BW. The weaker stretching of ω⊥ in CDI causes the instability to grow more
slowly than in BW. This explanation is only qualitative; nevertheless, it is consistent
with the nearly identical growths of BW and CDI in the Rankine vortex, where the
strain rate is uniform in the core.

In the following, we describe the instability characteristics by varying in turn the
three parameters: the perturbation axial wavenumber k, the relative shear strength
s(≡ γ/Ω0), and Re(≡ Γ/ν).

Variation of σ with k. Figure 11 shows the dependence on k of growth rate σr and
oscillation frequency σi, with the relative shear strength s and Re held constant. There
is an inviscid low-k cutoff, at k ' 0.5. For k > 2 (figure 11a), the growth rate decreases
due to viscous damping. There is a viscous high-k cutoff (not shown), which should
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Figure 11. Dependence of CDI growth rate σr (a) and frequency σi (b) on axial wavenumber k.
s = 0.1 and Re = 5000.
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Figure 12. Dependence of CDI growth rate on: (a) relative shear strength s (≡ γ/Ω0) for
Re = 5000; and (b) Re for s = 0.1. Axial wavenumber k = 2.

increase with decreasing viscosity. There is a range of k values (1.4 < k < 2.2) in
which the growth rate is nearly independent of k. This range should increase with
decreasing viscosity. This ‘broadband’ growth behaviour is significant because a wide
range of lengthscales can amplify equally. Therefore, a turbulent flow can result via
nonlinear instability of an elliptic eddy.

Figure 11(b) shows that σi increases with increasing k. This increase is consistent
with the strain–vorticity locking mechanism of growth. With increasing k, regions
of large perturbation vorticity are increasingly confined closer to the vortex axis.
Locking occurs progressively closer to the vortex axis, and hence in regions of
increasing angular velocity. As the CD oscillation time period equals the time in
which fluid with locking rotates once around the axis, σi increases with k. This
argument suggests a finite upper limit for σi (equal to Ω0/2) – such a limit has been
observed in the inviscid Stuart vortex (Schoppa et al. 1995).

Variation of σ with relative shear strength s and Re. Here we fix k = 2 and vary s
and Re in turn. The dependence of σr on s and Re reflects the competition between
viscous damping and inviscid amplification. First, consider the case when s is varied,
by varying the shear strength γ while keeping Ω0 is constant, and Re is held fixed
(figure 12a). As expected, growth is progressively faster with increasing s. There is
however no perturbation growth unless the shear strength is larger than a low-s
cutoff value (s ' 0.06 in this case). The low-s cutoff value should decrease with
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decreasing viscosity and the instability should occur for even infinitesimal external
strain in the inviscid limit (as in the Rankine vortex). Note that the linear increase
σr for 0.1 < s < 0.25 suggests that higher-order terms of the weak-strain-asymptotic
expansion of § 2 (i.e. O(ε2) and higher) do not affect the growth rate.

Figure 12(b) shows the variation of σr with Re (here viscosity is changed while the
shear strength is held fixed). There exists a low-Re cutoff (' 400), below which viscous
damping prevents perturbation growth. The growth rate becomes nearly independent
of Re above a certain value, Re ' 3000; such behaviour is of course characteristic of
inviscid instability.

4. Nonlinear CDI
4.1. Initial condition

An initially axisymmetric vortex column (3.1) is given a sinusoidal variation of core
radius, with the vorticity distribution given by

ωz = G

(
r

r0ξ(z)

)
r

ξ(z)3

dξ

dz
, ωr = G

(
r

r0ξ(z)

)
/ξ(z)2, ωθ = 0, (4.1)

where ωz, ωr and ωθ are the total vorticity components (we hereinafter use lower-case
symbols for all flow quantities), r0 is the unperturbed vortex radius, and r the radial
coordinate. The core vorticity profile G(r) is compact Gaussian (3.1). The shape of
the perturbed vortex core ξ(z) is given by

ξ(z) = 1− µ cos kz,

where µ is the perturbation amplitude and k the perturbation axial wavenumber.
The peak unperturbed axial vorticity value Ω0 = 1. As in § 3, the vortex (4.1) is
embedded in uniform shear flow: ux(y) = −γy. The base flow is shown schematically
in figure 1(b). As the flow is non-axisymmetric, a Cartesian (x, y, z) coordinate system
shown in figure 1(b) is also used.

Flow evolution is obtained via direct numerical simulation (DNS). The parameter
values used were: relative shear strength s ≡ γ/Ω0 = 0.1, k = 1, µ = 0.1, and vortex
Reynolds number Re = 5000. DNS (with 1283 grid points) is performed using a
Fourier pseudospectral algorithm, with periodic boundary conditions in x and z, and
semi-periodic boundary conditions in y (see Appendix C for DNS details). The initial
vortex diameter is one-third of the domain size (spanning 42 grid points).

Because the perturbation is sinusoidal, the flow has certain symmetries. There
are z-planes in which ωr = ωθ = ∂ωz/∂z ≡ 0, which are a half the perturbation
wavelength λ/2 apart, e.g. planes z0 and zπ in figure 1(b). These planes are material,
i.e. uz is always identically zero on these, and core size variation is maximum in these
planes, and the cores expand and contract periodically in an out-of-phase manner. In
the following, we visualize the flow in these two symmetry planes to understand CDI
evolution. We also visualize the meridional y-plane passing through the vortex axis,
in which ωy is parallel/anti-parallel to ωθ .

4.2. Large-amplitude CDI oscillation

While the nature of the CDI oscillation remains unchanged at large amplitudes, there
are significant nonlinear effects. To illustrate this, we plot ωz contours in z0 and zπ
(figure 13) over a period of one CDI oscillation and the corresponding meridional
flow (in terms of ωθ) in figure 14. Note that panels (b –f) in figure 13 correspond
respectively to panels (b –f) in figure 14.
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(a) (b) (c)
y

x 2.11Ω0

1.23Ω0 0.7Ω0

2.3Ω0
0.8Ω00.7Ω0

(d ) (e ) ( f )

1.1Ω0

1.4Ω0 1.6Ω0

2.4Ω0 1.5Ω0 1.6Ω0

–0.1Ω0

0.02Ω0

z0

z
π

z0

z
π

0.4Ω0

Figure 13. Evolution of ωz in z0- and zπ-planes (see figure 1b) during one CDI oscillation.
(a) t = 0, (b) 1, (c) 2, (d) 3.5, (e) 5, (f) 6.

Initially, the core size in z0 is much smaller than in zπ (figure 13a). Immediately
thereafter (figure 13b), two effects become evident. First, shear distorts the axisym-
metric vortex core into an elliptic one. Secondly, vorticity magnitude ω is reduced in
z0 and increased in zπ (figure 13b). The differential swirl between z0 and zπ generates
azimuthal vorticity ωθ , whose distribution (figure 14b) is such that fluid is pumped
away from zπ in both directions, resulting in vortex stretching at zπ and compression
at z0 (recall the z-periodicity of the flow). As vortex stretching/compression continues,
the differential swirl between z0 and zπ decreases, and momentarily becomes zero.
However, as |ωθ| has continually increased until this instant, the axial flow continues
to stretch/compress ωz in the two cores. (This stage of the oscillation is analogous to
figure 4c.) Thus, peak ωz in zπ becomes larger than in z0 (figure 13c). The differential
swirl, now reversed, first reduces the magnitude of ωθ and then changes its sign. In
linear CDI, ωθ reversal occurs simultaneously everywhere along the column. In non-
linear CDI, however, the reversal is non-uniform, with reversed (say, secondary) ωθ
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(b) (c) (d ) (e) ( f )

z

x

z0

ωz compression ωz stretching

z
π

ωz compression

primary ω
θ

secondary ω
θ

ω
θ 

‘rings’

ωz stretching

t = 1 t = 2 t = 3.5 t = 5 t = 6

Figure 14. ωθ contours in the meridional y-plane (see figure 1b) illustrating the oscillation of ωθ
in response to the ωz variation shown in figure 13. Panels (b–f) correspond respectively to panels
(b–f) in figure 13. Outer contour is vorticity magnitude ω = 0.2Ω0.

first appearing near z0 (figure 14c, d). (As we shall see later, z-dependent ωθ reversal is
crucial to the eventual transition.) Secondary ωθ stretches ωz in z0, while the lingering
unreversed (say, primary) ωθ continues to stretch ωz in zπ, evident from ω values
in figure 13(c, d). The regions of secondary ωθ increase in size, and the secondary
ωθ magnitude also increases (figure 14d, e). Primary ωθ magnitude is simultaneously
reduced, and it eventually disappears (figure 14f).

Note that we have interpreted ωθ reduction in figure 14 only in terms of the differen-
tial swirl, i.e. in terms of an inviscid mechanism. Viscous diffusion also contributes to
ωθ reduction, especially in regions with large vorticity gradients. For example, there
is annihilation of primary ωθ and secondary ωθ between z0 and zπ (figure 14d, e).
More importantly, viscous annihilation of the two colliding ‘rings’ across the zπ plane
(figure 14f) further reduces secondary ωθ . At large Re, ωθ reduction via annihilation
is however expected to be much smaller than that via the reversal of the differential
swirl.

Self-advection of ωθ . In nonlinear CDI, the self-advection of ωθ , i.e. by self-induced
velocity uz , becomes prominent – like the self-induced motion of a vortex ring. Two
such secondary ωθ ‘rings’ (coaxial with the column) appear, one on either side of zπ
(figure 14d), and both rings move toward zπ (figure 14e, f).

During this process of self-advection, differential swirl continues to increase sec-
ondary |ωθ|. Simultaneously, there is additional increase of |ωθ| via mutually induced
stretching of the two colliding rings (quite similar to the ‘head-on collision’ of coaxial
axisymmetric vortex rings; see Stanaway, Shariff & Hussain 1988). This process is
shown schematically in figure 15(a, b). The two oppositely signed ωθ rings (figure 15a)
move toward zπ by self-advection and are simultaneously stretched as they collide
(figure 15b), with their radii increasing, and their cores becoming more circular (and
smaller).

The evolution of the ωθ rings subsequent to figure 14(f) is shown in figure 16.
The ring core develops a head–tail shape, with weaker vorticity being left behind due
to the more rapid self-advection of the stronger vorticity in the head (figure 16a, b).
The concomitant increase of ring radius (illustrated in figure 15b, c) is evident in
figure 16(a, b). The increase of |ωθ| is opposed by the uncoiling of vortex lines
following the reversal of the differential swirl and also by cross-diffusion across zπ.
These effects become progressively stronger as ωθ becomes increasingly localized near
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(c)

(d ) (e)

Secondary
ω

θ 
‘ring’

(a) (b)

Sheath

Primary
ω

θ 
pile-upPrimary

ω
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‘ring’

Low-enstrophy
bubble

Vortex core
boundaryx

z

Sheath

Secondary
ω

θ 
pile-up
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primary ω

θ
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bubble
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bubble
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z
π

z0

z
π

z
π

Figure 15. Illustration of primary ωθ and secondary ωθ self-advection leading to successive sheath
formation and collapse alternately, in each plane z0 and zπ (see figure 1b).

zπ (figure 16a–c) and soon overcome the stretching-induced ωθ intensification. As a
result, ωθ magnitude now begins to decrease (figure 16c).

Thus, self-advection and mutual stretching of the rings lead to a ‘pile-up’ (i.e.
localization and intensification) of ωθ near zπ (figures 15c, 16c). The effect of pile-up
on ωz is discussed below.

4.3. Sheath dynamics

Sheath formation. As ωθ piles up, there is intense compression of ωz near zπ (figure
13d–f). The magnitude of ωz on the column axis decreases rapidly, rendering the core
nearly irrotational. Ring-induced +ur advects ωz radially outward. The meridional
flow being circulatory, there is a radius outside which uz is oppositely directed and
stretches ωz there (figure 15c). Thus, peak ωz location in zπ is shifted away from the
axis (figure 13e). Core vorticity thus becomes organized into a thin annular sheath
surrounding a nearly irrotational region. Vorticity compression in the core is so intense
that ω in the bubble is nearly a 100 times smaller than in the sheath (figure 13f).
Concomitant with sheath formation, there is also opposite-to-mean (negative) ωz
generation in the low-enstrophy bubble (figure 13f). This is discussed later in § 4.4.

While the pile-up occurs, ωθ stretches the core in z0 (figure 13d–f). Progressive
stretching in z0 once again reverses the differential swirl. The subsequent meridional
flow reversal leads to sheath ‘collapse’, as discussed below.

Sheath collapse. To illustrate sheath collapse, figure 17 shows ωz contours and
velocity (ux, uy) vectors in plane zπ at times immediately subsequent to those in
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ω = 0.9Ω0

(c)(a) (b)

ω = Ω0

ω = 0.5Ω0

z

x

z0

z
π

Figure 16. The evolution of ωθ in the meridional y-plane showing the effect of mutually induced
stretching of the ωθ ‘rings’. This sequence immediately follows figure 14(f). (a) t = 6.25, (b) 6.50,
(c) 6.80.

(c)(a) (b)ω = 0.08Ω0 ω = 0.8Ω0 ω =3Ω0 ω =8.5Ω0
(d )

Figure 17. ωz contours and velocity (ux, uy) vectors in the zπ-plane (see figure 1b) illustrating
sheath collapse.

figure 13. Figure 17(a) shows a time prior to the meridional flow reversal. Shortly
thereafter, reversed ωθ near the sheath induces meridional flow in the opposite
direction than before, and ur in zπ begins to be directed radially inward (figure 18b).
As secondary ωθ intensifies (figure 18c), the intensifying reversed meridional flow
causes strong stretching of residual (weak) vorticity in the bubble. Thus, ωz magnitude
at the bubble axis increases rapidly, and soon it exceeds sheath ωz , forming a new
core vortex (figure 17c). Azimuthal velocity uθ induced by ωz near the axis begins
to distort the sheath shape, and sheath vorticity is wrapped around the core vortex.
Eventually, the core once again becomes compact, with the vorticity peak on the axis
(figure 17d).

Meanwhile, secondary ωθ is also generated away from the sheath (between z0 and zπ
in figure 18c). Self-advection of this secondary ωθ subsequently causes pile-up near z0

(figure 18d), leading to the development of a sheath near z0. As CDI amplifies, sheaths
form and collapse periodically in z0 and zπ (in an out-of-phase manner) with every
meridional flow reversal. Self-advection of secondary ωθ , after a sheath is formed (say,
in plane zπ), becomes prominent at earlier phases of successive oscillations. That is,
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(c)(b) (d )

ω
θ 

‘rings’

ω
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pile-up

z0

z
π

z

x

Figure 18. Evolution of ωθ contours in the meridional y-plane (see figure 1b) illustrating the
self-advection of secondary ωθ away from the sheath in zπ (figure 17). Panels (b–d) correspond
respectively to panels (b–d) in figure 17.

secondary ωθ advects away from a sheath even as sheath collapse occurs. This process
is shown schematically in figure 15(d). The subsequent pile-up of secondary ωθ , via its
self-advection, then forms a sheath near z0 (figure 15e). The reversed meridional flow
in the collapsing sheath (near zπ in figure 15d) progressively weakens in successive
oscillations. Hence sheath collapse is rendered progressively slower. Also, as primary
ωθ self-advection is also progressively more rapid, sheaths form more quickly. Thus,
in successive CDI periods, sheaths persist increasingly longer.

Sheath instability. As a result of increasing sheath longevity, there is more time
for a Kelvin–Helmholtz-type instability to grow on the sheath. Incipient sheath
instability is seen in figure 19(a, b) as wavy corrugations. These corrugations grow
(figure 19c), culminating in the roll-up of the sheath into azimuthally distributed
fine-scale ‘vortexlets’ (figure 19d). Vortex lines in the sheath, hence also the vortexlets,
have a hairpin-like geometry (not shown) because of significant ωθ in addition to ωz .

Upon meridional flow reversal, −ur advects the vortexlets toward the column
axis (figure 19d). Note that, unlike before (figure 17), ωz in the core remains weak
(figure 19e, f) as the self-advection of secondary ωθ away from the sheath region has
weakened vortex stretching in the core. Adjacent vortexlets coalesce in a succession
of pairing events, and eventually all the vortexlets collapse into a single compact
vortex core (figure 19g–i). As the vortexlets pair, their ωθ magnitude is progressively
reduced. Thus, the coalescing vortexlets are nearly rectilinear.

Summarizing, core areas half a perturbation wavelength λ/2 apart contract and
expand periodically. The sequence of sheath formation, roll-up and pairing repeats.
Thus, CD evolution involves both cascading (sheath formation and roll-up into
vortexlets) and anti-cascading (pairing of vortexlets) events. Vortexlet length, measured
along the axis, increases with each oscillation, for the following two reasons. First,
the sheath extent along the column axis increases, because differential swirl generates
increasingly intense meridional flow. Secondly, vortex lines in the sheath become
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(a) t = 16 (b) t = 17 (c) t = 18

(d ) t = 19 (e) t = 20 ( f ) t = 21

(g) t = 22 (h) t = 22.5 (i) t = 23

Figure 19. Evolution of ωz contours in the z0 plane (see figure 1b) showing sheath instability leading
to roll-up into vortexlets (a–d), and sheath collapse via successive pairing of vortexlets into a single
core (e–i).

increasingly curved, because of progressively amplifying ωθ . The radius of the low-
enstrophy bubble (in the region of core expansion) also increases in successive cycles.

4.4. Vortex line folding and reconnection

Opposite-to-mean (negative) ωz generation (see, e.g., −ωz in zπ in figure 13f) is
an important aspect of transition because, while initially ωz is positive everywhere,
a turbulent flow contains vorticity of both signs in ωz . Negative ωz is due to the
intense meridional flow in the low-enstrophy bubble; the streamline geometry is shown
schematically in figure 20(a). In an inviscid flow, such a meridional flow will advect an
inner-core vortex line towards the core periphery. The vortex line is stretched in the
sheath and pressed together in the bubble, developing S-shaped kinks (figure 20a–c).
As the folded vortex filament is pressed together, it will reconnect (in a viscous flow)
and form a closed filament loop, thereby generating −ωz in the zπ-plane (figure 20c).
Note that because uz = ωx = ωy = 0 in z0 and zπ, −ωz can be produced in these
planes only by a viscous mechanism, i.e. reconnection.

This mechanism explains the opposite-to-mean vorticity (hence looping) in figure 21.
Such vortex line geometry implies fine-scale granularity in the ω distribution that
is a characteristic feature of developed turbulence. Although −ωz first appears near
sheaths, such vorticity develops all along the column axis, with progressively increasing
CDI amplitude (hence increasingly intense ωθ that can fold vortex filaments). Once
opposite-to-mean vorticity has been generated, −ωz is stretched by CDI-induced uz ,
resulting in the progressive growth of the peak −ωz in the flow (figure 22a).

4.5. Onset of transition

Vortex transition results via the two nonlinear-instability mechanisms discussed above:
sheath formation and its roll-up into vortexlets, and vortex line folding and reconnec-
tion. Meridional flow intensity amplifies with each successive oscillation, as evidenced
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(a) (b)

(c) (d )

Vortex line

Inner core

Outer core

Reconnection

z
π

Figure 20. Schematic of vortex filament folding and subsequent reconnection, producing
opposite-to-mean ωz (from Schoppa et al. 1995).

z
π

z

– ωz

Figure 21. A vortex line through a region of −ωz at t = 23.
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Figure 22. Evolution of pointwise velocity/vorticity: (a) positive (solid lines) and negative
(dotted lines) ωz domain peak; (b) uz(0, 0, zπ/2).

by the evolution of uz intensity on the column axis in the zπ/2-plane (figure 22b).
In linear CDI, this is the location of the domain peak of uz at all phases of the
oscillation. In nonlinear CDI, ωθ pile-up leads to the shifting of peak uz location
toward z0 or zπ, and peak uz at times t > 16 is even larger than in figure 22(b). After
t ' 20, peak uz in the flow even exceeds peak uθ (i.e. vortex swirl).

Recall that with amplifying CDI, the intensifying self-advection of ωθ causes pro-
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(a) t = 25 (b) t = 26 (c) t = 27

(d ) t = 27.5 (e) t = 28 ( f ) t = 29

(g ) t = 30 (h) t = 31 (i) t = 32

z0

zp

Figure 23. ωz contours illustrating the onset of transition via the roll-up of vortex sheaths in both
the symmetry planes: z0 (top) and zπ (bottom) (see figure 1b). Shaded regions contain −ωz .

gressively faster sheath formation and progressively slower sheath collapse. Secondary
ωθ advection eventually becomes so rapid that even while the sheath is rolling up
at one z-plane, collapse has not happened λ/2 away. This process leads to nearly
simultaneous roll-up all along the column.

In figure 23(a), we can see a compact vortex core in z0 and a sheath in zπ. The
cumulative effect of advection by the background shear and the radially inward
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(a)

(b)

(c)

(d )

(e)

t = 30

t = 24

t = 18

t = 10

t = 0

(a!)

(b!)

(c!)

(d!)

(e!)

BW

y
x

zCDI

Figure 24. Isovorticity surfaces for CD (a–e) and BW (a′–e′) instabilities with time increas-
ing downwards. Surfaces are plotted at: |ω| = 0.5Ω0 (a–c, a′–c′); |ω| = 0.8Ω0 (d,d′); and
|ω| = 1.4Ω0 (e,e′).

meridional flow in zπ causes the sheath vorticity to become organized into a sheet-like
structure (figure 23a–f). Simultaneously, the meridional flow compresses core vorticity
in z0, forming a vortex sheath. Both these structures, i.e. the sheath in z0 and the
vortex sheet in zπ, then undergo roll-up into finer-scale vortices (figure 23g–i). The
simultaneous roll-up in both symmetry planes means that the vortex core is now
nowhere compact. The coupling between the differential swirl and the meridional
flow is weakened, and the sheaths’ collapse is preempted by the disruption of the
vortex column’s CD.

In figure 24(a–e), we summarize CDI evolution in terms of isovorticity surfaces.
(Figure 24(a′–e′) shows BW evolution that is discussed in § 5.) Figure 24(e) shows that
the vortexlets formed by sheath roll-up are elongated tubular vortices. Figure 25(a)
shows a rake of five vortex lines started within one of these structures. The fine-scale
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(a) (b)
t = 30 t = 34

Figure 25. Vortex lines, grey-scaled on vorticity magnitude, plotted through one of the fine-scale
filaments of figure 23(f).

vortex then develops core area variation, i.e. CD, of its own (figure 25b), as indicated
by high (dark) and low (light) vorticity along the bundle. The vortex also develops
twists (clear in visualization), suggesting that a BW is also triggered. It is likely that
these perturbations, induced by the adjacent vortex filaments, will amplify if their
vortex Re is sufficiently large to overcome viscous damping. In this manner, a self-
similar CDI (or BW) instability can generate progressively finer scales in a cascade
scenario.

5. Comparison of BW and CDI evolutions
So far, we have focused on CDI, i.e. on explaining the effect of axial inhomogeneity

of a vortex column’s core size or vorticity. If both CDI and BW are triggered, one
would expect that BW, owing to its faster growth, causes a more rapid transition than
CDI. This is not necessarily the case, as discussed below.

We study BW instability on the same base flow (3.1), (3.2) as CDI. The vortex axis
is given a sinusoidal deflection (of axial wavenumber k = 1) of amplitude 0.1r0 in the
plane of stretching, where r0 is the unperturbed core radius. For comparison between
BW and CDI, all flow parameters are kept the same, i.e. the relative shear strength
s(≡ γ/Ω0) = 0.1 and the Reynolds number Re(≡ Γ/ν) = 5000.

Nonlinear BW evolution. Figure 24(a′–e′) depicts BW evolution via isovorticity
surfaces. For comparison, the left-hand column shows CDI evolution at corresponding
times. (Different vorticity levels are chosen at different times for better clarity; the
same level is used for both BW and CDI at each time.) The vortex axis, deflected
by the perturbation, lies in the plane of stretching (figure 24a′), i.e. the plane formed
by the stretching direction of the external strain and the unperturbed column axis.
Perturbation vorticity aligned with the strain is continually stretched, hence the growth
of BW (figure 24b′, c′). Until t ' 24, the vortex remains in the plane. Afterwards, vortex
segments near the wave crests develop larger curvature than elsewhere (figure 24d′).
The enhanced self-induced velocity of these segments (with elliptic cross-sections)
tilts them out of the plane of stretching; this is evident by t = 24 (figure 24d′).
This out-of-plane tilting is the primary nonlinear instability effect until this time.
The BW continues to grow in amplitude and the vortex core near the wave crests
becomes increasingly elliptic, i.e. increasingly sheet-like. Upon further evolution, these
sheets should eventually develop a Kelvin–Helmholtz-type instability (see Lundgren
& Mansour 1996; Rogers & Moser 1992). The computation was performed up to
t = 36; beyond this time, the vortex interference effects (namely, the image effect of
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Figure 26. Comparison of CDI (solid) and BW (dashed) energetics: (a) total three-dimensional
energy E3D(t) (inset shows symmetry z-planes); (b) spectra of E3D at t = 30, where κ ≡ (k2

x+k
2
y+k

2)1/2;
and (c) fine-scale energy E>.

the impenetrable boundary condition and interaction between vortices from adjacent
boxes), not a goal of our study, will become significant.

The contrast between BW and CDI in promoting transition is vivid at t = 30
(figure 24e,e′). The vortex column breaks down into numerous fine-scale vortices in
CDI. On the other hand, BW deforms the vortex continually, and the column persists
as a single (elongated) large-scale structure. To analyse the difference between the two
instabilities, we now consider three-dimensional energy.

Three-dimensional energy. As expected from linear instability features, BW shows
faster growth of three-dimensional perturbation energy E3D (figure 26a). (E3D is the
total three-dimensional energy, consisting of all wavenumbers (except k = 0) in all
directions.) By t = 30, BW contains nearly 10 times as much energy as CDI. Note that
modes with k > 1 (finer scales) are also excited in the nonlinear stage. In BW, energy
in the fundamental mode (k = 1) is about 60% of E3D by t = 30 (with the remainder
contained in modes with k > 1). In CDI, energy in the fundamental mode is only
about 20% of E3D . That is, there is faster fine-scale growth in CDI. The primary
mechanism for this is the self-advection of ωθ̂ (discussed in § 4.2), causing pile-up
near planes z0 and zπ (see figures 1b, 26a). For example, while the ωθ distribution
in figure 14(e) has most of the energy in k = 1 mode, the subsequently piled-up ωθ
(figure 16c) is mostly in k > 1 modes.

Note that CDI’s E3D oscillates in time at a frequency twice that of CDI. That is,
there are times of decreasing E3D when there is also enhanced energy dissipation. The
mechanism of the temporary E3D decay as well as the damping of the E3D oscillation
with increasing time requires further investigation. The BW being non-oscillatory,
there is a monotonic growth of E3D .
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(a) (b)

(c) (d )

BW

CDI

t = 3 t = 6

Figure 27. Contours of vorticity (solid lines) and ∂uz/∂z (dashed lines) in z0 (see figure 1b). BW
instability: (a) t = 3, (b) t = 6; CDI: (c) t = 3, (d) t = 6. Shaded regions have +∂uz/∂z.

Fine-scale energy. Despite the lower level of three-dimensional energy in CDI,
figure 24 suggests that fine-scale energy is larger in CDI than in BW. This is confirmed
by comparing the spectra of E3D (figure 26b) at a late stage of the evolution (t = 30).
We see that although the BW contains more E3D at small wavenumbers κ < 10
(where κ ≡ (k2

x + k2
y + k2)1/2 is the wavenumber magnitude of an (x, y, z) Fourier

mode), CDI has more energy in the higher-κ range. The evolution of fine-scale energy
E> (denoting three-dimensional energy in modes with κ > 10) is shown in figure 26(c).
While there is virtually no growth of BW’s E> up to t = 12, there is rapid growth
right from the beginning in CDI.

This difference in the fine-scale growth is explored by comparing vortex stretching
in the two instabilities. In CDI, regions of the largest strain rate and largest vorticity
magnitude coincide; in BW, however, these regions are spatially separated. (Such
coincidence in CDI causes more intense enstrophy production, and hence more rapid
fine-scale growth). In the nonlinear stage of the instability, self-stretching exceeds the
external strain and hence is the dominant mechanism of fine-scale growth.

To capture the essence of the self-stretching effect, we focus on a symmetry z-plane
(say, z0 or zπ in figure 1b), where vortex stretching (entirely due to self-stretching,
i.e. ωz∂uz/∂z) is the largest. Note that the external strain makes no contribution to
enstrophy production in these planes.

First, consider BW. Figure 27(a), where vorticity and ∂uz/∂z contours are plotted,
shows that regions of large strain rate are away from the vortex column axis, i.e.
occurring in regions of weak vorticity. Further, as a fluid particle moves around
the axis, vorticity is alternately stretched and compressed. Therefore, total enstrophy
production in the core via self-stretching is nearly zero, and the peak vorticity
magnitude remains nearly the same after a period of 3τ (where τ is the eddy turnover
time) (figure 27b).

Now consider CDI. Self-stretching is centred on the column axis (figure 27c), i.e. in
regions of large vorticity magnitude. Such stretching at the axis makes the expanded
core shown in figure 27(c) into a compact structure (figure 27d), which becomes
progressively more compact in successive cycles. The vorticity magnitude in the core
is increased and the vortex core size is reduced. This implies that there is greater
fine-scale energy in the core than before. Thus, self-stretching in CDI, in contrast to
BW, produces finer-scaled, intense core vorticity (see figure 17d, for example).

In addition to the coincidence of large strain and vorticity, the peak strain rates are
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also larger (by a factor of ' 5) in CDI. This also contributes to CDI’s faster fine-scale
generation. The self-stretching will increase with increasing k in both instabilities.
Will CDI self-stretching continue to be higher than in BW? This needs further study.
However, we expect the answer to be positive, as the nonlinear effects observed here
should remain qualitatively the same.

The comparison between BW and CDI shows that faster instability growth need
not imply faster transition. Even when BW and CDI are triggered at comparable
amplitudes, transition could occur via CDI.

6. Concluding remarks
An axisymmetric perturbation to a vortex column evolves as an oscillation of

the column’s core size or vorticity (i.e. core dynamics, CD). The axial variation of
azimuthal velocity, inherent to core size perturbation, causes vortex lines to coil
and hence induce meridional flow, having both radial and axial velocity components.
Coupling between meridional flow and the vortex’s differential swirl leads to repetitive
coiling and uncoiling of vortex lines (§ 2.2 and figure 4). Without any external strain,
CD is neutrally stable in an inviscid flow and decays in a viscous flow. With an
external equatorial strain, the CD oscillation can amplify exponentially. This CD
instability (CDI) is possible because the column’s axial vorticity is tilted to generate
radial and azimuthal components (ωr , ωθ), which can then be stretched by the strain.

The physical mechanism of instability is clarified by the analysis of a weakly
strained Rankine vortex. The axisymmetric perturbation – the azimuthal wavenumber
m = 0 wave – and the strain interact to generate m = ±2 waves. Instability occurs
when m = 0 and m = 2 (or m = 0 and m = −2) waves resonate. There are numerous
(discrete) resonant frequencies, and the growth rate varies with the frequency value.
Strongest growth results when the CD oscillation frequency equals the vortex’s fluid
angular velocity. At this frequency, strain–vorticity locking occurs, i.e. the perturbation
vorticity of a fluid particle remains aligned with the stretching direction at all times.
Because the perturbation is azimuthally and axially sinusoidal, locking occurs on a
double helix. That is, at any instant in time, the helix at one z-plane has only ωr , but
has only ωθ in a z-plane a quarter perturbation wavelength λ/4 away, and so on.

Strain–vorticity locking is not restricted to CD (i.e. m = 0 perturbation) alone,
but occurs for all m (including m = ±1, i.e. BW). Hence a large variety of unstable
modes is possible, the instability oscillation frequency depending on m. The growth of
perturbations with |m| > 1 can result in unusual vortex behaviour, e.g. ‘braiding’ – the
breakup of a vortex into a number of helical strands – which has been observed in
turbulence (Cadot et al. 1995).

CD growth via strain–vorticity locking also occurs in a Gaussian-like vortex, veri-
fying that the instability mechanism, insensitive to the profile of strain or vorticity, is
generic. Instability growth rate is proportional to the strain rate, which decreases with
increasing radius. As locking occurs on the vortex axis in BW, but away from the
axis in CDI, BW grows faster than CDI. The perturbation-damping effect of viscosity
causes low-s (strain rate), low-Re (Reynolds number) and high-k (axial wavenum-
ber) instability cutoffs. The competition between inviscid amplification and viscous
damping implies that (a) the high-k cutoff value should increase with increasing Re
or increasing s; (b) the low-Re cutoff value should decrease with increasing s; and (c)
the low-s cutoff value should decrease with increasing Re.

In nonlinear CDI, the self-advection (via uz) and stretching (via ur) of azimuthal
vorticity ωθ generate intense axial strain in the core. Consequently, the compact vor-
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tex core is organized into a thin annular sheath surrounding a low-enstrophy bubble
(figure 13f). The sheath undergoes a Kelvin–Helmholtz-type roll-up into azimuthally
distributed fine-scale ‘vortexlets’. Upon meridional flow reversal, the vortexlets are
advected radially inward and coalesce in a succession of pairing events; all the vor-
texlets eventually ‘collapse’ into a single compact vortex core. The sequence of sheath
formation, roll-up and collapse repeats, as the vortex column core areas λ/2 apart
contract and expand periodically, in an out-of-phase fashion. Thus, nonlinear CDI
involves simultaneous cascading (sheath formation and roll-up) and anti-cascading
events (vortexlet pairing). With amplifying CDI, progressively stronger self-advection
of ωθ causes both faster sheath formation and slower subsequent sheath collapse
(due to the weakening meridional flow, § 4.3). Eventually, self-advection becomes so
rapid that even while a sheath is rolling-up, collapse has not occurred λ/2 away. The
vortex core is now nowhere compact, and the coupling between meridional flow and
differential swirl is reduced, preventing the collapse of vortexlets (§ 4.5). Because of
the disrupted CDI, the flow contains numerous elongated vortexlets (of length ≈ λ).
Vortex lines plotted through vortexlets show significant variation of vorticity mag-
nitude. That is, vortexlets have in turn their own CD and would undergo transition
via self-similar CDI, if their Reynolds number were sufficiently high. This self-similar
transition scenario presents itself as a candidate for a physical-space cascade process
in developed turbulence. Additional random fine-scale vorticity is generated via the
folding and subsequent reconnection of core vortex filaments, resulting in opposite-
to-mean axial vorticity −ωz . Thus, a turbulent flow results with ‘worm’-like vortices
(vortexlets) as well as fine-scale vorticity granularity.

In vortices with nearly homogeneous (cylindrical) cores, one would expect that
the faster-growing BW instability would lead to a more rapid transition than CDI.
Analysis of nonlinear BW evolution, however, indicates quite the contrary. We have
tried to understand this enigmatic result in terms of vortex stretching in the two
flows. The growth of fine-scale energy occurs via self-stretching. In BW, self-stretching
occurs in the core periphery, where the vorticity magnitude is low. On the other hand,
CDI-induced self-stretching occurs near the axis, where vorticity magnitude is large.
This difference seems to account for the faster fine-scale growth in CD. Thus, in
a flow where CD and BW are triggered at comparable amplitudes and even when
BW has larger initial growth rate, CD-induced mechanisms would seem to dominate
fine-scale growth and transition. This conjecture deserves further investigation.

Nonlinear CDI in stretched vortices is of interest because of their prevalence in
turbulence. Axial stretching inhibits instability by decreasing the perturbation axial
wavenumber k, eventually causing the perturbation to leave the unstable band (Eloy
& Le Dizès 1999). The rapid growth of high-k waves in CDI, however, makes it likely
that they will remain in the unstable band and hence that transition in stretched
vortices results via CDI.

Our results appear relevant to the dynamics of the intense fine-scale vortices
(worms) that occur in turbulence. Worms have segments with compression as well
as segments with stretching. A vortex subjected to such straining develops CD; the
compressed segments are organized into sheaths, and roll-up of sheaths will occur in

worms of sufficiently high vortex Re (which scales as Re
1/2
λ ). The mechanism of worm

formation is enigmatic (see, e.g., Jiménez & Wray 1998) because worm azimuthal
velocity uθ ' u′ (r.m.s. velocity of total turbulence), implying that worms cannot be
formed from a larger vortex (having uθ = u′) by direct stretching (which increases
uθ). The vortexlets from sheath roll-up have uθ ≈ u′ (of the parent vortex), suggesting
CDI as the primary mechanism of worm formation.
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CDI is relevant to fully developed turbulence phenomena in other contexts as well.
First, consider vortex reconnection. Segments of reconnected vortices (bridges) show
strong core inhomogeneity, which can grow via the strain induced by the conjugate
bridge or the segments of unreconnected vortices (threads) (Melander & Hussain
1988; Virk, Hussain & Kerr 1995). The CD-induced (meridional) flow will influence
bridge and thread motion, on which the completeness of reconnection and the re-
connection timescale depend sensitively. Because reconnection, in turn, triggers CD,
the two cascade mechanisms – reconnection and CDI – are thus coupled. It therefore
appears necessary to incorporate CD in the analysis of reconnection, which we pre-
sume is prevalent in developed turbulence. Second, CDI is likely to be triggered on
a coherent structure (CS) via the structure’s interaction with ambient fine-scale tur-
bulence. The fine scales are organized into an array of ring-like threads (Melander &
Hussain 1993a), which can excite CD on the structure (Marshall 1997). The growth of
CD (possible via either an orthogonal strain as studied here or resonance of CD with
ring motion (Miyazaki & Hunt 2000)) may explain why coherent structures are often
strongly polarized. Analysis using helical wave decomposition – which separates the
right- and left-handed components of a vector field – should yield significant insight
into (i) how regions of strong polarization can develop in an initially unpolarized flow,
and (ii) interactions between polarized large and fine scales (this interaction is presum-
ably dependent on the extent of polarization of both (Melander & Hussain 1993b)).

Finally, the turbulent flow resulting from CD-transition can serve as a tractable case
in which to analyse the dynamical features of transitional flows and fully developed
turbulence. The relative simplicity of this flow (containing well-defined structures)
should not only facilitate the study of physical-space structures but also help address
issues such as: the dependence of strain–vorticity alignment on the strain–vorticity
ratio, the role of vortex-like and sheet-like structures in cascade and dissipation, and
the dynamics of worms.
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Appendix A. Solution of the O(ε1) problem for Rankine vortex CD
We describe here the O(ε1) solution. By inserting the O(ε0) solution in the governing

equations, and by eliminating the velocity components, we obtain the equation satisfied
by the O(ε1) pressure perturbation within the core:

r2 dp(1)
m

dr2
+ r

dp(1)
m

dr
+ (η2

mr
2 − m2)p(1)

m = Cm, m = 0, 2. (A 1)

The forcing terms Cm, given in terms of the O(ε0) solution, appear on the right-hand
side. They are

C0 = −8σ(1)

σ(0)3
k2r2J0(η0r)α0 +

[
σ(0) + 4i

(σ(0) + 2i)2
ik2r2J0(η2r)

+4
σ(0) + i

σ(0)2(σ(0) + 2i)2
ik2η2r

3J1(η2r)

]
α2, (A 2a)
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C2 =

[
−σ

(0) − 2i

σ(0)2
ik2r2J2(η0r) + 4

σ(0) + i

σ(0)2(σ(0) + 2i)2
ik2η0r

3J1(η0r)

]
α0

− 8σ(1)

(σ(0) + 2i)3
k2r2J2(η2r)α2. (A 2b)

Note that since Cm are evaluated at the crossing-points, the subscript m has been
dropped from σ(0).

Closed form solutions (non-singular at r = 0) to the pressure equation can be
written in the form

p
(1)
0 = J0(η0r)γ0 + σ

(1)
0 B0α0 + B̄0α2, p

(1)
2 = J2(η2r)γ2 + σ

(1)
2 B2α2 + B̄2α0, (A 3)

where γm (O(ε1) mode amplitude) is the constant of integration. The coefficients
Bm represent the effect of strain in modifying the oscillation frequency of mode m,
whereas B̄m represent the effect on one m-mode of the interaction between the strain
and the other m-mode.

Terms Bm and B̄m in (A 3) are as follows:

B0 = − 4k2r

σ(0)3
η0

J1(η0r), (A 4a)

B̄0 =
iπk2(σ(0) + 4i)

2(σ(0) + 2i)2
[Y0(η0r)

∫ r

tJ0(η2t)J0(η0t)dt− J0(η0r)

∫ r

tJ0(η2t)Y0(η0t)dt]

+
2πi(σ(0) + i)k2η2

σ(0)2
(σ(0) + 2i)2

[Y0(η0r)

∫ r

t2J1(η2t)J0(η0t)dt− J0(η0r)

∫ r

t2J1(η2t)Y0(η0t)dt],

(A 4b)

B2 = − 4k2σ(1)

(σ(0) + 2i)3

(
2J2(η2r)

η2
2

− rJ1(η2)

η2

)
, (A 4c)

B̄2 = − iπk2(σ(0) − 2i)

2σ(0)2 [Y2(η2r)

∫ r

tJ2(η0t)J2(η2t)dt− J2(η2r)

∫ r

tJ2(η0t)Y2(η2t)dt]

+
2πik2(σ(0) + i)η0

σ(0)2
(σ(0) + 2i)2

[Y2(η2r)

∫ r

t2J1(η0t)J2(η2t)dt− J2(η2r)

∫ r

t2J1(η0t)Y2(η2t)dt].

(A 4d)

Here, Y0 and Y2 are Bessel functions of the second kind of order 0 and 2.
The potential flow outside the core satisfies

d2φ(1)
m

dr2
+

1

r

dφ(1)
m

dr
− m2

r2
φ(1)
m − k(0)2φ(1)

m = 0, m = 0, 2,

whose solution φ(1)
m (non-singular at ∞) is

φ(1)
m = Km(k(0)r)δm, m = 0, 2, (A 5)

where δm are constants of integration. Note that we have dropped the subscript m on
k since we only consider the crossing-points.

Enforcing the boundary conditions to match the inner and outer solutions, we
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obtain the relationship between the integration constants γm and δm,(
k(0)K ′m −Am

(σ(0)
m + im)Km Jm

)(
δm
γm

)
=

(
Gm
Hm

)
, m = 0, 2. (A 6)

The terms Gm and Hm are given in terms of the O(ε0) solution.
The matrix has non-trivial solutions to the homogeneous problem (neutrally stable

waves). Therefore, solutions to (A 6) must satisfy a solvability condition, which is the
expression for the growth rate, σ(1).

Appendix B. Strain–vorticity locking in Rankine vortex eigenmodes
We present an argument here that there are oscillation frequencies for any resonant

combination of m and m + 2 (Kelvin) waves that satisfy the sufficient condition for
strain–vorticity locking:

Dω⊥
Dt

= 0, (B 1)

where ω⊥ ≡ (ωr, ωθ) and D/Dt ≡ (∂/∂t+U · ∇), with U = (0, Uθ, 0) being the vortex
velocity field.

When the strain and the perturbation both have vanishingly small magnitudes,
advection is due to Uθ alone (advection of ω⊥ by u and the straining flow being
negligible). That is, a fluid particle traces a circular path around the vortex axis with
a (scaled) angular velocity of 1. Hence, only the azimuthal coordinate θL (subscript L
indicating a Lagrangian variable) of a fluid particle varies with time, and θL = t+ψ.

where ψ is the initial azimuthal location. For such a fluid particle, Dr̂/Dt = θ̂ and

Dθ̂/Dt = −r̂. For such a fluid particle (B 1) implies that

dωrL/dt = ωθL, dωθL/dt = −ωrL,
where ωrL and ωθL are material vorticity components. These equations have the
solution

ωrL = A cos(−t), ωθL = A sin(−t). (B 2)

We now show that resonant combinations can be formed which satisfy this strain–
vorticity locking condition.

At these crossing-points where σ(0) = −i(m + 1) (and also, η2
m = η2

m+2 ≡ η2), the
m-wave has perturbation vorticity distribution

ω(0)
r,m = i

(
2km

r
Jm(ηr)− 2

3
kηJm−1(ηr)

)
αm

ω
(0)
θ,m =

(
2km

r
Jm(ηr)− 4

3
kηJm−1(ηr)

)
αm

 , (B 3)

and the (m+ 2)-wave has perturbation vorticity distribution

ω
(0)
r,m+2 = −i

(
2k(m+ 2)

3r
Jm+2(ηr) +

2

3
kηJm+1(ηr)

)
αm+2

ω
(0)
θ,m+2 =

(
−2k(m+ 2)

3r
Jm+2(ηr) +

4

3
kηJm+1(ηr)

)
αm+2

 . (B 4)

Taking αm = −i (without loss of generality) and αm+2 = ieiδ (the phase difference
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between the two waves), we obtain the vorticity fields

ωr =

[
2km

r
Jm − 2kη

3
Jm−1

]
cos(kz + mθ − (m+ 1)t)

+

[
2k(m+ 2)

3r
Jm+2 +

2kη

3
Jm+1

]
cos(kz + (m+ 2)θ − (m+ 1)t+ δ),

ωθ =

[
2km

r
Jm − 4kη

3
Jm−1

]
sin(kz + mθ − (m+ 1)t)

+

[
2k(m+ 2)

3r
Jm+2 − 4kη

3
Jm+1

]
sin(kz + (m+ 2)θ − (m+ 1)t+ δ).


(B 5)

Now, we replace θ by θL = t + ψ to obtain the vorticity components of a fluid
particle that initially is at θ = ψ. For particles on a helix given ψ = −kz/(m + 1),
(B 5) reduce to

ωr,L =
2k

3
[(m+ 2)Jm+2 − mJm] cos

(
kz

m+ 1
− t
)
, (B 6a)

ωθ,L =
2k

3
[(m+ 2)Jm+2 − mJm] sin

(
kz

m+ 1
− t
)
. (B 6b)

This vorticity distribution satisfies the strain–vorticity locking condition (B 2). It is
easily verified that ω⊥ has the same orientation everywhere on the helix. If this
orientation is along the strain’s stretching direction, perturbation growth will occur.

This heuristic argument shows that resonant combinations of modes m and m+ 2
will be unstable at least for those values of k at which their oscillation frequencies
equal (m + 1). Thus the instability mechanism operates for all m and, in particular,
for CDI (m = 0).

Appendix C. DNS algorithm
The DNS code integrates the Navier–Stokes equations using a Fourier-

pseudospectral algorithm which requires periodic boundary conditions in x and z. In
the transverse direction y, a free-slip, impermeable boundary condition is imposed,
which is implemented using half-range sine expansions for ux and uz , and a cosine
expansion for uy . Time-stepping is performed using the leap-frog scheme with an
occasional Euler step to dampen its weak numerical instability. The computational
domain is a cube of dimension (2π)3. The initial vortex core diameter (2r0) is restricted
to approximately one-third of the box dimension to minimize the effect of vortices in
neighbouring boxes while maintaining adequate spatial resolution.

Since the shear profile (3.2) has a discontinuous gradient at y = 0 and 2π, the
profile is slightly modified to be of the form,

Ωshear =
γ

2

[
1 + tanh

(
π− δ1 − |y − π|

δ2

)]
,

which is a top-hat profile for vorticity; δ1 governs the location where vorticity takes
half its peak value, and δ2 the rate at which it decays to zero at the top and bottom
walls. Their values are chosen such that shear vorticity is nearly uniform in the vicinity
of the vortex core.
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For linear stability analysis, the code is modified to solve the linearized equation

∂u

∂t
= −U · ∇u− u · ∇U − 1

ρ
∇p+ ν∇2u, (C 1a)

∇ · u = 0, (C 1b)

where lower-case quantities are the perturbation, which is of the form

u = ũ(x, y, t)eikz. (C 2)

The axial wavenumber k is held fixed in any given run. The simulation is initialized
with a divergence-free white-noise (in the z-plane) perturbation ũ and integrated in
time by solving

∂û

∂t
= P(k) · ( ̂ũ×Ω+ ̂u× ω̃)− k · k

ν
ˆ̃u, (C 3)

where ˆ represents the Fourier transform of a variable and P(k) ≡ (I − kk/|k|2) is
the projection tensor that ensures divergence-free velocity. The linear stability code
is easily obtained from the nonlinear solver by converting three-dimensional FFTs
to two-dimensional FFTs, by freezing the base flow and by modifying the routines
where the right-hand side of (C 3) is computed (Billant et al. 1999).

The perturbed base flow is then integrated in time. Upon integrating for a fairly
long period (≈ 200τ), the most unstable eigenmodes become energetically dominant.
The flow is integrated until the growth rate of three-dimensional energy,

σr ≡ 0.5 d lnE3D/dt

becomes steady. While only the most unstable mode (in our case, the BW) is directly
accessible using this technique, the CDI eigenmode can be obtained via orthogonal-
ization (Mamun & Tuckerman 1995) The validity of the CDI eigenmode is checked
by perturbing the base flow with this mode alone and checking the steadiness of both
the growth rate and the oscillation frequency.
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