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In this article, we develop a simple method to approximate the transient behavior
of queueing systems. In particular, it is shown how singularity analysis of a known
generating function of a transient sequence of some performance measure leads to an
approximation of this sequence. To illustrate our approach, several specific transient
sequences are investigated in detail. By means of some numerical examples, we
validate our approximations and demonstrate the usefulness of the technique.

1. INTRODUCTION

Queueing models and queueing theory have been used for a number of decades to
model and analyze the performance of queueing systems appearing in various appli-
cations, most notably in (digital) communication systems. In general, input processes
are characterized and various output variables are analyzed. The input processes com-
prise the arrival process, the service times process, and the scheduling discipline. The
steady-state system content, customer delay, and unfinished work are examples of
output variables that are regularly analyzed.

A popular technique for analyzing queueing systems is the generating function
technique. With this technique, the relation between stochastic variables is translated
into a relation between their Laplace–Stieltjes transforms or z-transforms when deal-
ing with continuous variables or discrete variables, respectively. The transform of the
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stochastic variable of interest is then obtained and interesting performance measures
are calculated, either analytically or numerically. These performance measures range
from the mean value to the density function or probability mass function. The standard
books of Takagi [18] give a nice overview of analyses of some basic queueing models
by means of the transform approach.

Although there is a vast literature on transform-based steady-state analyses of
queueing systems, results on the transient behavior of these queueing systems are
much scarcer. For particular queueing systems, one might find explicit expressions for
the time-dependent probability generating function of the queue content. This is, for
example, the case for the M/M/1 queueing system [17] and the M/E − r/1 queueing
system [15]. Inversion of these generating functions is possible but involve Bessel
functions. Various authors have obtained expressions of the z-transform of the series
of the probability generating functions of the queue content at consecutive epochs
in time. Bruneel [8] performed a transient analysis of the discrete-time MX/Geo/1
queue. The z-transform of the probability generating functions of the queue content
is obtained in terms of known probability generating functions and the z-transform
of the probability that the queue is empty at the consecutive slot boundaries. An
ad hoc method is provided to find the latter probabilities. Later, Walraevens, Fiems,
and Bruneel [20] extended Bruneel’s approach to queueing systems with priorities.
Asrin and Kamoun [5] and Kamoun [16] investigated the transient behavior of an
ATM buffer with arrival traffic stemming from a fixed number of on-/off-sources with
geometric on- and off-times and with geometric off-times and deterministic on-times,
respectively. The authors obtained amongst others the z-transform of the probability
generating functions of the queue content.

From literature, one observes that transform-based approaches often lead to “time
transforms” of the performance measures of interest. For instance, if f (t), t ≥ 0,
denotes the mean system content at time t, then F∗(s) = ∫ ∞

0 e−st f (t) dt is the corre-
sponding Laplace transform. Another example is when fn, n ≥ 0, denotes the variance
of the delay of the (n + 1)st customer; then F(z) = ∑∞

n=0 fnzn is the corresponding
z-transform.

Given the transforms F∗(s) or F(z), a second nontrivial part of the analysis is
then finding f (t), t ≥ 0 or { fn, n ≥ 0}, respectively. This is especially difficult in the
context of transient analyses, since most generating functions in these analyses can
only be characterized implicitly via functional equations. In this article, we introduce
a technique to approximately invert these transforms. In particular, we focus on the
inversion of z-transforms. However, a similar technique can be used to invert Laplace–
Stieltjes transforms.

Different approaches to invert generating functions can be found in the litera-
ture. A first approach consists of the numerical inversion of the transform [1,3,7,10].
A second approach uses contour integration and/or Taylor series expansion to invert
the transform [8,20]. Both methods, however, encounter their own problems. The
numerical inversion technique involves the calculation of the generating function in
a number of (complex-valued) arguments. It thus suffers from the fact that numerous
calculations are necessary to accurately obtain the required transient characteristics.
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The occurrence of implicitly defined functions makes this even more cumbersome
since these functions might have to be calculated iteratively in each argument. Second,
since transient sequences do not necessarily approach zero (or do not even converge),
the aliasing error introduced by numerical inversion techniques can be large. Abate
and Whitt [2] showed, for instance, a technique in which the error depends on the
maximum of | fn| for all n. This technique is effective when probability generating
functions are inverted, since the fn are all probabilities in that case and are thus bounded
by 1, but it leads to incorrect results when used to invert a generating function of an
unbounded sequence. The contour integrals approach, on the other hand, is quite ad
hoc, which makes it difficult to apply to different inversion problems. Furthermore,
this technique usually leads to a recursive procedure for the calculation of the transient
sequence, which can get quite cumbersome.

Therefore, in this article, we look for an approximate easy-to-use technique to
calculate transient characteristics from their generating functions. The typical inver-
sion problem is described as follows: If F(z), defined as the z-transform of a sequence
{ fn, n ≥ 0}, that is,

F(z) =
∞∑

n=0

fnzn, (1)

is a given function (either explicitly or as a function of implicitly defined functions)
that is analytic at least in the open unit disk, calculate the sequence { fn, n ≥ 0}. We
modify the aim in this article slightly to the calculation of as much information as
possible about the behavior of the sequence { fn, n ≥ 0} using singularity analysis. In
transient analyses, fn might be a real number between 0 and 1, a real positive number,
or even a complex-valued function. Examples are respectively the probability that a
discrete-time system is empty at the beginning of slot n + 1, the mean packet delay of
the (n + 1)st customer arriving in a queueing system, and the probability generating
function (p.g.f.) of the system content at the beginning of slot n + 1 in a discrete-time
system. We concentrate on real nonnegative numbers in this article, but the technique
can potentially be extended to negative and complex-valued numbers or functions. So
we assume the fn to be real nonnegative numbers in the remainder.

We describe the developed technique in Section 2. The technique is based on
the dominant-singularity approximation and is widely used in the case of probability
generating functions, but it is largely unknown as a technique to invert generating
functions of transient characteristics. We first look at some convergence/divergence
properties of the sequence at hand before explaining the main procedure. We will
also pay special attention on how to handle the implicitly defined functions generally
appearing in the transforms.

We then apply the technique to some particular queueing systems in Section 3.
We first investigate the discrete-time MX/Geo/1 queue and approximate the transient
probability that the system is empty at the beginning of slots, the transient mean system
content, and the transient mean packet delay. We then look at a queue with a correlated
arrival process, namely an arrival process originating from on–off sources. Finally,
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we study the transient behavior of the low-priority system content in a two-class prior-
ity queue. In all of these applications, we demonstrate that the approximate technique
yields reasonable results in most cases. In some scenarios, the approximation is too
crude, but, at the very least, the approximate results show how the sequence reaches
its limiting value in case of converging sequences, such as the mean system content
of a stable system, or how the sequence diverges (e.g., the mean system content of a
nonstable system).

2. ANALYSIS

We first discuss some convergence/divergence properties of the sequence before using
singularity analysis to approximate the complete sequence.

2.1. Convergence Properties of the Sequence

In this subsection, we show how convergence properties of a sequence { fn, n ≥ 0} can
be deduced from its generating function F(z). We therefore use the generalization of
the final value theorem [14], formulated as follows.

THEOREM 1 (Generalized Final Value Theorem): If L = limN→∞
∑N

n=0 fn/N exists,
then limz→1(1 − z)F(z) = L.

Here, L equals the average of all fn. Obviously, for sequences that converge,
L = limn→∞ fn. However, Theorem 1 also includes periodic or almost-periodic
functions (which do not converge) with a finite average.

2.2. Approximation of the Sequence

The approximate calculation of the sequence { fn, n ≥ 0} from its generating function
F(z) is based on singularity analysis of generating functions. This is widely used
to calculate the probability mass function from probability generating functions [9]
and even more frequently in combinatorics [12]. However, it does not seem to be
used yet in case of the analysis of the transient behavior of queues. As mentioned
in [13], the basic principle of singularity analysis is “the existence of a correspondence
between the asymptotic expansion of a function near its dominant singularities and
the asymptotic expansion of the function’s coefficients”. We especially make use of
the following theorem [6]:

THEOREM 2 (Darboux’s theorem): Suppose H(z) = ∑∞
n=0 hnzn with positive real coef-

ficients hn is analytic near zero and has only algebraic singularities αk on its circle
of convergence |z| = R. In other words, in a neighborhood of αk we have

H(z) ∼
(

1 − z

αk

)−ωk

Gk(z), (2)
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where ωk �= 0, −1, −2, . . . and Gk(z) denotes a nonzero analytic function near αk. Let
ω = maxk Re(ωk) denote the maximum of the real parts of the ωk. Then we have

hn =
∑

j

Gj(αj)

�(ωj)
nωj−1α−n

j + o(nω−1R−n), (3)

with the sum taken over all j with Re(ωj) = ω.

Here, H(z) ∼ G(z) means that H(z)/G(z) → 1 as z goes to the chosen complex
number. Further, hn = o(gn) means that hn/gn → 0 as n → ∞. Finally, �(ω) denotes
the Gamma function of ω (with �(n) = (n − 1)! for n discrete).

Applying Darboux’s theorem on the generating function F(z) of the transient
sequence { fn, n ≥ 0}, we conclude that once the behavior of F(z) is characterized in its
dominant singularities, the first term of (3) yields an approximation of fn for sufficiently
high n. In order to avoid a too obvious approximation of the sequence { fn, n ≥ 0},
we will use Darboux’s theorem on a newly defined function H(z)—related to F(z)—
rather than on F(z) itself in some cases. This is discussed next, before formally stating
the procedure.

We denote limz→1(1 − z)F(z) by L, L being the average of the sequence { fn, n ≥
0} as in Theorem 1. Assume for the moment that L is positive and finite. Then F(z)
has a singularity in z = 1, since limz→1(1 − z)F(z) �= 0. If we further have that

F(z) ∼ G(z)

1 − z

in the neighborhood of 1, with G(z) a nonzero analytic function near 1 (with G(1) = L),
then z = 1 is a pole with multiplicity 1 of F(z). If this is, furthermore, the only pole on
the circle of unity (which is the circle of convergence in this case), Darboux’s theorem
results in

fn ≈ L

for all n. Although this is obviously an approximation of the fn (it is the average of the
numbers in the sequence), we would like some more information on the behavior of
the sequence. Therefore, we avoid this pole in 1 by performing Darboux’s theorem on

H(z) = F(z) − L

1 − z
(4)

rather than on F(z). Note that H(z) is the generating function of the sequence { fn −
L, n ≥ 0}. Note further that H(z) can still have a singularity in z = 1, if z = 1 was not
a simple pole of F(z).

The general procedure to approximate the sequence { fn, n ≥ 0} from its generat-
ing function F(z) is described as follows:

Approximation procedure

(i) Calculate L = limz→1(1 − z)F(z).

(ii) If 0 < L < ∞, H(z) = F(z) − L/(1 − z); otherwise H(z) = F(z).
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(iii) Determine the radius of convergence R of H(z).

(iv) Determine the singularities αk of H(z) on its circle of convergence.

(v) Determine the behavior of H(z) in the neighborhood of these αk (see (2)).

(vi) Calculate hn as in the first term of the right-hand side of (3).

(vii) If 0 < L < ∞, calculate fn = hn + L for all n ≥ 0; otherwise fn = hn.

Remark: If L = ∞, the average of all numbers in the sequence { fn, n ≥ 0} equals ∞.
In this case, H(z) = F(z), this function has a singularity in z = 1 and R equals 1. If
the singularity in 1 is a pole, it has a multiplicity of at least 2.

2.3. Implicitly Defined Functions

Determining the dominant singularities of H(z) and the behavior of H(z) in the neigh-
borhood of these singularities is a remaining difficulty, especially because of the
occurrence of implicitly defined functions in the expressions of generating functions
of transient characteristics. In general, the expression of F(z) contains a function Y(z)
defined as

Y(z) = g(Y(z), z), (5)

with g(x, z) a known function. We thus want to find the dominant singularity of Y(z)
and the behavior of Y(z) in the neighborhood of this singularity. This has been studied
in numerous papers in the field of combinatorics [6,11]. Under the condition that
g(x, z) fulfills some mild requirements (see [6] for details),

Y ′(z) → ∞

for z going to the dominant singularity zb, whereas Y(zb) is finite. Note that the
conditions for this to be true are usually met except for some pathological cases. Then
Y(z) has a square-root type behavior in the neighbourhood of zb; that is,

Y(z) ∼ Y(zb) − KY

(
1 − z

zb

)1/2

.

By calculating Y ′(z) from (5) it can be seen that zB is a solution of

∂g

∂x
(Y(zb), zb) = 1. (6)

We further remark that the pair (zb, Y(zb)) can be calculated (numerically) from the
set of (5) and (6).
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3. SOME APPLICATIONS

In this section, we discuss some applications. First, we work out the analysis of some
transient sequences in the discrete-time MX/Geo/1 queue in great detail in Section 3.1.
Some numerical examples are also shown for these sequences. We then look at the
transient mean system content in some more general discrete-time queueing systems,
namely in a queue with an arrival process governed by on–off sources in Section 3.2
and the transient mean low-priority content in a two-class priority queue in Section 3.3.
By means of some figures, the approximations are compared with exact values and
some conclusions are drawn about the accuracy of the approximations.

3.1. Discrete-Time MX/Geo/1 Queue

3.1.1. The probability of an empty buffer. In [8], the transient system
content at the beginning of slots is analyzed for a discrete-time MX/Geo/1 queue.
The number of arrivals per slot are independent and identically distributed (i.i.d.) and
the service times are geometrically distributed with mean 1/σ . It is shown that the
generating function of the sequence {Vj(0), j ≥ 0}—with Vj(0) the probability that the
system is empty at the beginning of slot j + 1—plays a key role in the transient analysis
of the system content. Therefore, we hereby first analyze the transient probabilities
that the system is empty at the beginning of slots. Denoting the generating function
of the sequence {Vj(0), j ≥ 0} by V(z), that is,

V(z) �
∞∑

j=0

Vj(0)z j,

the following expression is found in [8] for this generating function:

V(z) = σ + (1 − σ)Y(z)

σ [1 − Y(z)] U0(Y(z)), (7)

with Y(z) the unique solution inside the unit disk of the x-plane for all |z| < 1 of

x − z[σ + (1 − σ)x]E(x) = 0. (8)

Here, E(z) is the p.g.f. of the number of arrivals during a random slot and U0(z) is the
p.g.f. of the system content at the beginning of the first slot. We denote ρ as the load
of this system (i.e., ρ = E′(1)/σ ).

To apply the analysis of the previous section, we first calculate limz→1(1 − z)V(z),
which equals the average of the sequence {Vj(0), j ≥ 0}. Since the Vj(0) are proba-
bilities, this average will be a number between 0 and 1. By substituting expression (7)
in this limit, we get

lim
z→1

(1 − z)V(z) = lim
z→1

[ [σ + (1 − σ)Y(z)]U0(Y(z))

σ

1 − z

1 − Y(z)

]
. (9)

Since Y(z) is analytic and |Y(z)| < 1 inside the unit circle, | limz→1 Y(z)| ≤ 1. Thus,
the right-hand side of (9) can only be different from zero if limz→1 Y(z) = 1. Therefore,
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we turn to (8). Y(z) is the unique solution of (8) inside the unit disk for all |z| < 1.
We first note that (x, z) = (1, 1) is always a solution of (8). However, this does not
necessarily mean that Y(1) = 1, since (x, z) = (1, 1) could also be the limit of a
solution Y∗(z) of (8) outside the unit disk of the x-plane for |z| < 1. We thus look for
all solutions inside and on the unit disk of (8) for z = 1, since one of these solutions
equals Y(1). Y(1) is a solution of

x − σE(x)

1 − (1 − σ)E(x)
= 0, (10)

which is obtained by substituting z by 1 in (8) and by multiplying both sides with
1/[1 − (1 − σ)E(x)]. We note that the multiplying factor has no zero inside or on the
unit disk. Further, note that σE(x)/[1 − (1 − σ)E(x)] is the p.g.f. of the number of
arrivals during the service time of a random customer.

It turns out—not unexpectedly—that three cases can be distinguished, namely
ρ < 1, ρ = 1, and ρ > 1. We treat the three cases separately in the remainder.

Case 1: ρ < 1. In this case, it can be proved my means of Rouché’s theorem (or
by the generalized version proved in [4]) that (10) has exactly one solution inside
and on the unit disk. Since x = 1 is a solution, this is the unique solution inside and
on the unit disk of (10) in this case. Therefore, Y(1) = 1. So, in order to calculate
limz→1(1 − z)V(z), we use de l’Hôpital’s rule in (9), yielding

lim
z→1

(1 − z)V(z) = 1

σ
lim
z→1

1

Y ′(z)
.

The first derivative of Y(z) can be found by substituting x by Y(z) in (8) and taking
the first derivative of both sides of this equation. The limit for z to 1 then yields

lim
z→1

Y ′(z) = 1

σ(1 − ρ)
(11)

and, thus,

lim
z→1

(1 − z)V(z) = 1 − ρ. (12)

This was expected since this is indeed the steady-state probability of an empty buffer
in a stable system. We then have to use Darboux’s theorem on (see the approximation
procedure)

V(z) − 1 − ρ

1 − z
= σ + (1 − σ)Y(z)

σ [1 − Y(z)] U0(Y(z)) − 1 − ρ

1 − z
.

The dominant singularity of this function is either the square-root branch point of Y(z)
or a singularity of U0(Y(z)). In a later paragraph, we discuss this for some specific
arrival processes and a given initial system content distribution.
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Case 2: ρ = 1. In the special subcase that σ = 1 and E(x) = x, the only solution of (8)
inside the unit disk of the x-plane for all |z| < 1 equals Y(x) = 0. Thus, Y(1) = 0 in
this case and limz→1(1 − z)V(z) = 0. In all other subcases of the case ρ = 1, it can be
proved (see the Appendix) that Y(1) = 1 if ρ = 1. This is thus the same as in the case
ρ < 1. The reasoning of this latter case thus applies to the case ρ = 1. Equations (11)
and (12) lead to

lim
z→1

Y ′(z) = ∞
and

lim
z→1

(1 − z)V(z) = 0,

respectively. zb = 1 is a square-root branch point of Y(z) since Y(1) = 1 and Y ′(1) →
∞. Clearly, z = 1 is the dominant singularity in this case.

We conclude that limz→1(1 − z)V(z) = 0 when ρ = 1.

Case 3: ρ > 1. Since A(z) = σE(z)/[1 − (1 − σ)E(z)] is a monotonously increasing
function in [0, 1] and since A(0) ≥ 0, A(1) = 1, and A′(1) > 1, (10) has a real solution
in the segment [0, 1], denoted by r. r is the limit of one of the solutions of (8) for
z → 1. Since a real number in [0, 1] cannot be the limit of a function outside the unit
disk and since Y(z) is the only solution of (8) inside the unit disk, r = Y(1). Thus,
Y(1) < 1 and limz→1(1 − z)V(z) = 0. The dominant singularity of V(z) is again the
square-root branch point of Y(z) or a singularity of U0(Y(z)).

Examples: We now calculate the transient probabilities of an empty buffer for some
specific input distributions and input parameters. We assume that the service times
equal 1 slot (σ = 1) and that the system is empty at the beginning (U0(z) = 1). We
discuss the results for two different distributions of the arrival batch sizes.

In a first example, we assume the number of per-slot arrivals to be geometrically
distributed with mean ρ; that is,

E(z) = 1

1 + ρ − ρz
.

In this case, an explicit expression can be found for Y(z); V(z) is given by

V(z) = 1 − ρ + ((1 + ρ)2 − 4ρz)1/2

2(1 − z)
. (13)

As a result, two singularities of V(z) may be dominant—depending on the value of
ρ—namely zr = 1 and/or the square-root branch point zb of Y(z) given by

zb = (1 + ρ)2

4ρ
. (14)
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In accordance with the approximation procedure, we have to invert the following
functions:

V(z) − 1 − ρ

1 − z
= − 1 − ρ

2(1 − z)
+

(
1 − z

zb

)1/2

G(z) (ρ < 1),

V(z) = (1 − z)−1/2 (ρ = 1),

V(z) = − ρ − 1

2(1 − z)
+

(
1 − z

zb

)1/2

G(z) (ρ > 1).

Here,

G(z) = 1 + ρ

2(1 − z)
.

Further applying the approximation procedure, we find the probability that the system
is empty at the beginning of slot j + 1:

Vj(0) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ρ + ρ(1 + ρ)

(1 − ρ)2j3/2
√

π

(
(1 + ρ)2

4ρ

)−j

if ρ < 1

1

j1/2
√

π
if ρ = 1

ρ(1 + ρ)

(ρ − 1)2j3/2
√

π

(
(1 + ρ)2

4ρ

)−j

if ρ > 1.

We illustrate the approximate analysis by means of some figures. In Figure 1, the
transient probability Vj(0) of having an empty system is plotted versus the discrete-
time parameter j for ρ = 0.2, 0.4, 0.6, 0.8, and 1. We also show the exact results, which
are calculated by using the iterative procedure discussed in [8]. These exact results
are represented by dots on the figures. We see from Figure 1 that the approximation
goes to the correct steady-state value. For low loads, it seems that the approximation is
already good for rather low j. For higher loads (<1), the approximation is less accurate.
However, for ρ = 1, the approximation is excellent. Figure 2 shows a logarithmic plot
of the transient probability Vj(0) of having an empty system versus the discrete-time
parameter j for some overload scenarios, namely for ρ = 1, 2, 3, 4, and 5. We again
also depict the exact values, found via recursion. For high loads, the approximation
is excellent.

In the next example, the number of per-slot arrivals are assumed to be Poisson
distributed with mean ρ; that is,

E(z) = eρ(z−1).

In this case, V(z) is given by

V(z) = 1

1 − Y(z)
,
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FIGURE 1. Transient probabilities of having an empty system for underload scenarios.

FIGURE 2. Transient probabilities of having an empty system for overload scenarios.

with Y(z) implicitly defined by

Y(z) = zeρ(Y(z)−1) (15)

such that |Y(z)| < 1 for |z| < 1. Again, two singularities might be dominant—
depending on the value of ρ—namely zr = 1 and the square-root branch point zb

of Y(z) given by

zb = 1

ρe1−ρ
. (16)
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Expression (16) is found by taking the derivative of both sides of (15), substituting z by
Y(z)/eρ(Y(z)−1) and noting that limz→zb Y ′(z) = ∞. This yields Y(zb) = 1/ρ, which,
in turn, finally yields (16). So what remains to be found is the behavior of V(z) in the
neighborhood of zb. First Y(z) can be written as

Y(z) ∼ Y(zb) − KY (1 − z/zb)
1/2 (17)

in the neighborhood of zb. KY is found as the square root of

K2
Y = zb lim

z→zb

(Y(zb) − Y(z))2

zb − z
,

which leads to

KY =
√

2

ρ
,

by using de l’Hôpital’s rule, by writing Y ′(z) as a function of z and Y(z), and by
taking the limit for z going to zb. Thus, in the neighborhood of zb, Y(z) and V(z) are,
respectively, given by

Y(z) ∼ 1

ρ
−

√
2

ρ
(1 − z/zb)

1/2

and

V(z) ∼ 1 − 1/ρ − √
2(1 − z/zb)

1/2/ρ

(1 − 1/ρ)2 − 2(1 − z/zb)/ρ2
.

The following expressions for the probability that the system is empty at the beginning
of slot j are then found by applying the approximation procedure:

Vj(0) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ρ + ρ√
2(1 − ρ)2j3/2

√
π

(
1

ρe1−ρ

)−j

if ρ < 1

1√
2j1/2

√
π

if ρ = 1

ρ√
2(ρ − 1)2j3/2

√
π

(
eρ−1

ρ

)−j

if ρ > 1.

Similar figures can be plotted as in the case of geometrically distributed batch sizes
and the same conclusions can be drawn.

3.1.2. The mean system content. Next, we look at the mean transient
system content in the MX/Geo/1 queue. Again, we start from a result obtained in [8]:
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the generating function of the sequence {ūj, j ≥ 0}—with ūj the expected system
content at the beginning of slot j + 1—is denoted by Ū(z) and given by

Ū(z) = ū0

1 − z
+ z[σ + (1 − σ)Y(z)]

(1 − z)(1 − Y(z))
U0(Y(z)) − (σ − E′(1))z

(1 − z)2
.

As in Section 3.1.1, the service times are geometrically distributed with mean 1/σ ,
E(z) is the p.g.f. of the number of arrivals during a slot, and U0(z) denotes the p.g.f. of
the system content at the beginning of the first slot. Further, Y(z) is again the unique
solution inside the unit disk of the x-plane for all |z| < 1 of (8). The same three cases as
in the previous example can be distinguished. We briefly summarize some properties
for the three cases. For more details, we refer to Section 3.1.1.

Case 1: ρ < 1. In this case, Y(1) equals 1. We have

lim
z→1

(1 − z)Ū(z)

= ū0 + lim
z→1

z[(σ + (1 − σ)Y(z))U0(Y(z))(1 − z) + (σ − E′(1))(1 − Y(z))]
(1 − Y(z))(1 − z)

.

By using de l’Hôpital’s rule and the implicit definition of Y(z), this expression is
transformed to

lim
z→1

(1 − z)Ū(z) = ρ(1 − λ)

1 − ρ
+ E′′(1)

2σ(1 − ρ)
.

This is the mean steady-state system content at the beginning of a random slot in a
stable system, as expected. Following the approximation procedure, we use Darboux’s
theorem on

Ū(z) −
(

ρ(1 − λ)

1 − ρ
+ E′′(1)

2σ(1 − ρ)

)
(1 − z)−1.

The dominant singularity is again either the square-root branch point of Y(z) or a
singularity of U0(Y(z)).

Case 2: ρ = 1. In the special subcase that σ = 1 and E(x) = x, we have Y(1) = 0.
We then find

lim
z→1

(1 − z)Ū(z) = ū0 + U0(0).

We could thus use the approximation procedure to find an approximation of the prob-
abilities of the mean system content. However, in this pathological subcase, Ū(z) can
be easily inverted exactly. Except for this special subcase, Y(1) equals 1 when ρ = 1.
The reasoning of case 1 thus applies, leading to

lim
z→1

(1 − z)Ū(z) = ∞.

In this case, R = 1 is the radius of convergence.
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Case 3: ρ > 1. In this case, Y(1) < 1, and as a result, we have

lim
z→1

(1 − z)Ū(z) = ∞.

Again, the radius of convergence R equals 1.

Example: In this example, we assume that the service times equal 1 slot (σ = 1) and
we assume that the system is empty at the beginning (U0(z) = 1 and ū0 = 0). We
discuss the results for geometrically distributed arriving batch sizes with mean ρ;
that is,

E(z) = 1

1 + ρ − ρz
.

In this case, Ū(z) is given by

Ū(z) = z[−(1 − ρ) + ((1 + ρ)2 − 4ρz)1/2]
2(1 − z)2

. (18)

The same two singularities as for the probability of an empty system might be domi-
nant, namely zr = 1 and the square-root branch point zb of Y(z) as given in (14). The
following expressions for the mean system content at the beginning of slot j are found:

ūj ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ

1 − ρ
− ρ(1 + ρ)3

(1 − ρ)4j3/2
√

π

(
(1 + ρ)2

4ρ

)−j

if ρ < 1

2j1/2

√
π

if ρ = 1

(ρ − 1)j if ρ > 1.

We illustrate the approximate analysis by means of some figures. In Figure 3, the
transient mean system content ūj is plotted versus the discrete-time parameter j for
ρ = 0.2, 0.4, 0.6, 0.8, and 1. We have also shown the exact results (dots on the figure),
which are again calculated by using the iterative procedure explained in [8]. Again for
low loads, it seems that the approximation is already good for rather low j. For higher
loads (<1), the approximation is less accurate. However, for ρ = 1, the approximation
is excellent. Figure 4 shows a logarithmic plot of the transient mean system content ūj

versus the discrete-time parameter j for some overload scenarios, namely for ρ = 1, 2,
3, 4, and 5. We have again shown the exact values, found via recursion. For high loads,
the approximation seems to be rather good for all j and improves for increasing load.

3.1.3. The mean packet delay. We have chosen this example to demonstrate
the approximation when the sequence is an almost-periodic function. The sequence
under consideration is {d̄j, j ≥ 0}, with d̄j the mean transient customer delay of the
( j + 1)st arriving customer in a discrete-time FIFO MX/D/1 queue with single-slot

https://doi.org/10.1017/S0269964809000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000199


“S0269964809000199jra” — 2009/2/9 — 18:39 — page 347 — #15

�

�

�

�

TRANSIENT CHARACTERISTICS IN QUEUEING SYSTEMS 347

FIGURE 3. Mean transient system content for underload scenarios.

FIGURE 4. Mean transient system content for overload scenarios.

service times. The p.g.f. of the arriving batch sizes is given by

E(z) = 1 − ρ

2
+ ρ

2
z2. (19)

The customers thus arrive in pairs. The generating function of the sequence {d̄j, j ≥ 0}
is calculated in [19] (for general E(z)) and is given by

D̄(z) = d̄0

1 − z
+ z

(1 − z)2
+ E(z) − E(0)

(1 − E(0))(1 − z)(E(z) − 1)

+ (Y(z) − E(0))D0(Y(z))

(1 − E(0))(1 − z)Y(z)(1 − Y(z))
, (20)
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with D0(z) the p.g.f. of the customer delay of the first arriving customer and Y(z) the
unique solution inside the unit disk of the x-plane for all |z| < 1 of

x − E(xz) = 0.

Again, the three possible cases ρ < 1, ρ = 1, and ρ > 1 can be distinguished as in
the previous examples. We only focus on the stable case here, (i.e., ρ < 1), since
the purpose of this example is to show that oscillating behavior is “detected” using
singularity analysis. For ρ < 1, we have

lim
z→1

(1 − z)D̄(z) = 1 + E′′(1)

2ρ(1 − ρ)
.

This expression is valid for general batch sizes; it is indeed the mean delay of a
randomly arriving customer in the steady state of a stable MX/D/1 queue with a FIFO
scheduling discipline.

For the batch size distribution as specified in (19), Y(z) is given by

Y(z) = 1 − [1 − ρ(2 − ρ)z2]1/2

ρz2
. (21)

Assuming that the first customer does not have to wait (i.e., its delay equals 1 slot and
thus D0(z) = z and d̄0 = 1), (20) has four possible dominant singularities, namely
zr = 1,

zb =
√

1

ρ(2 − ρ)
,

−zr , and −zb. We use the approximation procedure to obtain an approximation of the
sequence {d̄j, j ≥ 0}. The dominant singularity of

D̄(z) −
(

1 + E′′(1)

2ρ(1 − ρ)

)
(1 − z)−1 (22)

is −1 and we obtain

d̄j ≈ 1 + E′′(1)

2ρ(1 − ρ)
− (−1) j

2
.

Thus, using the procedure on this example, the oscillating behavior rather than the
transient behavior is exposed. Indeed, the previous formula gives the steady-state mean
delay of a customer arriving first in his batch ( j even) or arriving second ( j odd).

Note that if one would want to examine the transient behavior in this case, one
could do something similar to what was done in the approximation procedure: subtract
1/[2(1 + z)] of the expression in (22) to avoid the singularity in −1. In this way, the
singularities in −1 and 1 are both avoided and the dominant singularities are zb and
−zb. Thus, using Darboux’s theorem on this function approximates the mean transient
customer delay.
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3.2. A Queue with On–Off Sources

In this example, we analyze the transient probabilities that a discrete-time queue fed
by N on–off sources is empty at the beginning of slots. We assume that the sources
send no packets when they are in the off state and send messages of a fixed number m
of packets at the rate of one packet per slot when they are in the on state. A source that
is in the off state during a certain slot switches to the on state at the end of that slot
with probability q. It then stays in the on state for at least m slots to send a message
and then either goes back to the off state with probability 1 − q or stays in the on state
with probability q to generate another message.

This queueing system is analyzed by Kamoun [16]. Among other characteristics,
an expression for Vj(0), the probability that the system is empty at the beginning of slot
j + 1, j ≥ 0, and their generating function V(z), is given in the case that m = 2. Here,
we will approximate the Vj(0) by inverting V(z) using the approximate technique from
this article and compare them with the exact results given in [16]. V(z) is given by

V(z) = 1

1 − Y(z)
, (23)

with Y(z) the unique root inside the unit disk of the x-plane of the equation

x = zλ(x)N

for |z| ≤ 1. Here, λ(z) denotes the unique root for x of the characteristic equation

xm − (1 − q)xm−1 − qzm

that equals 1 in z = 1.
We apply the approximation procedure to expression (23) in the case that m = 2.

Again, a distinction can be made based on the value of the load ρ, which is in this
queueing system given by (see [16])

ρ = Nqm

1 + (m − 1)q
.

The important difference with the previous analysis is that in this case Y(z) has two
branch points on its circle of convergence: one on the positive axis and one on the
negative axis. The further calculations are similar to those in Section 3.1. Therefore,
we omit them and show a numerical example instead. Figure 5 depicts the proba-
bility of having an empty buffer at the beginning of the ( j + 1)st slot for a queue
with N = 4 on–off sources and a load ρ equal to 0.2, 1, and 2, respectively. We have
shown the consequent exact results (obtained from [16]) with marks. From Figure 5,
we can once again see that the obtained approximations are good. Particularly striking
in this example is that the plots are not converging monotonously to the steady-state
value but that some oscillating behavior with a period of 2 slots is observed. This
effect is beautifully predicted by our approximate analysis and thus matched by the
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FIGURE 5. Transient probabilities of having an empty system in a queue with on–off
sources.

curves for our approximations. Indeed, instead of only one dominant singularity on
the positive real axis, the generating function V(z) has a second dominant singularity
on the negative real axis, which accounts for the oscillating behavior (see also the
discussion in Section 3.1.3). We can thus conclude that this oscillating behavior is
directly related to the number and location of the dominant singularities on the cir-
cle of convergence. Our procedure quantifies this oscillating behavior as well as the
converging or diverging course of the sequences.

3.3. Low-Priority System Content in aTwo-Class Priority Queue

As a final application, we discuss the low-priority system content in a discrete-time
priority queue. The numbers of per-slot packet arrivals are i.i.d. and the numbers of
high-priority and low-priority packet arrivals in a slot have a general two-dimensional
distribution. The service times are equal to 1 slot. The transient behavior of this system
is analyzed in [20]. In this subsection, we apply our procedure to the transform function
Ū2(z) of {ū(j)

2 , j ≥ 0}, the mean low-priority system content at the beginning of slots.
This transform function is given by (see [20])

Ū2(z) = ū(0)
2

1 − z
+ zU(0)

T (YT (z))

(1 − z)(1 − YT (z))
− zU(0)

1 (Y1(z))

(1 − z)(1 − Y1(z))
+ ρ2z

(1 − z)2
, (24)

with U(0)
T (z) and U(0)

1 (z) the p.g.f.’s of the total and high-priority system content at
the beginning of the first slot and Y1(z) and YT (z) the unique solutions for x inside
the unit disk of x = zA1(x) and x = zAT (x), respectively, for |z| < 1; A1(z) and AT (z)
are the p.g.f.’s of the numbers of per-slot high-priority arrivals and the total number
of arrivals in a slot, respectively.
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We again use the approximation procedure on the expression of the generating
function (24) of the time-dependent sequence {ū(j)

2 , j ≥ 0} to obtain approximations
of this sequence. We discuss an example in the remainder.

Example: We assume the system to be empty at the beginning; thus, U(0)
1 (z) = 1,

U(0)
T (z) = 1 and ū(0)

2 = 0. The high-priority and low-priority arriving batch sizes are
Poisson distributed with mean ρ1 and ρ2, respectively. ρT is defined as the total load
and is given by ρ1 + ρ2.

In this case, Ū2(z) is given by

Ū2(z) = z

(1 − z)(1 − YT (z))
− z

(1 − z)(1 − Y1(z))
+ ρ2z

(1 − z)2
.

Three singularities can play a role, namely 1, the square-root branch point z1,b of
Y1(z), and the square-root branch point zT ,b of YT (z). It can easily be proved that these
branch points are given by

z1,b = 1

ρ1e1−ρ1

and

zT ,b = 1

ρT e1−ρT
.

Which of the singularities is dominant depends on the load of both classes. One
can, for instance, show that z1,b is never dominant, except when it equals 1 (i.e.,
when ρ1 = 1). The calculations are again rather similar to those in Section 3.1. The
following expressions for the mean low-priority system content at the beginning of
slot j are found:

ū(j)
2 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(∞)
2 + ρT (1/ρT e1−ρT )−j

√
2π(ρT e1−ρT − 1)(1 − ρT )2j3/2

if ρT < 1

√
2j1/2

√
π

if ρT = 1

(ρT − 1)j if ρ1 < 1 < ρT

ρ2j if ρ1 ≥ 1,

with ū(∞)
2 the mean low-priority system content of a stable system in the steady state

and given by [21]

ū(∞)
2 = ρ2 + ρ2

T

2(1 − ρT )
− ρ2

1

2(1 − ρ1)
.

We illustrate the approximate results by means of two figures. In Figure 6, the mean
transient low-priority system content ū( j)

2 is depicted versus the discrete-time param-
eter j for ρ1 = 0.2 and ρT = 0.4, 0.6, 0.8, and 1. We have also shown the exact results
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FIGURE 6. Mean transient low-priority system content for underload scenarios.

FIGURE 7. Mean transient low-priority system content for overload scenarios.

(dots on the figure), which are calculated by using the iterative procedure explained
in [20]. For low loads, it seems that the approximation is already good for rather low j.
For higher loads (<1), the approximation is less accurate. In this case, we observe
that the curve for the case ρT = 1 is not satisfactory. (We note that a small adjustment
of the method also yields accurate results in this case, but this is outside the scope of
the current article.) Figure 7 shows a logarithmic plot of the transient mean system
content ū(j)

2 versus the discrete-time parameter j for some overload scenarios, namely
for ρ1 = 0.2 and ρT = 1, 2, 3, 4, and 5. We have again shown the exact values, found
via recursion. For high loads, the approximation is once again good for all j.
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4. CONCLUSIONS

In this article, we have developed a general technique to approximate transient
sequences from their generating function. The technique is based on singularity anal-
ysis: By studying the behavior of the generating function in its dominant singularities,
we obtain an asymptotically exact approximation of the sequence. The main advan-
tages of the approach are that the technique is generally applicable, easy to use,
and yields analytic results. We have also shown that quite some characteristics of
an unknown transient sequence can be found by studying the dominant singularities
of its generating function, most prominently, converging or diverging behavior and
possible oscillations.

We have applied the technique to analyze the transient behavior of the discrete-
time MX/Geo/1 queue, of a queue fed by on–off sources, and of a priority queue. It was
demonstrated that the technique yields good results in most cases.At the very least, the
results show the asymptotic behavior for the time index going to infinity. In some cases,
however (especially for loads around 1), the approximation is too crude for the lower
slot indexes. Further research is necessary to investigate whether the analysis can be
adapted to yield better approximations in those cases as well. This could be an ad hoc
method for a specific sequence or—preferably—a general applicable extension of the
approach of this article. In [13], for example, such singularity analysis extensions are
explained, but it remains to be seen if they work in the context of transient performance
analysis of queues. We must note though that more accurate results are only possible
through a more complex analysis.
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APPENDIX

In this Appendix, we prove that Y(1) = 1 when ρ = 1. We do this by proving that (10) has only
one solution inside and on the unit circle when ρ = 1, namely x = 1. We in fact prove it in a
more general setting: We prove that

x − A(x) = 0 (A.1)

has no solution inside D̄\{1}, the closed complex unit disk minus the point 1. Here, A(x) is
a p.g.f. with ρ = A′(1) = 1. (Note that A(x) = x is excluded here since this special case was
already treated in the article.) The wanted result then follows by substituting A(x) by

σE(x)

1 − (1 − σ)E(x)
.

We denote the stochastic variable corresponding with A(x) by a; that is,

A(x) =
∞∑

n=0

Prob[a = n]xn.
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We further introduce Ac(x) defined as

Ac(x) =
∞∑

n=0

Prob[a > n]xn.

The following relation between Ac(x) and A(x) is then easily established:

Ac(x) = A(x) − 1

x − 1
.

Note that Ac(x) is a p.g.f. in the special case that ρ = 1. We will use this property later.
Introducing Ac(x), (A.1) can be transformed into

(x − 1)(1 − Ac(x)) = 0.

x − 1 has no zero in D̄\{1}, so the solutions of (A.1) in D̄\{1} equal the solutions of

1 − Ac(x) = 0. (A.2)

Since |Ac(x)| < 1 for |x| < 1—Ac(x) is a p.g.f. when ρ = 1—Rouché’s theorem yields
that (A.2) has no solution inside an arbitrary contour in the unit disk. As a result, (A.2) has
no solution inside the unit circle. It can further be proved that (A.2) has no solutions on the unit
circle either except for x = 1. Indeed, Ac(x) on the complex unit disk can be written as

Ac(e
2π t) = Prob[a > 0] + Prob[a > 1]e2π t +

∞∑
n=2

Prob[a > n]e2πnt . (A.3)

For this expression to equal 1 for a t ∈ [0, 1], Prob[a > 1] has to be zero. This leads to Prob[a =
1] = 1 since ρ = 1, which results in the excluded special case A(x) = x. So for all other cases,
x = 1 is the only solution inside and on the unit circle of (A.2) and, as a consequence, Y(1) = 1.
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