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We study the effect of van der Waals forces on globally energy minimizing profiles for liquid

droplets which lie on a solid substrate in a vapour atmosphere and which are assumed to have

a uniform cross-section. We prove that for repulsive van der Waals forces as well as for certain

short range repulsive-long range attractive forces, there exists a unique globally minimizing

profile. Although this profile necessarily contains vertical bounding segments, the height A of

the vertical bounding segments can often be demonstrated to be order of magnitude smaller

that the overall height B of the droplet. This is the case, in particular, when the droplet

is sufficiently large, the Hamaker constant is sufficiently small, and the attractive forces are

sufficiently mild. In the presence of repulsive forces only, A is on the order of angströms

when B is on the order of millimeters, for realistic parameter values. Moreover, conditions are

prescribed under which Young’s law is satisfied to leading order despite the appearance of

the vertical segments, when the contact angle is measured via an inscribed circle construction

at a distance ξ0 from the edge of the droplet, where A� ξ0 � B.

1 Introduction

It has been classically conjectured that if the profile ξ(x, y) of a droplet lying on a

substrate in a vapour atmosphere is assumed to be single-valued, then the sessile droplet

form can be predicted by minimizing the energy

F[ξ] =

∫
Ω

[−S + γ(1 + ξ2
x + ξ2

y)
1
2 + G(ξ)] dx dy (1.1)

where ξ is constrained to belong to a suitable class of functions. Here Ω denotes the wetted

region, which is to be determined up to translation by the minimization process. The first

term in (1.1) represents the wetting energy, and S, the spreading coefficient, is given by

S = γSV − γSL, where γSV and γSL are respectively the interfacial energies per unit area of

the solid-vapour and solid-liquid interfaces. The second term represents the surface energy

of the bounding droplet-vapour surface, and γ is the interfacial energy per unit area of the

liquid-vapour interface. The third term G(ξ) contains the energetic contributions of gravity

( G(ξ) =
∫ ξ

0
ρgz dz). Energy minimization of (1.1) must be undertaken in conjunction

with a mass constraint

M[ξ] =

∫
Ω

ρξ dx dy = M0, (1.2)
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where ρ is the fluid density, unless the system is taken to be in (thermodynamic) equilibrium

with a bulk fluid bath. In that case there is no need to impose a mass constraint, though

G(ξ) must then be amplified to include hydrostatic effects. The energy minimization

problem (1.1)-(1.2) has been studied in depth (for example, see the book of Finn [7]).

The energy minimizing droplet profile must satisfy Laplace’s equation as dictated by the

Euler–Lagrange necessary condition:

2γH(ξ) = λ+ G′(ξ) (1.3)

where H(ξ) denotes the mean curvature and λ is a Lagrange multiplier, and the droplet

must contact the solid substrate in such a manner that β, the contact angle, i.e. the angle

between the droplet and the substrate, satisfies Young’s law:

cos β = S/γ. (1.4)

For simplicity let us assume, as we do throughout this paper, that the droplet profile has

a uniform cross-section, i.e. ξ(x, y) is independent of y. In this case Ω can be taken to be

one-dimensional, and F and M should be interpreted as the free energy per unit length

and the mass per unit length respectively. To gain intuition into the implications of (1.3),

we note that (1.3) can be solved explicitely to yield ξ = βx+ O(x2) for the droplet profile

of a droplet lying to the right of the point x = 0.

The classical formulation fails to take into account the energetic contributions arising

from van der Waals forces which become important in close proximity to the contact

line of the droplet with the solid surface. These are long range microscopic forces, and

their inclusion within the context of a continuum theory is often somewhat problematic.

Attempts to generalize the classical formulation in order to take into account these forces

has lead to consideration of an “enhanced” free energy

F[ξ] =

∫
Ω

[−S + γ(1 + ξ2
x + ξ2

y)
1
2 + G(ξ) + P (ξ)] dx dy, (1.5)

where P (ξ) = − ∫ ∞
ξ
Π(z) dz, where Π is the ‘disjoining pressure’, has been added to

incorporate the effects of van der Waals forces. In the simplest modelling, one may

assume that P (ξ) = Âξ−α, where typically 2 6 α 6 3. Here Â, the Hamaker constant, may

be either positive (reflecting repulsive forces between the droplet surface and the substrate)

or negative (reflecting attractive forces between the droplet surface and the substrate).

Again, the minimization must be undertaken within a suitable class of functions and in

conjunction with a mass constraint.

Under closer examination, it becomes clear that sufficiently close to the point of

contact of the droplet with the underlying substrate in the range of several hundreds

of angströms, 100–1000 Å, a variety of types of forces can come into play. Such forces

can include attractive as well as repulsive van der Waals intermolecular forces, effects of

excess interfacial surface charge, and electrical double layers. See the discussion in Oron et

al. [22]. It has been suggested (Teletzke et al. [25]) that these effects could be incorporated

into a generalized disjoining pressure. Among the forms of generalized disjoining pressure

considered recently are: (i) Π(ξ) = a3ξ
−3 − a9ξ

−9, a3, a9 > 0, which results from a 6–

12 Lennard-Jones potential [15, 16], (ii) Π(ξ) = −a3 ξ
−3 + l1 exp(−ξ/l2), a3, l1, l2 > 0,

which combines repulsive dispersive forces and polar attractive forces [11, 24], and (iii)
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Π(ξ) = a3ξ
−3 − a4ξ

−4, with a3, a4 > 0 which models attractive-repulsive forces in the

context of liquid films on solid surfaces coated by corrosive products [21]. Note that

sufficiently close to the contact point, the repulsive forces dominate in (i)–(iii). We will

refer to attractive-repulsive forces as limiting attractive if limξ→0 P (ξ) = −∞ and limiting

repulsive if limξ→0 P (ξ) = ∞.

To understand the implications of this assortment of generalised disjoining pressures

for droplet profiles, in particular, for droplet profiles with uniform cross-section, let us

consider the predicted behavior in the vicinity of the contact point. Suppose that an

augmented version of (1.3), i.e.

2γH(ξ) = λ+ G′(ξ) + P ′(ξ) (1.6)

applies in this neighborhood. This would appear to be a reasonable assumption since

(1.6) is indeed the Euler–Lagrange equation associated with (1.5) which is applicable if

the solution has some minimal regularity in this neighborhood (ξ is absolutely continuous

and ξx is essentially bounded). Clearly, if P (ξ) is singular at ξ = 0, then

2γH(ξ) ≈ P ′(ξ),

which has the first integral

−2γ(1 + ξ2
x)
− 1

2 ≈ P (ξ) + constant. (1.7)

Note that now the boundary condition ξx(0) = β implied by Youngs law (1.4) cannot be

applied in any reasonable fashion if β is finite. For the limiting repulsive forces as well as

for the limiting attractive forces, the left hand side of (1.7) remains bounded whereas the

right hand side diverges as x→ 0. In short, in both cases, the augmented Euler–Lagrange

equation (1.6) cannot be valid down to the contact point. The problem then arises as

to how to include disjoining (or generalized disjoining) forces and still obtain a reliable

prediction of the contact angle. Though much attention has been given to this problem,

many open question remain [17], and experimental verification is limited by the use of

low resolution microscopy in the context of liquid–fluid–solid contacts, as well as by other

more inherent difficulties.

In the present paper we focus on the case of limiting repulsive forces. Since repulsive

forces are known to stabilize thin films, as opposed to attractive forces which are known

to lead to rupture, this would seemingly be the less problematic case. Within a suitable

mathematical framework, we demonstrate the existence of a unique energy minimizing

droplet profile which is also physically reasonable. More specifically, we define a class

of energy densities (see Hypothesis HI) which permits inclusion of a term such as

P (ξ) = Âξ−α, Â > 0 reflecting a simple repulsive disjoining pressure, as well as attractive-

repulsive disjoining pressures such as those given in (i)–(iii) if the attractive contributions

are suitably restricted. For this class of energy densities we study the energy minimizing

droplet profiles. Despite the fact that the Euler–Lagrange equation does not hold – and,

as can easily be checked, no solution of the form ξ(x) ≈ sxa can describe the behavior of

the droplet profile near the contact point, we prove that a physically viable interpretation

of the energy minimization problem can be attained by allowing the droplet profile not to

be single-valued – in particular by allowing the droplet profile to contain vertical segments

of a suitably small height. Physically, such vertical segments are innocuous if their height
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is comparable to that of a molecular layer or two, and contact angle measurements should

not be influenced by their existence. Mathematically, such a description can be shown

to follow from a suitable parametric formulation of the energy minimization problem

coupled together with an ‘overtaking strategy’. The feasibility of this approach was already

broached in two previous papers [18, 19]. In particular, existence of an energy minimizing

profile in this framework was proven in Novick-Cohen [19]. In the present paper we prove

the uniqueness of such an energy minimizing profile and obtain a clear characterization

of its features. Indeed, we show that under suitable additional assumptions, which hold

in particular if the droplet is not too small, the Hamaker (or the ‘effective’ Hamaker)

constant is not too large, and the attractive forces are nonsingular and sufficiently mild,

Young’s contact angle prediction is well approximated by the energy minimizing profile

when it evaluated via curvature measurements made at a suitable distance, not too far

and not too near, the droplet edge. These assumptions, which can be satisfied by an

energy density incorporating a simple repulsive potential as well as a potential of type

(ii) under certain restriction on the defining parameters, also guarantee that the relative

height of the vertical segments to the overall droplet height is small. Thus, in the context

of the present description, Young’s law can be said to be lost in the prediction of the

sub-microscopic (intrinsic) contact angle, but reappears in the prediction an effective (and

measureable) contact angle. The present paper demonstrates that alternate approaches

such as regularizing the singular forces by imposing an arbitrary cut-off is really not at

all essential; the singular formulation is indeed reasonable and self-consistent.

Preliminary investigations indicate that the problem of determining droplet profiles in

the presence of long range repulsive-short range attractive forces should also be amenable

to the general methodology of Novick-Cohen [18, 19]. However, in the case of limiting

attractive forces, the minimization process leads to droplets which appear to ‘float above’

or to be minimally attached to the underlying substrate, hence the analysis presented here

must be significantly altered to treat this case. Nevertheless, it should still be possible to

prescribe a similar type of contact angle measurement at an appropriate distance from

the droplet (overhang) edge, which should reproduce classical contact angle predictions

under suitable assumptions. We defer further discussion of this case to a later publication.

So far our discussion has been static. Obviously, it would be desirable to be able to view

the energy minimizing profile as a steady state attainable as t → ∞ in some appropriate

dynamical setting, i.e. as part of a global attractor. One would hope that a thin film type

equation:

µξt − 1
3
[ξ3(G′(ξ) + P ′(ξ))x]x +

γ

3

[
ξ3

[
ξxx

(1 + ξ2
x)

3/2

]
x

]
x

= 0 (1.8)

with µ > 0, which reduces to the regular thin film equation

µξt − 1
3
[ξ3(G′(ξ) + P ′(ξ))ξx]x +

γ

3
(ξ3ξxxx)x = 0 (1.9)

when ξ2
x � 1, would provide a reasonable framework within which to consider the

dynamics. This is not such a readily achieved goal. Even though considerable analytic

work has appeared on the thin film and thin film type equations since the publication

of the influential work of Bernis & Friedman [1], the equation remains problematic from

the theoretical point of view, in particular with regard to the case of nonzero contact
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angles. Nevertheless, numerical analysis has been undertaken for (1.9) for disjoining

pressures represented in (i)–(iii) [15, 16, 11, 24, 21, 20, 9]. In particular, in Mitlin [15]

for potentials of the form ii), thick films were seen to rupture and thinner films broke

up into droplets separated by ultrathin flat films. Film break up was similarly seen in

Grün [9] for disjoining pressures of type i) using a nonnegativity preserving numerical

scheme. In Oron & Bankoff [21], the difficulties of the thin film equation were avoided

by calculating the steady states for an attractive-repulsive potential of type iii) within the

context of an Allen–Cahn type equation instead of the thin film equation on a periodic

domain, where off-hand the set of equilibria should be the same. There, however, contact

angles, spreading coefficients and contact line notions were neglected. The results given in

Mitlin [15], Oron & Bankoff [21], Oron [20] and Grün [9] are not in contradiction to the

results obtained here when one takes into account that (a) the two equations (1.8) and

(1.9) differ when ξ2
x is not small – and this is an effect which it seems should be noticeable

near the contact angle, and (b) in their analysis the profiles have been constrained to be

single-valued and Neumann and no-flux or periodic boundary conditions were used. In

Oron [20], three-dimensional numerics were undertaken for the thin film equation using a

disjoining pressure of type (iii) and periodic boundary conditions. Interesting enough the

film evolved to an isolated steady drop standing on a practically flat film. Our analysis,

in contrast, is heavily focused on droplets with compact support; thus in seeking an

appropriate dynamical setting we must be more careful. So far the only proof of existence

for a thin film type equation with a non-zero contact angle has appeared in Otto [23] for

the lubrication approximation equation using the relatively recent notion of gradient flow

for a prescribed energy with respect to the Wasserstein metric. There, though, disjoining

pressure effects were neglected. It is quite conceivable, though not immediately evident, that

such a framework would allow a description of droplet dynamics based on an energy of the

form (1.5) under suitable assumptions. This framework has also been useful in connecting

Hele-Shaw flow with nonzero contact angle with the lubrication approximation [8].

We remark, in passing, that the approach of introducing a cut-off leads to the nonsin-

gular evolution equation

ξt = −(g1(ξ)ξxxx)x − (g2(ξ)ξx)x, (1.10)

where g1 and g2 are typically polynomials, rather that (1.9) or (1.8), and much work has

appeared in this direction [2, 12]. In particular, under suitable assumptions it has been

demonstrated that three different types of steady states may occur for (1.10), namely

constant states, positive periodic states, and compactly supported droplet states, and that

the lowest energies are attained by the droplet states. Interesting enough, in the analysis

of Mitlin [15], the possibility of droplet states existed but was not investigated. Seemingly,

thus, compactly supported droplet solutions are a common feature to many of these types

of studies, and are worthy of further attention. Recently an analysis of ‘touchdown’ or

compactly supported steady state solutions with acute contact angles was considered in

Laugesen & Pugh [13] for (1.10) where g2 was allowed to be possibly singular at ξ = 0.

However, for g1 and g2 which would correspond to the assumptions of (1.9) with disjoining

pressure as singular as in (i) (ii), and (iii), the arguments in Novick-Cohen [18, 19] show

that there are no ‘touchdown’ solutions. We emphasize, though, that for singular disjoining

terms such as we wish to consider, it is very desirable to consider compactly supported
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droplets, as the singular forces have been included in order to model such effects as the

creation of dry patches on an exposed surface [27]. Within the framework of the revised

thin film equation (1.8), our analysis shows that steady state ‘touchdown’ solutions do

exist if the notion of ‘touchdown’ solution is suitably generalized to permit the inclusion

solutions which are not single-valued, and dynamic modelling of dry spot creation may

prove to be possible within such a framework.

Let us outline some of the results of Novick-Cohen [18, 19] to provide a background

for the present framework, and also because our analysis shall rely on some results given

there. In Novick-Cohen [18], an analysis was undertaken for a droplet with uniform cross-

section that was completely wetting, i.e. γ = γSV − γSL, and which rested on a platform

and was in equilibrium with a surrounding bulk fluid bath. In this case it was shown that

though there did not exist any single-valued minimizers, within the class of rectifiable

functions there existed a unique minimizer which was bounded by vertical segments which

for realistic parameter values were on the order of at most a few molecular layers, and

whose maximal height, ξ̄, satisfied Derjaguin’s prediction [4]:

P ′(ξ̄) + G′(ξ̄) = 0. (1.11)

Note that equation (1.11) corresponds to setting H = 0 and λ = 0 in (1.6). Since the

droplet is in equilibrium with a bulk fluid bath, the droplet mass is not constrained and

the rationale for setting λ to zero is clear.

In Novick-Cohen [19] a partially wetting (0 < γSV − γSL < γ) droplet with a uniform

cross-section was considered, which lied on a solid substrate and was not in equilibrium

with a surrounding bulk fluid bath. Here, on the basis of the results of Novick-Cohen [18],

the analysis was initiated without constraining the class of admissible profiles to be single-

valued. Rather we considered profiles bounded by rectifiable curves within the framework

of a parametric generalization of the minimization problem, given below as Problem PI.

More specifically, let Hypothesis HI be defined as follows:

Hypothesis HI: f ∈ C2(R+, R+) and

(i) f + 1 > 0,

(ii) limξ→∞ f′ > 0,

(iii) limξ→0 ξ
p+2f′ = −q, where p > 0 and q > 0 are (finite) constants,

(iv) f′′ > 0.

We refer to q as the effective Hamaker constant.

We may state Problem PI in terms of Hypothesis HI as

Problem PI: Minimize J = J[x, ξ], where

J =

∫ T

0

[(ẋ2 + ξ̇2)
1
2 + f(ξ)ẋ] dt, (1.12)

and where f satisfies Hypothesis HI, over all admissible configurations (x, ξ),

(x, ξ) = {(x(t), ξ(t)), 0 6 t 6 T } ∈ S,
where S is the class of rectifiable curves which begin and end on the underlying solid
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substrate (i.e., ξ(t) > 0 for 0 < t < T , and ξ(0) = ξ(T ) = 0), which satisfy the mass

constraint

m[ξ] =

∫ T

0

ξẋ dt = m. (1.13)

Here J and m, as defined, correspond respectively to a dimensionless free energy and

a dimensionless mass per unit length (area) constraint, and the droplet density has been

assumed to be uniform. Similarly f represents a dimensionless energy density summing the

effects of the wetting energy, the gravitational potential, and the disjoining or generalized

disjoining pressure. Though only the repulsive disjoining pressure P (ξ) = Âξα, Â > 0

was specifically mentioned in Novick-Cohen [18, 19], we emphasize here that f satisfying

Hypothesis HI can also represent a potential of limiting repulsive form such as (i)–(iii)

given earlier if the effects of the attracting forces are sufficiently benign. We remark

that it should be possible to study Problem PI for limiting repulsive forces within the

framework of assumptions which are more general than those of Hypothesis HI, however

the subsequent analysis could be more involved. The nondimensional version of our

problem given above can be attained by employing γ to rescale the energy density. The

height of a droplet with infinite mass, δ can be used to rescale x and ξ. This height can

be specified as the unique solution to

f′(δ) =
f(δ) + 1

δ
, (1.14)

see the discussion in §2.2. For simplicity, we do not introduce a change of notation in

passing to the dimensionless versions of x and ξ. Furthermore, ρδ2 and δ2 can be used to

scale the mass per unit length and the droplet cross-sectional area which we shall denote

by S0, respectively. In terms of the simple attractive disjoining pressure, this would imply

then that

f(ξ) = kξ2 +
c

ξα
+ b, (1.15)

with b = −Sγ−1 = − cos β, where β is the classically predicted contact angle given in

(1.4), c = Âγ−1δ−α, and k = 1
2
ρgδ2γ−1 where g is the gravitational constant. The height,

δ, assumes the value
√

2(γ − S)/(ρg) when Â = 0, and increases monotonely with Â for

Â > 0; i.e.,

δ >
√

2(γ − S)/ρg. (1.16)

Thus α, b, c, and k would be constants such that α > 1, |b| 6 1, c > 0, and k > 0.

It was proven by Novick-Cohen [19] in the context of Problem PI, that there existed

a continuum of configurations with infinity large (positive) energies [19, Figure 1(a)],

and as well as a continuum of configurations with infinity large (negative) energies

[19, Figure 1(b)]. Since this implied that the straightforward minimization process was

no longer viable, the classical minimization process was replaced by a comparative

minimization process (originally developed in the context of optimal control [26]) known

as minimization in the sense of overtaking, i.e.

Definition Let (x1, ξ1), (x2, ξ2) ∈ S. For any ε > 0 let

Jε[x, ξ] :=

∫ T

0

[(ẋ2 + ξ̇2)
1
2 + f(ξ)ẋ]χε(t)dt
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where

χε(t) =

{
1 ξ(t) > ε
0 otherwise.

We say that

J[x1, ξ1] 6 J[x2, ξ2] in the sense of overtaking,

if

Jε[x
1, ξ1] 6 Jε[x

2, ξ2],

for all 0 < ε 6 ε0 for some ε0 > 0.

It was demonstrated by Novick-Cohen [19] that profiles which were not convex, i.e.

profiles such that the bodies bounded by the rectifiable curve and by the substrate below

were not convex, could not be minimizers in the sense of overtaking. Moreover, it was

shown that if profiles bulged out, i.e. were convex but contained a section along which

x(t) < x(0) or x(t) > x(T ), then their energy could be decreased further by slightly

lowering the profiles in an appropriate way. Therefore minimization of Problem I in

the sense of overtaking was proven to be equivalent to straightforward minimization

within a more restricted class of admissible configurations. We state below the equivalent

minimization problem as Problem PII:

Problem PII: Minimize (1.12) subject to (1.13) for functions f satisfying Hypothesis HI

over all configurations (x, ξ) ∈ S̃, where S̃ is the subset S which satisfies additionally

that x(0) 6 x(t) 6 x(T ) for all t ∈ [0, T ].

It can be concluded from Theorem 4.2 in Novick-Cohen [19]

Theorem (I) There exists a minimizer (possibly non-unique) to Problem II (or equivalently

to Problem I in the sense of overtaking.) Such a minimizer cannot to be single-valued; more

specifically, it necessarily contains a convex interior single-valued section bounded on either

end by vertical segments of finite non-zero height.

Thus while the earlier analysis for the behavior of completely wetting droplets in

equilibrium with a bulk fluid reservior seemed complete, the analysis for partially wet-

ting droplets not in equilibrium with a bulk fluid reservoir left open the question of

uniqueness. Moreover, the appearance of vertical segments is seemed counterintuitive and

unsatisfactory. In the present paper these issues are, for the most part, resolved. This is

accomplished in two main steps. In §2, we prove

Theorem (A) There exists a unique solution to Problem II. It is, moreover, symmetric about

its center.

In §3, we discuss in what sense the predictions of Youngs law are preserved despite the

appearance of vertical segments, giving conditions which guarantee that the height of the

vertical segments are very small relative to the overall height of the droplet. In particular,

the results in §3 indicate that
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Theorem (B) For a droplet with cross-sectional area S0 and with a free energy density given

in terms of a dimensional height, ξ, as 1
2
ρgξ2 + Âξ−α − S , where 0 < γ − S , if

N0 :=
(

1− 2γ

ρgS0

)[ 1

(1 + α)Â

( 2

ρg

)α/2
(γ − S)

α+2
2

] 1
2+α

� 1, (1.17)

then the effective contact angle, β̃, closely approximates Young’s angle, β.

Some typical values of N0 are listed in Table 2.

The proof of Theorem A, given in §2, is inherently constructive. First, in §2.1, relying on

the results of Novick-Cohen [19], we demonstrate (Lemma 1) that it suffices to consider

droplet profiles which are symmetric about their center. There afterwards a unique explicit

representation is given (Theorem 2) for the left half of the unique droplet profile which is

energy minimizing among all droplet profiles characterized by a given three values of the

parameters A, B, and r, where A, B, and r which denote respectively the height of the

bounding vertical segments, the maximum height of the droplet, and the half width of the

droplet, i.e. half the length of the support of the droplet. This in turn allows a reduction of

Problem II to the finite dimensional problem of identifying the optimal parameters A, B,

and r, which is treated in §2.2. Via Theorems 3 and 4, it is proven that there exists a unique

minimizing triplet (A, B, r) to the finite dimensional minimization problem. Lemma 1 and

Theorems 2, 3 and 4 now imply Theorem A.

In §3, we consider Problem II in conjunction with Hypothesis HI*, which is somewhat

more restrictive than Hypothesis HI.

Hypothesis HI∗: f(ξ) = f̄(ξ) + cξ−α + b, where α > 1, c > 0, −1 < b < 0, and f(ξ) + 1 > 0

for all ξ > 0. Moreover, f̄(ξ) ∈ C(R+, R) satisfies (a) f̄(0) = 0, (b) f̄′(0) > 0, and (c)

0 < K1 6 f̄′′(ξ) < K2 for ξ > 0.

Note that f(ξ) as given in (1.15) satisfies Hypothesis HI*, as would f(ξ) of the form

implied by (ii) for suitable values of the parameters. The assumption −1 < b < 0 arises as

we wish to focus on the partial wetting case in which 0 < β < π
2
, see (1.4). In this context

we prove (Theorem 9) that Young’s law prediction for the contact angle hold ‘at a suitable

distance’ from the edge of the droplet when measured according to an inscribed circle

construction, if the ratio of the height of the bounding vertical segments to the maximum

droplet height is sufficiently small. Moreover, we give sufficient conditions (Theorem 10)

which guarantee that the ratio of the vertical segments to the overall droplet height is

indeed small, for sufficiently large droplets and for sufficiently small values of Â
γ

(
ρg
2γ

)α/2
which is a scaled effective Hamaker constant. Theorems 9 and 10 together imply Theorem

(B) stated earlier. Theorem 10 is also helpful in its own right in justifying the physicality of

the predicted droplet profiles. We remark that it should be possible to prove results similar

to Theorems 9 and 10 under less restrictive assumptions and hypotheses. In particular,

some numerical results are presented which indicate that the ratio of the vertical segments

to the overall droplet height may nevertheless be very small, even for extremely small

masses.
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m/2 m/2 m/2 m/2 m/2 m/2

Figure 1. If an energy minimizing droplet for a given mean mass is nonsymmetric, then two

nonidentical symmetric energy minimizing droplet profiles may be constructed which have the same

mass and the same free energy as the nonsymmetric droplet profile.

2 The droplet profile

In this section we present the proof of Theorem (A); i.e., that there exists a unique

minimizer to Problem PII, and that this minimizer is moreover symmetric about its center.

From Theorem (I) which was stated in the Introduction, we know that all minimizers

are necessarily bounded by vertical segments with positive height and contain an interior

single-valued convex section. More precisely, we say that a minimizing profile (x(t), ξ(t)) is

‘symmetric about its center’, or more simply ‘symmetric’, if the vertical bounding segments

on either side are of identical height and if ξ(x) = ξ(2r−x) along the interior single-valued

section, where 2r denotes the length of the support of the droplet.

Lemma 1 In considering Problem PII, it suffices to consider symmetric droplet profiles only,

since any nonsymmetric minimizing profile can be constructed by piecing together two halves

of symmetric energy minimizing droplet profiles of equal mass.

Proof The idea of the proof is given in Figure 1. A nonsymmetric minimizing droplet

profile can be split into two halves via a vertical slicing, so that each of the halves contains

half of the net mass. Each of the two halves must be possess exactly half of the net energy

of the droplet, since otherwise the higher energy half could be replaced by a mirror image

of the lower energy half, and the net energy of the droplet would be decreased. Thus each

of the halves can be paired to a mirror image of itself to produce a symmetric droplet

whose mass and energy are equal to that of the original minimizing droplet. Thus, the

resultant two symmetric droplets will themselves be energy minimizers and will satisfy the

mass constraint. Clearly, it follows than also that any nonsymmetric energy minimizing

droplet can be constructed from the set of symmetric energy minimizers by gluing together

the left half and the right half from two different symmetric minimizing droplet profiles.

See also the discussion in Novick-Cohen [19]. q
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2.1 A finite dimensional reduction

Lemma 1 allows us to focus on the left half of a symmetric minimizing droplet profile,

which according to Theorem (I) defines a characteristic triplet: (A, B, r), where A is the

height of the vertical bounding segment, B is the maximal droplet height, and r is the

droplet half-width (r = x(T/2) in the terminology of Problem PII.) We demonstrate

(Theorem 2, below) that if a droplet profile is energy minimizing for a given value of the

mass, m, and the values of its characteristic triplet (A, B, r), 0 < A < B, r > 0, are known,

then the droplet profile is uniquely determined with the class S̃.

Theorem 2 Suppose that (x(t), ξ(t)), 0 6 t 6 T/2 describes the left half of an energy

minimizing profile for a given value of m > 0 and for a given value of the characteristic

triplet (A, B, r) 0 < A < B, r > 0. Then along the interior single-valued convex section, ξ

may be prescribed uniquely as a function of x as follows:

ξ =

{
Φ(x) for 0 < x < β(A,B, r)

B for β(A,B, r) 6 x 6 r
(2.1)

where

β(A,B, r) =

∫ B

A

R−
1
2 (u) du, (2.2)

R(u) = (f(B) + λB + 1− f(u)− λu)−2 − 1, (2.3)

and

λ = −f(B) + 1− f(A)

B − A , (2.4)

and where Φ is defined implicitely by

x =

∫ Φ(x)

A

R−
1
2 (u) du. (2.5)

Remark According to Theorem 2, the energy minimizing droplet profile contains a ‘flat

top’ with height B and length r − β. This apparent anomaly is soon resolved in Theorem

3, where it is proven that in fact r − β = 0.

Proof Clearly, by the construction x(T/2) = r. Employing a Lagrange multiplier, we can

incorporate the mass conservation constraint and minimize:

Ĵ =
J

2
+ λ

[∫ T/2

0

ξẋ(t) dt− m

2

]
;

i.e.

Ĵ =

∫ T/2

0

[
f (ξ(t)) ẋ(t) +

(
ẋ2(t) + ξ̇2(t)

) 1
2 + λẋ(t)

(
ξ(t)− m

2r

)]
dt. (2.6)

If, as we may assume without loss of generality, an arc-length parametrization is

employed to describe the parametric curve (x(t), ξ(t)) (i.e. (ẋ2(t)+ ξ̇2(t))1/2 = 1), then since

the droplet contains vertical segments of height A

x(t) = 0 for t ∈ [0, A]. (2.7)
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Moreover for t ∈ (A, T/2], (x(t), ξ(t)) describes the left half of the interior single-valued

convex portion of the energy minimizing droplet profile. Sufficient regularity is guaranteed

by the convexity of the profile for A < t < T/2 for us to conclude that the Euler necessary

condition must hold along this interior section [3, Theorem 2.2.i]. This implies (see Novick-

Cohen [18, Lemma 4.5]) that along this section, the Euler necessary condition may be

stated in terms of a single-valued function, ξ = ξ(x), as

f(ξ) + (1 + ξ2
x)
− 1

2 + λ
(
ξ − m

2r

)
= D, x ∈ (0, r]

where D is a constant to be determined. Defining

C = D +
λm

2r
, (2.8)

we may conclude

f(ξ) + λξ + (1 + ξ2
x)
− 1

2 = C, x ∈ (0, r] and ξ(0) = A. (2.9)

Note that ξ(0) corresponds to the height of the vertical segment, A, and ξ(r) corresponds

to the maximal height of the droplet, B.

Since the profile is vertical for 0 < t < A, and the form of the profile is determined by

equation (2.9) for A < t < T/2, the parametric curve (x(t), ξ(t)) is certainly sufficiently

regular to invoke the Erdman (necessary) corner condition [3, Theorem 2.2i] for A/2 <

t < A/2 + T/4, and hence there can be no break in the profile derivative in this interval.

In particular, we may conclude that

ξx(0) = ∞. (2.10)

Since the droplet is symmetric and convex, in fact the parametric minimization problem

can be equally well formulated for the whole droplet, taking the integral in (2.6) over the

interval [0, T ]. Thus, the Euler necessary condition and the Erdmann corner condition

must hold for T/4 + A/2 < t < 3T/4− A/2. Therefore,

ξx(r) = 0. (2.11)

From (2.9), (2.10) and (2.11), it follows that

C = f(A) + λA = f(B) + λB + 1. (2.12)

Following Novick-Cohen [19], (2.1)–(2.5) may be concluded from (2.9) and (2.12). q

Since ξ as given in Theorem 2 above is the unique minimizing left half profile of

(2.6) for given values of A, B, and r, the global minimizer(s) may now be ascertained by

substituting the profile as prescribed above back into (2.6) yielding Ĵ = Ĵ(A, B, r), then

minimizing Ĵ over the domain R, where

R = {A, B, r | 0 < A < B, r > 0 }.
This is accomplished in the next subsection.
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2.2 The optimal parameters A, B, r

Theorem 3 In an energy minimizing profile for a given mass m > 0, the parameters A, B,

and r must satisfy

f(A)

A
=
f(B) + 1

B
, (2.13)

∫ B

A

∣∣∣∣f(A)

A
u− f(u)

∣∣∣∣ u du√
1−

(
f(A)

A
u− f(u)

)2
=
m

2
, (2.14)

∫ B

A

∣∣∣∣f(A)

A
u− f(u)

∣∣∣∣ du√
1−

(
f(A)

A
u− f(u)

)2
= r. (2.15)

Moreover, β(A, B, r) = r.

Proof Let us assume that the parameters A, B and r are optimal. The corresponding

energy minimizing droplet profile must have a vertical section of height A at x = 0, and

a single-valued section which satisfies (2.1)–(2.5). Substituting (2.1)–(2.4) into (2.6), we

obtain

Ĵ = A− λm

2
+ (r − β) (f(B) + 1 + λB) +

∫ β

0

[
f(Φ(x)) + λΦ(x) +

(
1 + Φ2

x

) 1
2

]
dx, (2.16)

yielding Ĵ = Ĵ(A, B, r), since λ = λ(A, B) by (2.4). Differentiating (2.5) with respect to x

and utilizing (2.2)–(2.3),

Ĵ = A− λm

2
+ r (f(B) + 1 + λB) +

∫ B

A

R
1
2 (u)

(1 + R(u))
1
2

du. (2.17)

Notice also that (2.12) implies the parametric constraint (2.13). It is easily verified that

the conditions of Hypothesis HI imply that the optimal values of the parameters cannot

lie on the boundary of the domain R. Thus, we may assume that A, B, and r lie within

the interior of R, and Ĵ must assume a local interior minimum at this set of values.

Differentiability of Ĵ(A, B, r) within the domain R allows us to obtain a system of

conditions defining the local minima by setting the partial derivatives of J(A, B, r) equal

zero and taking (2.13) into account. This gives

0 =
[
−m

2
+ Br −

∫ B

A

B − u
R1/2(u)

du
][f′(A) + λ

B − A
]
, (2.18)

0 =
[
−Ar +

m

2
+

∫ B

A

A− u
R1/2(u)

du
][f′(B) + λ

B − A
]
, (2.19)

0 = f(B) + 1 + λB. (2.20)

From (2.20) and (2.4), it follows that λ = − f(A)
A

= − f(B)+1
B

. Suppose now that f′(A)+λ = 0.

This implies that f′(A) = f(A)/A. However, then the point (A, f(A)) would be located on

a tangent to f(ξ) which passes through the origin and the parametric constraint (2.13)

https://doi.org/10.1017/S0956792501004478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004478


380 E. Minkov and A. Novick-Cohen

could not be satisfied. Thus

f′(A) + λ� 0. (2.21)

Suppose similarly that f′(B) + λ = 0. Then we obtain that f′(B) = (f(B) + 1)/B. By

referring to equations (2.2)–(2.3), we see by examining the behavior of the integral in the

neighborhood of u = B that this would yield that
∫ B
A
R− 1

2 (u) du = ∞. This, however, gives

that r = ∞ (and m = ∞) and would correspond to a minimum on the boundary of R.

Since we have noted that there are no minima on the boundary of the domain R, we

conclude that

f′(B)− (f(B) + 1)/B� 0. (2.22)

It follows now easily from (2.18) and (2.19), using (2.2), (2.21) and (2.22), that β(A, B, r) = r.

From (2.2), (2.3) and (2.18), (2.14) and (2.15) are now obtained. q

Let us examine the system (2.13)–(2.15) for a given value of m > 0. Equation (2.15) can

be viewed as determining r in terms of A and B. Note that the convergence of the integral

in (2.15) is assured by convergence of integral in (2.14). It remains to verify whether

equations (2.13)–(2.14) can be uniquely solved for A and B. That this is so is guaranteed

by the following theorem:

Theorem 4 If f satisfies Hypothesis HI, then for any m > 0 the system (2.13)–(2.14) has a

unique solution.

Proof Under the conditions of Hypothesis HI, clearly there exists a unique tangent to

the curve y = f(ξ) + 1 that pass through (0, 0). Let us denote the point of tangency by

(B∞, f(B∞) + 1), and the first intersection of the tangent constructed above with the curve

y = f(u) by (A∞, f(A∞)) – see Figure 2.

It follows from the construction that

f(A∞)

A∞
= f′(B∞) =

f(B∞) + 1

B∞
. (2.23)

Let us now take A > 0 to be given, and attempt to solve (2.13) for B as a function of

A. In this regard we have

Lemma 5 For A ∈ (0, A∞), there exists a unique value of B, B = B∗(A), such that (2.13)

is satisfied and the integral in (2.14) is real and convergent. Moreover, limA→A∞ B∗(A)= B∞.

For A ∈ (A∞, ∞), there are no solutions to (2.13) such that A < B.

Proof From the construction and Hypothesis HI it is easy to see that for any A ∈
(0, A∞), the line connecting (0, 0) with (A, f(A)) intersects the curve y = f(ξ) + 1 to

the right of (A, f(A)) in precisely two points. Let us denote the values of ξ where

the two intersections occur by B and B′, with B < B′. Thus for A ∈ (0, A∞), (A, B)

and (A, B′) constitute the only solutions to (2.13). Furthermore, for A > A∞, the line

connecting (0, 0) with (A, f(A)) does not intersect the curve y = f(ξ) + 1, hence there

are no solutions to (2.13) for A > A∞. Note, further that by the construction, f(A)/A <

(f(ξ) + 1)/ξ for A < ξ < B1 and f(A)/A > (f(ξ) + 1)/ξ for B < ξ < B′. By considering
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y f(u)+1

f(u)

BAA B’B8 8

Figure 2. A sketch of the A∞-B∞ construction. Here A and B satisfy (2.13) and correspond to

the height of the bounding vertical segments and to the overall height, respectively, for an energy

minimizing profile with finite mass. A∞ and B∞ satisfy (2.23) and have the same connotation as A

and B, except that they refer to the limiting values of these parameters as the mass approaches

infinity. See §2.2.

the denominator of the integrand in (2.14), this can be seen to imply that with B as

given by the construction as the upper limit of integration, the integral on the left

hand side of (2.14) is real and convergent whereas if B′ is used as the upper limit

of integration, the integral on the left hand side is necessarily complex. Therefore, for

A ∈ (0, A∞) there exists a unique B = B∗(A), given by B of the construction, for which

the integral in (2.14) is real and convergent. From the construction, it also follows that

limA→A∞ B∗(A) = B∞. q

For A ∈ (0, A∞), we define

φ(A) =

∫ B∗(A)

A

∣∣∣∣ f(A)

A
u− f(u)

∣∣∣∣ u du√√√√1−
(
f(A)

A
u− f(u)

) .

Solveability of the system (2.13)–(2.14) is now resolved by examining the behavior of φ(A)

for A ∈ (0, A∞).
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Lemma 6 φ(A) is a monotone increasing function of A for A ∈ (0, A∞).

Proof of Lemma 6

Claim 7 If f satisfies Hypothesis HI, then ∂
∂ξ

( f(ξ)
ξ

) < 0 for ξ ∈ (0, A∞], and ∂
∂ξ

( f(ξ)+1
ξ

) < 0

for ξ ∈ (0, B∞].

Proof Let v(ξ) = ξf′(ξ) − f(ξ). By Hypothesis HI, v′(ξ) = ξf′′(ξ) > 0 for ξ > 0. Using

(2.23),

v(A∞) = A∞f′(A∞)− f(A∞) = A∞(f′(A∞)− f′(B∞)).

It follows from the convexity of f that v(A∞) < 0. Therefore, v(ξ) < 0 for all ξ ∈ (0, A∞).

Similarly, it follows from (2.23) that v(B∞) = 1. Hence v(ξ)−1 < 0 for ξ ∈ (0, B∞). Noting

now that
∂

∂ξ

(
f(ξ)

ξ

)
= v(ξ)/ξ2 and

∂

∂ξ

(
f(ξ) + 1

ξ

)
= (v(ξ)− 1)/ξ2,

the claim follows. q

Let us define

g(A, ξ) =
f(A)

A
ξ − f(ξ). (2.24)

It follows from Claim 7 that f(A)
A

> f(A∞)
A∞ for A ∈ (0, A∞), and clearly f′(ξ) 6 f(A∞)

A∞ for

any ξ ∈ (0, B∞]. Therefore,

∂g

∂ξ
(A, ξ) =

f(A)

A
− f′(ξ) > 0 for A ∈ (0, A∞), ξ ∈ (0, B∞]). (2.25)

Since g(A,A) = 0 and g(A,B) = 1 if A ∈ (0, A∞) and B = B∗(A) as prescribed in Lemma

5, we obtain by virtue of (2.25) that for any A ∈ (0, A∞), there exists an inverse function

u(A, g) such that u(A, 0) = A, u(A, 1) = B and which is differentiable and monotone

increasing with respect to g, for g ∈ (0, 1). Therefore, we may rewrite (2.14) in the form∫ B

A

∣∣∣ f(A)
A
u− f(u)

∣∣∣ u du√
1−

(
f(A)
A
u− f(u)

)2
=

∫ 1

0

g√
1− g2

u(A, g) ug(A, g) dg. (2.26)

It follows from Claim 7 that both g(A, ξ) and gξ(A, ξ) are decreasing functions of A for

ξ > 0 and A ∈ (0, A∞), so both u(A, g) and ug(A, g) are increasing functions of A. Since

g in (2.26) is an independent variable and u(A, g) and ug(A, g) are increasing functions of

A, the integral is also increasing function of A. q

Lemma 8 φ(A)→ 0 as A→ 0, and φ(A)→∞ as A→ A∞.

Proof By (2.25), for A ∈ (0, A∞), gξ(A, ξ) is strictly positive and continuous for ξ ∈ (0, B∞],

and by Hypothesis HI, gξ(A, ξ)→∞ as ξ → 0. Hence ug(A, g) is bounded and continuous

for A ∈ (0, A∞), g ∈ [0, 1]. Let A0 ∈ (0, A∞) be arbitrary, and let us define

α := max
g∈[0,1]

ug(A0, g). (2.27)
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Recall that we have seen in the proof of Lemma 6 that ug(A, g) is an increasing function

of A for A ∈ (0, A∞) and g ∈ (0, 1). Hence for any A ∈ (0, A0] and g ∈ [0, 1], ug(A, g) 6 α.
Therefore, by (2.26), for A ∈ (0, A0]

φ(A) 6 α

∫ 1

0

g√
1− g2

u(A, g) dg 6 α max
g∈[0,1]

(u(A, g))

∫ 1

0

g√
1− g2

dg = αB(A). (2.28)

Since clearly limA→0 B(A) = 0, it follows that φ(A)→ 0 as A→ 0.

Noting B(A∞) = B∞ and f′(B∞) = f(A∞)
A∞ , it is easy to check upon examining the

behavior of the integrand in (2.14) near its upper limit, that the integral diverges as

A→ A∞. Therefore, φ(A)→∞ as A→ A∞. q

From Lemma 6 and Lemma 8, it follows that for any m > 0, there exists a unique

A∗ ∈ (0, A∞) such that φ(A∗) = m/2. Therefore, by Lemma 5, (A, B) = (A∗, B∗(A∗))
constitutes the unique solution of (2.13)–(2.14), and Theorem 4 is proven. q

Combining the results of Lemma 1, Theorem 2, Theorem 3 and Theorem 4 yields a

proof of Theorem (A) as stated in the Introduction.

Remark It also follows from Lemmas 6 and 8 that B∞ is the height of a droplet with

infinite mass. From the normalization introduced in (1.14) and (2.23), we know that

B∞ = 1.

See Figure 3 for a numerical plot of an energy minimizing profile for a simple repulsive

disjoining pressure.

In the plot the parameter values S = 0.025 J m−2, γ = 0.05 J m−2, ρ = 2×10−3 kg m−3,

S0 = 2× 103 m2 (cross-sectional area), α = 2, and Â = 10−22 J have been assumed.

3 The contact angle

Having established uniqueness and having derived an implicit expression for the energy

minimizing droplet profile, we now turn to see what can be said about the contact angle

and the height of the vertical bounding segments relative to the overall droplet height.

According to (2.10), the contact angle is always equal to π
2

in the present context, if

it is measured at the point of contact. Experimental measurements typically reflect an

‘averaging’ or curve fitting of the shape of the droplet profile near the contact point, not

a TEM-type microscopic contact angle1. We too predict a type of ‘averaged’ angle by

approximating the droplet profile, near but not at the contact point by an inscribed circle.

This corresponds in a sense to looking as an intermediate angle as has been considered

1 TEM, or electron transmission microscopy [6], can be used when atoms stay still long enough

to be imaged, as in solids. Such techniques permit resolution on an angström scale, as opposed to

≈ 10 µ level resolution which can be achieved with low resolution optical microscopy and video

imaging. Recently resolution on the scale of 10 − 100 nm has also been reported in the context

of thin liquid crystal and liquid metal films using SFM [10], though these methods are based on

thickness measurements and are not directly applicable for finding the fine structure at the very

edge of a droplet.
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Figure 3. A numerically plotted energy minimizing droplet profile, where the parameter values

γ = 0.05 Jm−2, S = 0.025 J m−2, S0 = 2×10−5 m2, α = 2, and Â = 10−22 J have been assumed. While

the overall height of the droplet is roughly equal to 2.1 mm, the height of the vertical bounding

segments is roughly equal to .63 Å and thus far below the resolution of the plot.

in the context of dynamic contact angles [5]. We approximate the contact angle by the

angle which is made by the inscribed tangent circle and the underlying substrate at their

point of intersection. If this approximation is to be reasonable, it must be relatively

independent of the precise location of the inscribed circle construction within the droplet

profile. We bring to the reader’s attention that the droplet profile need not be circular

in order for the approximation to be accurate; whenever the droplet energy density is

nonsingular then our proposed measurement reduces to the classical prediction – see (3.5)

below.

Let us see the implications of such an approximation. From (2.5) and (2.24), we obtain

that for A < ξ < B

x(ξ) =

∫ ξ

A

g(A, u)√
1− g2(A, u)

du, (3.1)

where A, we recall, denotes the height of the vertical bounding segments and B denotes

the overall droplet height. Using (3.1), the mean curvature of the profile as a function of
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height, H(ξ) may be easily computed to be

H(ξ) =
x′′(ξ)(

1 + x′2(ξ)
) 3

2

=
f(A)

A
− f′(ξ). (3.2)

Note that σ(ξ) = 1/H(ξ) denotes the radius of curvature of the profile surface at height

ξ. We need now an analytic expression for β̃, the angle between the x axis and the

circle of radius σ that passes through the point (x(ξ0), ξ0) and is tangent to the droplet

profile ξ = ξ(x), which is our proposed approximant for an effective contact angle when

(x(ξ0), ξ0) is appropriately chosen. It is easy to check that

β̃ = arccos(ξ0 f
′(ξ0)− f(ξ0)). (3.3)

Suppose, for a moment, we consider (3.3) in the classical case in which all singular van

der Waals forces are neglected and only gravitational and surface energy effects are taken

into account. In the present notation this would imply that

f(ξ) = kξ2 + b. (3.4)

Then substituting (3.4) into (3.3) yields

β̃ = arccos(kξ2
0 − b).

If ξ0 is measured sufficiently close to the droplet edge, then 0 < ξ0 � 1 and a Taylor

expansion about 0 gives

β̃ = arccos(−b)− 1
2
k(1− b2)−

1
2 ξ̄2 for some 0 < ξ̄ < ξ0.

Thus, if −1 < b < 0 as we have assumed throughout, then by (1.4)

β̃ = β + O(ξ2
0) (3.5)

where β is the classical contact angle. In particular, we see that the prediction for the

effective contact angle is relatively insensitive to the precise point at which it is measured.

We wish now to connect β̃ with the classical contact angle, β, when the effects of singular

van der Waals forces are included in f. In this section we shall limit our considerations

for simplicity to functions f of the form

f(ξ) = f̄(ξ) +
c

ξα
+ b (3.6)

which satisfies Hypothesis HI∗ of the Introduction, and recall that such functions can

reflect disjoining pressures of type ii) for suitable values of the parameters. We focus now

on finding an acceptable height at which to make measurements. Let us assume for the

moment that the height of the vertical bounding segments comprises only a fraction of

the overall droplet height, i.e.

A� B. (3.7)

Intuitively, it would be surprising if (3.7) were not to hold. Indeed, in Minkov [14], droplet

profiles were calculated numerically when the function f was assumed to be given by

(1.15) and a series of realistic values were taken for the parameters b, α, c, and m. (Figure

3, given earlier, was produced on the basis of these calculations.) A, B, as well as the ratio

N = B/A were evaluated. See Table 1, where it can be seen that for all of the tabulated
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values, N was found to be in the range ∼103–107. Since experimentally to has not been

possible to resolve a finite ‘droplet side height’, this would indicate that N must be greater

than (the overall droplet height)/(the limits of microscopic resolution), i.e. say roughly

mm/10 µ = 3 × 102, which is in line with our predictions. We shall further substantiate

assumption (3.7) theoretically in Theorem 10 and Corollary 11 for the case of sufficiently

large masses, though the data in Table 1 indicates that (3.7) may hold even for quite

small droplets, i.e. droplets with cross-sectional area on the order of 2 × 10−9 m2. The

assumption (3.7) make it possible for us to consider ξ0 such that A � ξ0 � B and since

by our choice of scaling B < B∞ = 1, this implies, furthermore, that 0 < ξ0 � 1. In this

context, we now demonstrate that (3.3) does indeed constitute an approximation to the

classical contact angle.

Theorem 9 If f satisfies Hypothesis HI* and A � ξ0 � B, then cos β̃ = −b + O(ξ2
0) +

O(A/B).

Proof Let us substitute (3.6), the assumed form for f, into the parametric constraint

(2.13), then solving for c

c = Aα+1

[
f̄(B) + b+ 1

B
− f̄(A) + b

A

](
1−

[
A

B

]α+1
)−1

.

Since 0 < A� B < 1 and by the assumptions of Hypothesis HI∗ on f̄, we obtain that

c = Aα
[A
B

]
(f̄(B) + b+ 1)− Aα(f̄(A) + b) + Aα · O

([A
B

]α+1)
. (3.8)

Returning now and substituting (3.6) into (3.3)

β̃ = arccos
(
ξ0f̄

′(ξ0)− b− f̄(ξ0)− c(1 + α)

ξ0
α

)
.

Using (3.8) yields

β̃ = arccos
(
ξ0f̄

′(ξ0)−b−f̄(ξ0)−A
α

ξα0
(1+α)

[A
B

(f̄(B)+b+1)−(f̄(A)+b)
]
+O
([ A
ξ0

]α·[A
B

]α+1))
.

From the assumptions on f̄ and since 0 < A� ξ0 � B < 1, this implies that

β̃ = arccos(−b+ O(ξ2
0) + O( (A/ξ0)α )).

Thus, by (1.4) and since −1 < b < 0

β̃ = β + O(ξ2
0) + O( (A/ξ0)α ).

q

We turn now to state and prove Theorem 10.

Theorem 10 Let f be assumed to satisfy Hypothesis HI*, let K1, K2 correspond to the

bounds prescribed in Hypothesis HI*, and let ξmin denote the (unique) minimizer of f. Sup-

pose, moreover, that Km
2
> 1 where K = lim inf0<ξ<B∞ f

′′(ξ).
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Table 1. B/A (= N) vs. physical parameters

γ, J m−2 ρ, kg m−3 α Â, J S0, m
2 S/γ B/A

0.05 103 2 10−22 10−5 0 1.9× 105

0.05 103 2 10−22 10−5 0.5 3.3× 107

0.05 103 2 10−22 10−6 0 8.7× 104

0.05 104 2 10−21 10−6 0 3.9× 104

0.05 105 2 10−19 2 · 10−9 0 1.0× 103

Table 2. δ, km = (gρS0)/(2γ), ckα/2 = (Â/γ)·(ρg/2γ)α/2 and N0 vs. physical parameters for

α = 2

γ, J m−2 ρ, kg m−3 S/γ Â, J S0, m
2 δ, m km ckα/2 N0

0.05 103 0 10−22 10−5 3.2× 10−3 0.98 1.96× 10−16 −1.3× 102

0.02 103 0.5 10−21 10−5 1.4× 10−3 2.5 4.9× 10−15 9.7× 102

0.05 1.3× 104 0 10−19 10−6 9× 10−4 1.3 2.54× 10−12 1.4× 102

0.05 1.3× 104 0.5 10−19 10−5 6× 10−4 12.7 2.54× 10−12 5.5× 102

0.02 0.8× 103 0.5 10−19 10−5 2.3× 10−3 2.0 3.92× 10−13 2.7× 102

0.05 105 0 10−19 2 · 10−9 3× 10−4 0.02 1.96× 10−11 −1.7× 104

(i) If f(ξmin) < 0, then

N >
(

1− 2

Km

)(K1

αc

) 1
2+α

. (3.9)

(ii) If f(ξmin) > 0, K2 < 2K1, and c < (K2 − 1
2
K1)−α/2(1 + b)

2+α
2 , then

N >
(

1− 2

Km

)[K1 − 1
2
K2

(1 + α)c

] 1
2+α

. (3.10)

Theorem 10 is important not only because it allows us to demonstrate that Youngs’

law effectively holds, but also because it can guarantee that the vertical segments are very

small. Theorems 9 and 10 together imply that the net effect of the vertical segments is

often neglible.

To understand the physical implications of Theorem 10, we give below a corollary

implied by Theorem 10 when f has the specific form given by (1.15) which corresponds

to a simple repulsive disjoining pressure.

Corollary 11 If f(ξ) = kξ2 + cξ−α + b, with α > 1, −1 < b < 0, c, k > 0 and km > 1,

(i) and if

ckα/2 6 (−b) 2+α
2

[(α
2

) 2
2+α

+
(2

α

) α
2+α
]− (2+α)

2

,

then

N >
(

1− 1

km

)(2k

αc

) 1
2+α

, (3.11)
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(ii) and if

(−b) 2+α
2

[(α
2

) 2
2+α

+
(2

α

) α
2+α
]− (2+α)

2

< ckα/2 < (1 + b)
2+α

2 ,

then

N >
(

1− 1

km

)( k

(1 + α)c

) 1
2+α

. (3.12)

The requirement that km > 1 can be stated in terms of the original physical parameters

as ( ρgS0

2γ
) > 1, i.e. gravitational effects dominate over surface tension effects. This condition

may be satisfied by considering sufficiently large droplets. Conditions (i) and (ii) require

that ckα/2 be sufficiently small, which implies in terms of the original physical parameters

that Â
γ

[
ρg
2γ

]α/2
must be sufficiently small. Since classical analysis predicts that A = 0

(N = ∞) when Â vanishes and van der Waals forces are neglected, it seems reasonable

to expect that an upper bound on c
(

= Â
γδα
6 Â

γ

[
2(γ−S)
ρg

]α/2)
can guarantee that N � 1.

For ease of interpretation, we give below a similar corollary stated in term of dimensional

variables and quantities.

Corollary 12 If the dimensional free energy density is given by 1
2
ρgξ2 + Âξ−α − S , where ξ

is a dimensional height and 0 < γ− S, and if (a) ρgS0 > 2γ and (b) ( 1
2
ρg)α/2Â < (γ− S)

2+α
2 ,

then N > N0 where

N0 =
(

1− 2γ

ρgS0

)[ 1

(1 + α)Â

( 2

ρg

)α/2
(γ − S)

α+2
2

] 1
2+α

.

Proof The proof is based on part ii) of Corollary 11, and the estimate

k

c
=
ρg

2Â
δ2+α >

ρg

2Â

[
2(γ − S)

ρg

] 2+α
2

,

which follows from (1.16). q

To ascertain the applicability of Corollaries 11 and 12, some typical parameter values

for km = ( ρgS0

2γ
) and for ckα/2 = Â

γ

(
ρg
2γ

)α/2
are given in Table 2. It is possible to see from

the last line in Tables 1 and 2 that N may be large even when km < 1. Corollary 12 and

Theorem 9 now imply Theorem (B) stated in the Introduction.

Proof The proof of Theorem 10 is contained in Lemmas 13 and 14 which follow.

Lemma 13 Suppose that f satisfies Hypothesis HI* and Km > 1, then N > N∞(1−2/K̄m),

where N∞ = B∞/A∞.

Proof From (2.14) and (2.26) it follows that

m

2
6 max

g∈[0,1]
u(A, g) max

g∈[0,1]
ug(A, g)

∫ 1

0

g√
1− g2

dg. (3.13)
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Since maxg∈[0,1] u(A, g) = u(A, 1) = B and

max
g∈[0,1]

ug(A, g) =

(
min
u∈[A,B]

gu(A, u)

)−1

=

(
f(A)

A
− f′(B)

)−1

,

we obtain from (3.13) that

f(A)

A
− f′(B) 6

2B

m
. (3.14)

Since according to Claim 7, ∂
∂ξ

(f(ξ)/ξ) < 0 for ξ ∈ (0, A∞), we obtain using (3.14) that

for 0 < A < A∞ and 0 < B < B∞,
f(A)

A
− f′(B) 6

2B

m
<

2B∞
m

and
f(A)

A
>
f(A∞)

A∞
= f′(B∞).

Hence,

f′(B∞)− f′(B) <
2B∞
m

.

Noting that by Hypothesis HI∗ and by the hypotheses of the theorem, f′′ > K̄ > 0, for

0 < ξ < B∞, it follows that

B∞ − B < 2B∞
K̄ m

.

Therefore,

N >
B

A∞
= N∞

(
B

B∞

)
> N∞

(
1− 2

K̄ m

)
,

proving the claim of the lemma. q

Lemma 14 (i) If f(ξmin) < 0, then N∞ > 1
ξmin

or more explicitely

N∞ >
(K1

αc

) 1
2+α

. (3.15)

and (ii) if f(ξmin) > 0, K2 < 2K1, and c <
(

2
K2

) α
2

(1 + b)
2+α

2 then

N∞ >

(
K1 − 1

2
K2

(1 + α)c

) 1
2+α

. (3.16)

Proof Throughout the proof of the lemma, b, α, c and m will be taken to be fixed, though

in a number of instances either b or c will be set equal to zero. We note that for a

given function f̄, B∞ can be considered a function of b, α, and c. In particular, we define

Bc=0∞ = B∞(b, α, 0), i.e. Bc=0∞ is the value assumed by B∞ when in equation (2.23) which

defines B∞, c is set equal to zero in the form (3.6) assumed for f (in other words, f(ξ) is

replaced by f(ξ)− cξ−α). It follows from the definition of Bc=0∞ and (3.6) that

f′(Bc=0∞ )− f(Bc=0∞ ) + 1

Bc=0∞
6 0. (3.17)

Since f + 1 is convex and (B∞, f(B∞)) lies on the unique tangent to f + 1 which passes

through the origin, (3.17) and our scaling assumptions imply that

1 = B∞ > Bc=0∞ . (3.18)
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(The scaling, according to which B∞ = 1 is based on the given fixed values of the

parameters.) Let us now consider the curve y = f(ξ) for ξ > 0. It is a convex curve

with a unique minimum which occurs at ξmin. The conditions of the lemma imply that

ξmin <
(
αc
K1

) 1
2+α . Suppose condition (i) holds, then f(ξmin) 6 0. By the definition of A∞ and

the positivity of f′(B∞), it follows that A∞ < ξmin, and hence

A∞ <
( αc
K1

) 1
2+α

. (3.19)

Combining the results of (3.19) and (3.19) yields the inequality (3.15) and completes part

(i) of the lemma.

Let us now suppose that f(ξ) > 0 for all ξ > 0. This will be ensured if condition (ii) in

the statement of the lemma holds. Since f(ξ) is convex, there will exist a unique tangent

to the curve y = f(ξ) which passes through the origin. Let us denote the point of tangency

by (Ā, f(Ā)). It is easy to verify under these circumstances that

Claim 15
(
f(ξ)
ξ

)′
< 0 for ξ ∈ (0, Ā), and

(
f(Ā)
Ā

)′
= 0.

Let us now define fc=0(ξ) = f(ξ)− cξ−α, i.e. f(ξ) is as in (1.15) but with c set to zero.

Since clearly 0 < fc=0(ξ) + 1 < f(ξ) + 1 for all ξ > 0, the tangent to fc=0(ξ) + 1 which

passes through the origin must lie below the tangent to f(ξ) + 1 which passes through the

origin. Therefore,

fc=0(Bc=0∞ ) + 1

Bc=0∞
6
f(B∞) + 1

B∞
. (3.20)

Let us now consider the equation

f(ξ)

ξ
=
fc=0(Bc=0∞ ) + 1

Bc=0∞
, ξ > 0. (3.21)

It can be checked by direct substitution that if condition ii) in the statement of the lemma

holds, then

c < (1 + b)(Bc=0∞ )α < (Bc=0∞ )α. (3.22)

Therefore

fc=0(Bc=0∞ ) + 1

Bc=0∞
>
f(Bc=0∞ )

Bc=0∞
.

Thus, in particular

fc=0(Bc=0∞ ) + 1

Bc=0∞
>
f(Ā)

Ā
,

which, in conjunction with the assumed behavior of f(ξ) as ξ → 0, guarantees that a

solution to (3.21) exists. Let us now define A1 to be the smallest positive root of (3.21).

By Claim 15, we have that A1 < Ā. By (2.23) and (3.20), it follows that

f(A1)

A1
6
f(A∞)

A∞
,

thus invoking Claim 15,

A∞ 6 A1. (3.23)
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Let us now define fb=0(ξ) = f(ξ)− b, i.e. fb=0(ξ) is the same as f(ξ) except that b has

been set equal to 0, and let us consider the equation

fb=0(ξ)

ξ
=
fc=0(Bc=0∞ ) + 1

Bc=0∞
, ξ > 0. (3.24)

By (3.22)

fc=0(Bc=0∞ ) + 1

Bc=0∞
>
fb=0(Bc=0∞ )

Bc=0∞
, (3.25)

and hence a solution to (3.24) exists. We denote the smallest positive solution to (3.24)

by A2. Let us denote by Ā2 the value at which fb=0(ξ)/ξ attains its minimum. It follows

from (3.24), (3.25) and Claim 15 (formulated in terms of fb=0) that A2 6 Ā2. From (3.21)

and (3.24), and by noting that fb=0(ξ) > f(ξ) for all ξ > 0,

f(A1)

A1
=
fb=0(A2)

A2
>
f(A2)

A2
.

Since A1 6 Ā, by Claim 15 and (3.23)

A∞ 6 A1 6 A2 6 Ā2. (3.26)

A straightforward calculation based on Hypothesis HI* yields that that

Ā2 <

(
(1 + α)c

K1 − 1
2
K2

) 1
2+α

. (3.27)

Combining (3.18), (3.26) and (3.27), the estimate (3.16) follows. q

q

4 Conclusions

The inclusion of a disjoining pressure in the expression for the free energy of a droplet

is by its nature problematic in that it reflects an attempt to incorporate mesoscopic

effects in a continuum model. Surface energies are at once taken into account by both

singular contributions – which were really designed for planar or mildly sloped surfaces,

and by the regular or classical surface energy contributions. One must be pleased by

the robustness of the physical predictions given the relative carelessness of the physical

modelling. Hopefully, our results shall contribute to the development of dynamic theories

of droplet and thin film motion with compact support.
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