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High Reynolds number is thought to be a fundamental condition essential for the
occurrence of log scaling in turbulent boundary layers. However, while log variation
of mean velocity is seen to occur at moderate Reynolds numbers in the traditional
boundary layer literature, log variations of higher-order moments are evident only at
much higher Reynolds numbers, as reported in recent experiments. This observation
suggests that, underlying the occurrence of log scaling in turbulent boundary layers,
there exists a more fundamental condition (apart from the largeness of Reynolds
number) – the requirement of self-similar evolution of a mean-flow quantity of
interest along a mean-flow streamline, i.e. the mean advection of the scaled mean
quantity of interest is required to be zero. Experimental data from the literature
provide strong support for this proposal.
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1. Introduction

The log scaling for the mean velocity in turbulent boundary layers (TBLs) has
been extensively studied in the literature. Recently, data from high-Reynolds-number
(high-Re) high-quality laboratory experiments have become available and have
convincingly shown that the region of log variation at high Reynolds numbers is
quite comprehensive, i.e. not only the mean velocity but also the variance (Marusic
et al. 2013; Vallikivi, Hultmark & Smits 2015) and higher-order even moments of
velocity fluctuation in the x direction (x is the wall-parallel coordinate along the flow)
show log variations over an overlapping range of wall-normal locations (Meneveau &
Marusic 2013; Vallikivi et al. 2015). With further analysis of these data sets, we find
that beyond δ+ of approximately 7000, the variances of velocity fluctuations in the
spanwise (z) and wall-normal (y) directions and the Reynolds shear stress also follow
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log variations over the same range of wall-normal locations (see figure 1a). When
data for the third-order moment (reconstructed from the skewness factor profiles)
from the experiments of Marusic et al. and Vallikivi et al. are analysed, we find that
this (odd) moment also follows log variation which, however, occurs at a much higher
Reynolds number (δ+ > 70 000) in comparison with the log scaling of even moments
(see figure 1b). Two questions therefore arise from these observations. (1) Why is
the log variation of the mean velocity in the inertial sublayer (ISL) evident even at
moderate Reynolds numbers whereas log variations of higher-order moments show up
only at much higher Reynolds numbers? (2) Why do log variations of odd moments
occur at much higher Reynolds numbers compared with those of even moments?
Towards answering these questions, we show that in TBL flows, the self-similarity of
a mean-flow quantity along a mean streamline (henceforth, streamwise self-similarity)
in the ISL results in the log variation of that quantity; this is equivalent to zero
advection of the quantity, scaled appropriately by the friction velocity uτ . Conversely,
we also show that the existence of log scaling of a scaled mean-flow quantity leads to
the zero-advection condition or streamwise self-similarity. Streamwise self-similarity
in the present context should not be confused with the more common notion of
self-similarity in the x direction (e.g. as in laminar boundary layers). This distinction
is crucial – it can be easily shown that Falkner–Skan solutions of laminar boundary
layers, while being self-similar in x, are not streamwise self-similar in general, i.e.
the mean advection in Falkner–Skan flows is not always zero (e.g. Blasius boundary
layer).

The present paper is organized as follows. Section 2 presents theoretical analysis of
the zero-advection condition and its relation to the occurrence of log scaling. In the
context of the present proposal, § 3 examines experimental data from the literature
on canonical zero-pressure-gradient (ZPG) TBL flows over a wide range of Reynolds
numbers. Section 4 summarizes the conclusions.

2. Zero-advection condition and log scaling in TBL flows

In a seminal work, Coles (1955) proposed the so-called streamline hypothesis
for TBLs according to which a necessary and sufficient condition for a universal
law of the wall for the mean velocity in the inner region is that the ratio 〈u/uτ 〉
be constant on streamlines of the mean flow (i.e. streamwise self-similarity). This
implies that the iso-y+ lines would be identical to the mean streamlines in the inner
region. Coles averred that ‘this result must surely be considered in any search for a
fundamental order and unity in the description of turbulent shear flows’ (Coles 1956).
In the present work, we build on this description to obtain a generalized streamline
hypothesis (streamwise self-similarity or zero advection) for higher-order moments
of fluctuating velocity. In particular, we shall consider advection of a scaled mean
quantity Q+ in a steady two-dimensional TBL flow,

ADV(Q+), 〈u〉 · ∇Q+ = 〈u〉
∂Q+
∂x
+ 〈v〉

∂Q+
∂y

. (2.1)

Here, 〈u〉 and 〈v〉 are the components of the mean velocity vector 〈u〉 in the x and y
directions respectively. It should be noted that 〈u〉 · ∇Q+ – dimensional advection of
non-dimensional Q+ – represents the spatial rate of change of Q+ along a mean-flow
streamline; Q+ could be the normalized mean velocity 〈u+〉 or generalized mixed
moments 〈u′m

+
v′n
+
〉

2/(m+n) of velocity fluctuations in the x and y directions; mixed
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FIGURE 1. Log scaling in high-Re TBL flows from the literature. Profiles of (a)
mean velocity 〈u+〉, variance 〈u′2

+
〉 in the x direction, wall-normal (y direction) variance

〈v′2
+
〉, spanwise (z direction) variance 〈w′2

+
〉 and Reynolds shear stress −〈u′

+
v′
+
〉 at δ+ =

10 768 (case TBHM1 of table 1; see Talluru et al. 2014), and (b) 〈u+〉, 〈u′2+〉 and
third-order moment 〈u′3

+
〉

2/3 at δ+ = 72526 (case VHS7 of table 1; see Vallikivi et al.
2015). The third moment data are reconstructed from figures 4(a) and 9(a) of Vallikivi
et al. The wall-normal distance is expressed in outer coordinates η= y/δ, and uτ =

√
τw/ρ

is the friction velocity, τw is the wall-shear stress, ρ and ν are respectively the density and
kinematic viscosity of the fluid, and the boundary layer thickness δ= δ99 is defined as the
wall-normal distance where 〈u〉 becomes 99 % of the free-stream velocity u∞ (see table 1).
The subscript + denotes non-dimensionalization using uτ for velocities and uτ and ν for
distances, and 〈 〉 indicates time averaging. The solid lines show least-squares log fits to
data over the comprehensive log region, shown by vertical dotted lines, with the extent
y+ > 3.6

√
δ+ to η6 0.12, i.e. approximately 35 % of a decade, in (a) and y+ > 3

√
δ+ to

η6 0.14, i.e. 125 % of a decade, in (b).

moments may be considered as generalizations of the even moments of u′
+

studied
in the literature (Meneveau & Marusic 2013).

In the inner region (including the ISL), the law-of-the-wall scaling for the mean
velocity in the x direction,

〈u〉 = uτ f (y+), (2.2)

along with the continuity equation, ∂〈u〉/∂x+ ∂〈v〉/∂y= 0, leads to

〈v〉 =−yf
duτ
dx
. (2.3)

Assuming that the law of the wall for the mean velocity holds, i.e. (2.2) and (2.3) are
valid, we proceed in the following sections to show that

(i) the zero-advection requirement of Q+ follows from its log variation with y (or
y+) and conversely

(ii) the log variation of Q+ with y (or y+) follows from its zero-advection
requirement.
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2.1. Zero advection of Q+ follows from its log variation with y
For Q+ = 〈u+〉, (2.2) gives ∂〈u+〉/∂x = [y(duτ/dx)/ν]df /dy+ and ∂〈u+〉/∂y =
(uτ/ν)df /dy+. Substitution of these expressions along with (2.2) and (2.3) in (2.1)
yields

ADV(〈u+〉)= 〈u〉
∂〈u+〉
∂x
+ 〈v〉

∂〈u+〉
∂y
= 0 (2.4)

in the entire inner region (including the ISL, i.e. the log scaling region) for arbitrary
values of δ+. This is consistent with the experimental observation of log variation for
mean velocity occurring even at moderate Reynolds numbers (δ+ of order 103; see,
for example, Fernholz & Finley 1996; DeGraaff & Eaton 2000). The slope of a mean
streamline in the inner region is dy/dx= 〈v〉/〈u〉 =−y(duτ/dx)/uτ and is equal to the
slope of an iso-y+ line there; the latter may be obtained from the condition d(yuτ )= 0.
Thus, mean streamlines and iso-y+ lines coincide in the inner region (including the
ISL), and there is no mean exchange (‘entrainment’) of fluid between the outer wake
region and the inner region. This, in essence, is Coles’ streamline hypothesis for mean
velocity (Coles 1955).

Now, we generalize this to higher-order moments of velocity fluctuations, such as
variance. Velocity fluctuations in the near-wall region are known to be influenced by
outer-scaled motions through the so-called amplitude modulation effects. Hence, in
this region, velocity fluctuation in the x direction can be expressed (Marusic, Mathis
& Hutchins 2010a) as

u′
+
(y+, η, t)= g1,u(y+, t)g2,u(η, t)+ g3,u(η, t), (2.5)

where t is the time coordinate, y+ = yuτ/ν (η = y/δ) is the wall-normal distance
in inner (outer) coordinates, g1,u is the statistically universal near-wall component
and g2,u and g3,u are respectively the amplitude modulation and linear superposition
effects of outer-scaled motions (Marusic et al. 2010a). Since the wall-normal velocity
fluctuation v′ is also modulated in a similar fashion to u′ (Talluru et al. 2014),
an expression for v′

+
may be written similarly to that for u′

+
given above. For a

generalized mixed moment Q+ = 〈u′m+ v
′n
+
〉

2/(m+n) in the inner region, these expressions
lead to the functional form Q+ = Q+(y+, η) or Q+(y+, δ+), where, in general, the
variables are not separable. Indeed, experiments show that the log variations of
variance of u′

+
at different Reynolds numbers in a TBL do not collapse in inner

as well as outer scaling but exhibit a systematic shift with δ+ (see figures 4a, 6a
and 6c in Vallikivi et al. 2015). Substitution of Q+ =Q+(y+, δ+) in the definition of
ADV(Q+) yields

ADV(Q+)=ADV(〈u′m
+
v′n
+
〉

2/(m+n))= uτ f
dδ+
dx

∂Q+
∂δ+

, (2.6)

which could become zero when

dδ+
dx
→ 0. (2.7)

This shows that even a complicated functional form such as Q+(y+, δ+) can result
in ADV(Q+) = 0 provided that the condition dδ+/dx → 0 is satisfied; the role of
∂Q+/∂δ+ towards explaining experimental observations of even and odd moments
will be discussed in § 4. Physically, the condition dδ+/dx→ 0 implies that the mean

851 R1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.506


S. A. Dixit and O. N. Ramesh

streamlines of the flow in the inner region (including the ISL) of a TBL flow tend to
be straight lines (dy/dx=〈v〉/〈u〉= const. along a mean streamline) and concomitantly
become orientated parallel to the wall (the slope dy/dx→ 0, see figure 4b). Thus, the
condition dδ+/dx→ 0 effectively reduces to [〈vA〉/〈uA〉 = 〈vB〉/〈uB〉]y+ , where 〈u〉 and
〈v〉 are measured at the same value of y+ in the inner layer (i.e. on the same mean
streamline) but at different measurement stations A and B along the x direction.

In order to see that the condition dδ+/dx→ 0 is closely approximated in canonical
ZPG TBLs only at high Reynolds numbers, we consider the so-called skin-friction law

S= κ−1 ln(δ+)+D, (2.8)

where S= u∞/uτ and D is a constant. Differentiation of both sides with respect to x
and rearrangement yield

dδ+
dx
= κ

u∞
ν

(
δ

S
dS
dx

)
, (2.9)

where κ , u∞ and ν are constants in a given ZPG TBL flow developing in the x
direction. Jones, Nickels & Marusic (2008) have shown that δ/S(dS/dx) → 0 as
δ+ → ∞ in ZPG TBL flows, implying that dδ+/dx → 0 in the limit of infinite
Reynolds number. Section 3 presents evaluation of different ZPG TBL experiments
in the literature with respect to the zero-advection condition.

As an interim summary, so far we have shown that in the ISL of a TBL flow, (i) the
functional form of the dimensionless mean velocity satisfies the corresponding zero-
advection condition (Coles 1955) for even moderate values of the Reynolds number
δ+, (ii) the functional form of the dimensionless generalized mixed moments satisfies
the corresponding zero-advection condition when dδ+/dx→0, and this is satisfied only
at high Reynolds numbers in canonical ZPG TBLs.

2.2. Log variation of Q+ with y follows from its zero advection
Starting from the premise ADV(Q+)= 0, one obtains

∂Q+
∂y
=−
〈u〉
〈v〉

∂Q+
∂x

, (2.10)

where the ratio 〈u〉/〈v〉, from (2.2) and (2.3), at any y in the inner region is

〈u〉
〈v〉
=−

uτ/(duτ/dx)
y

=
xs

ys
. (2.11)

Here, xs = −uτ/(duτ/dx) and ys = y are length scales in the x and y directions
respectively; ys = y is predicated on the existence of an ISL (Tennekes & Lumley
1972). If ∂Q+/∂x is independent of y, as we shall confirm a posteriori, then (2.10)
and (2.11) immediately lead to log scaling of Q+.

Before proceeding further, it is instructive to consider a kinematic interpretation of
the streamwise length scale xs. According to Coles (1955), xs geometrically represents
the distance, upstream of a streamwise measurement station, of the common point
of intersection (located on the solid wall) of all mean velocity vectors in the inner
region at that station (see figure 2). These vectors can be imagined to be emanating
from a virtual source point on the wall located a distance xs upstream. Coles (1955)
showed that the kinematic picture depicted in figure 2 immediately follows from the
law of the wall for the mean velocity. In a ZPG TBL, xs increases with the Reynolds
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ZPG TBL

Flat plate
Not a stre

amline

x

y Moving
source

FIGURE 2. Geometrical interpretation of the streamwise length scale xs in the inner layer
of a ZPG TBL following Coles (1955). The dashed lines represent the directions of the
mean velocity vectors 〈u1〉 and 〈u2〉 at two representative heights y1 and y2 in the inner
layer. The dashed–dotted line indicates the mean velocity profile.

number δ+ (see table 1), i.e. the virtual source point moves further upstream of the
measurement location. Therefore, mean streamlines in the inner region (including the
ISL) would tend to straight lines emanating from the virtual source (dashed lines in
figure 2) and would be nearly parallel to the wall (see figure 4b) at high Reynolds
numbers as dδ+/dx→ 0.

Next, one may write the asymptotic expansion (Van Dyke 1975) for Q+ in the ISL
as

Q+(y+; δ+)= ε0(δ+)h0(y+)+ ε1(δ+)h1(y+)+ · · · , (2.12)

where ε0, ε1, . . . are gauge functions (capturing δ+ dependence of Q+, if any) in
decreasing order such that Q+/ε0h0→ 1 and ε1/ε0→ 0 as δ+→∞, and h0, h1, . . .
are coefficients (capturing y+ dependence of Q+), where h0 is a constant of O(1).
It should be noted that for mean velocity Q+ = 〈u+〉, ε0, ε1, . . . are constants in
view of the law of the wall (2.2). For ZPG TBLs, the lower end of the log region
occurs at y+,1 = y1uτ/ν ≈ 3

√
δ+ and the upper end is located at η2 = y2/δ = 0.15, i.e.

y+,2 = 0.15δ+ (Marusic et al. 2013). The mean velocity profile in the log region is
given by 〈u+〉 = κ−1 ln(y+)+ B, where κ−1 is the slope in the semi-logarithmic inner
co-ordinates and B is the intercept. The maximum slope of the mean velocity profile
in the log region occurs at y+,1, and in the limit of δ+→∞ it is given by

lim
δ+→∞

d〈u+〉
dy+

∣∣∣∣
y+,1

=
1

κy+,1
= lim

δ+→∞

1
3κ
√
δ+
→ 0. (2.13)

Therefore, 〈u+〉 = ε0h0 is the lowest-order approximation for 〈u+〉 in the ISL and is
independent of y+ as well as δ+. For variance of u′

+
, i.e. Q+ = 〈u′2+〉, a recent work

(Monkewitz & Nagib 2015) suggests that 〈u′2
+
〉 in the inner region is likely to be

bounded and tends to a constant value (independent of y+) as δ+→∞. Therefore, to
the lowest order, 〈u′2

+
〉 = ε0h0 in the ISL. Extending this to the generalized moments

〈u′m
+
v′n
+
〉

2/(m+n), one may expect them to remain bounded and tend to their respective
constant values as δ+→∞; it should be noted that h0 and ε0 will, in general, be
different for different moments. With this, ∂Q+/∂x ∼ ε0h0/xs to the lowest order in
the ISL and (2.10) and (2.11) yield

∂Q+
∂y
∼

xs

ys

ε0h0

xs
∼
ε0h0

y
. (2.14)
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Integration of (2.14) yields Q+ ∼ ln(y), which may be written in inner and outer
coordinates respectively as

Q+ = Am,n ln(y+)+ Bm,n, (2.15)
Q+ = Am,n ln(η)+Cm,n. (2.16)

Here, Am,n, Bm,n and Cm,n are coefficients that, in general, depend on the Reynolds
number δ+. For the mean velocity, Am,n is κ−1 and is a constant for TBLs (Marusic
et al. 2010b). Lastly, we may now check a posteriori whether ∂Q+/∂x is indeed
independent of y. Towards this, we write ∂Q+/∂x = ∂Q+/∂y+[y(duτ/dx)/ν] +
∂Q+/∂δ+[dδ+/dx]. For the mean velocity, the second term is identically zero since
∂Q+/∂δ+ = 0 due to (2.2); for generalized mixed moments, this term tends to zero
at high Reynolds numbers due to dδ+/dx→ 0. Use of (2.15) in the first term leads
to ∂Q+/∂x=−Am,n/xs, which is independent of y.

To summarize, for TBL flows, if one starts with the assertion of zero advection of
Q+ in the ISL, log variation of Q+ follows, and vice versa.

3. Appraisal of experimental data from canonical ZPG TBLs

The physical basis for the analysis presented in § 2 is invariance of a generalized
scaled mean-flow quantity Q+ along a mean streamline in a given flow. This leads to
the consideration of dimensional advection ADV(Q+) being zero. However, in order
to compare the zero-advection conditions in different ZPG TBLs, a dimensionless
framework is required.

We consider dimensional and dimensionless advection operators ADV = u∂/∂x +
v∂/∂y and ADV+ = u+∂/∂x+ + v+∂/∂y+ respectively. Here, u+ = u/uτ , v+ = v/uτ ,
x+ = xuτ/ν and y+ = yuτ/ν; x is the distance from a suitable virtual origin measured
along the wall in the flow direction. For x/uτ (duτ/dx)� 1, these operators are related
as

ADV=
(

u2
τ

ν

)
ADV+, (3.1)

and ADV(Q+)= 0 is equivalent to ADV+(Q+)= 0. Using (3.1) in (2.6), one obtains

ADV+(Q+)= f
dδ+
dx+

∂Q+
∂δ+

, (3.2)

which tends to zero if dδ+/dx+→ 0. Using (2.9), one obtains

dδ+
dx+
= κ

(
δ

dS
dx

)
. (3.3)

Jones et al. (2008) have shown that δ(dS/dx)→ 0 as δ+→∞ in ZPG TBLs, implying
that dδ+/dx+→ 0 as well in the limit of infinite Reynolds number.

We now consider mean velocity data from Princeton, Melbourne and Stanford
experiments covering a wide range of Reynolds numbers 1000 < δ+ < 73 000 (see
table 1) and initially focus on the requirement x/uτ (duτ/dx)� 1 for (3.1) to hold.
To estimate x from experiments, variations of θ/δ and Cf with Rδ are required. Here,
θ is the momentum thickness, Cf = 2(uτ/u∞)2 is the skin-friction coefficient and
Rδ = δu∞/ν is the Reynolds number based on δ and u∞. Figure 3(a) shows that
each of θ/δ and Cf follows two distinct power-law curve fits corresponding to two
different regimes that cover the entire range of Reynolds numbers; these regimes will
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FIGURE 3. (a) Variation of Cf and θ/δ with Reynolds number Rδ and (b) variation of
dδ+/dx+ with Reynolds number δ+ for the experimental ZPG TBL data of table 1. The
lines indicate least-squares power-law curve fits to the data. The vertical dashed–dotted
lines indicate demarcations between different regimes discussed in detail in § 3.

be discussed in some detail shortly. Substitution of the equations of these curve fits
(depending on the regime) into the momentum integral equation Cf /2=dθ/dx for ZPG
TBLs (White 1994) and integration with the condition δ = 0 at x= 0 (virtual origin)
yield the expressions x/δ= 7.4375(Sδ+)0.1981 and x/δ= 47.0556(Sδ+)0.0508 for regimes
1 and 2 respectively (figure 3); the values of x in table 1 are computed using these
expressions. Further, duτ/dx may be computed using duτ/dx = −(u∞/δS2)δ(dS/dx),
wherein δ(dS/dx) may be estimated using (3.27) from Jones et al. (2008),

δ
dS
dx
=

S
κC1S2 − κC2S+C2

. (3.4)

It should be noted that C1 and C2 in (3.4) are integrals of (u∞ − 〈u〉)/uτ and (u∞ −
〈u〉)2/u2

τ from η= 0 to η= 1 and are universal constants for defect profile similarity.
Indeed, for all of the data of table 1, C1 and C2 are found to be fairly constant to
within ±7 % and ±10 % of the respective average values of 4.118 and 27.555. Table 1
shows that all flows meet the condition x/uτ (duτ/dx)� 1 quite well, i.e. (3.1) is valid.

Next, dδ+/dx+ is computed using (3.3) and (3.4) with κ = 0.4 and is plotted
in figure 3(b) against δ+. Again, two distinct power-law curve fits characterize the
regimes,

dδ+
dx+
= 0.0345δ−0.1396

+
, 1000 6 δ+ < 7000, (3.5)

= 0.0224δ−0.0902
+

, 7000 6 δ+ < 70 000, (3.6)

with an unmistakable switchover around δ+= 7000, which corresponds very well with
the onset of a discernible log scaling region for even moments; see figures 4(a) and
11(a,c,e) from Vallikivi et al. (2015) and figures 1 and 3 from Meneveau & Marusic
(2013). The regimes of figure 3(a,b) are identical and indicate consistent behaviour
of data. The first regime, characterized by (3.5), begins around δ+ = 1000, where a
discernible extent of mean velocity log scaling becomes apparent and continues to
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grow with the Reynolds number. Variances, higher-order moments and the Reynolds
shear stress do not exhibit log scaling in this regime. This regime is characterized
by a set of power-law curve fits that describe variations of Cf , θ/δ and dδ+/dx+,
with Reynolds number δ+ (figure 3). Around δ+ = 7000, discernible extents of log
scaling of even moments and the Reynolds shear stress become apparent, in addition
to the mean velocity, marking the onset of the second regime. Consistent with this,
the power-law curve fits of Cf , θ/δ and dδ+/dx+ also show a switchover, as seen
in figure 3. Finally, the third regime begins around δ+ = 70 000, beyond which odd-
order moments also start to follow log scaling in addition to already established log
variations of other quantities. The evidence towards the occurrence of the third regime
is very limited (see the question marks in figure 3) since the present upper limit of
the Reynolds number in laboratory experiments is close to δ+ = 70 000 and therefore
only one dataset (VHS7 from table 1 and figure 1b) shows the emergence of the
log scaling of the third-order moment. Therefore, further high-Re TBL experiments
are required to confirm and quantify the asymptotic log scaling of all moments in
extreme-Reynolds-number situations.

In regimes 1 and 2 of figure 3(b), dδ+/dx+ decreases with δ+, indicating that
dδ+/dx+→ 0 as δ+→∞, which in turn leads to ADV+(Q+)→ 0.

4. Conclusion

We have shown that zero advection, i.e. invariance along a mean-flow streamline, of
a scaled mean quantity (dimensionless mean velocity or a generalized mixed moment)
leads to log variation of that quantity in the ISL of a TBL flow. Conversely, the log
variation of such a quantity leads to the corresponding zero-advection condition in
the ISL. This is a generalization of a seminal result propounded by Coles (1955)
for log scaling of the mean velocity. An equivalent kinematic description of this
streamwise self-similarity is that the mean-flow streamlines essentially become straight
and concurrent, emanating from a virtual wall source located a very large distance
upstream of the measurement location, so that the condition dδ+/dx→ 0 is satisfied.
This is further equivalent to the condition of the ratio of the mean velocities in
the y and x directions remaining constant along a mean-flow streamline in the ISL;
the iso-y+ lines coincide with the mean streamlines in the inner layer, effectively
sheltering it from the outer wake influence, and, from this, streamwise self-similarity
in the ISL ensues.

It should be noted that the advection (on the left-hand side) in the dimensional/non-
dimensional governing equation for Q is ADV(Q) or ADV+(Q+). If Q+ = Q/up

τ ,
then these advection terms are related to the present ADV(Q+) as ADV(Q+) =
u−p
τ [ADV(Q) + (p/xs)] and ADV(Q+) = u2

τ/ν[ADV+(Q+) − u+(x/xs)∂Q+/∂x+]. It is
therefore clear that ADV(Q+) = 0, i.e. invariance of the scaled mean quantity Q+
along a mean streamline is not the same as ADV(Q)= 0 or ADV+(Q+)= 0 for the
near-wall region, as used in Townsend (1976), George & Castillo (1997) and Wosnik,
Castillo & George (2000). In fact, in developing flows such as TBLs, these two
approaches coincide only when xs→∞ as δ+→∞.

For the mean velocity in ZPG TBLs, the two-way relation between the zero-
advection condition and log scaling is satisfied in the ISL for arbitrary values of
the Reynolds number, and therefore log scaling of the mean velocity occurs even at
moderate Reynolds numbers that are capable of providing sufficient scale separation.
For higher-order moments, the zero-advection condition is satisfied only at high
Reynolds numbers when dδ+/dx→ 0, and this is consistent with the observation of
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FIGURE 4. Pictorial representation of the conditions for log scaling emerging from the
present work for canonical ZPG TBL flows at (a) moderate and (b) high Reynolds
numbers. The dashed–dotted lines represent mean-flow streamlines, and in the inner region
these are identical to the iso-y+ lines. One should notice the difference in the inclination
of a wake-region mean streamline in relation to the mean edge of the TBL in the two
cases. The mean streamlines in (b), at high Reynolds numbers, tend to be straight and
concurrent as if emanating from a virtual wall source at an infinite distance upstream.

log scaling of higher moments only at high Reynolds numbers (Marusic et al. 2013;
Vallikivi et al. 2015). Figure 4 summarizes pictorially the main results of the present
work.

In fully developed pipe and channel flows, (2.1) becomes degenerate, with each
term becoming zero individually. Equivalently, (2.11) becomes singular, and the
kinematic picture arising therefrom possibly consists of multiple virtual sources, at
various heights from the wall, located an infinite distance upstream. Hence, the
difference between TBLs and fully developed pipe/channel flows is subtle and needs
further study.

It is known that odd moments of velocity fluctuations are strongly influenced by
large-scale effects compared with even moments (Sreenivasan, Dhruva & Gil 1999;
Mathis et al. 2011); δ+ is a measure of the strength of these large-scale effects. In
our analysis, the factor ∂Q+/∂δ+ in (2.6) represents sensitivity of the moment under
consideration to variation of δ+. Therefore, at a given value of δ+, the magnitude of
∂Q+/∂δ+ may be expected to be smaller for an even moment compared with that
for an odd moment. This is perhaps why, compared with even moments, a much
smaller value of dδ+/dx (and a much higher value of δ+) is required in the case
of odd moments to satisfy the zero-advection condition and make their log scaling
evident. Experimental data from the literature suggest three broad Reynolds number
regimes: 1000 6 δ+ < 7000, log scaling of the mean velocity; 7000 6 δ+ < 70 000,
log scaling of even moments and the Reynolds shear stress in addition to the mean
velocity; δ+ > 70 000, log scaling of odd moments as well (see § 3).

To conclude, it has been shown that streamwise self-similarity of a mean-flow
quantity is a fundamental condition to be satisfied for the occurrence of log scaling of
that quantity in the ISL of a TBL flow. For ZPG TBLs, apart from providing a large
enough scale separation, increase of the flow Reynolds number is a means to satisfy
(for different moments) the streamwise self-similarity condition to a progressively
greater degree.
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