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The scattering of flexural-gravity waves in a thin floating plate is investigated in the
presence of compression. In this case, wave blocking occurs, which is associated with both
a zero in the group velocity and coalition of two or more roots of the related dispersion
relation. There exists a region in the frequency space in which there are three real roots
of the dispersion equation and hence three propagating modes. This multiplicity leads to
mode conversion when scattering occurs. In one of these modes, the energy propagation
direction is opposite to the wavenumber, making enforcement of the Sommerfeld radiation
condition challenging. The focus here is on a canonical problem in flexural-gravity wave
scattering, the scattering of waves by a crack. Formulae are developed that apply uniformly
at all frequencies, including through the blocking frequencies. This solution is developed
by tracking the movement of the dispersion relation roots carefully in the complex plane.
The mode conversion is verified by the scattering matrix of the process and through an
energy identity. This energy identity for the case of more than one progressive modes is
established using Green’s theorem and later applied in the scattering matrix to identify the
incident and transmitted waves in the scattering process and derive the radiation condition.
Appropriate scaling of the reflection and transmission coefficients are provided with the
energy identity. The solution method is illustrated with numerical examples.
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1. Introduction

The problem of determining the effect that a floating elastic plate has on surface wave
propagation has been the subject of extensive research due to its application to polar
oceanography and marine engineering (Squire 2018, 2020). The first solution to this
problem was given by Kouzov (1963), who provided a solution to the problem of
hydroelastic waves scattered by two thin elastic plates with identical properties separated
by a crack. The integral representation was used to reduce the mathematical problem to a
Riemann-Hilbert problem, and it was explicitly solved. Later, Fox & Squire (1990, 1994)
analysed the scattering of ocean waves by shore fast sea ice modelled as a semi-infinite
elastic plate in the case of finite depth water by applying appropriate matching conditions
across the interface and the conjugate gradient method. Barrett & Squire (1996) obtained
a numerical solution to the problem of a single crack in an otherwise infinitely extended
ice sheet for the case of finite depth ocean extending the previous method. Later, Squire
& Dixon (2000) applied a Green’s function approach to study the ice-coupled wave
propagating across an open crack in water of infinite depth. Further, Evans & Porter (2003)
analysed the problem of scattering of obliquely incident waves caused by a narrow crack
in an ice sheet floating on water of finite depth by the eigenfunction expansion method
as well as the Green’s function approach to obtain simple expressions for the solution.
Recently, there has been continued interest in solving for wave scattering by cracks or
closely related problems involving walls or abrupt changes in properties (see Korobkin,
Malenica & Khabakhpasheva 2018; Li, Wu & Ji 2018a,b; Shi, Li & Wu 2019; Ren, Wu &
Li 2020).

One of the significant difficulties in dealing with problems related to wave interaction
with floating elastic plates is the existence of higher-order boundary conditions associated
with the flexible surface. The associated eigenfunctions are not orthogonal in the usual
sense. The genesis of such expansion formulae is the classical wavemaker theory
developed by Havelock (1929), who used the Laplace equation as the governing equation
in water of finite and infinite depths with a Robin-type boundary condition on the mean
free surface. The first extension of the wavemaker theory of Havelock (1929) was to the
case of surface tension in which the boundary condition on the mean free surface becomes
third order. Consequently, the boundary value problem is no longer of the Sturm-Liouville
type. The corresponding expansion formulae for both the finite and infinite depth domains
were derived by Rhodes-Robinson (1971), and the infinite depth case was later extended
in the presence of vertical boundary (Rhodes-Robinson 1979). Sahoo, Yip & Chwang
(2001) generalized the expansion formula for water of finite depth to analyse wave
scattering generated by a semi-infinite elastic plate, where the boundary condition on
the plate-covered surface is of fifth order. They used the eigenfunction expansion method
and a newly developed orthogonal mode-coupling relation. Subsequently, Evans & Porter
(2003) derived several properties of the eigenfunctions associated with the flexural-gravity
waves. Manam, Bhattacharjee & Sahoo (2005) established the general expansion formulae
and related orthogonal mode-coupling relations associated with flexural-gravity wave
problems based on the application of Fourier analysis in both the cases of a semi-infinite
strip and quarter plane to tackle a general class of boundary value problem in both the
cases of water of finite and infinite depths. Mondal, Mohanty & Sahoo (2013) generalized
the expansion formulae for wave—structure interaction problems in three dimensions in
a homogeneous fluid. Mandal, Sahoo & Chakrabarti (2017) studied the convergence
of the expansion formulae associated with wave—structure interaction problems of a
single-layer fluid having a plate-covered surface. Unlike the case of wave—structure
interaction problems discussed here, similar results have been established by Lawrie &
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Abrahams (1999), Lawrie (2007) and Lawrie (2009) in acoustic wave interaction with a
flexible structure in which the associated governing equation is the Helmholtz equation.

The governing equation of motion for an elastic plate can be augmented by the addition
of a compressive stress term. Such stress is well known to exist in floating ice, and it has
been suggested as a possible cause of ice break up (Liu & Mollo-Christensen 1988). The
primary sources of such compression are thermal strain, high-speed wind over the plate
and a current underneath the plate. This effect of the compressive stress has been the
subject of study over a significant period of time, starting with Bukatov (1980). Further
details on the buckling of a floating ice sheet can be found in Kerr (1983), where the
connection between the critical compressive force for which buckling occurs is related
to the vanishing of the phase velocity. Subsequent progress on this aspect includes the
works of Davys, Hosking & Sneyd (1985), Schulkes, Hosking & Sneyd (1987), Liu &
Mollo-Christensen (1988), Bukatov & Zav’yalov (1995), Squire et al. (2012) and Collins,
Rogers & Lund (2017). One fundamental change observed in the presence of compression
is due to the occurrence of wave blocking (Das, Sahoo & Meylan 2018b). This happens
when the group velocity becomes zero. There exists a critical value of the compressive
stress for which blocking is initiated, referred to as the threshold of blocking. This
threshold can be identified by the existence of an inflexion point in the dispersion graph
(k—w plane, where k is the wave number and w is the frequency). At this blocking point,
the associated group velocity vanishes. As the compressive stress increases, we reach
a critical value known as the buckling limit where the plate is unstable, analogous to
the well-known buckling limit of a finite beam. With an increase in the compressive
stress between the threshold of blocking and the buckling limit, the point of inflexion
bifurcates into two blocking points. Between these two blocking frequencies, waves with
negative group velocity propagate and are confined therein. Within the blocking limits,
the dispersion relation possesses three positive real roots, two of which coalesce at the
point of blocking. In contrast, all of them coalesce at the point of inflexion. Such blocking
occurs for surface tension and shear current (see Maissa, Rousseaux & Stepanyants 2016).
This also happens for flexural-gravity waves in a two-layer fluid having a plate-covered
surface and an interface (Das, Sahoo & Meylan 2018c¢) and flexural-gravity waves in a
shear current (Das et al. 2018a).

In the present study, we solve for scattering by a crack in an infinitely extended floating
ice sheet in the presence of compression, focussing on the case when we have wave
blocking. In this manuscript, often the floating ice sheet is referred to as a flexible
plate. In this case, there exist multiple travelling waves for a given incident frequency.
The scattering is complicated by this multiplicity and by the presence of waves with a
negative group velocity. The outline of the manuscript is as follows. In § 2 we provide
the mathematical formulation for the flexural-gravity wavemaker problem which will help
us to build up the boundary value problem discussed in § 3. The solution process for the
scattering problem is described in § 4 for distinct roots of the dispersion relation under both
infinite and finite depth water domains. The energy conservation in the case when there
is more than one propagating mode is derived in § 5 with the help of Green’s theorem.
§ 6 details the method by which the scattering through the blocking frequency can be
computed. The plate deflection is graphically illustrated in § 7. The manuscript ends with
a brief conclusion in § 8.

2. Flexural-gravity wavemaker problem

The wavemaker problem represents the response of a fluid-filled domain with a free
surface subject to the small amplitude oscillatory motion of a vertical wall along which
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an arbitrary velocity distribution is imposed. It is a crucial problem and forms the basis
for all eigenfunction matching methods in a finite depth fluid domain. A flexural-gravity
wavemaker problem can physically be thought of as an equivalent problem when the free
surface is covered with an elastic plate. When the depth of the fluid domain extends
to infinity, the solution process depends on an integral of a function very similar to
eigenfunctions for finite depth domain. In this section, the flexural-gravity wavemaker is
considered for both finite and infinite water depths assuming linearized water wave theory
and small amplitude response. The physical problem is considered in the two-dimensional
Cartesian coordinate system. The fluid is assumed to be inviscid and incompressible,
and the flow is irrotational and simple harmonic in time with angular frequency w
which ensures the existence of a velocity potential @ (x, y, r) of the form @ (x,y,1) =
Re{o (x, y) e7'“'}. We follow the assumption that the x-axis is horizontal and the y-axis is
vertically downward positive. The fluid region in the case of finite depth is the semi-infinite
strip 0 < x < oo and 0 < y < h, whilst for infinite depth is the quarter plane 0 < x < oo
and 0 <y < co. The spatial velocity potential ¢ (x,y) satisfies the partial differential
equation

V2¢ =0, in the fluid domain. 2.1)

On the structural boundary, the spatial velocity potential ¢ (x, y) satisfies the boundary
condition as given by (as in Schulkes et al. 1987)

a* 82 A
D—+4+0—+4+1—ygK| —+K¢p=0 aty=0, 0<ux< o0, 2.2)
ax* ax2 ay

where D = EI/pg, Q = N/pg, K = w?*/g, E is Young’s modulus, I = d>/12(1 — v), d is
plate thickness, v is Poisson’s ratio, N (Newton m~1) is uniform compressive stress, p
is water density, y = p;d/(pg), g 1s the gravitational constant and p; is the density of the
plate. It may be noted that the ice is routinely broken from stress forming ice ridges and ice
keel. Therefore, the stress in compressed ice must be very high in such cases and the same
high stress is considered for the study. The rigid bottom boundary (for finite depth)/no flux
and boundedness (for infinite depth) condition(s) is/are given by

¢y=0ony=nh in the case of finite depth,}

2.3
¢,| Vo |- Oasy — oo in case of infinite depth. 2.3)

Further, on the vertical boundary at x = 0, the velocity potential ¢ (x,y) satisfies the
conditions given by

$0,y) = u(y), 2.4)
and
$x(0,y) = v(y). (2.5)

where u(y) and v(y) are the prescribed functions to be introduced later.
Finally, the far-field radiation condition is given by

. i .
lim (8_ — 1k0¢> =0, (2.6)

xX— 00 X
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where ko is the wavenumber associated with the plane wave solution which satisfies the
dispersion relation in k as given by

H(k) =0, 2.7)
where in finite depth

k(Dk* — Qk* + 1) tanh(kh) B

Hk) =
® 1 4 y gk tanh(kh)

K, (2.8)

and in infinite depth

k(DK* — QK> + 1) B

K, Re(k) > 0.

1+ ygk
H(k) = HESA 2.9)
—k(DK* — Qk* + 1)
— K, Re(k) <O.
1—vygk

The unique velocity potential can be obtained with specific u(y) and v(y) by solving
the above boundary value problem with the help of appropriate edge conditions associated
with the flexible plate which depend on the nature of the physical problems under
consideration (see Sahoo et al. 2001; Manam et al. 2005).

The expansion formulae will be briefly discussed in the cases of infinite and finite water
depths when the dispersion relation possesses distinct roots. The dispersion relation for
finite water depth is an even function of k. In the absence of compression, it contains two
real roots of the opposite sign, infinitely many imaginary roots and four complex roots.
A similar convention for the location of the roots is utilized here when the ice sheet is
compressed. In the case of infinite depth, there is a branch cut on the imaginary axis, and
this branch cut replaces the roots on the imaginary axis (which become dense as the depth
tends to infinity). A detailed analysis of the roots’ location can be found in Squire & Dixon
(2000), and in appendix B of Williams (2006), where the movement of the complex-valued
roots towards either the real or imaginary axis under specific conditions is also described.
We denote the positive real root as kg and the complex roots as +k; and +kj; where kjy = k;
(overbar represent complex conjugate) with k; having positive real and imaginary parts.

It is worth mentioning that the inclusion of water compressibility into the formulation
changes the dispersion relation slightly and results in a conversion of some of the roots
located in the imaginary axis into the real axis (Abdolali et al. 2018). These newly
formed waves are called acoustic-gravity waves that have an oscillatory profile in the
vertical direction, unlike gravity waves, which have an oscillatory profile in the horizontal
direction. However, incorporating water compressibility as a part of the present problem
will deviate from the primary goal of studying the scattering of flexural-gravity waves. We
deem it suitable for separate treatment and is thus not attempted for the time being.

The velocity potential ¢ (x,y) associated with the boundary value problem (BVP)
satisfying (2.1)—-(2.4) and (2.6) is expressed as (see Theorem 2.4 of Manam et al. 2005)

B (x,y) = Aofo(y) & + Arfi(y) e + Ap fir(y) e

L2 /°° AG)ME, y)e ¥ ds
0

, 2.10
T A) 210
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with

kn
KC,

1 o0
A= / (004t + 2 (@ = Dk — Dby |
n Jo

@)=(0,0) "

AE) = fO WOME 1) di+& [ (Q+ DEDg, — Dy |

@)=(0,0) "

ME,y) =¢§ (DS4 + 082 +1— gyK) cos£y — Ksiny, (2.11)

AE) =& (Dgt + 08> +1 - gyK)2 + K2,
_ H' (k)

forn=0,1,1I.
2K

Ly =e ¢,

Similarly, when the velocity potential ¢ (x, y) satisfies condition (2.5) instead of (2.4), A,
and A(€) in (2.10) are given by

B —ig,
~ Cukn

n

00 kn 2
U vosoas g le-pudo o] L

2.12)

Ll Y 2
A(§) = £ {/0 v(t)M(é,t)dt-l-é[(Q-l-Dé )Pxy D¢xyyyi|(xvy):(ovo)}y

—1 forn=1I.

{1 forn=0,1,
€, =

The eigenfunctions f,(y) (n =0, 1,1l) and the kernel M(&,y) in (2.10) satisfies the
orthogonal mode-coupling relation given by Manam et al. (2005)

C, form=n,
(@), Ja(®) = {0 otherwise, (2.13)
where
o Q / /
(fn(0), fu(0)) = /0 Fn ) fu (0 dt = 2 [/ @ frD]._
D /1! / / /1!
tx [ @ (@) + [ (D], - (2.14)
Further, it can be easily derived that
(ME, D, f(H))=0 forn=0,1,1I. (2.15)

It may be noted that the kernel M(&,y) satisfies various identities as mentioned in
Lemma 2.5 of Mondal et al. (2013). Moreover, the unknowns, A, and A(), can be obtained
by using the orthogonal mode-coupling relation as defined in (2.13) and (2.15).
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In a similar manner, the velocity potential ¢ (x, y) in the case of finite water depth,
satisfying (2.1)—-(2.4) and (2.6), is obtained as

¢ (x,y) = Ao e fo(y) + Are™ fi1(y) + A e fy(y) + Y Anfu(y) e, (2.16)

n=1
with
L fh ky tanh kh 5
A, = — | u tdt+—[ — Dk}, — D ] ,
= /O O () el [ R T T
H' (k) tanh k, h
cnz% forn=0.111.1.2... and k, —=ik,. forn=1.2.3....
(2.17)
and the eigenfunctions
hk,(h —
W n=011.
coshk,
— 2.1
(Y cosky(h —y) (2.18)
e =1,2,3,...,
cos kyh

Similarly, when the velocity potential ¢ (x, y) satisfies (2.5) instead of (2.4), the constants
A, in (2.16) are obtained as

S [ " ky tanh k,h
Ap=— { | s d+ SRR - D, — Do |
0 (

Cyiky, x,y)=<o,0)} '

5 — 1 forn=0,1,1,2,...
" —1 forn=1I.
(2.19)

The orthogonal mode-coupling relation (see Manam et al. 2005) is given by

0

h D
(fm(@®), fu(@®) = /0 Jin (@) fu (1) dt — X [f,;(t)f/,(t)],:OJrg [ D fr @) + [ 1 (D] -

C, m=n,
N {O otherwise. (2:20)
The unknown coefficients, A,, are also can be determined from the prescribed boundary
conditions and the orthogonal mode-coupling relation defined in (2.20). Moreover, it
may be noted that the orthogonal mode-coupling relation for wave—structure interaction
problems in water of finite depth was initially defined by Sahoo er al. (2001). Various other
characteristics of the eigensystem and convergence of the expansion formulae in both the
cases of water of finite and infinite water depths have been discussed in Sahoo (2012) and
Mandal et al. (2017). Moreover, in the above-mentioned expansion formula, it is assumed
that the eigenvalues, k;,, are distinct roots of the dispersion relation (2.7) in both the cases
of water of finite as well as infinite depths.
At this point, we would like to emphasize the influence of the plate compression on
wave propagation by examining the dispersion relation provided in (2.7). Without loss
of generality, the case of finite water depth is taken into account and plotted for four

different values of plate compression — Q/+/D = 1.3, 1.75, 1.95, 2, 2.02 and 2.04 along
916 All-7
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Figure 1. The evolution of dispersion graphs in finite water depth as plate compression increases is shown
for six different values, namely Q = 1.3v/D, Q = 1.75v/D, Q = 1.95V/D, Q0 = 2/D, Q = 2.02/D and Q =
2.04+/D, of compression juxtaposing with the uncompressed plate (Q = 0). The dotted curves are for the
case when the inertial effect is ignored, whereas the rigid curves represent the inclusion of inertial effect.
Ice thickness is kept at d = 1 m. The generation of primary and secondary blocking points and the point of
buckling are visible. As we increase the compression above 2+/D, the point of buckling splits and starts moving
along the k axis. The wavenumber band between the buckling points does not attribute to any wave propagation
irrespective of any incoming frequency. The change in the dispersion curve due to the inertial effect is rather
much less.

with the case of no compression (Q = 0) to highlight the effect. A result for the particular
approximation due to negligible inertial effect (y = 0) is also presented in the graphs using
the dotted curves. The physical parameter values used for the computational purpose are
the same as provided in Meylan & Squire (1994) and are mentioned here for convenience:
Young’s modulus E = 5 GPa, Poisson’s ratio v = 0.3, water density p = 1025 kg m~3,
ice density p; = 922.5 kg m~3, ice thickness d = 1 m and the gravitational constant
g =9.81 m s2. The nature of the graph, which is monotonically increasing for the
uncompressed plate, evolves to produce optima with an increasing value of compression.
The maximum occurring for higher frequency and lower wavenumber corresponds to
the primary blocking. On the contrary, the minimum occurring for lower frequency and
higher wavenumber is termed the secondary blocking point (see figure 1). At both these
points, the group velocity (or the slope of the k — w curve) vanishes so that the energy
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propagation is zero. The dispersion relation possesses three positive real roots for any
frequency between the primary and secondary blocking frequencies. With the increase in
plate compression, the frequency band for having three real roots widens. One interesting
observation is the occurrence of a sharp corner in the dispersion curve when Q = 2+/D
due to discontinuity in the group velocity (dw/dk) at that point. In terms of physical
interpretation, the wave envelope is broken into two parts travelling in opposite directions
— a phenomenon termed as ‘buckling’, representing physically the breaking of the plate.
We briefly discuss the plate buckling. Under compression, a finite plate will buckle (small
perturbations will grow) for a length-dependent function of compression. It is such a factor
which determines the strength of columns under compression. For an infinite plate, the
buckling will occur for any compression. In our case, there is an extra term due to the
hydrostatic pressure (which acts to restore the plate to equilibrium), and this means that,
even for an infinite plate, there is a critical compression before bucking occurs. A further
increase in the compression splits the buckling point into two parts, and they will move
away from each other along the wavenumber axis. We also note that Kerr (1983) has
established a dependency between the vanishing of phase velocity and the mechanical
failure due to buckling of the flexible plate. There will be a wavenumber band that widens
with respect to an increasing compression and, in which no flexural-gravity wave can
propagate irrespective of the incident wave frequency. A similar observation was also
pointed out earlier by Das et al. (2018b).

We further demonstrate the effect of plate thickness on the blocking points in figure 2
withd =1m,1.2m,..., .5mand y = 0 (i.e. ignoring the inertial term with d = 1 m).
The value of compressive stress is kept fixed at 1.75+/D. The movement of the blocking
points is visible as plate thickness increases. The action of ice thickness is to shift the
blocking frequency as well as wavenumber (both primary and secondary) to a lower value,
consequently, the frequency band of the multiple propagating modes shifts. The change
in the position of primary and secondary blocking points is sufficiently small when the
cases of y =0 and y #0 are compared. Although the thickness of sea ice alters the
frequency band of blocking, the wave profile’s qualitative nature remains the same. Thus
the subsequent results presented in this work, except for the plate elevation, are performed
with y = 0. The effect of plate thickness is demonstrated in separate graphs whenever
needed.

The roots of the dispersion relation (2.7) are qualitatively the same in both the finite and
infinite water depth cases except for the evanescent modes. These evanescent modes are
purely imaginary and have an insignificant effect on the scattering process, which form
a continuum in the latter case. The movement of the roots in the complex plane with
increasing values of incoming wave frequencies is graphically shown in figure 3 when the
plate thickness is kept fixed at d = 1 m. As we increase the incoming wave frequency, the
roots from the complex plane travel towards the real axis and merge to create the secondary
blocking (see figure 3b). The merging happens for the complex roots k;, —kj with ky, —kj,
respectively, to generate the critical points £k, that bifurcate into real roots. In order to
distinguish the newly generated real roots from the earlier complex ones, we term them as
+k; and £k,. Then these roots start travelling away from each other to create in total six
distinct roots (see figure 3c,d). A further increase in frequency ensures a coalition of the
two real roots to generate primary blocking (see figure 3¢). The coalition occurs between
the roots %k, £k to create the critical points £k.. Finally, k. bifurcate to regenerate the
complex roots £kj, +kj back into the physical system (see figure 3f). Note that primary
blocking is associated with high frequency waves having relatively smaller wavenumber
compared to secondary blocking, which occurs for waves having a lower frequency and a
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Figure 2. Variation of blocking points for different values of ice thickness along with = 0 (approximation
due to negligible inertial effect with d = 1) is depicted here.

larger wavenumber. The same analysis of the dispersion graph is conveyed through figure 4
by a one-to-one relationship with the panels of figure 3.

3. Flexural-gravity wave scattering by a crack in a floating ice sheet

In the present section, as an application of the wavemaker problem in the case of water
in infinite depth, the flexural-gravity wave scattering caused by a straight line crack in an
ice sheet with compression is reinvestigated. However, the solution process is discussed in
both the cases of finite and infinite water depths but limiting the corresponding analysis of
wave scattering for the infinite water depth only to avoid repetition. It is worth mentioning,
for brevity, that closed-form solutions are obtained elegantly following the method of
Evans & Porter (2003) in the water of finite depth through the application of Green’s
integral theorem. We are analysing the behaviour of different modes of wave propagation
close to the blocking frequencies in water of infinite depth using the approach of Manam
et al. (2005), which was not discussed earlier. Specifically, the form for the potential
function during the amalgamation of the two roots of the dispersion relation can be written
with the help of the distinct roots in the given form of the velocity potentials. Various
known results of physical importance available in the literature are reproduced from the
analytical expressions.

The physical domain associated with the flexural-gravity wave scattering by a crack in a
floating ice sheet remains similar to that discussed in the formulation earlier in § 2 except
—00 < x < oo and 0 <y < oo and is exhibited in figure 5. Here, the ice sheet of thickness
d is modelled as two semi-infinite elastic plates separated at x = 0 due to an open crack
and floating on an undisturbed water surface y = 0, —0o < x < oo. Further, the fluid and
ice characteristics remain the same, as discussed in § 2. In the present context, we will pose
the physical problem in terms of the spatial velocity potential after eliminating the spatial
surface elevation 7(x) from various boundary conditions. Under the above assumptions,
the spatial velocity potential satisfies Laplace equation in the fluid domain (2.1) along with
the ice-covered boundary condition (2.2) and the bottom conditions (2.3).
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Figure 3. Contour plots of dispersion relation for different values of incoming wave frequencies are shown.
The location of the roots are shown with the small circles which moves in the complex plane with changing
frequency. (a) For one real root (w = 0.345 s7h, (b) during secondary blocking (v = 0.3696 s, (¢) for
three real roots (w = 0.39 s™1), (d) for three real roots (w = 0.43 s~1), (e) during primary blocking (& =

0.4512s571),( f) for one real root (w = 0.465 s~1) when compressive stress Q = 1.75+/D. (a) Prior to secondary
blocking. (b) Secondary blocking point. (¢) Generation of three positive and negative real roots. (¢) Movement
of the middle root. (¢) Primary blocking point. (f) Root after primary blocking.

Moreover, across the interface boundary between the two plate-covered regions, the
continuity of velocity and pressure yields

¢x(0+,y) = 2(0—,y) and ¢(0+,y) =¢(0—,y) in0O<y<oo. (3.

Further, assuming the free-edge conditions (zero bending moment and shear stress) are
complied with near the crack (as in Sahoo 2012), the velocity potential ¢ (x, y) will satisfy
the following relations:

2
B{¢(x,y)} =D [% <2—¢)] — 0 asx— 0%, 3.2)
X v/ 1y=o
and
33 [ 32
S{p(x, )} = [D@ <8_<§> + ang;LZO —-0 asx—>0%. 3.3)
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Figure 4. Dispersion graphs for the same set of data values taken in figure 3. (a) Prior to secondary blocking.
(b) Secondary blocking point. (¢) Generation of three positive and negative real roots. (d) Movement of the
middle root. (e) Primary blocking point. (f) Root after primary blocking.
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Rigid impermeable bed (finite depth) or unbounded domain (infinite depth)

Figure 5. Schematic diagram of a floating ice sheet having a crack.

The choice of free-edge conditions is made primarily because this is the most
straightforward and standard boundary condition. It could be argued that under
compression, other energy-conserving boundary conditions may be more appropriate (Lee
& Newman 2000; Xia, Kim & Ertekin 2000; Karmakar & Sahoo 2005; Kohout & Meylan
2009). Such boundary conditions could be incorporated without any modification to the
current method, but we do not do so here like this for simplicity. Finally, the velocity
potential satisfies Sommerfeld’s radiation boundary condition, which for one travelling
wavenumber is given by

- (e_“‘(’x + Ro ei""") fo(y) asx — oo,

P(x,y) = 1“’ ‘ (3.4)
ETO e_‘koxfo(y) as x — —oo0,
w

with ko being a real root of the dispersion relations (2.7) with Ry and 7y being the
complex constants associated with the amplitudes of the reflected and transmitted waves,
respectively. However, in a system having multiple propagating modes, the above forms
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modify into

. p
i : : )
Zg { <e_‘€°k°)C + Ry e‘eok0x> fo(y) + ZR,- ekr £y b asx — oo,
=1
P =1 ’
1 .
s Z T e b fi(y) as x — —o0,
® 20
(3.5)
where k;, (i=0,1,...,p) represents (p + 1) propagating modes which individually
satisfy the radiation condition mentioned in (2.6), R; and 7; are the complex constants
associated with the amplitude of the reflected and transmitted waves in the ith mode and
€; = =1 when dw/dk|k=, 2 0.

4. Method of solution

Exploiting the geometrical symmetry of the physical problem about x = 0, the BVP
defined in the half-plane in the previous section is reduced to two quarter plane BVPs
(following the reduction approach adopted in Manam et al. 2005) whose solutions are
sought based on the mixed type of Fourier transform as discussed in § 2. The reduced
potentials are defined as

e, y) =, y) —¢p(=x,y) and T(x,y) =@,y +¢(=x,y), x>0. (4D

Thus, ¢(x,y) and 7 (x, y) satisfy the governing equation (2.1) in the quarter plane x >
0, y > 0 along with the plate-covered condition (2.2) and the bottom condition (2.3)
independently. Finally, the continuity conditions in (3.1) yields

Ti(x,y) =0 and ¢x,y)=0 atx=0,0<y < oo. 4.2)

From the continuity equation (4.2), it is clear that ¢(x, y) satisfies (2.4) and 7 (x,y)
satisfies (2.5) with ¢ (0, y) = u(y) = 0and 7,(0,y) = v(y) = 0for0 < y < co. The edge
conditions (3.2) and (3.3) for the bending moment and shear force in terms of ¢ (x, y) and
T (x,y) yield

92 /97(0,0 3% /97(0,0 9271 (0, 0

D— are.0 =0, D—: 70,09 + #=o, (4.3a,b)
ox2 dy ox3 dy 0xdy
9% [9¢(0,0 33 [93¢(0,0 920(0,0

p I (#O0N o 9 (3900, 0700 4 (4.4a.b)
ax2 dy ax3 dy 0x0y

The expansion formulae for distinct roots of the dispersion relation derived in § 2 will be
applied here to derive the expression for reduced potentials in both cases of infinite and
finite depth water domain.

4.1. Infinite depth water domain
Here, the reduced potential ¢ (x, y) is expanded as

i 4 7 . , B
P y) = 2 [T 4 A0 fy(3) €08 4 A () € 4 A fir () e

+g/wmaM@we&%]
0

4.5
n A(E) *
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where A(), M(&,y) and the eigenfunctions f,(y)(n = 0, I, II) for infinite depth are the
same as defined in § 2. In between the frequency band of primary and secondary blocking,
when three propagating modes exist, we denote the positive real roots as ko, k; and k»
where kj is the root corresponding to negative energy flux. The form of the reduced
potential given by (4.5) is valid with kj, kj; replaced by ki, kp, respectively, and even
at the time of blocking in which case either k; = ky or kg = kp. Without loss of generality,
we solve the problem with the case of complex roots k;, kj7, and easily extend it to the
multiple real roots ki, k>.

Utilizing the relation (4.2) along with the edge boundary conditions (4.4a,b) and the
orthogonal property of the eigenfunctions as in (2.13) and (2.15), the unknown coefficients,
A, and A(§), are obtained as

A=——< —Dk) _1, A=_——( —Di2) ay,
0= ke, \ T PRo)n 1= ek \2 e
w o ki 5 2ik3 (Q — Di3)
A©) =& (Q+DE ot Ap=c o (0-Di)ar, = =00
ig ig KCyy < " B
w i"(3) 2,2 ik; 2)2 i"‘131 2)?
_ed B o gy (o pi) - i (g pg)
A g {KC() © 0"+ KCy 0 ! KCyy 0 n
2K /oo £3 (0 + Dg?)’ dt
7 Jo A(8) '
(4.6)
Proceeding in a similar manner, the reduced potential 7 (x, y) is expressed as
i . ) . i
TG y) = 2[R0k 4 Bofo(3) €0 + Brfi(3) € + By fu(y) et
2 [ BEME, y)e 5 d
L2 / )M, y) § ] ' 4.7)
7 Jo A(8)
The unknown constants B, for n = 0, I, II. and the unknown function B(§) being
w DK Dk} w Dk,
=——" , =——"a, BE)=--D s Bn=———"ay,
KCo ™ + 1 xe 2 (é) %) I s Koy ™
—2k3 P iDk; N iDk} Dk}, 2K [ Dg’d&
o = ’ 2= T - — .
B2 ig | K& KCr  KCyp 7w Jo  A($)
(4.8)

Within the frequency band of primary and secondary blocking, k; and kj; become real
valued, redefined as k1 and k», respectively, with the relation kg < k> < k1, and the same
potential form obtained in (4.5) is valid. In the subsequent sections, all the analysis and
results are shown for the case of infinite depth water domain only. However, it is deemed
suitable to provide the form of the potential functions for finite depth water domain.
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4.2. Finite depth water domain
The reduced potential ¢ (x, y) in this case can be expressed as

i . . 4 .
py) == [(e‘"‘ox + A0 €) fo(3) + Ar e fi(y) + Ay e iy ()

+ ) Anfu(y) e_k”x} , 4.9)

n=1
where the eigenfunctions f,(y) (n =0,1,11,1,2,3....) for finite depth are the same as
defined in § 2.
Using (4.2), (4.4a,b) and (2.20), the unknown coefficients, A, are obtained as
w ko tanh koh
ig KCy
o k, tanh k,,h
ig  KC,
2ik3 tanh (koh) (Q — Dk3)
B Bi
13 2
» |:1k0 tanh? (koh)

B = 2 XCo

Ay = (0-DB)er -1,
(Q—Dk,%)al, forn=1,11,1,2,3, ...,

, and k,=1k, forn=1,23,...,

“ (4.10)
ik tanh? (k;h)

— Dk2)?
(Q o)+ X,

(o-pit)

3

.k3 thh 2 ad k 2
U (o iy 5 B (o] |

n=1

Likewise, the reduced potential 7" (x, y) is expressed as

i . . ‘ .
Ty == [ (7% + By o) fo(y) + By e fi(y) + Bure™ 1 fi ()

+3 Bufu(3) e"""} : @.11)

n=1

with the unknown constants, B,,, obtained as

DK} tanh koh Dk? tanh k,h
= 2 1, By =2 R forn=1,1,23,...
g KCy g KC,
w Dk, tanh kyzh 2k; tanh (koh)
e, =,
g  KCy p2
o { ik3D tanh? (koh) N ik D tanh® (kgh)  ikyD tanh® (kyrh)

h=1 KCo KC; KCi

By

By =

N i DK tan? (kyh)
KC, '

n=1

(4.12)
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Next, we shift our focus to the case of infinite water depth in the subsequent analysis. While
extending the result from complex roots kj, kj; to real roots ki, kp, all the notations used
will also be redefined by replacing the suffices 1, II with 1, 2, respectively. Since there are
three progressive wave modes present in the system, each of which travels with different
group velocity, the reflection and transmission coefficients which express the transport of
energy must be derived with care.

5. Energy balance relation

In the theoretical study of scattering of water waves, the energy balance relation or energy
identity plays a pivotal role in the understanding of scattering of wave energy and exhibits
the relation among the scattering coefficients such as the reflection and transmission
coefficients. Often, the energy identity is used as a check of the computed results of these
scattering coefficients. In this section, the energy identity is derived using Green’s integral
theorem involving the complex velocity potential and its complex conjugate. Further, the
occurrence of negative group velocity in the system will be demonstrated with the derived
energy identity.
To obtain the energy identity, we use Green’s integral theorem, as given by

_9¢ d¢p B
L(g&% _¢8_n) ds =0, (5.1)

where C denotes the closed boundary of the fluid region, which is union of two closed
boundary C; and C;, ¢ is the complex conjugate of ¢, which satisfies (2.1)—(2.3) and
(3.1)-(3.5), and 9/dn represents the outward normal derivative to the closed boundary
C. The closed boundary C; consists of the horizontal upper surface (0 < x < X; y = 0),
vertical boundaries (0 <y < o0; x = X), bottom boundary (0 < x < X; y — o0) and
vertical boundary at the crack (0 < y < oo; x = 0), and closed boundary C; consists of the
horizontal upper surface (—X < x < 0; y = 0), vertical boundaries (0 < y < oo; x = —X),
bottom boundary (—X < x < 0; y — 00) and vertical boundary at the crack (0 <y < oo;
x = 0), ultimately letting X — oo.

Using the boundary conditions and the far-field radiation condition in (5.1), we obtain
the energy relation as given by

K4+ K> =1, (5.2)
where
g2 |BotAol” | (kCelkn) |BitAi|®  (kaColka) ) |Ba+ A2 [
4 2 koCg (ko) 2 koCg (ko) 2 ’ (53)
K2 By — Ao 2+ k1Cg(k1)\ |B1 — Ay 2 [ k2C(k2) \ B2 — Az 2
! 2 koCy (ko) 2 koCy (ko) 2
and

forj=0,1,2, 5.4

4 2 3 5
Cylh) = 1\/3(501(]. —30kF + 1) + 2k gy 2Dk — Q)
2V ki1 +kng)\/(1 +kjgy)(Dk;} — ijz 1

with ko being the wavenumber associated with the incident wave.
The newly defined reflection (K,) and transmission (K;) coefficients are now plotted
against 7 = 21 /w in figure 6 for three values of compressive stress. It is observed that
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both the coefficients now have values less than one within the frequency band of primary
and secondary blocking in which the dispersion relation possesses three distinct real roots
(see figure 6b). Moreover, the transitions of K, and K; at the primary and secondary
blocking points are also shown in figures 6(a) and 6(c), respectively, for the same values of
compressive stress. A continuous transition is observed and this validates the correctness
of the newly derived expressions for K, and K;. We here mention that, in order to compute
K, and K; outside the frequency band of primary and secondary blocking, the following
formulae have been used due to the existence of only one propagating mode:

2 2

By — A

By + A
K2 = ‘M 5 (5.5a,b)

g 2

and Ktzz‘

A similar study for three different values of plate thickness is carried out, and the results
are graphically shown in figure 7. Similar observations as were made in figure 6 are
made in this case as well. The only difference is observed in terms of the values of T
at which the primary and secondary blocking points are obtained. Corresponding primary
and secondary blocking occur at higher values of T as the plate thickness increases.

6. Scattering process through the primary and secondary blocking points

In this section, we will discuss the scattering process due to a crack when primary and
secondary blocking occur under the influence of fixed compressive stress acting on the
plate. Without loss of generality, we can consider the case of secondary blocking in
which any incoming frequency lower than the blocking frequency corresponds to one
propagating mode, and any higher frequency generates three propagating modes. A similar
process happens in the case of the primary blocking, with the only difference being the
occurrence of three propagating modes at a frequency lower than that of the blocking
frequency. The transition from one propagating mode to three or vice versa occurs through
the blocking frequency. It is thus intuitive to say that this transition occurs continuously,
and the justification follows below.

At the instance of secondary blocking, one can have +k; = +k; = Lk = L£ky = Lk,
(see figure 8). However, the potential form (4.5) is still valid since k1, and —k, are two
different values, albeit their absolute values being the same. The potential form given by
(4.5) reflects the fact that the root k>, corresponding to the waves with negative energy flux,
is taken from the negative wavenumber region (of the form —k»). The movement of the
roots of the dispersion relation in the complex plane plays a pivotal role in the scattering
process through the blocking frequency. Four complex roots +k; and £k, and two real
roots +kq of the dispersion relation are the possible choices of wave modes for the physical
process, to begin with. Next, we look for those roots which provide a bounded solution for
the scattering problem due to the crack. Hence, the roots of the form ko, k;, —kj; are the
suitable candidates to provide bounded solution in the region x > 0. Consequently, even
though k; merges with kj; at the moment of secondary blocking, it is feasible to continue
the process with —kj;. An equivalent choice of roots in the region x < 0 will be —kg, —k;,
kyr, and similarly the process may continue with k;; when —k; merges with —kj;. In this
sense, the root —kjy is qualitatively equivalent to the root kj; for the crack problem. As soon
as the complex roots k; and kj; merge at k., they can take the form k; and k5, respectively.
The same goes for their counterpart on the left side half. Following the earlier discussion
of figure 3, although k;, kj; merges at k., the contribution from kj; (equivalently k») can
be obtained from —kj; (equivalently —k>). Consequently, the overlapping of the roots at
the blocking points can be avoided simply by taking one root from the negative real axis.
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Figure 6. Values of K, and K; are plotted for three different values of compressive stress. Panel (a) depicts the
continuity of K, and K; across primary blocking frequency. Sharp corners in the graphs are due to the blocking;
kp is the incident wave after primary blocking. Panel () depicts K, and K; within the frequency band of primary
and secondary blocking in which three propagating modes exist. Both the coefficient values are below one after
using the modified energy relation. Panel (c¢) depicts the continuity of K, and K; across secondary blocking
frequency; ko is the incident wave before secondary blocking. (a) Transition through primary blocking.
(b) Within the frequency band of primary and secondary blocking. (¢) Transition through secondary blocking.

Thus, the theory for distinct roots is unequivocally applicable at the secondary blocking.
A similar situation arises at the time of primary blocking where +k; = +tko = Lk;; =
+ky = %k... An exactly similar process but of reverse order will happen that will bifurcate
+k/. into the complex plane to regenerate the roots £k;, k7. The locus of the roots of the
dispersion relation during the complete scattering process is depicted for three different
values of compressive stress. The scattering process through the blocking frequency is
thus smooth due to the continuous movement of the roots of the dispersion relation in the
complex plane without any kind of overlapping.

It is, however, feasible to consider any of the three propagating modes (in the frequency
band of primary and secondary blocking) as the incident wave and hence the potential
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Figure 7. Values of K, and K; are plotted for three different values of plate thickness. (a) Transition through
primary blocking. (b) Within the frequency band of primary and secondary blocking. (¢) Transition through
secondary blocking.

function can be written as

P1-(x, ) Io 0 0 [e7ffiy(y)
$orxy) | ==110 I 0] [e sy
b3,(x, y) @INO0 0 Inn) \ ekrp(y)

Scattering matrix (Sg)

Kt Ko Kas\ [ € fo(y) ) [a
+ | K2 K2 K3 ellf‘xfl | +=1a forx > 0, (6.1)
K31 Kz Kizz) \e ¥ f(y) T \a
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Figure 8. The movement of roots of the dispersion relation with an increase in frequency is shown for different
values of compressive stress Q. For each of the figures, the first point of simultaneous contact in the real axis
for red and blue curves (roots which are travelling from the complex plane) corresponds to secondary blocking.
With further increase in frequency, the roots move along the real axis in the direction as shown in the figure.
Then, at the primary blocking, the red and pink curve simultaneously leave the real axis to move in the complex
plane. All the three roots are distinct during the scattering process, even during blocking, unlike in the case
of plane wave propagation in which root coalescence occurs. Consequently, the theory of distinct roots of the
dispersion relation will work perfectly in the scattering process.

with

) (6.2)

B /OO AEM(E, y) e 5 dg
0 A®)

and ¢; (j =1, 2, 3) represents the form of the velocity potential when k; (i =0, 1, 2)
is the incident wave mode, respectively. The scattering matrix, denoted by Sg, defines
the relationship between the forward and backward moving waves (kg < ky < kp). It is to
be noted that the direction of the wave envelope for k; is opposite to that of kg and k.
The jth row (j = 1, 2, 3) of it respectively corresponds to k; as the incident wave mode
(i=0, 1, 2), and the corresponding amplitude ratios of the reflected waves are K,yj;/lo;
(j, =i+ 1withi=0, 1, 2) for each i, where Iy, is the incident wave amplitude of the
mode k; (taken to be unity in the numerical calculation). Moreover, the transmitted velocity
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Figure 9. Amplitude ratio of different reflected and transmitted waves are plotted with time period 7" around
the primary and secondary blockings for various values of compressive stress. At secondary blocking, the curve
is continuous if kg is taken as incident wave, whereas k; becomes the incident wavenumber at the primary
blocking. The continuity of the graphs confirms the transformation of wave modes across blocking frequencies
as claimed in the figure 8. (a) Reflected modes near primary blocking. (b) Transmitted modes near primary
blocking. (¢) Reflected modes near secondary blocking. (d) Transmitted modes near secondary blocking.

potential can be written as

Scattering matrix (Sr)

P1:(x, y) o (K Kz Kuz\ (e fo(y) 2ig (©
¢u,y) | == | Kot Koo Koz | |e ™ fi(y) | +==|b]| forx<0, (6.3)
$3:(x, y) “ \Ka1 Kpm2 Kps ek () O \b
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where

o0 Ex
b / AE)M(E,y)e dé’ (6.4)
0

A)

and ¢j; (j = 1,2, 3) represents the form of the velocity potential when k; (i =0, 1, 2) is
the incident wave mode, respectively. Here, the amplitude ratios of the transmitted waves
are Ky /Io; for each k;. The scattering matrix is denoted by St.

Outside the frequency band of primary and secondary blocking, there exists only one
propagating mode, denoted by po, and it can be any of the k; values, and two complex
modes k; and —kj; for a bounded solution. Now K,; (i = 0, 1, 2), respectively, represent
the amplitude ratio of the modes pg, k; and —kj; in the reflected wave region; K;; is the same
in the transmitted wave region. This will provide us further insight into mode conversion
in terms of continuous transition of the amplitude ratio across blocking frequency. The
scattering matrix is plotted against time period 7 (21 /w) in figure 9. Figure 9(a,b) provides
the scattering matrices assuming k; as the incident wave inside the frequency band of
primary and secondary blockings. Sharp corners are occurring at the blocking frequencies.
The top graph of figure 9(a) shows the continuity of K¢ and K,7>. This means the incident
wave ki remains as the only propagating mode above (or below) the primary blocking
frequency (or time period). This is consistent with the root movement described earlier in
figure 8 (see the blue curve) in which k; converts into the propagating mode and remains
in the real axis. The middle and bottom graphs show the continuity of (K,1, K;21) and
(K2, K;23), respectively. This justifies the conversions of mode ko into k; and kj into
—kjr across the blocking frequency. These findings are consistent with figure 8 if we
follow the red and pink curves, respectively. A similar pattern (figure 95) of continuity is
observed in the transmitted wave region as well. Figure 9(c) provides the mode conversion
at the secondary blocking frequency when kg is being treated as the incident wavenumber.
All three subplots show the continuity in amplitude ratio across the blocking frequency,
namely K11 and K9, justifying the transformation of kg as the propagating mode; K,1> and
K1, justifying the transformation of k1 into k7; K13 and K2, justifying the transformation
of k> into kj;. These observations are also in accordance with figure 8. An exact similar
continuity of these modes in the transmitted wave region can be found in figure 9(d).
Keeping the plate compression fixed, for example, Q = 1.75+/D, the same effect can
be observed (figure 10a) when the plate thickness increases. The plate thickness only
increases (or decreases) the time period (or frequency) at which the primary blocking
occurs (see figure 10a,b). A similar pattern is observed at the secondary blocking point as
well (figure 10c,d).

7. Plate deflection

The plate deflection (w?n(x) /agko) in the vertical direction is obtained from the following
linearized kinematic condition:

0H(x, 1) B D (x,y,1)

=0, 7.1
” 3y ony (7.1)

where the flexural-gravity wave elevation H(x, ) = n(x) e 1" and q is the initial wave

amplitude, which is kept at unity without loss of generality. The above equation yields the

916 Al11-22


https://doi.org/10.1017/jfm.2021.200

https://doi.org/10.1017/jfm.2021.200 Published online by Cambridge University Press

Scattering of flexural-gravity waves by a crack

(@) )
9 1.0 — —_—
M‘“ K = ].0M m——=1.1M == d=12m
-g 05 Vs
N? Lo
SR 14.0 14.5 15.0 15.5
M‘l' 6 —d=10m =—d=1.1m == d=12m
kel 4r
% [ Krl
- 1 K1
M 85 14.0 14.5 15.0 15.5 4
w 10 : : : 6
N 8t d=1.0M mm=d=1.1M mum d=12m 1
s o
= 2}
=z 0
X35 14.0 145 15.0 155 135 14.0 14.5 15.0 15.5
- (©) (@)
0.06
0= Ky
= 004! 0.98 — ]
g — d=10m
> 0.02 0967 Hai — d=11m ]
= - d=12m
£ 0 0.94 : :
16. 16.5 17.0 17.5 18.0 18.5
g 0.048 T 0.07
o 0.044 + 0.06 1
g 0.040 Ky Z:%.(l)m o
. — =l.Im t
54% 0.036 7 —— 4=1.0m =—d=1.1m == d=12m 0.05 —d=12m
16.5 17.0 17.5 18.0 18.5 16.5 17.0 17.5 18.0 18.5
o : : 0.15 |
X015 —=iom
h= 0.10 —az.om
[=} -—d=1.2m
S 010 ©
2
M% 0.05 ‘ : : 0.05 ‘ ‘ :
16.5 17.0 17.5 18.0 18.5 165 17.0 17.5 18.0 18.5
T T

Figure 10. Amplitude ratio of different reflected and transmitted waves are plotted with period T around
the primary and secondary blockings for various values of plate thickness for a fixed plate compression
Q = 1.754/D. 1t is visible that the period (or frequency) at which both the primary and secondary blockings
occur increases (or decreases) with an increase in plate thickness. (a) Reflected modes near primary blocking.
(b) Transmitted modes near primary blocking. (¢) Reflected modes near secondary blocking. (d) Transmitted
modes near secondary blocking.

following form of the vertical plate deflection:

1 ko e~ Rov 4 Ao+ Bo ko ekox Art B ky e
akoy | 2 2
+ A—” +B”k e ikix E /OO (BE) £ AG) e 7 ds forx >0
—2 n(x) = 2 ! ;0 A6 |
agkO 1 By — AO —ikox By — AI —ikyx
— |20 0 f ——— ke
o | 2 ne + ) 1€
By —A . K [*{BE)—A o
" 11 Ilk” elknx | —/ BE) A((Sg))}ée §:| for x < 0.
T Jo
(7.2)
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Figure 11. Vertical ice deflection is plotted against spatial distance for different values of ice thickness.
Compressive stress Q = 1.75+/D is taken for the study. (a) Evolution of ice deflection is depicted here at the
primary blocking point with upper and lower subplots due to one and multiple propagating modes, respectively.
(b) The same graph for the secondary blocking point.

The evolution of the plate deflection against spatial distance as the propagating wave
modes transit through primary and secondary blocking points is depicted in figure 11
for three different plate thickness values. While figure 11(a) deals with the transition
through the primary blocking point, the same at the secondary blocking point is illustrated
in figure 11(b). The top subplot in figure 11(a) shows the plate profile just before the
primary blocking at which an increase in the amplitude is observed around the crack
at x = 0. Otherwise, the wave profile is very regular away from the crack. The middle
subplot depicts the situation when primary blocking occurs. Since the incident wave gets
blocked at the primary blocking point, the wave environment gets very rough. A very high
plate amplitude suggests such a concentration of wave energy throughout the plate while
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Figure 12. Vertical ice deflection is plotted against spatial distance for different values of compressive stress
acting on the ice. Plate thickness is kept fixed as d = 1. (a) Evolution of ice deflection is depicted here at
primary blocking point with upper and lower subplots due to one and multiple propagating modes, respectively.
(b) The same graph for the secondary blocking point.

the regular pattern of the deflection starts deteriorating. After the primary blocking, the
wave with negative energy flux starts propagating and distributes the energy among three
wave modes. The superposition of three propagating wave modes makes the wave profile
irregular, but the wave amplitude diminishes compared to the case when primary blocking
occurs (lower subplot). It is also observed that the deflection is discontinuous in nature
near the crack for all three cases (before, after and at blocking frequencies). However, the
maximum amplitude is still larger than that of the case of a single propagating mode (from
the visual comparison with the top subplot). The effect of the wave with negative energy
flux can be seen from the deflection seen in x < 0. When the wave packet impinges on
the crack, it interacts with the wave profile on the x > 0 region and creates a different
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wave profile than observed in the x < 0 region. A further increase in 7 (equivalently,
decrease in w) creates the secondary blocking point at which the wave with negative
energy flux merges with one of the propagating modes. The nature of the irregularity
in the deflection profile becomes very prominent (bottom subplot of figure 115). Since one
of the waves responsible for this blocking point has negative energy flux, the ice deflection
is not as high (middle subplot) as was observed in the primary blocking point. After the
secondary blocking, the only remaining propagating mode has a smaller wavelength and
lower frequency compared to the case when one propagating mode was observed before
primary blocking. This mode does not have as significant an influence at the crack as was
found before primary blocking. The values of 7" for which the primary and secondary
blockings occur increase with an increase in plate thickness, and the corresponding wave
profiles get more dispersed (see the red curves corresponding to d = 1.2 m). However, the
qualitative nature of the profiles remains the same.

Figure 12 illustrates the same study for different values of the compressive stress while
keeping the plate thickness fixed. The pattern of the graphs is very similar that discussed
for figure 11. Just like the effect of plate thickness discussed earlier, a higher value of
compressive stress disperses the wave more.

8. Conclusion

Flexural-gravity wave scattering due to a crack is revisited by taking into account the
effects of wave blocking. Emphasis is placed on the blocking frequencies for a fixed
compression acting on the plate. A continuous transition of amplitudes of different
propagating modes is observed at the blocking frequency. An energy identity due to
the existence of those propagating modes is established using Green’s theorem and later
applied in the scattering matrix to identify the incident and transmitted wave modes when
the incoming wave frequency varies through the blocking frequencies. It is found that the
propagating wave mode with the highest value of wavenumber acts as the incident wave
during primary blocking. But, for secondary blocking, the opposite happens, and the wave
mode with the lowest wavenumber becomes the incident wave. Movements of the roots
of the dispersion relation, or equivalently the different wave modes, are presented in the
complex plane. The movement is aligned with the transition of individual wave amplitudes
through blocking points and also justifies the choice of the incident and transmitted wave
modes. Plate deflection at the primary blocking point is higher compared to that at the
secondary blocking point. The regular pattern of the plate deflection is distorted in between
due to the propagation of a wave having a negative energy flux.
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