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The problem of a drop of arbitrary density and viscosity moving close to a vertical
wall under the effect of buoyancy is analysed theoretically. The case where the
suspending fluid is at rest far from the drop and that of a linear shear flow are
both considered. Effects of inertia and deformation are assumed to be small but of
comparable magnitude, so that both of them contribute to the lateral migration of the
drop. Expressions for the drag, deformation and migration valid down to separation
distances from the wall of a few drop radii are established and discussed. Inertial
and deformation-induced corrections to the drag force and slip velocity of a buoyant
drop moving in a linear shear flow near a horizontal wall are also derived.

1. Introduction
Theoretical studies of wall–particle interactions in low-Reynolds-number flows

began when Faxén (1921, 1924) derived a mathematical transformation by which
Stokes flow solutions around a spherical particle may be expressed in an integral
form enabling the no-slip boundary condition on a plane wall to be easily taken
into account. Early studies focused on wall-induced corrections to the drag force in
various geometries (see Happel & Brenner 1973 for a review). In a seminal series of
experiments, Segré & Silberberg (1962a, b) demonstrated that small neutrally buoyant
particles moving in a circular Poiseuille flow experience a lateral migration that tends
to accumulate them in an annulus with a well-defined radius. This discovery, combined
with the proof that Stokes-type solutions around a sphere cannot produce any lift
force (Bretherton 1962), provided a strong stimulation for studying small inertia effects
affecting rigid particles moving in wall-bounded shear flows. In a classical paper,
Saffman (1965) established the expression for the lift force experienced by a sphere
moving along the streamlines of an unbounded linear shear flow, under conditions
where inertia effects due to the shear dominate those due to the slip velocity between
the undisturbed flow and the sphere (see Stone 2000 for further developments of
Saffman’s theory). Nevertheless, Saffman’s theory could not explain the observations
of Segré & Silberberg (1962a, b) or those displayed by further experiments of the
same type. Hence it became obvious that wall effects had to be explicitly taken into
account in the determination of the lateral force experienced by the particle.

Cox & Brenner (1968) derived a general formal method allowing the migration
velocity of a rigid particle to be obtained in the case where the particle Reynolds
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116 J. Magnaudet, S. Takagi and D. Legendre

number is small compared to unity and the walls lie in the Stokes region of the flow
disturbance produced by the particle. A crucial point recognized in their investigation
is that, under the assumptions stated above, first-order inertial effects affecting particles
moving in a certain class of flows may be obtained through a regular expansion with
respect to the Reynolds number because wall-induced corrections make the velocity
disturbance decay as r−2 in the far field of the particle instead of decaying as r−1 in the
classical unbounded case (r denotes the distance from the centre of the particle). Under
similar assumptions, Ho & Leal (1974) combined the use of Faxén’s transformation
with that of a suitable form of Lorentz’s (1896) reciprocal theorem to evaluate the
leading-order contribution to the migration velocity of a neutrally buoyant particle
moving in a plane Couette or Poiseuille flow. This allowed them to predict that in
Couette flow the equilibrium position of the particle lies on the centreline, whereas
in Poiseuille flow there are two symmetric stable equilibrium positions located at
approximately 0.6 times the channel half-width from the centreline. These predictions
agree with the experimental observations of Halow & Wills (1970) and Segré &
Silberberg (1962a, b), respectively. Vasseur & Cox (1976) and Cox & Hsu (1977)
applied the general technique of Cox & Brenner (1968) to study the migration of a
rigid particle in various flows bounded by a single wall or by two walls. Their results
include the case where the fluid is at rest far from the particle, as well as plane Couette
and Poiseuille flows. Surprisingly, while the results of Vasseur & Cox (1976) and Ho
& Leal (1974) are in reasonable agreement in the core of Couette and Poiseuille flows,
for reasons that are unclear they disagree significantly as the walls are approached.

The case where the wall lies in the Oseen region of the flow disturbance, i.e. viscous
and inertia effects have a comparable magnitude near the wall, was studied by Vasseur
& Cox (1977) and McLaughlin (1993) for the situation of a fluid at rest far from
the particle and for a linear shear flow, respectively. Following Saffman (1965), they
determined the far-field disturbance by employing a point-force approximation and
used this outer solution to evaluate the force acting on the particle. This allowed
them to obtain the migration velocity of the particle and the wall-induced drag
correction as a function of the distance to the wall. A similar technique was used for
Poiseuille flow by Schonberg & Hinch (1989) who showed that increasing the channel
Reynolds number makes the equilibrium position of the particle move towards the
wall, as observed by Segré & Silberberg (1962a, b). Over the last two decades many
other theoretical investigations of the migration of buoyant or neutrally buoyant
rigid particles moving in linear or quadratic wall-bounded shear flows have been
carried out. The various contributions differ in the base flow they consider and in
the assumptions under which the results are derived. A comprehensive discussion of
these contributions and of their range of validity is provided by Hogg (1994).

Deformable drops and bubbles moving in shear flows or in wall-bounded flows
may also experience a lateral migration, even in the zero-Reynolds-number limit (Leal
1980). At first glance, both the governing equations and the boundary conditions are
linear in this case. However, the fact that the matching of velocities and stresses
through the drop surface must be satisfied on a deformed interface whose shape is
part of the solution of the problem induces a nonlinearity which may result in a
lift force. Existence of such a lateral force in wall-bounded shear flows was clearly
proved in several Couette flow experiments (e.g. Karnis, Goldsmith & Mason 1966;
Karnis & Mason 1967; Chan & Leal 1981; Smart & Leighton 1991) as well as in
numerical studies making use of the boundary integral technique (Uijttewaal, Nijhof
& Heethaar 1993; Uijttewaal & Nijhof 1995). The problem was first worked out
analytically by Chaffey, Brenner & Mason (1965) who predicted that a neutrally
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A buoyant drop moving near a wall 117

buoyant drop moving in a linear shear flow bounded by a single wall migrates away
from the wall with a migration velocity decreasing inversely with the square of the
separation distance between the drop and the wall. This problem was revisited and
broadened by Chan & Leal (1979) who considered the case of both Couette and
Poiseuille flows and included possible non-Newtonian effects of the suspending fluid
and corrections due to channel curvature. Chan & Leal combined the use of the
technique of domain perturbations with that of a suitable form of the reciprocal
theorem from which the migration velocity of the drop may be directly expressed
in the form of surface integrals on the undeformed drop surface. Their result for a
plane Couette flow of a Newtonian fluid essentially agrees with that of Chaffey et
al. (1965). For a Poiseuille flow of a Newtonian fluid, their prediction shows that the
migration velocity decreases inversely with the separation distance between the drop
and the wall; it also indicates that the direction of the lateral migration depends on
the viscosity ratio between the two fluids, and is directed towards the wall when the
two viscosities are comparable. Chan & Leal (1981) subsequently confirmed several of
their theoretical predictions, especially those related to curvature effects, by analysing
new experimental data obtained in a rotating Couette viscometer.

The above review highlights the fact that in available theoretical studies, inertial
effects have essentially been considered in the particular case of rigid particles. The
only work known to us where inertial effects have been considered for drops and
bubbles concerns the case of a spherical drop in a quadratic flow (Chan & Leal 1977),
the generalization of Saffman’s (1965) result to spherical drops and bubbles in an
unbounded linear shear flow (Legendre & Magnaudet 1997), and the extension of the
result of Vasseur & Cox (1977) to an inviscid spherical bubble moving in a quiescent
liquid (Takemura et al. 2002). The reason for this lack is that most experiments
carried out to date have used a very viscous suspending liquid (with a viscosity
typically 103 times larger than that of water) and almost neutrally buoyant drops,
because their primary aim was to improve the understanding of suspension rheology.
For this reason the particle Reynolds number was often several orders of magnitude
smaller than the capillary number, making deformation-induced migration dominant.
Nevertheless, recent experiments carried out by Takemura et al. (2002) with bubbles
rising in silicone oils of various viscosities have shown that the contribution of inertia
to the migration of millimetric bubbles is larger than or of the same order as that
of deformation for oils with a viscosity up to one hundred times that of water. This
makes clear the fact that in liquids of moderate viscosity, a reliable prediction of the
lateral migration of drops and bubbles generally requires effects of inertia to be taken
into account consistently with those of deformation.

Another limitation of most of the available predictions of wall-induced drag and
lift on particles and drops is that they are generally valid only at distances from
the closest wall larger than typically ten particle radii because only the leading-order
contribution of the wall effect is evaluated. This is due on the one hand to the
tediousness of the calculations, and on the other hand to the fact that in most studies
the focus has been on the prediction of the particle distribution in the core of the
flow, especially on the determination of equilibrium positions, rather than on the
particle motion close to the wall. Nevertheless there are many areas of two-phase
flows where the knowledge of forces acting on drops and particles moving at low
Reynolds number close to a wall, i.e. at separation distances only slightly larger
than the particle radius, is of importance. These include deposition of droplets and
particles on walls, bubbly flows in tubes, near-wall motion of drops in packed columns,
motion of particles in boundary layers, nucleate boiling on superheated walls, etc.
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Such situations are intermediate between those already treated in the contributions
discussed above and those in which the gap between the particle and the wall is
so small that the leading-order effect of the interaction must be evaluated by using
specific approximations taking into account the lubrication layer in the gap (see
O’Neill & Stewarson 1967 and Goldman, Cox & Brenner 1967 for the drag and
rotation of a rigid particle in this regime, Leighton & Acrivos 1985 and Krishnan &
Leighton 1995 for the inertial lift on a rigid sphere in contact with a wall). In contrast
with the case of a distant wall where the particle may be treated as a point-force
because its radius is negligible compared to the separation distance, dealing with
such intermediate situations requires the finite size of the particle to be taken into
account. In other words, in order for the solution to be valid fairly close to the wall
it is necessary to consider higher-order contributions in the multipole expansion of
the flow disturbance induced by the particle as well as in the interaction process with
the wall. Assuming that the wall lies in the Stokes region of the flow disturbance,
Cherukat & McLaughlin (1994) and Becker, McKinley & Stone (1996) followed such
an approach to determine the inertial lift force on a rigid sphere translating near a
wall in a linear shear flow and in a fluid at rest, respectively (actually the main focus
of Becker et al. was on non-Newtonian near-wall effects but they also considered
inertial corrections to the Newtonian situation). Starting from an exact solution of
Stokes equation valid whatever the distance between the particle and the wall, both
groups used the reciprocal theorem and evaluated numerically the corresponding
volume integral to obtain the lift force as a function of the distance to the wall.

The aim of the present contribution follows from the previous two remarks. Our
goal is to provide a consistent treatment of first-order inertial and deformation
effects on a drop of arbitrary viscosity moving almost parallel to a wall bounding a
Newtonian fluid, the ‘film’ thickness between the drop and the wall being typically of
the same order of magnitude as the drop radius. We consider in detail the situation
where the fluid is at rest far from the drop, the motion of which is driven by buoyancy.
Results with a more limited domain of validity (in terms of separation distance) are
also derived for the case of a uniform shear flow. The situation of a buoyant drop
moving in a linear shear flow near a horizontal wall is also briefly examined. The
solution procedure employed throughout the present investigation makes intensive
use of three classical mathematical tools. The exact boundary conditions on the
deformed drop surface are expanded into an infinite series of conditions on the
undeformed drop by using the technique of domain perturbations (Leal 1992, pp.
223–229, and Manga & Stone 1993). To obtain the zero-Reynolds-number velocity
disturbance induced by the drop in the presence of the wall, we employ the method of
reflections and use Faxén’s transformation to satisfy the no-slip condition at the wall
(see Happel & Brenner 1973, chap. 7, and Ho & Leal 1974). Finally, the lateral force
is found by writing an appropriate form of the reciprocal theorem and evaluating the
corresponding surface and volume integrals in which only the zero-Reynolds-number
solution about the undeformed drop in involved (Ho & Leal 1974; Chan & Leal
1979; Manga & Stone 1993).

The structure of the paper is as follows. In § 2 we formulate the problem and
derive the governing equations at the required order of approximation. The zeroth-
order solution for a drop in creeping motion parallel to the wall is obtained in § 3,
along with expressions for the wall-induced drag force and deformation. In § 4 we
solve the so-called complementary problem of a spherical drop in creeping motion
perpendicular to the wall. The solution of this problem is required to obtain the lift
(or migration) force acting on the drop through the use of the reciprocal theorem.
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A buoyant drop moving near a wall 119

The form of this theorem suitable for obtaining the inertial and deformation-induced
contributions to the lift force and the evaluation of the latter contribution are
described in § 5. Section 6 is devoted to the evaluation of the inertial lift force and
to a short discussion of the total force. Section 7 gives a brief account of the case
of a buoyant drop moving near a horizontal wall. A summary of the main results of
this investigation is given in § 8. Readers mainly interested in zero-Reynolds-number
results (drag and deformation) may concentrate on § 3 (resp. § 4) for the case of a drop
moving parallel (resp. perpendicular) to the wall. Those looking for characteristics
of the lateral migration may focus on § 5 (resp. § 6) for deformation-induced (resp.
inertial) migration near a vertical wall, and on § 7 for corresponding results near a
horizontal wall. Moreover, most results obtained in this work for the two extreme
cases of a bubble filled with a gas of negligible viscosity and a rigid sphere are
summarized in table 2 in § 8; the corresponding equation in the text for a drop of
arbitrary viscosity is also indicated in these tables.

2. Governing equations
We consider a drop of a Newtonian fluid of density ρ̃ and viscosity µ̃ moving in a

suspending Newtonian fluid of density ρ and viscosity µ under the effect of gravity
g (the effect of a non-zero shear rate γ̇ will be introduced later). The drop has an
undeformed radius R and moves at a time-dependent distance L from an infinite
vertical wall. Our goal is to find how the presence of the wall affects the shape
and trajectory of the drop in situations where deformation and inertial effects are
small, the density ratio ρ̄ = ρ̃/ρ and the viscosity ratio λ = µ̃/µ being arbitrary (see
however the remark at the end of § 3.1). To write down the governing equations of the
problem, we normalize distances by the undisturbed radius R and velocities by the
viscous-gravitational scale ρ|1− ρ̄|R2g/µ; this choice ensures that the vertical velocity
of the drop is of order unity whatever the distance L to the wall. Then the first two
relevant control parameters of the problem are the Bond number δ = ρ|1− ρ̄|R2g/γ,
γ denoting surface tension, and the Galileo number G = ρ2|1− ρ̄|gR3/µ2. These
parameters compare the buoyancy force to capillary and viscous effects, respectively.
Note that they play the role of the more familiar capillary and Reynolds numbers
in the present buoyancy-driven situation. We assume that δ, G and (ρ̄/λ)G are small
compared to unity and that the first two are a priori of a similar order of magnitude,
i.e. the Ohnesorge number Oh = G/δ = ρRγ/µ2 is O(1). The presence of the wall
introduces a third parameter into the problem, namely the length ratio κ = R/L
which compares the radius of the drop with the distance separating it from the
wall. All the dimensionless parameters defined above, as well as some others to be
introduced below, are listed in table 1.

In addition to the previous assumptions we also assume that time plays no direct
role in the present problem. This is reasonable because the dimensionless migration
velocity VM is expected to be much smaller than unity, so that the corresponding
time scale µ/(ρ|1 − ρ̄|RgVM) is larger by factor V−1

M than the viscous-gravitational
time scale µ/(ρ|1− ρ̄|Rg), which itself is larger by a factor G−1 than the viscous time
scale ρR2/µ (the magnitude of transient effects will be re-examined in § 7 in the case
of a buoyant drop moving near a horizontal wall). Therefore the only effect of the
time variation of L is to produce a quasi-steady drag force in the direction normal
to the wall. We use a Cartesian coordinate system (Ox1x2x3) centred at the centroid
O of the drop and moving with it, with x1 directed upwards and x3 perpendicular
to the wall and directed away from it; the unit vectors corresponding to directions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

29
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002002902


120 J. Magnaudet, S. Takagi and D. Legendre

Name Definition Interpretation

Density ratio ρ̄ = ρ̃/ρ Governs the magnitude of buoyancy effects
Viscosity ratio λ = µ̄/µ Governs the entrainment of the inner fluid
Inverse of separation κ = R/L Compares the particle size to the distance

to the wall
Bond number δ = ρ|1− ρ̄|R2g/γ Compares buoyancy effects to capillary effects
Galileo number G = ρ2|1− ρ̄|gR3/µ2 Compares buoyancy effects to viscous effects
Ohnesorge number Oh = G/δ Compares capillary effects to viscous effects
Dimensionless shear α = µγ̇/ρ|1− ρ̄|Rg Compares the imposed shear rate to the
rate buoyancy-induced shear

Rµ = (2 + 3λ)/2(1 + λ) Strength of the Stokeslet in the unbounded
solution

Dµ = λ/4(1 + λ) Strength of the dipole in the unbounded
solution

Rµ = 1/2(1 + λ) Mobility of the inner fluid in the
unbounded solution

RS = (2 + 5λ)/2(1 + λ) Strength of the stresslet in presence of a
linear shear

Table 1. Definition and interpretation of the dimensionless parameters of the problem.

x1, x2 and x3 are e1, e2 and e3, respectively (figure 1). Note that with this choice of
coordinates the wall is located at x3 = −1/κ.

Using the previous assumptions and keeping in mind that the drop can deform
only if the Bond number δ is non-zero, we assume that the shape of the interface
may be expanded in the form

r = 1 + δf(δ)
(x1

r
,
x2

r
,
x3

r

)
+ δ2f(δδ)

(x1

r
,
x2

r
,
x3

r

)
+ δGf(δG)

(x1

r
,
x2

r
,
x3

r

)
+ · · · , (1)

where r = ‖x‖ = (x2
1 +x2

2 +x2
3)

1/2 and f(δ), f(δδ), f(δG) . . . are unknown functions which
depend only on the angular position along the drop surface. With these notation and
definitions, the governing equations of the problem in the case where the fluid is at
rest at infinity are

∇ ·U = 0, ∇ · Ũ = 0,

∇ · Σ = GU · ∇U , ∇ · Σ̃ =
ρ̄G

λ
Ũ · ∇Ũ ,

U = −VB for x3 = −1/κ,

U → −VB for r →∞,
U · n = Ũ · n = 0

n×U = n× Ũ
Σ · n = λΣ̃ · n− 1− ρ̄

|1− ρ̄|x1n+
1

δ
(∇ · n)n

 for r = 1 + δf(δ) + · · · ,



(2a)

where Σ = −P I + ∇U + ∇TU (resp. Σ̃ = −P̃ I + ∇Ũ + ∇T Ũ ) is the stress tensor in
the outer (resp. inner) fluid (P and P̃ begin the corresponding modified pressures),
U (resp. Ũ ) is the velocity in the outer (resp. inner) fluid evaluated in the moving
frame, VB is the absolute velocity of the drop centroid, and n is the unit normal to the
interface directed into the suspending fluid. The last of (2a) may be integrated over
the drop surface to obtain an integral momentum balance. The momentum equation
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A buoyant drop moving near a wall 121

Outer (Oseen) region

VB
x1

x3= –1/ë

x3

Inner (Stokes) region

U = (αx3+1/ë)e3

x2

Figure 1. Sketch of the problem.

within the drop and the kinematic boundary condition at its surface imply that Σ̃
does not contribute to this integral balance; the constraint of constant surface tension
(no Marangoni effect) then yields the force balance∫

AB

Σ · n dS = −4

3
π

1− ρ̄
|1− ρ̄|e1, (2b)

where AB denotes the drop surface.
We assume that variables Φ = (U , Ũ , P , P̃ ,Σ, Σ̃,VB) can be expanded in the generic

form Φ = Φ(0) + δΦ(δ) + GΦ(G) + δ2Φ(δδ) + δGΦ(δG) + G2Φ(GG) + · · · . Actually, P̃ also
contains an O(1/δ) term because the leading-order approximation to the pressure
inside the drop must be PB = (1/δ)P̃ (1/δ) = 2/δ in order to satisfy Laplace’s law on
the undeformed drop. Using (1), the kinematic and dynamic boundary conditions at
the drop surface can be expanded in powers of δ and G (see Chan & Leal 1979 and
Manga & Stone 1993 for details). This yields the leading-order problem of creeping
flow around and inside a spherical drop:

∇ ·U (0) = 0, ∇ · Σ(0) = 0,

∇ · Ũ (0) = 0, ∇ · Σ̃(0) = 0,

U (0) = −V (0)
B for x3 = −1/κ,

U (0) → −V (0)
B for r →∞,

U (0) · er = Ũ (0) · er = 0

er ×U (0) = er × Ũ (0)

Σ(0) · er = λΣ̃(0) · er − 1− ρ̄
|1− ρ̄|x1er − (2f(δ) + ∇2f(δ))er

 for r = 1,



(3a)
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where er = x/r. The only non-zero component of V (0)
B lies along the x1-axis and is

determined by the zeroth-order expansion of (2b), namely

FD =

∫
AB0

Σ(0) · er dS = − 4
3
π

1− ρ̄
|1− ρ̄|e1, (3b)

where FD is the drag force on the drop and AB0 denotes the undeformed drop surface.
Similarly, the governing equations of the O(G) and O(δ) problems are found to be

∇ ·U (G) = 0, ∇ · Σ(G) = GU (0) · ∇U (0),

∇ · Ũ (G) = 0, ∇ · Σ̃(G) =
ρ̄G

λ
Ũ (0) · ∇Ũ (0),

U (G) = −V (G)
B for x3 = −1/κ,

U (G) → −V (G)
B for r →∞,

U (G) · er = Ũ (G) · er = 0

er ×U (G) = er × Ũ (G)

Σ(G) · er = λΣ̃(G) · er − (2f(δG) + ∇2f(δG))er

 for r = 1;



(4a)

∇ ·U (δ) = 0, ∇ · Σ(δ) = 0,

∇ · Ũ (δ) = 0, ∇ · Σ̃(δ) = 0,

U (δ) = −V (δ)
B for x3 = −1/κ,

U (δ) → −V (0)
B for r →∞,

U (δ) · er −U (0) · ∇f(δ) + f(δ) ∂U
(0)

∂r
· er

= Ũ (δ) · er − Ũ (0) · ∇f(δ) + f(δ) ∂Ũ
(0)

∂r
· er = 0

er ×
[
U (δ) + f(δ) ∂U

(0)

∂r

]
= er ×

[
Ũ (δ) + f(δ) ∂Ũ

(0)

∂r

]
Σ(δ) · er − Σ(0) · ∇f(δ) + f(δ) ∂Σ

(0)

∂r
· er

= λ

[
Σ̃(δ) · er − Σ̃(0) · ∇f(δ) + f(δ) ∂Σ̃

(0)

∂r
· er
]

+(2f(δ) + ∇2f(δ))∇f(δ) − (2f(δδ) + ∇2f(δδ)

−2(f(δ))2 + ∇f(δ) · ∇f(δ))er



for r = 1.



(4b)

In addition, the O(G) and O(δ) stress fields must satisfy the global constraint resulting
from (2b), i.e. ∫

AB0

Σ(G) · er dS =

∫
AB0

Σ(δ) · er dS = 0. (4c)

The goal is now to evaluate V (0)
B , V (δ)

B and V (G)
B so that the force balances (2b) and

(4c) are satisfied.
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3. The drag and shape of the drop

3.1. Solution at O(κ3)

To solve (3) we use the method of reflections (Happel & Brenner 1973, Chap. 7)
and seek a solution of the form U (0) = 1U

(0) + 2U
(0) + 3U

(0) + · · · where terms with
an odd index are required to satisfy the boundary conditions at the drop surface,
whereas terms with an even index result from the no-slip condition on the wall. This
method assumes inherently that the separation between the drop and the wall is
large, i.e. that κ is small compared to unity, so that the solution can be expanded
in powers of κ. However, we shall see that solutions accurate up to κ ≈ 0.5 may
be obtained by stopping the expansion at O(κ3). The first term of the expansion is
obviously the Hadamard–Rybczynski solution (Clift, Grace & Weber 1978, p. 33) for
the unbounded flow around and inside a spherical drop, namely

1U
(0) = V

(0)
B1

[
−e1 +

Rµ

2

(e1

r
+
x1x

r3

)
+ Dµ

(e1

r3
− 3

x1x

r5

)]
, (5a)

1Ũ
(0) = MµV

(0)
B1 [(1− 2r2)e1 + x1x], (5b)

where V (0)
B1 = V (0)

B · e1 is the rise/fall velocity of the drop and

Rµ =
2 + 3λ

2(1 + λ)
, Dµ =

λ

4(1 + λ)
=
Rµ − 1

2
, Mµ =

1

2(1 + λ)
=
Rµ − 6Dµ

2
. (6a)

Prefactors Rµ and Dµ determine the strength of the contributions of the stokeslet and
irrotational dipole (or Stokes degenerate quadrupole), respectively, in the unbounded
solution. In particular an inviscid bubble (i.e. a bubble filled with a gas of negligible
viscosity, thus implying a zero-shear-stress interfacial condition in the suspending liq-
uid) corresponds to Rµ = 1, Dµ = 0, while a rigid sphere is characterized by Rµ = 3/2,
Dµ = 1/4. The factor Mµ characterizes the mobility of the fluid inside the drop and
ranges from 1/2 for an inviscid bubble to zero for a very viscous drop. These ratios
play an important role in the present investigation, especially because they determine
the strength of the various contributions involved in the expression for the drag and
lift forces acting on the drop. Another prefactor to be frequently used below is

RS = Rµ + 4Dµ =
2 + 5λ

2(1 + λ)
. (6b)

Inserting the drag resulting from the velocity field (5a) into the force balance
(3b) yields the Hadamard–Rybczynski formula |V (0)

B1 | = (3Rµ)
−1. In the presence

of the wall, the local value of V (0)
B1 for finite κ differs from the above one, owing to

wall interaction; the unbounded prediction is then valid only in the limit of large
separations, i.e. κ → 0. Hence it must be kept in mind that in the present problem
V

(0)
B1 depends on κ.

To determine how the velocity field 1U
(0) is affected by the wall, it is particularly

convenient to use Faxén’s technique (Faxén 1921, 1924, see also Happel & Brenner
1973, p. 323, and Ho & Leal 1974). An outline of this technique is given in Appendix A
and the images of the elementary solutions involved in the velocity fields 2U

(0) and

4U
(0) are determined there. Using (A 3)–(A 4) truncated at O(κ3), we find that the first

reflection of the unbounded solution (5a) on the wall may be expressed near the drop
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in the form

2U
(0)(κr � 1) = V

(0)
B1 {(ID + DµI0)e1 + IS (x3e1 + x1e3)

+( 1
2
(IC2 + IC3)x

2
1 + IQ2x

2
2 + IQ3x

2
3)e1 − IC2x1x2e2− IC3x1x3e3}+O(κ4),

(7)

where ID = RµI
′
D , IS = RµI

′
S , IQ2 = RµI

′
Q2, etc., the primed quantities and the prefactor

I0 being given by (A 3b) and (A 4b), respectively. After long but straightforward
calculations, we obtain the velocity fields 3U

(0) and 3Ũ
(0) required to satisfy the

kinematic and dynamic boundary conditions at the drop surface, namely

3U
(0) = −V (0)

B1

{
(ID + DµI0)

[
Rµ

2

(e1

r
+
x1x

r3

)
+ Dµ

(e1

r3
− 3

x1x

r5

)]

+2IS

[
RS
x1x3x

r5
+ 2Dµ

(x3e1

r5
+
x1e3

r5
− 5

x1x3x

r7

)]
− V3

}
+ O(κ4), (8a)

3Ũ
(0) = MµV

(0)
B1 {−(ID + DµI0)[(1− 2r2)e1 + x1x]

+IS [(5r2 − 3)(x3e1 + x1e3)− 4x1x3x] + Ṽ3}+ O(κ4), (8b)

where RS is defined by (6b), and V3 and Ṽ3 denote the O(κ3) terms associated
with the quadratic contribution in 2U

(0). In the general case λ 6= 0, V3 (resp. Ṽ3) is
composed of fifteen (resp. nine) terms, including a stokeslet of strength −RµDµKD ,
with KD = I ′C2 + I ′C3 + 2(I ′Q2 + I ′Q3) = 1

4
κ3. To save space, we do not write these terms

explicitly. However, in the case of an inviscid bubble (λ = 0), the number of terms in
V3 drops drastically and we have

V3(λ = 0) =
IQ2

4

(
x2

2e1

r5
− e1

3r3
+
x1x

r5
− 5

x1x
2
2x

r7

)
+
IQ3

4

(
x2

3e1

r5
− e1

3r3
+
x1x

r5
− 5

x1x
2
3x

r7

)
− IC2

4

(
x1x2e2

r5
+
x1x

r5
− 5

x1x
2
2x

r7

)
−IC3

4

(
x1x3e1

r5
+
x1x

r5
− 5

x1x
2
3x

r7

)
+
IC2 + IC3

8

(
x2

1e1

r5
− e1

3r3
+ 3

x1x

r5
− 5

x3
1x

r7

)
+
KD

24

(e1

r3
− 3

x1x

r5

)
. (9)

From (8a) and (9) we see that the reflection of the stresslet on the wall produces
terms of O(κ4), while that of the irrotational and Stokes quadrupoles contributes only
at O(κ6). Consequently, only two additional reflections of the stokeslet are required
to obtain the complete velocity field truncated at O(κ3). This remark and (7)–(8)
allow us to conclude that the velocity field to be added to (5), (7)–(8) to obtain this
approximation is

k=7∑
k=4

kU
(0) = V

(0)
B1

{
I2
D(1− ID)

[
−e1 +

Rµ

2

(e1

r
+
x1x

r3

)
+ Dµ

(e1

r3
− 3

x1x

r5

)]
− IDIS

×
[
(x3e1 + x1e3)− 2RS

x1x3x

r5
− 4Dµ

(x3e1

r5
+
x1e3

r5
− 5

x1x3x

r7

)]}
+ O(κ4),

(10a)
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A buoyant drop moving near a wall 125∑
k=5,7

kŨ
(0) = MµV

(0)
B1 {I2

D(1− ID)[(1− 2r2)e1 + x1x]

−ISID[(5r2 − 3)(x3e1 + x1e3)− 4x1x3x]}+ O(κ4). (10b)

The drag force may now be obtained by summing the strength of the stokeslets
in (5a), (8a), (10a) and multiplying by −4πV (0)

B1 , or equivalently by applying Faxén’s
formula. In the present notation, Faxén’s formula giving the drag force experienced
by a drop moving in an arbitrary flow is (Hetsroni & Haber 1970; Kim & Karrila
1991, p. 78)

FD = 4π{Rµ(−V (0)
B + 2U

(0)|x=0 + 4U
(0)|x=0 + · · ·) + Dµ∇2(2U

(0)|x=0 + · · ·)}. (11)

Here this yields

FD = −4πV (0)
B1

{
Rµ

(
3∑
n=1

(−1)nInD − Dµ(I0 +KD)

)}
e1

= −4πRµV
(0)
B1

(
1 + 3

8
Rµκ+ 9

64
R2
µκ

2 +

(
27
512
R3
µ − Dµ

2

)
κ3

)
e1 + O(κ4). (12)

All coefficients on the right-hand side of (12) are positive, implying that the drag
is increased by the presence of the wall. This increase arises because as the drop
moves along the wall, it displaces fluid and this displacement generates higher local
strain rates compared to the unbounded situation, owing to the no-slip condition on
the wall. The above expression for FD may then be inserted into (3b) to obtain the
rise/fall velocity V (0)

B1 of the drop as a function of the dimensionless distance κ. We
note that Shapira & Haber (1988) determined the O(κ)-correction to the drag for a
drop moving in a quiescent liquid bounded by two parallel walls. When the drop is
close to one of the walls, it can be shown that their correction tends to the factor
3
8
Rµκ found in (12).

In the limit λ→ 0, (12) yields for an inviscid bubble

FD = −4πV (0)
B1

(
1 + 3

8
κ+ 9

64
κ2 + 27

512
κ3
)
e1 + O(κ4). (13a)

Similarly, Faxén’s result for a solid sphere moving parallel to a wall (Happel &
Brenner 1973, p. 327), is recovered by considering the limit λ→ ∞, in which case we
obtain

FD = −6πV (0)
B1

(
1 + 9

16
κ+ 81

256
κ2 + 217

4096
κ3
)
e1 + O(κ4). (13b)

3.2. The deformation at O(κ3)

Having determined the velocity field at O(κ3) we can now obtain the deformation
f(δ) at the same order of approximation. This requires evaluating the normal stress
corresponding to the solution derived above and using the last of (3a). Since the
normal stress produced by the unbounded solution (5a) and (5b) is exactly balanced
by that due to the hydrostatic pressure (Batchelor 1967, p. 228), the deformation
is only due to the normal stress produced by the linear and quadratic terms in

2kU
(0)(k > 1) and the associated terms in 2k+1U

(0) and 2k+1Ũ
(0). Then, requiring that

the centroid of the drop always coincides with the origin O of the coordinate system,
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0 1 2 3
ë–1

Figure 2. The shape of a deformed drop moving parallel to the wall as predicted by (14b) for
κ = 0.5 and 0.67 (the rise/fall velocity is taken as unity and the Bond number is arbitrarily set to
0.5): ——, λ = 0; · · · · · ·, λ = 1; – – –, λ→∞.

we find

f(δ) = 2f
(δ) + 3f

(δ) + O(κ4) = V
(0)
B1

{
(4Rµ − 5Dµ)IS (1− ID)

x1x3

r2

+
(

5
4
Rµ − 2Dµ

) x1

r

[
IC2 + IC3

2

(
x2

1

r2
− 3

5

)
+ (IQ2 − IC2)

(
x2

2

r2
− 1

5

)
+(IQ3 − IC3)

(
x2

3

r2
− 1

5

)]}
+ O(κ4). (14a)

Replacing the prefactors by their value and introducing the angular coordinates (θ, ϕ)
such that x1/r = cos θ, x2/r = sin θ cosϕ, x3/r = sin θ sinϕ, this result may also be
expressed in the form

f(δ) = V
(0)
B1Rµ

{
3

128

16 + 19λ

1 + λ
κ2
(
1 + 3

8
Rµκ

)
sin 2θ sinϕ

+
27

10240

10 + 11λ

1 + λ
κ3[(5 cos 3θ − cos θ) sin2 ϕ+ 4 cos θ cos2 ϕ]

}
+ O(κ4). (14b)

This deformation is due to the O(κ2) strain rate produced by the relative motion of
the drop with respect to the wall. Predictions of (14b) are plotted in figure 2 for
two different separation distances from the wall. Equation (14b) and figure 2 show
that at the present level of approximation, the deformation of the drop is composed
of two different modes. The first is due to the uniform strain associated with the
first two reflections of the stokeslet on the wall. The corresponding deformation is
maximum along the diagonals x3 = ±x1 and takes the same form as that experienced
by a drop held fixed in an unbounded linear shear flow (Taylor 1932, 1934). We shall
refer to this mode as mode 2 since it produces two maxima in the local radius of
the drop. The second mode, mode 3 say, results from the quadratic flow induced by
the first reflection of the stokeslet on the wall; the deformation due to this mode
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A buoyant drop moving near a wall 127

is symmetric with respect to the plane x3 = 0. The prefactors (16 + 19λ)/(1 + λ)
and (10 + 11λ)/(1 + λ) corresponding to each of these two modes are those found
in previous studies dealing with drop deformation in linear and quadratic shear
flows, respectively (e.g. equation (4.16a) of Chan & Leal 1979). We have compared
the leading-order term in the right-hand side of (14b) with the result of Shapira &
Haber (1988) who determined the mode-2 deformation of a drop moving between
two parallel walls. It turns out that the present prediction agrees with their result in
the limit case where the drop is close to one of the walls.

It must be kept in mind that, starting from an undeformed shape, the characteristic
time required to reach the quasi-steady state described by (14a, b) increases linearly
with 1 + λ for a given density ratio ρ̄. Hence the present quasi-steady solution is
reached in a much shorter time for an inviscid bubble than for a very viscous drop.
Moreover the present solution is strictly valid only for λ < O(1/δ), since in the
opposite limit λ > O(1/δ) the deformation is determined by the kinematic condition
at the interface, rather than by the normal stress balance (Taylor 1934; Cox 1969;
Frankel & Acrivos 1970). Hence in practice the solutions derived in this paper for the
deformation and deformation-induced migration are essentially valid for λ = O(1);
when these solutions are discussed ‘in the limit of a very viscous drop’ it must be
understood that we assume that conditions λ→∞, δ → 0, and λδ � 1 are satisfied.

3.3. A higher-order approximation of drag and deformation

The result (14b) is certainly accurate when the drop moves at some radii from the wall.
In contrast, for small separations (κ larger than 1/3, say), higher-order contributions
may change significantly the strength of the deformation. To improve the accuracy of
the above results in this situation, while keeping the additional effort reasonable, we
perform a partial expansion of the velocity field U (0) up to terms of O(κ5). We select
this order of approximation for two reasons. First it is clear that the reflection of the
stresslet must be included in the process in order to improve the accuracy close to the
wall. Since this reflection produces a stokeslet at O(κ4) and a new stresslet at O(κ5),
improving the prediction of the deformation requires terms of O(κ5) to be considered.
Second, the lowest-order term produced by the reflection of the irrotational and
Stokes quadrupoles in (12a)–(13) is of O(κ6). To keep the calculations simple, we
avoid considering this reflection by stopping the process at O(κ5).

Using results (A 5a, b) for the image of the stresslet involved in (8a) and considering
five (resp. one) reflection(s) of the Stokeslet (resp. the dipole) of (5a) together with
the various singularities induced by 2U

(0) + 4U
(0) + · · · and their own reflections, we

can write the velocity field up to terms of O(κ5) in the condensed form
k=11∑
k=1

kU
(0) = V

(0)
B1

{
KSD

[
−e1 +

Rµ

2

(e1

r
+
x1x

r3

)
+ Dµ

(e1

r3
− 3

x1x

r5

)]
+KSS

[
(x3e1 + x1e3)− 2RS

x1x3x

r5
− 4Dµ

(x3e1

r5
+
x1e3

r5
− 5

x1x3x

r7

)]
+KR(x3e1 − x1e3) +UQ + T 3 + T 4 + T 5

}
+ O(κ6), (15a)

and
k=5∑
k=1

2k+1Ũ
(0) = V

(0)
B1 {MµKSD[(1− 2r2)e1 + x1x] +KR(x3e1 − x1e3)

+MµKSS [(5r2 − 3)(x3e1 + x1e3)− 4x1x3x] + T̃ 3 + T̃ 4 + T̃ 5}+ O(κ6),

(15b)
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3.5

3.0

2.5

1.5

1.0

2.0

F
D (ë)

F
D (0)

0 0.2 0.4 0.8 1.00.6
ë

Figure 3. The wall-induced correction to the drag: – – –, λ = 0, equation (13a); · · · · · ·, λ→∞,
equation (13b); — —, λ = 0, equation (16a); ——, λ→∞, equation (16b).

with

UQ = ( 1
2
[KSO(IC2 + IC3) + Dµ(IDC2 + IDC3)]x

2
1 + [KSOIQ2 + DµIDQ2]x

2
2

+KSOIQ3x
2
3)e1 − [KSOIC2 + DµIDC2]x1x2e2

−[KSOIC3 + DµIDC3]x1x3e3 + O(κ6). (15c)

Here T 3 and T̃ 3 denote the various terms due to the quadratic flow UQ (except
the stokeslet and the associated dipole, which are explicitly taken into account in
KSD), and T 4, T̃ 4,T 5 and T̃ 5 are the O(κ4) and O(κ5) terms that induce mode-4 and
mode-5 deformations. In view of the amount of algebraic manipulations required and
of the expected smallness of the associated deformations, we do not calculate these
contributions explicitly. The numerical prefactors KSD,KSS , KR and KSO involved in
(15a)–(15c) are given in Appendix B.

Multiplying KSD by −4πRµV
(0)
B1 yields the drag force on the particle, correct up to

O(κ5). In the case of an inviscid bubble, we obtain

FD ≈ −4πV (0)
B1

[
1− 3

8
κ− 3

64
κ4
]−1

e1. (16a)

Similarly, we have for a very viscous drop or a rigid sphere

FD ≈ −6πV (0)
B1

[
1− 9

16
κ+ 1

8
κ3 − 45

256
κ4 − 1

16
κ5
]−1

e1, (16b)

which is Faxén’s well-known result (Happel & Brenner 1973, p. 327). According to
the detailed measurements of Ambari, Gauthier–Manuel & Guyon (1983), the drag is
very accurately predicted by (16) down to separations as small as κ−1 ≈ 1.01. Having
recovered Faxén’s result as a particular case make us confident that the expression
(B 5) for KSD and the numerical coefficients it involves are correct whatever λ. The
O(κ3) and O(κ5) approximations of the drag force corresponding to the two limits
λ = 0 and λ → ∞ are plotted in figure 3. It is seen that they do not differ much
from each other whatever κ for an inviscid bubble. In contrast, in the limit of a very
viscous drop, (16b) is found to agree closely with (13b) for κ 6 0.6 but not for smaller
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separations, and the difference between the two approximations is more than 60%
for κ→ 1.

According to (15b), the fluid inside the drop has an average rotation rate Ω = Ω ·e2

proportional to the prefactor KR . In the limit of an inviscid bubble, (B 3) yields

Ω = − 3
128
κ5V

(0)
B1 + O(κ6). (17a)

However, this rotation is immaterial since it affects only the surface of the bubble.
For a rigid sphere or a very viscous drop we recover Faxén’s result

Ω = 3
32
κ4
(
1− 3

8
κ
)
V

(0)
B1 + O(κ6). (17b)

Interestingly the sign of Ω is different in the two limits considered above. Consequently,
for a low enough viscosity ratio, there exists a distance from the wall at which the
fluid inside the drop does not rotate at all. Moreover the fact that the sign of Ω
changes with the viscosity ratio λ indicates that the origin of the near-wall rotation is
quite subtle in the sense that its sign is not determined entirely by the wall but also
depends on the mobility of the suspending fluid at the drop surface.

To obtain the new approximation of the deformation, we just have to note that
the prefactor IS (1 − ID) in (8a)–(10a) has been replaced by KSS in (15a) while the
prefactors of the quadratic terms in (7) have been replaced by those of (15c). Using
(B 2), this yields immediately the improved approximation of the deformation as

f(δ) = V
(0)
B1

{
16 + 19λ

4(1 + λ)
KSS

x1x3

r2
+

10 + 11λ

8(1 + λ)

x1

r

[
K2 +K3

2

(
x2

1

r2
− 3

5

)

+K2

(
x2

2

r2
− 1

5

)
+K3

(
x2

3

r2
− 1

5

)]}
+M4 +M5 + O(κ6), (18)

with K2 = KSO(IQ2− IC2) +Dµ(IDQ2− IDC2), K3 = KSO(IQ3− IC3)−DµIDC3 (see (A 3b)–
(A 4b)), M4 and M5 denoting fourth- and fifth-order deformations produced by terms
T 4, T̃ 4,T 5 and T̃ 5 of (15a, b). In the limit of an inviscid bubble, (18) shows that the
mode-2 contribution f(δ)

2 to f(δ) is

f
(δ)
2 = 3

8
V

(0)
B1κ

2
{[

1 + 3
8
κ
(
1 + 3

8
κ+ 73

64
κ2
)]

sin 2θ sinϕ, (19a)

while in the limit of a very viscous drop we have

f
(δ)
2 = 171

256
V

(0)
B1κ

2
{[

1 + 9
16
κ
(
1− 47

144
κ+ 9227

6912
κ2
)]

sin 2θ sinϕ. (19b)

Predictions of (14b) (for mode 2) and (19) are compared in figure 4 for the particular
orientation θ = π/4, ϕ = π/2. This comparison indicates that the strength of mode
2 is significantly different in the two approximations. Equations (19) predict about
40% more deformation that (14b) for κ→ 1 and the difference is still about 8% for
κ = 1/2. Most of the difference is due to the factor ISS in the prefactor KSS , i.e. to
the stresslet induced by the first reflection of the stresslet present in the velocity field

3U
(0). We note that the dipole tends to reduce the deformation, since all contributions

multiplied by Dµ in (B 2) are negative. Takemura et al. (2002) compared the prediction
(19a) with a detailed experimental determination of the mode f2 for millimetric air
bubbles. They found a very good agreement over the whole range of separations
covered by their experiments, i.e. κ 6 0.6 (see their figure 14).

3.4. Linear shear flow

The results established above may be used to obtain, with very little additional effort,
the O(κ3)-approximation of the drag force and deformation of a buoyant drop moving
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Figure 4. Evolution of the mode-2 deformation with the distance to the wall: – – –, λ = 0,
equation (14b); · · · · · ·, λ → ∞, equation (14b); — —, λ = 0, equation (19a); ——, λ → ∞,
equation (19b).

in a linear shear flow bounded by a single wall. For this purpose, let the undisturbed
dimensionless velocity field be defined by†

U∞(x3) = α

(
x3 +

1

κ

)
e1. (20)

Then the slip velocity between the drop and the undisturbed flow is VS = VB−(α/κ)e1,

and the effects of this slip velocity are obtained by replacing VB (resp. V (0)
B1 ) by VS (resp.

V
(0)
S1 = V

(0)
B1 − α/κ) in all equations of §§ 3.1 and 3.2. Using (8a, b), we find immediately

that the contribution of the shear to be added to the unbounded solution (5a, b) is

1U
(0)
α = α

{
x3e1 −

[
RS
x1x3x

r5
+ 2Dµ

(x3e1

r5
+
x1e3

r5
− 5

x1x3x

r7

)]}
, (21a)

1Ũ
(0)
α =

α

2
{(x3e1 − x1e3) +Mµ[(5r

2 − 3)(x3e1 + x1e3)− 4x1x3x]}. (21b)

To obtain the complete solution at O(κ3) we only need to consider the reflection
of the stresslet since the reflection of the quadrupole produces only terms of O(κ4).
Using (A 5) and (15a, b) we find that this reflection induces the velocity fields (to be
added to (8a, b))

k=5∑
k=2

kU
(0)
α = αRS

{
ISD(1− ID)

[
−e1 +

Rµ

2

(e1

r
+
x1x

r3

)
+ Dµ

(e1

r3
− 3

x1x

r5

)]
−ISR(x3e1 − x1e3) + 2ISS

[
− 1

2
(x3e1 + x1e3) + RS

x1x3x

r5

+2Dµ

(x3e1

r5
+
x1e3

r5
− 5

x1x3x

r7

)]}
+ O(κ4), (22a)

† Given the scaling defined in § 2, the dimensional shear rate is then γ̇ = αρ|1− ρ̄|Rg/µ.
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k=3,5

kŨ
(0)
α = αRS{MµISD(1− ID)[(1− 2r2)e1 + x1x]− ISR(x3e1 − x1e3)

−MµISS [(5r2 − 3)(x3e1 + x1e3)− 4x1x3x]}+ O(κ4). (22b)

Equation (22a) shows that the shear induces a stokeslet of strength αRSRµISD(1− ID).
Combining this result with (12), we see that the drag force experienced by the drop
is now

FD = −4πRµ

{
V

(0)
S1

(
1 + 3

8
Rµκ+ 9

64
R2
µκ

2 +

(
27
512
R3
µ − Dµ

2

)
κ3

)
+
α

8
RSκ

2
(
1 + 3

8
Rµκ

)}
e1 + O(κ4). (23a)

In the limit λ → ∞ the shear increases the drag by 15
8
πακ2(1 + 9

16
κ), a prediction in

agreement with that of Halow & Wills (1970). From (23a) one deduces that in the
case of a neutrally buoyant drop the condition FD = 0 yields the slip velocity

V
(0)
S1 = −α

8
RSκ

2 + O(κ4). (23b)

Therefore the drop lags slightly behind the fluid.† From (21)–(22) we also conclude
that the fluid inside the drop rotates at an average rate Ω = 1

2
α(1− 1

8
RSκ

3) and that
the mode-2 contribution to the deformation of the drop is

f
(δ)
2 =

16 + 19λ

8(1 + λ)

[
α
(
1 + 3

8
RSκ

3
)

+ 3
8
V

(0)
S1 κ

2Rµ
(
1 + 3

8
Rµκ

)
+ O(κ4)

] x1x3

r2
. (24)

The deformation is aligned with the imposed strain and its leading-order expression
is of course identical to that found by Taylor (1932, 1934) in an unbounded linear
shear flow. The dominant contribution due to the wall is still that determined in (14a)
if V (0)

S1 is O(1); in contrast, if the drop is neutrally buoyant the contribution of the
slip velocity becomes of O(κ4) and the leading effect of the wall occurs through the
factor 3

8
αRSκ

3.

4. The complementary problem
Instead of solving completely the O(G) and O(δ) problems corresponding to (4a, b),

we shall follow the technique used by Ho & Leal (1974) and Chan & Leal (1979), i.e.
we shall determine the migration velocity by taking advantage of a suitable form of
the reciprocal theorem. In order to do so, we first need to solve the ‘complementary’
problem of a spherical drop moving perpendicularly to the wall with a unit velocity
e3 under creeping flow conditions. The governing equations of the problem are

∇ · u = 0, ∇ · σ = 0,
∇ · ũ = 0, ∇ · σ̃ = 0,
u = −e3 for x3 = −1/κ,
u→ −e3 for r →∞,
u · er = ũ · er = 0
er × u = er × ũ
er × (σ · er) = λer × (σ̃ · er)

 for r = 1,


(25)

† For a neutrally or an almost-neutrally buoyant drop, the scaling defined in § 2 is inappropriate;
the correct velocity scale must then be based on the shear velocity, i.e. the velocity difference over
one drop radius. With this re-scaling, the dimensionless shear rate α becomes α ≡ 1.
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where σ = −pI + ∇u + ∇Tu and σ̃ = −p̃I + ∇ũ + ∇T ũ are the corresponding stress
tensors and p and p̃ are the associated pressures. Note that the normal stresses
obtained by solving (25) will generally be discontinuous at the drop surface. The
solution in unbounded flow is obviously

1u = −e3 +
Rµ

2

(e3

r
+
x3x

r3

)
+ Dµ

(e3

r3
− 3

x3x

r5

)
, (26a)

1ũ
(0) = Mµ[(1− 2r2)e3 + x3x]. (26b)

The reflection of the stokeslet and dipole involved in (26a) is obtained by using
techniques similar to those employed before; the corresponding results are given by
(A 6)–(A 7) of Appendix A. Expanding the first reflection of the complete unbounded
solution in the vicinity of the drop, we then find

2u(κr � 1) = (JD + DµJ0)e3 + JS (x− 3x3e3)

−JC(x1x3e1 + x2x3e2) + (JCx
2
3 + JQ(x2

1 + x2
2))e3 + O(κ4), (27)

where JD = RµJ
′
D , etc. the primed quantities and the prefactor J0 being given by

(A 6b) and (A 7b), respectively. To determine u and ũ up to terms of O(κ3) we employ
the same procedures as in the derivation of (14a, b). We then obtain

7∑
k=3

ku = (−JD + J2
D − J3

D − DµJ0)

[
Rµ

2

(e3

r
+
x3x

r3

)
+ Dµ

(e3

r3
− 3

x3x

r5

)]
−JS (1− JD)

[
RS

(
x

r3
− 3

x2
3x

r5

)
− 6Dµ

(
x

r5
+ 2

x3e3

r5
− 5

x2
3x

r7

)]
−J2

D(1− JD)e3 − JSJD(x− 3x3e3) + v3 + O(κ4), (28a)

k=7∑
k=2

kũ
(0) = Mµ{(−JD + J2

D − J3
D − DµJ0)[(1− 2r2)e3 + x3x]

+3JS (1− JD)[(r2 + 2x2
3 − 1)x+ (3− 5r2)x3e3] + ṽ3}+ O(κ4), (28b)

where v3 and ṽ3 denote the O(κ3) terms due to the quadratic contribution in 2u.
Again v3 includes a stokeslet of strength −RµDµKDC , with KDC = 2(J ′C + 2J ′Q) = κ3.
Applying Faxén’s formula to the sum of (26a), (27) and (28a), the drag force on the
drop is found to be

FDC = −4πRµ

(
3∑
n=0

(−1)nJnD − Dµ(J0 +KDC)

)
e3 + O(κ4). (29)

In the case of an inviscid bubble, (29) yields

FDC = −4π
(
1 + 3

4
κ+ 9

16
κ2 + 27

64
κ3
)
e3 + O(κ4), (30a)

whereas for a solid sphere or a very viscous drop it becomes

FDC = −6π
(
1 + 9

8
κ+ 81

64
κ2 + 473

512
κ3
)
e3 + O(κ4). (30b)

The latter result agrees with that of Wakiya, reported by Happel & Brenner (1973,
p. 330) (see § 7 for a discussion on the validity of (29)–(30)). Again we see that the
presence of the wall increases the drag force. Comparing with (13a, b) reveals that this
increase is larger than in the situation where the drop moves parallel to the wall (the
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A buoyant drop moving near a wall 133

leading-order term in (30) is twice that in (13)). This may be readily understood by
noting that the flow about a particle moving perpendicular to the wall involves highly
curved streamlines, as they are perpendicular to the wall near the symmetry axis of
the motion and parallel to it near the wall. Hence high strain rates are generated
near the wall, thus increasing dramatically the force required to move the drop when
it comes close to the wall.

We note in passing that if we provisionally allow the drop to deform (i.e. we add the
normal stress balance to the set of equations (25)), the corresponding deformation may
easily be predicted from (27)–(28). To obtain this deformation, f⊥ say, we evaluate
the normal stresses produced by the linear part of 2u and the associated singularities
in (28a, b) and we note that the quadratic terms in (27) have the same structure as in
(7) up to a rotation of −π/2 about the x2-axis. Hence the mode-3 deformation may
be directly deduced from (14a) provided x3 and e3 (resp. x1 and e1) are replaced by
x1 and e1 (resp. −x3 and −e3), and IQ2 and IQ3 (resp. IC2 and IC3) are replaced
by −JQ (resp. −JC). For a unit translation velocity and unit Bond number, the result
is then

f⊥ = 3
8
Rµκ

2

[
16 + 19λ

16(1 + λ)

(
1 + 3

4
Rµκ

)(
3
x2

3

r2
− 1

)

+ 3
8
κ

10 + 11λ

10(1 + λ)

x3

r

(
5
x2

3

r2
− 3

)]
+ O(κ4). (31)

As the strain rate near the drop has the same magnitude as in the case of a motion
parallel to the wall, the leading-order term in (31) is again of O(κ2); obviously
the drop is now axisymmetric about the x3-axis. A drop receding from the wall is
elongated along this axis and the mode-3 contribution has a maximum at the front
pole (x3 > 0). If the velocity of the drop is reversed, so that it now goes towards the
wall, all signs are changed in (31), i.e. the drop is now flattened along the x3-direction
and the mode-3 contribution has a maximum at the pole located close to the wall
(x3 < 0). These two situations are illustrated in figure 5 for two different values of κ;
note that when the drop moves towards the wall, the combination of the two modes
taken into account in (31) may lead to a dimple at the rear of the drop for large
enough κ and λ. Predictions of (31) may be compared with the analytical solution
obtained by Chervenivanova & Zapryanov (1985) using bispherical coordinates, or
with the numerical solution of Ascoli, Dandy & Leal (1990) obtained by solving
Stokes equation with fully nonlinear boundary conditions at the drop surface for
the case of a drop falling towards a horizontal wall under the effect of buoyancy.
According to figure 1 of the former reference and to figure 3 of the latter one,
predictions of (31) agree with previous findings provided the distance to the wall is
large enough for the present analysis to be applicable, i.e. κ 6 1/2 approximately. For
smaller separations (typically κ > 2/3), a dimple appears between the drop and the
wall in the exact solution; this feature is not captured by the low-order description
(31), which indicates that it results either from a higher-order mode of deformation
or from a reversal of the sign of mode 3 through higher-order corrections (i.e. O(κn)
with n > 3) to its amplitude.

5. The deformation-induced migration
To obtain the lift force on the drop we shall follow Ho & Leal (1974) and Chan &

Leal (1979) and make use of the reciprocal theorem. However, inertia was considered
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0 1 2 3
ë –1

Figure 5. The shape of a deformed drop moving perpendicular to the wall as predicted by
equation (31) for κ = 0.5 and 0.67 (the Bond number is arbitrarily set to 0.33): ——, λ = 0;
· · · · · ·, λ = 1; – – –, λ→∞.

only for a rigid sphere in these works and buoyancy was neglected. Consequently,
we present a brief outline of the derivation of the reciprocal theorem for the more
general situation considered here. For this purpose we start from the momentum
balance outside and inside the drop as given by (2a) and (25), and combine the
properties of the solution (U ,Σ) obtained in § 3 with those of the complementary
solution (u, σ) determined in § 4. Using the divergence theorem, integrating over the
corresponding fluid volume and taking into account the boundary conditions on the
wall and the behaviour of U , u,Σ, and σ in the far field we obtain∫

AB

[(U + VB) · σ − (u+ e3) · Σ] · n dS = G

∫
VF

(u+ e3) · (U · ∇)U dV , (32a)

λ

∫
AB

(ũ · Σ̃− Ũ · σ̃) · n dS = ρ̄G

∫
VB

ũ · (Ũ · ∇)Ũ dV , (32b)

where AB (resp. VB) denotes the surface (resp. volume) of the drop, n is the unit normal
directed into the suspending fluid and VF is the entire volume of fluid surrounding the
drop. Since

∫
AB
Σ ·n dS just balances the net buoyancy force (see (2b)), its dot product

with e3 is zero. Hence (32a, b) may be added to obtain the transverse component of
the drop velocity, VB3 = VB · e3, in the form

(FDC · e3)VB3 = G

∫
VF

(u+ e3) · (U · ∇U ) dV + ρ̄G

∫
VB

ũ · (Ũ · ∇Ũ ) dV

+

∫
AB

(u · Σ− λũ · Σ̃) · n dS −
∫
AB

(U · σ − λŨ · σ̃) · n dS, (33)

with FDC · e3 given by (29). Equation (33) may now be expanded in powers of the
Galileo number G and Bond number δ. Taking into account the boundary conditions
at r = 1 in (3) and (25), it turns out that the two surface integrals in (33) are identically
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zero at O(G). We are then left with

(FDC · e3)V
(G)
B3 =

∫
VF

(u+ e3) · (U (0) · ∇)U (0) dV + ρ̄

∫
VB

ũ · (Ũ (0) · ∇Ũ (0)) dV . (34a)

Similarly, the O(δ) approximations is

(FDC · e3)V
(δ)
B3 = −

∫
AB0

U (δ) · (σ − λσ̃) · er dS +

∫
AB0

u · (Σ(δ) − λΣ̃(δ)) · er dS

−λ
∫
AB0

(U (δ) − Ũ (δ)) · σ̃ · er dS, (34b)

where AB0 denotes the undeformed drop surface. We note that in the limit λ→∞, Ũ (0)

and ũ necessarily reduce to solid body rotations. However, the rotation of the drop
is zero in the complementary problem, owing to the symmetry about the x3-axis.
Consequently the last term on the right-hand side of (34a) vanishes, and we recover
the expression for the inertial migration velocity established for a rigid particle by Ho
& Leal (1974).

5.1. The deformation-induced lift force

The right-hand side of (34b) may now be expressed in terms of known quantities by
using the kinematic and dynamic boundary conditions as they appear in (3a) and
(4b). This yields, in agreement with (6.6) of Chan & Leal (1979),

(FDC · e3)V
(δ)
B3 =

∫
AB0

{f(δ)(∂U (0)/∂r) · er −U (0) · ∇f(δ)}er · (σ − λσ̃) · er dS

+

∫
AB0

{
u · (Σ(0) − λΣ̃(0)) · ∇f(δ) − f(δ)u · ∂

∂r
(Σ(0) − λΣ̃(0)) · er

}
dS

+

∫
AB0

u · ∇f(δ)(∇2f(δ) + 2f(δ)) dS + λ

∫
AB0

f(δ) ∂

∂r
(U (0) − Ũ (0)) · σ̃ · er dS.

(35)

Since the left-hand side of (35) is just the horizontal drag force acting on the drop, the
force balance (4c) implies that the right-hand side is the opposite of the deformation-
induced lift force. Examination of the various quantities involved in the integrands
up to O(κ3) shows that the deformation induced by the quadratic part of 2U

(0) in
(7) does not contribute to the migration at this order of approximation, owing to its
symmetry with respect to the plane x3 = 0. Consequently, the migration evaluated
below is entirely due to the mode-2 deformation (note that the mode 4 formally
included in (18) would contribute to the migration at O(κ4)). Moreover, since the
leading-order deformation is O(κ2) (see (14a)), only terms of O(1) and O(κ) need
to be considered in the velocity and stress fields. This means that only the stokeslet
and associated singularities in the unbounded solution (5) and (26) contribute to this
approximation of the migration. Based on these remarks, the integrands involved in
(35) may be evaluated. Performing integrations we finally obtain

F (δ)
M ≈ 4πRµ

(
1 + 3

4
Rµκ

)
V

(δ)
B3 e3

=
3π

320

16 + 19λ

(1 + λ)3
Rµ(2− 10λ+ 3λ2)κ2

(
1 + 3

2
Rµκ

)
(V (0)

B1 )2e3 + O(κ4). (36)

Given the presence of the factor κ2 in (36), we see that |V (δ)
B3 | decreases inversely with

the square of the separation distance to the wall. An interesting feature of (36) is that
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Figure 6. The normalized deformation-induced lift force as a function of the distance to the wall,
as predicted by equation (37) (fluid at rest at infinity): ——, λ = 0; · · · · · ·, λ = 1; – – –, λ→∞.

it predicts that the direction of the migration depends on the viscosity ratio λ. More
precisely the drop is found to migrate away from the wall for λ < (5− 191/2)/3 ≈ 0.21
and λ > (5 + 191/2)/3 ≈ 3.12, and towards it when λ lies between the foregoing two
limits. We are not aware of measurements performed in this intermediate range
of λ that could confirm or contradict this prediction. Nevertheless we have carefully
checked the above result and we are confident that it is correct. We also note that Chan
& Leal (1979) found a similar feature for a drop migrating in a plane Poiseuille flow
where they showed that the direction of the deformation-induced migration changes
with λ and is towards the wall for O(1)-values of λ. That the deformation-induced
migration experienced by an almost inviscid bubble rising in a quiescent liquid is
directed away from the wall was clearly established experimentally by Takemura et
al. (2002) (see their figure 12). However, inertia also contributed to the migration in
their experiments, thus preventing a quantitative comparison with (36). In the limit
of an inviscid bubble (36) yields

F (δ)
M = 3

10
πκ2

(
1 + 3

2
κ
)

(V (0)
B1 )2e3 + O(κ4). (37a)

In the opposite case of a very viscous drop, the above prediction becomes

F (δ)
M = 171

320
πκ2

(
1 + 9

4
κ
)

(V (0)
B1 )2e3 + O(κ4), (37b)

whereas for homoviscous fluids (λ = 1) it is

F (δ)
M = 105

512
πκ2

(
1 + 15

8
κ
)

(V (0)
B1 )2e3 + O(κ4). (37c)

Predictions of (37) are plotted in figure 6. Interestingly, the origin of each of the
three terms in the coefficient 2− 10λ+ 3λ2 of (36) may be readily identified in (34b)
and (35). The first of these terms (which yields the result (37a)) comes from the
first integral on the right-hand side of (34b) and (35), and is due to the non-zero
O(δ)-normal velocity at r = 1. This term is proportional to the factor RµMµ, i.e. to
the product of the strength of the stokeslet in the unbounded solution (5a) and the
mobility of the fluid inside the drop (5b). The quadratic term (which yields the result
(37b)) comes from the last integral and is due to the O(δ)-velocity jump at r = 1.
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This term is proportional to the product of the strength of the dipole in (5a) by a
linear combination of Rµ and Dµ. Finally, the linear term reponsible for the negative
sign of the lift force for O(1)-viscosity ratios comes from the second integral and
is due to the O(δ)-jump of the tangential stresses at r = 1. This term is linearly
proportional to DµMµ, and then vanishes in the two limits λ → 0 and λ → ∞.
This analysis show how subtle the mechanism of deformation-induced migration
is. The migration occurs because two ingredients are present, i.e. the flow about
the drop is asymmetric (here due to the presence of the wall), and deformation
introduces irreversibility through the boundary conditions (see (4b)). The resulting
migration is then proportional to the product of the slip velocity (here of O(1)) by the
magnitude of the deformation (of O(κ2) in the present case). Nevertheless, drawing
this general picture does not give any indication of the direction of the migration
and we just saw that in general this direciton may change with the viscosity ratio,
according to the relative strength of several different contributions to the boundary
conditions.

The result (36) and those obtained in § 3.4 may be used to predict the O(κ2)
approximation of the deformation-induced migration of a buoyant drop moving in
a linear shear flow. For this purpose the strength of the mode-2 deformation given
by (14a) must be replaced by that given in (24). Furthermore, since the deformation
is now O(1) instead of O(κ2), it is necessary to consider terms up to O(κ2) in the
slip velocity determined in (23), i.e. the velocity V (0)

B1 (1 + 3
8
Rµκ) must be replaced by

V
(0)
S1 (1 + 3

8
Rµκ+ 9

64
R2
µκ

2) + α
8
RSκ

2. Inserting these values in (36) and evaluating the
right-hand side of (35) for the velocity field given by (21a, b) finally yields

F (δ)
M =

π

320

16 + 19λ

(1 + λ)3

{
(2− 10λ+ 3λ2)

[
8αV (0)

S1

(
1 + 9

8
Rµκ+ 63

64
R2
µκ

2
)

+ 3(V (0)
S1 )2Rµκ

2
]

+
676 + 2126λ+ 2176λ2 + 1077λ3

14(1 + λ)
α2κ2

}
e3 + O(κ3). (38)

Consistent with our argument that the magnitude of the migration is given by that
of the slip velocity times that of deformation, the leading-order contribution to the
lift force is now O(1) and is proportional to the product of the shear rate by the slip
velocity. Hence in the limit κ→ 0 the direction of the migration is reversed if the
direction of the shear or that of gravity is reversed. Moreover if αV (0)

S1 is negative (e.g.
if the drop lags behind the fluid for a positive shear), (38) shows that an equilibrium
position may exist near the wall provided |V (0)

S1 /α| is small enough. We are not aware of
any detailed experiment in which the migration of a buoyant drop moving in a linear
shear flow has been measured; hence we cannot validate (38) directly. Nevertheless
we can return to the case of a neutrally buoyant drop for which we showed in § 3.4
that V (0)

S1 reduces to − α
8
RSκ

2. Then the contribution proportional to (V (0)
S1 )2 in (38)

becomes of O(κ6) and those proportional to αV (0)
S1 and α2 combine to give

F (δ)
M =

3π

560

16 + 19λ

(1 + λ)3
(27 + 51λ+ 27λ2)α2Rµκ

2e3 + O(κ3). (39)

Not surprisingly we recover the well-known κ2-dependence of the migration of a
neutrally buoyant drop in a linear shear flow, a result confirmed in several Cou-
ette flow experiments (Chan & Leal 1981; Smart & Leighton 1991), as well as in
boundary element calculations (Uijttewaal et al. 1993; Uijttewaal & Nijhof 1995).
The dependence on λ in (39) is identical to that obtained by Chaffey et al. (1965).
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However, their numerical prefactor was exactly 11 times that found in (39). This
was corrected by Chan & Leal (1979) who found a result identical to (39) (except
for the intermediate coefficient, which they found to be 97/2 instead of 51 here and
in Chaffey et al. 1965), and showed that experimental results (generally obtained
with small λ) strongly support the magnitude of the force predicted by (39). This
agreement with Chan & Leal (1979) allows us to validate most of the contributions
in (38). Uijttewaal & Nijhof (1995) compared their numerical predictions with that
of Chan & Leal (1979), i.e. with (39), over the whole range of λ. For λ less than
unity, they found a good agreement with the theory for small values of the capillary
number and large enough separations from the wall; this agreement deteriorates as
the wall is approached, the theory overpredicting the migration by about 20% for
κ = 2/3. In contrast, their results show that the present O(δ) theory behaves poorly
for λ > 1 whatever κ, due to the fact that nonlinear O(δ2) effects not accounted for
tend to align the major axis of the drop with the direction of the flow (thus reducing
the transverse migration), and the larger λ the larger this tendency.

6. The inertial migration and total force
6.1. Fluid at rest at infinity

As pointed out in the introduction, two different situations may in general be consid-
ered regarding the inertial migration. We first discuss the problem for the case where
the fluid is at rest at infinity. When the distance κ−1 between the drop and the wall
is much larger than the Oseen length scale G−1, the wall lies in the Oseen region
of the flow disturbance induced by the drop. Then, the situation is similar to that
encountered in the unbounded case, with O(G)-inertia effects resulting in a singular
perturbation problem. In contrast, when G/κ is much smaller than unity, the wall
lies in the Stokes region of the flow disturbance. The image velocity field produced
by the wall then combines with the primary flow disturbance in such a way that the
resulting flow decays like r−2 in the far field. In this case, O(G)-inertia effects can be
obtained through a regular perturbation process (Cox & Brenner 1968). This is the
situation considered below. Hence our goal is to evaluate the inertial lift force due to
wall effects under conditions G� κ� 1. Since we are looking for an approximation
of the inertial lift force valid for large and moderate separations (typically κ 6 1/2),
we shall determine this force up to terms of O(κ2).

To evaluate the first volume integral in the right-hand side of (34a) we need to
determine U (0) and u everywhere in the external fluid up to terms of O(κ2). Up
to now we have achieved this only in the inner region corresponding to r � 1/κ.

Obtaining the uniformly valid expression Ū
(0)

(resp. ū) of U (0) (resp. u) in outer
variables x̄i = κxi (i = 1, 3), r̄ = κr is rather tedious because determining the image

fields 2Ū
(0)

and 2ū everywhere requires an explicit evaluation of integral expressions
of the type (A 2b). The corresponding technique is outlined in Appendix C. Using
results (C 3)–(C 4) together with the inner expansions of U (0) and u determined in § 3
and § 4, we are in position to evaluate the right-hand side of (34a). For this purpose,
following Cox & Brenner (1968), we divide the flow domain into an inner region VI
and an outer region VO such that

VI = {r|1 6 r < γ0κ
χ−1},

V̄ O = {r̄|γ0κ
χ < r̄ < ∞, −1 6 x̄3 < ∞},

}
(40)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

29
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002002902


A buoyant drop moving near a wall 139

where γ0 and χ are two arbitrary constants such that γ0 = O(κ0) and 0 < χ < 1.
Taking into account the transformations ∇ ≡ κ∇̄ and d3x ≡ κ−3 d3x̄, (34a) may now
be written as

4πRµ

(
2∑
n=0

(−1)nJnD

)
V

(G)
B3 = −ρ̄

∫
VB

ũ · (Ũ (0) · ∇Ũ (0)
) dV︸ ︷︷ ︸

IB

−
∫
VI

(u+ e3) · (U (0) · ∇)U (0) d3x︸ ︷︷ ︸
II

−κ−2

∫
V̄ O

(ū+ e3) · (Ū (0) · ∇̄)Ū
(0)

d3x̄︸ ︷︷ ︸
IO

. (41)

Before we evaluate the right-hand side of (41), a careful examination of the various
contributions is in order. First, since the inner domains VI and VB are symmetric with
respect to all coordinates, it is easy to see that the leading-order contributions to II
and IB are of O(κ2). Hence only IO contributes to the O(1) and O(κ) approximations
of the inertial lift force. Second, we re-write the integrand of IO truncated at O(κ4)
in inner variables, multiply it by κ−2 and compare the result with the integrand of II
truncated at O(κ2). This allows us to identify the part of integrand common to IO and
II . Having done this, we may change the integration domain ofIO from V̄ O to V̄ O∪V̄ I

(with V̄ I = { r̄|κ 6 r̄ < γ0κ
χ}), provided we change the integral to be evaluated in VI

from II to II−IM where IM is the contribution corresponding to the overlap. In fact,
we may also change the domain of integration ofII−IM from VI to VI∪VO (with VO =
{r|γ0κ

χ−1 < r < ∞,−1 6 x3 < ∞}) because the integrand of II decays like r−5, so that
the corresponding contribution to VO is of O(κ4), and hence negligible. Finally, we may
simplify the evaluation of IO by extending the integration domain of the outer contri-
bution within the drop. There is no difficulty at r̄ = 0 because at the present order of
approximation all the integrands in IO are odd functions of x̄3, so that the singularity
is integrable. Extending the domain of integration of the outer contribution within the
drop changes the value IO of the integral to another value EO , and we have to subtract
explicitly the contribution IT = −κ−2(EO − IO) of the subdomain V̄ B = {r̄|r̄ < κ}
from the right-hand side of (41). Taking into account all these remarks, it turns out
that at the present level of approximation, (41) may be re-wrriten in the symbolic form

4πRµ

(
2∑
n=0

(−1)nJnD

)
V

(G)
B3 = −κ−2EO −II +IM −IT − ρ̄IB. (42)

The next step is to decompose the various terms on the right-hand side of (42) into
a collection of ‘elementary’ contributions, each of which is the product of an integral
independent of both ρ̄ and λ, and a single prefactor involving a combination of Rµ,
Dµ, Mµ, and RS . The result of this procedure, the expression for the corresponding
integrals and their evaluation are detailed in a separate Appendix available upon
request from the authors or the JFM Editorial Office. Using the results of this
Appendix we finally obtain the inertial lift force acting on the drop as

F(G)
M ≈ 4πRµ

(
1 + 3

4
Rµκ+ 9

16
R2
µκ

2
)
V

(G)
B3 e3

=
π

4
(V (0)

B1 )2R2
µ

{
1 +

Rµ

8
κ+ C2(λ)κ

2

}
e3 + O(κ3), (43a)
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with†
C2(λ) ≈ 1320 + 2270λ+ 1294λ2 + 647λ3

1280(1 + λ)2(2 + 3λ)
. (43b)

The leading-order contribution to the inertial lift force is positive and therefore
directed away from the wall. As explained by McLaughlin (1993) and Hogg (1994),
the physical mechanism that produces this force may be understood by considering
the fluid displaced laterally by the drop as it translates. When this displaced fluid
encounters the wall, the latter reacts by generating a lateral flow directed away from
it, so that the associated pressure gradient is towards the wall. At large enough
distances from the drop, this process becomes irreversible owing to inertia, and the
lateral pressure gradient results in a lateral force directed away from the wall. As
shown by (43a) the leading-order contribution to the force is proportional to the
square of the strength Rµ of the Stokeslet in the unbounded solution (5a). Thus for
instance, the leading-order inertial lift force on an inviscid bubble is (2/3)2 ≈ 0.444
that on a solid sphere. As will become apparent in the next sections, this is a
general feature of leading-order inertial effects, and this feature is not restricted
to near-wall situations, neither does it depend on the regular or singular nature
of the problem, as was shown by Legendre & Magnaudet (1997). The O(1) term
in (43a) was obtained by Vasseur & Cox (1976) and Cox & Hsu (1997) for the
particular case of a rigid sphere. It must be kept in mind that this leading-order
expression yields the value of the lift force in the limit κ → 0 under the condition
G/κ � 1 corresponding to the case where the wall is close to the outer limit
of the Stokes region of the flow disturbance. The complementary case where the
wall lies in the Oseen region (G/κ � 1) of the flow disturbance was considered
by Vasseur & Cox (1977) for a rigid sphere and by Takemura et al. (2002) for
an inviscid spherical bubble. In this situation Vasseur & Cox found that the lift
force, FMO say, is a function of G/κ, which for small values of G/κ takes the value

FMO(G/κ → 0, λ → ∞) = (9π/16)G(V (0)
B1 )2e3 (with the present normalization), while

Takemura et al. obtained FMO(G/κ → 0, λ = 0) = (π/4)G(V (0)
B1 )2e3 (see their equation

(A 9)). These values are identical to the leading-order term of (43a) as they should
be, since small values of G/κ in FMO correspond to the case where the wall lies near
the inner limit of the Oseen region, and the solution given by (43) must then match
with FMO .

A striking feature in (43a) is that the O(G)-inertial lift force does not depend on
the drop density. This is unexpected at first glance, since (41) suggests that inertial
terms associated with the motion inside the drop should in principle contribute
to the lift force at O(κ)2. However, it turns out that the corresponding integrals
vanish for subtle symmetry reasons. We note that in their investigation of the small
inertial effects experienced by a drop moving in an unbounded fluid, Taylor &
Acrivos (1964) found that the drag force is affected by the drop density only at
O(We). Since the Weber number is We = Gδ in the present notation, their result
suggests that in the present problem the lift force probably depends on ρ̄ only
through higher-order terms (with respect to G and δ) not accounted for in the present
approximation.

† Some of the integrals required to obtain the coefficient C2 of (43a) and the coefficient D1

of (45a) were evaluated numerically with a precision of three digits. Hence, the values of these
coefficients must be considered as approximations; this is why we use the symbol ≈ in (43b) and
(45b).
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Figure 7. The normalized inertial lift force as a function of the distance to the wall, as predicted
by (44) (fluid at rest at infinity): ——, λ = 0; · · · · · ·, λ = 1; – – –, λ→∞.

For an inviscid bubble, (43) yields†
F (G)
M /(V (0)

B1 )2 ≈ π

4
{1 + 0.125κ− 0.516κ2}e3 + O(κ3), (44a)

whereas for a solid sphere or a very viscous drop

F (G)
M /(V (0)

B1 )2 ≈ 9π

16
{1 + 0.1875κ− 0.168κ2}e3 + O(κ3). (44b)

These results are plotted in figure 7 together with that corresponding to homoviscous
fluids. The O(κ)-term produces a slight increase of the normalized force (which may be
interpreted as a lift coefficient) as the distance between the drop and the wall decreases.
However, this effect is rapidly overwhelmed by that of the negative O(κ2)-term. In
the case of a rigid sphere both terms are small and of similar magnitude, so that the
normalized force experiences little variation as κ increases. Equation (44b) compares
well with the numerical results of Fisher & Rosenberger (1987) obtained for κ 6 0.8
and with the fit determined by Cherukat & McLaughlin (1994) after a numerical
evaluation of the volume integral on the right-hand side of (34a) for 0.05 6 κ 6 0.9,
the integrand having been obtained by using an exact solution of Stokes equation valid
whatever the separation distance between the sphere and the wall. In the limit case
where the sphere touches the wall (κ = 1), (44b) predicts F (G)

M /(V (0)
B1 )2 ≈ 1.802, a value

only 2.5% higher than the exact value 1.755 determined by Krishnan & Leighton
(1995); although unexpected, this agreement is noticeable. Using the lateral force
balance (34a) and the approximate expression for the lateral drag force (30b) (or better
the higher-order approximation (51b) derived below), the normalized migration vel-
ocity V (G)

B3 /(V
(0)
B1 )2 predicted by (44b) may also be compared with the results of Becker

et al. (1996) who employed a technique similar to that of Cherukat & McLaughlin
(1994). Both series of results are in excellent agreement for κ 6 0.7 and show that the
large increase of the lateral drag coefficient near the wall makes V (G)

B3 /(V
(0)
B1 )2 decrease

† We also evaluated the O(κ3) term for an inviscid bubble and found that the corresponding
coefficient is −0.034.
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continuously from the value 3/32 corresponding to the limit κ→ 0 (Cox & Hsu 1977),
to values about 0.025 for κ = 0.7. For smaller separations, neither (30b) nor (51b)
predicts accurately the lateral drag (see § 7), and the agreement rapidly deteriorates.

In contrast to the behaviour observed for a rigid sphere, the lift force experienced
by an inviscid bubble decreases significantly as the distance to the wall decreases. As
shown in figure 7, (44a) predicts that the limit value for to κ = 1 is only about 60%
of that corresponding to κ→ 0. This difference comes from the ‘inner’ contribution to
the lift force provided by the region r � 1/κ. This contribution is zero for an inviscid
bubble whereas, owing to the presence of dipoles and quadrupoles in the solution (5a)–
(8a), it provides a positive contribution about 0.7 to the coefficient C2 for a rigid sphere.

Most experimental data available for a rigid sphere (Vasseur & Cox 1977; Cherukat
& McLaughlin 1990) concern the case where the wall lies in the Oseen region of the
flow disturbance. Some of these data were however obtained in the situation G� κ�
1 considered here. These data essentially confirm the magnitude of the leading-order
term of (44b). However, owing to the significant experimental uncertainty affecting
the determination of the migration velocity, the evolution of the lateral force as
κ increases does not show a clear tendency, thus preventing a convincing check
on the accuracy of higher-order contributions in (44b). Similarly, the leading-order
term of (44a) was recently confirmed by Takemura et al. (2002), who performed
experiments with spherical bubbles rising near a vertical wall in silicone oil. Again, a
convincing comparison of experimental data with higher-order terms in (44a) is not
possible, partly because of the increase in the experimental uncertainty as the wall
is approached, but also because the deformation-induced lift force determined in § 5
becomes significant or even dominant as κ increases.

6.2. Linear shear flow

Let us now consider the case of a buoyant drop moving in a linear shear flow.
Then the wall lies in the Stokes region of the flow disturbance provided κ−1 is much
smaller than both the Oseen length scale G−1 and the Saffman length scale (αG)−1/2.
If these conditions are satisfied and inertial effect remain small, i.e. αG� κ2 � 1 and
G� κ� 1, Cox & Hsu (1977) established that the method initially developed by
Cox & Brenner (1968) for a stagnant fluid or a shear flow bounded by two walls
applies without modification to the case of linear and parabolic flows bounded by
a single wall. Hence the O(G)-inertial lift force may be obtained by applying the

techniques described in § 6.1 to the velocity fields U (0) and Ũ
(0)

defined by (5), (7), (8),
(10) and (21). To avoid too cumbersome calculations we have determined only the
O(κ)-approximation of the lift force in this type of flow. The corresponding velocity

field Ū
(0)

is given by (C 5). We note that in (41) the contributions of II and IB are
now a a priori of O(κ0) because the shear produces even integrands at this order.
The corresponding contributions, independent of the presence of the wall, provide
the so-called second-order Saffman lift force whose magnitude is 7

8
παV (0)

S1 for a freely

rotating rigid sphere translating with a slip velocity V (0)
S1 (Saffman 1965). Evaluating

the various contributions to (42) along the lines described in § 6.1 yields

F (G)
M ≈ 4πRµ

(
1 + 3

4
Rµκ

)
V

(G)
B3 e3

=
[

11
24
π
(
−αV (0)

S1 R
2
µ{κ−1 + D0(λ) + D1(λ)κ}+ 1

3
α2RµRS

{
1 + 3

8
Rµκ

})
+
π

4
(V (0)

S1 )2R2
µ

{
1 +

Rµ

8
κ

}]
e3 + O(κ2), (45a)
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with

D0(λ) =
3960 + 12444λ+ 14826λ2 + 6645λ3

880(2 + 3λ)2(1 + λ)
, D1(λ) =

3(75 + 222λ+ 257λ2 + 104λ3)

110(2 + 3λ)(1 + λ)2
.

(45b)
The lift force, which again does not involve the drop density at the present order of
approximation, now possesses two shear-induced contributions. The first of them is
due to the interaction of the shear with the slip velocity and changes sign when α or
V

(0)
S1 is reversed. The second contribution is always positive, i.e. directed away from

the wall, and arises from the interaction of the stresslet of (21a) with the wall. If
αV

(0)
S1 is positive (e.g. if the drop leads the fluid for a positive shear rate), the first term

in the right-hand side pushes the drop towards the wall and an equilibrium position
may exist for high enough shear rates. The leading-order term (with respect to κ) is
still proportional to R2

µ, i.e. to the square of the intensity of the stokeslet in (5a), but

this term is now of O(κ−1). This means that the corresponding force increases as the
distance between the drop and the wall increases. However, it must be kept in mind
that κ must remain large compared with (αG)1/2 for the result (45a) to be valid. When
κ becomes comparable to (αG)1/2, i.e. the distance to the wall becomes of the order
of the Saffman length, the corresponding lift force GF (G)

M becomes of O((αG)1/2). This
is precisely the order of magnitude of the Saffman lift force experienced by a particle
moving in an unbounded linear shear flow (Saffman 1965). Thus one may say that
the wall inhibits the Saffman lift force, since (45a) indicates that the magnitude of the
force changes from O((αG)1/2) for κ = O((αG)1/2) to O(αG) for κ = O(1). A physical
interpretation of this force, which does not require the presence of the wall, was given
by Hogg (1994). If the drop leads the flow, the velocity difference between the fluid it
displaces laterally and the undisturbed flow is smaller in the direction of increasing
velocity, thus inducing a lateral pressure gradient in the same direction. At large
enough distances from the drop, the displacement process becomes irreversible and
the lateral pressure gradient results in a lateral force in the direction of decreasing
velocity. The reverse argument shows that the migration reverses if the drop lags
behind the fluid.

The α2-term is proportional to the product of the strength of the stokeslet in (5a)
and that of the stresslet in (21a). This term provides the leading contribution in the
situation where the drop is neutrally buoyant. In this case, combining (23b) and (45a),
we obtain the O(κ)-approximation

F (G)
M = 11

72
πα2RµRS

(
1 + 3

4
Rµκ

)
e3 + O(κ2). (46)

The leading-order term agrees with the value found by Cox & Hsu (1977) for a rigid
sphere. This situation was considered numerically by Fisher & Rosenberger (1987),
still for a rigid sphere. Comparing (46) with their numerical curve reveals a good
agreement for κ < 0.3, whereas for smaller separations the higher-order contributions
not accounted for in (46) make the force increase significantly. Coming back to the
general situation of a buoyant drop, we see that in the case of an inviscid bubble,
(45a) becomes

F (G)
M =

π

4

[
− 11

6
αV

(0)
S1 (κ−1 + 1.125 + 1.023κ) + 11

18
α2(1 + 0.375κ)

+(V (0)
S1 )2(1 + 0.125κ)

]
e3 + O(κ2), (47a)
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whereas for a very viscous drop or a rigid sphere we have

F (G)
M = 9

16
π

[
− 11

6
αV

(0)
S1 (κ−1 + 0.839 + 0.945κ) + 55

54
α2(1 + 0.5625κ)

+(V (0)
S1 )2(1 + 0.1875κ)

]
e3 + O(κ2). (47b)

In both cases the higher-order (i.e. O(κ0) or O(κ)) contributions increase the magnitude
of the lift force as the separation distance to the wall decreases, a conclusion in
agreement with the fit determined by Cherukat & McLaughlin (1994) for a rigid
sphere. Moreover the O(κ0)-truncation of (47b) agrees exactly with that obtained
by Lovalenti in an Appendix to the aforementioned paper, suggesting that (45) is
correct at least at up to O(κ0) (the fit of Cherukat & McLaughlin 1994 indicates 0.254
instead of 0.945 for the O(κ) term in the first parentheses). For practical purposes,
it is interesting to notice that in the limit case of a freely rotating rigid sphere in
contact with a wall, the O(κ0) truncation of (47b) gives an accurate estimate of the
force. More precisely, if the relative velocity V (0)

S1 is zero (resp. −α, corresponding to
a sphere prevented from translating with respect to the wall), the O(κ0) truncation of
(47b) predicts a dimensionless force of 1.80 (resp. 9.525) which agrees within 5% with
the exact value 1.6915 (resp. 10.0) determined by Krishnan & Leighton (1995). This
surprising agreement is due to the fact that higher-order contributions to the force
almost cancel mutually in the limit κ→ 1.

6.3. The total force

Since we have determined both the inertial and deformation-induced contributions to
the lift force and have assumed that the Ohnesorge number Oh = G/δ is of O(1), we
can finally write an expression for the total lift force (normalized by ρ|1− ρ̄|R3g). For
the case of a fluid at rest at infinity, (36) and (43a) may be combined in the form

FM ≈ π

4
G(V (0)

B1 )2R2
µ

{
1 +

Rµ

8
κ+ C2(λ)κ

2 + 3
40

16 + 19λ

(2 + 3λ)

(2− 10λ+ 3λ2)

(1 + λ)2
Oh−1κ2

}
e3,

(48)
with C2(λ) given by (43b). It is worth noting that since the rotation of the fluid
inside the drop affects the solution only at O(κ4), (48) also applies to the case of
a non-rotating rigid particle fixed in a uniform flow of velocity −V (0)

B1 , the particle

Reynolds number being then Re = −GV (0)
B1 . Similarly, (45a) can be combined with

(38) to obtain the O(κ)-approximation of the total lift force experienced by a buoyant
drop moving in a linear shear flow. Defining the relative shear rate S = α/V

(0)
S1 , the

result takes the form

FM ≈ π

4
G(V (0)

S1 )2R2
µ

[
1 +

Rµ

8
κ− 11

6
S

{
(κ−1 + D0(λ) + D1(λ)κ)

− 12
55
Oh−1 16 + 19λ

(1 + λ)

(2− 10λ+ 3λ2)

(2 + 3λ)2

(
1 + 3

8
Rµκ

)}
+ 11

18

RS

Rµ
S2
(
1 + 3

8
Rµκ

)]
e3 + O(κ2), (49)

with D0(λ) and D1(λ) given by (45b). Note that for most values of λ, the inertial
and deformation-induced contributions to the S-term have opposite signs, so that
for O(1)-Ohnesorge numbers the deformation generally reduces or even reverses the
total lift force. We may observe that for κ→ 1, the prefactor of the Ohnesorge
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number in (48)–(49) and the inertial term are both of O(1). Hence it turns out that
for O(1)-Ohnesorge numbers, inertial effects cannot be neglected in the prediction of
the migration velocity, however small the Reynolds number and the distance to the
wall. In practice, situations where the migration of bubbles or slightly viscous drops
can be predicted by considering only the contribution of the deformation are indeed
restricted to highly viscous liquids. For instance, consider a bubble with R = 1 mm
rising in a stagnant bath of oil with a reduced surface tension γ/ρ = 2× 10−5 m3 s−2.
Then, according to (48), the deformation-induced migration is one order of magnitude
larger than the inertial migration only if the viscosity of the suspending fluid is larger
than 0.3 P.

It is finally interesting to examine the O(δ) and O(G) corrections to the drag force,
which may be readily obtained by considering the appropriate form of the reciprocal
theorem. Using (4c), it is straightforward to show that this form is identical to (34a, b)
with quantities associated with the complementary problem considered in § 4 replaced
by their counterparts corresponding to the ‘direct’ problem solved in § 3. Expressing
the various integrals then reveals that the surface (resp. volume) integrals involved in
the O(δ) (resp. O(G)) problem have integrands that are odd functions of x3 (resp. x1).
Consequently, all contributions integrate to zero, yielding

V
(δ)
B1 = V

(G)
B1 = 0. (50)

Thus deformation does not affect the drag at the present order of approximation.
Moreover, unlike to what happens in an unbounded flow or when the wall lies in the
Oseen region of the flow disturbance (e.g. Vasseur & Cox 1977), there is no inertial
correction to the drag force at O(G). This is because (34a) only involves the Stokes
solution (as opposed to the Oseen solution) of the problem, and it may be shown from
symmetry considerations that the inertial contribution based on the former solution
may only lead to a transverse contribution to the force (Lovalenti & Brady 1993).

7. A buoyant drop in a linear shear flow near a horizontal wall
In this section we briefly consider the case of a buoyant drop moving in a linear

shear flow near a horizontal wall. Let V (0)
B3 be the O(1) vertical velocity of the drop,

corresponding to the creeping flow problem around a spherical drop. Then at order
zero in δ and G the drag force at O(κ3) is just V (0)

B3 times the force FDC given by

(29). In addition there is an O(κ2)-slip velocity V (0)
S1 given by (23b) between the drop

and the local flow. Owing to the linearity of the Stokes equation, the deformation
of the drop is V (0)

B3 times the deformation f⊥ given by (31) plus the contribution
proportional to the shear rate α in (24). The previous estimates of FDC and f⊥ can
be slightly improved near the wall by using the procedure described in § 3.3. Details
of the calculations are provided in Appendices A and B. For instance, the correction
factor KSDC given by (B6) can be used to determine the O(κ5)-approximation of the
drag force near the wall. We obtain for an inviscid bubble

FDC ≈ −4πV (0)
B3

[
1− 3

4
κ− 9

64
κ4
]−1

e3, (51a)

whereas for a very viscous drop or a solid sphere we have

FDC ≈ −6πV (0)
B3

[
1− 9

8
κ+ 1

2
κ3 − 135

256
κ4 − 1

8
κ5
]−1

e3. (51b)

These results agree with those of Fuentes, Kim & Jeffrey (1988). Since (51b) predicts
that the drag force on a rigid sphere becomes infinite for κ ≈ 0.85 whereas it is well
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known that the exact solution yields an infinite drag only for κ = 1 (Brenner 1961;
Happel & Brenner 1973, pp. 330–331), we have to conclude that the approximation
underlying (51a, b) breaks down close to the wall. This is not unexpected since the
reflection technique starts from the unbounded solution in which the streamlines
exhibit a fore–aft symmetry and is used here to approximate a flow where the
streamlines experience a very severe distortion near the stagnation point located at
the intersection of the wall and the symmetry axis of the flow. In § 6 we pointed out
that our prediction for the inertial migration velocity of a rigid sphere (in which the
expression (51b) for FDC was used) compares very well with the numerical solution
of Becker et al. (1996) up to κ ≈ 0.7. In contrast, the predicted values were found to
become too small for smaller separations. Since the normalized migration force (44b)
still agrees well with the numerical predictions of Cherukat & McLaughlin (1994) for
κ > 0.7, we infer that the underprediction of the migration velocity in this range of κ
is due to an overestimate of the drag force in (51b). Consequently we guess that the
limit of validity of (51) near the wall is about κ = 0.7.

Let us now consider the corrections to the drag force and slip velocity due to
deformation. Given the deformation predicted by (31) and the α2-term in the force
predicted by (38), the vertical drag force experiences corrections O(δ(V (0)

B3 )2κ2) and
O(δα2κ2), the latter being directly given by (39). To evaluate the former contribution,
we use (35) with all quantities associated with a translation along the x1-axis replaced
by their counterpart for a translation along the x3-axis. The complete result is then

F (δ)
M · e3 =

3π

160

16 + 19λ

(1 + λ)3
Rµκ

2
[
(2− 10λ+ 3λ2)(V (0)

B3 )2 + 2
7
(27 + 51λ+ 27λ2)α2

]
+ O(κ3).

(52)
Note that the λ-dependence of the first term within square brackets is the same as that
found in (36). Both contributions are positive for most values of λ, i.e. they generally
increase the drag when the drop moves towards the wall whereas they provide a thrust
force when it recedes from the wall. It is easy to see that the deformation proportional
to αx1x3/r

2 in (24) results in a O(δ)-force in the horizontal direction. To evaluate this
contribution, we just need to note that in the form (35) of the reciprocal theorem,
the roles of U (0) and u, i.e. those of x1 and x3, e1 and e3, should be interchanged
compared to the situation considered in § 5. Consequently the intensity of the force is
identical to that given by the first term in the right-hand side of (38), i.e. we have

F (δ)
M · e1 =

π

40

16 + 19λ

(1 + λ)3
(2− 10λ+ 3λ2)αV (0)

B3

(
1 + 3

8
Rµκ

)
+ O(ακ2). (53)

To evaluate inertial corrections we must first estimate the influence of unsteadiness
in the present problem. Unsteadiness exists in the vertical direction because the drop
accelerates or decelerates as its distance to the wall varies, so as to maintain a
constant drag. The horizontal velocity of the drop also varies in time because the
drop crosses the streamlines of the shear flow and must maintain a weak slip in
order to satisfy the zero-force condition. Consequently the reference frame attached
to the drop centroid is not strictly inertial and a complementary acceleration must
be introduced. Since the characteristic time scale is µ/(ρ|1 − ρ̄|gR) (we exclude the
initial acceleration stage), the right-hand side of the momentum equations (2a) now
includes terms Gδ(U+VB)/∂t in the suspending fluid and (ρ̄G/λ)δ(Ũ+VB/∂t) within
the drop, t denoting the dimensionless time. To estimate the magnitude of these terms
along the e3-direction, we use the fact that V (0)

B3FDC is independent of time. From this

and (29) we deduce that ∂V (0)
B3 /∂t is O(V (0)

B3 ∂κ/∂t). Noting that the vertical velocity of
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the drop centroid is the time-derivative of the separation distance 1/κ, we conclude

that ∂V (0)
B3 /∂t = O((V (0)

B3 )2κ2). In the horizontal direciton, we know from (23b) that

V
(0)
B1 = α/κ+ O(ακ2), so that we may write

∂V
(0)
B1

∂t
=

∂V
(0)
B1

∂(1/κ)

d(1/κ)

dt
= αV

(0)
B3 (1 + O(κ3)).

In the reference frame attached to the drop, the undisturbed flow has a non-zero
acceleration −αV (0)

B3 e1 and the leading-order contribution provided by the comple-
mentary acceleration dVB/dt just cancels it. Consequently the actual unsteadiness

in the horizontal direction is of O(κ3αV
(0)
B3 ). By extending the reciprocal theorem

to include the unsteady terms, it can be shown that at leading order the integrals
associated with these contributions involve the product of two stokeslets, so that
they are multiplied by κ−1 when expressed in outer variables. Hence, using the above
estimates, we conclude that the leading-order contribution of unsteadiness in the
total force is O(G(V (0)

B3 )2κ) in the vertical direction and O(GαV (0)
B3κ

2) in the horizontal
one. Therefrom we may evaluate vertical (resp. horizontal) inertial corrections up to
O(G(V (0)

B3 )2) (resp. O(GαV (0)
B3κ)) without considering unsteady effects, except those due

to the complementary acceleration.
By inspection we see that the vertical drag force may have corrections of O(G(V (0)

B3 )2)

and O(Gα2), the latter being given by (46). However, changing U (0) to V
(0)
B3 u in (34a)

reveals that the O(1) inertial term related to the rise/fall velocity is zero. Hence we
simply obtain at leading order

F (G)
M · e3 = 11

72
πRµRSα

2 + O(κα2, κ(V (0)
B3 )2). (54)

Again this term increases (resp. decreases) the drag when the drop moves towards
(resp. away from) the wall. This conclusion agrees with that of Hogg (1994) who
studied the sedimentation of a rigid particle in a horizontal Poiseuille flow in the case
where the wall lies in the Oseen region of the disturbance. Equations (52), (54) and
(29) (or (51)) may now be combined to find how the wall modifies the rise/settling
velocity of the drop. For instance, in the case of a negatively buoyant rigid sphere
(ρ̄ > 1) falling towards the wall, (51b), (54) and (3b) (with e1 replaced by e3) yield the
sedimentation velocity

VB3 = V
(0)
B3 + GV

(G)
B3 = − 2

9

[
1− 9

8
κ+ 1

2
κ3 − 135

256
κ4 − 1

8
κ5
] (

1− 55
128
Gα2

)
. (55)

For κ = 0.5, the influence of the first term reduces the sedimentation velocity to
46% of its free-stream value, and this reduction is further enhanced by the inertial
correction.

Now changing u + e3 to U (0)/V
(0)
B1 + e1 and U (0) to V

(0)
B1 u + U (0)

α in (34a) (with

U (0),U (0)
α , and u as determined in § 3.1, § 3.4 and § 4, respectively), we may evaluate the

horizontal force produced by the interaction of the shear with the vertical velocity.
Truncating at O(κ0) we then obtain

F (G)
M · e1 = − 5

8
πR2

µ(κ
−1 − E0(λ))αV

(0)
B3 + O(καV (0)

B3 ), (56a)

with

E0(λ) =
4840 + 14100λ+ 11934λ2 + 2191λ3

1200(2 + 3λ)2(1 + λ)
. (56b)

Note that while this is not directly apparent, the O(κ0) term comprises contributions
due to the horizontal acceleration of the fluid entrained by the drop (i.e. added-
mass effects). It must also be stressed that (56) only apply to the present situation
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where the horizontal slip is small; if the drop were prevented from moving along the
horizontal direction, the above results would be changed by positive contributions due
to unsteadiness. The leading-order term in (56a) is a lift force parallel to the wall that
tends to maintain the drop behind the flow if αV (0)

S3 is positive. This effect also exists
in an unbounded flow. The corresponding force is O((αG)1/2) and was first evaluated
in the low-Reynolds-number limit by Harper & Chang (1968), and later reconsidered
by Hogg (1994). A reasoning similar to that of § 6.2 shows that the leading-order
term of (56a) is simply what is left of this effect in the vicinity of the wall. It is worth
noting that the physical interpretation of this effect is somewhat different from the
explanation given for the leading-order shear-induced lift force in (45) because the
drop now crosses the streamlines of the shear flow. Suppose that the drop moves
in the direction of increasing velocity of the shear flow. Then the fluid contained in
the wake experiences a transverse velocity that decreases as the downstream distance
increases, and this results in a bending of the wake. Owing to continuity, this curved
wake generates a counterflow with negative transverse velocities. At sufficiently large
distances from the drop this process becomes irreversible and the pressure gradient
sets up by the counterflow induces a negative transverse force on the drop, making it
lag behind the undisturbed flow (the reverse argument applies for a drop moving in
the direction of decreasing velocity, and the corresponding migration makes the drop
leading the flow).

To obtain the improved approximation of the horizontal slip velocity VS1 = V
(0)
S1 +

GV
(G)
S1 + δV

(δ)
S1 , we use the zero-force condition along the e1-axis. The force balance is

written

4
3
πGρ̄

dVB
dt
· e1 = (FD + GF (G)

M + δF (δ)
M ) · e1,

with the deformation-induced force and the inertial force given by (53) and (56)
respectively, the drag force being given by (23a) with V (0)

S1 replaced by VS1. This yields

VS1 = −α
8
RSκ

2 + G

{
Oh−1

80

16 + 19λ

2 + 3λ

(2− 10λ+ 3λ2)

(1 + λ)2

− ρ̄

3Rµ
− 5

32
Rµ
(
κ−1 − 3

8
Rµ − E0(λ)

)}
αV

(0)
B3 + O(ακ4, αδκ2, αGκ), (57)

with E0(λ) given by (56b). Very close to the wall, the first term in the right-hand side
is clearly dominant. In contrast, as κ decreases, terms due to deformation or inertia
may become larger (note however that the inertial term remains small compared to κ,
owing to the condition αG� κ2). Given the positive sign of the deformation-induced
term for most λ, the drop generally leads the fluid if deformation effects are dominant
whereas it lags behind it otherwise.

8. Summary
We have derived analytical expressions for the drag and lift forces acting on a

buoyant drop of arbitrary viscosity moving in a viscous fluid at rest or in a linear
shear flow near a wall. These results show how the wall increases the drag force
and modifies the deformation experienced by the drop in an unbounded flow. We
also evaluated effects of finite inertia and deformation in the limit of small Galileo
and Bond numbers (with the restriction that inertial corrections are valid only in
the vicinity of the wall, owing to conditions G� κ and αG� κ2). On the basis of
comparisons with available numerical solutions or experiments, we showed that most

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

29
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002002902


A
b
u
oy

a
n
t

d
ro

p
m

o
vin

g
n
ea

r
a

w
a
ll

1
4
9

Inviscid bubble Very viscous drop/rigid sphere

(a) Drag
(equation (16))

FD ≈ −4πV
(0)
B1

[
1− 3

8κ− 3
64κ

4
]−1

e1 FD ≈ −6πV
(0)
B1

[
1− 9

16κ+ 1
8κ

3 − 45
256κ

4 − 1
16κ

5
]−1

e1

(Faxén 1921)

Deformation
(equation (19))

f
(δ)
2 ≈ 3

4V
(0)
B1κ

2
[
1 + 3

8κ
(
1 + 3

8κ+ 73
64κ

2
)] x1x3

r2
f

(δ)
2 ≈ 171

128V
(0)
B1κ

2
[
1 + 9

16κ
(
1− 47

144κ+ 9227
6912κ

2
)] x1x3

r2

Deformation-induced lift
(equation (37))

F
(δ)
M ≈ 3

10πκ
2
(
1 + 3

2κ
)

(V
(0)
B1 )2e3 F

(δ)
M ≈ 171

320πκ
2
(
1 + 9

4κ
)

(V
(0)
B1 )2e3

Inertial lift
(equation (44))

F
(G)
M ≈ π

4
(V

(0)
B1 )2{1 + 0.125κ− 0.516κ2}e3 F

(G)
M ≈ 9π

6
(V

(0)
B1 )2{1 + 0.1875κ− 0.168κ2}e3

(b) Drag
(equation (23a)

FDS ≈ −π
2
ακ2

(
1 + 3

8κ
)
e1 FDS ≈ − 15

8 πακ
2
(
1 + 9

16κ
)
e1

Deformation
(equation (24))

f
(δ)
2S ≈ 2α

[
1 + 3

8κ
3
] x1x3

r2
f

(δ)
2S ≈ 19

8 α
[
1 + 15

16κ
3
] x1x3

r2

Deformation-induced lift
(equation (38))

F
(δ)
MS ≈

[
4
5παV

(0)
S1

(
1 + 3

8κ+ 9
64κ

2
)

+ 169
70 α

2κ2
]
e3 F

(δ)
MS ≈

[
57
40παV

(0)
S1

(
1 + 9

16κ+ 81
256κ

2
)

+ 20463
4480 α

2κ2
]
e3

Inertial lift
(equation (47))

F
(G)
MS ≈ 11

24πα
[ α

3

(
1 + 3

8κ
)− V (0)

S1

(
κ−1 + 99

88 + 45
44κ
)]
e3 F

(G)
MS ≈ 99

96πα

[
5α

9

(
1 + 9

16κ
)− V (0)

S1

(
κ−1 + 443

528 + 52
55κ
)]
e3

(c) Leading-order Drag
(equation (51))

FDC ≈ −4πV
(0)
B3

[
1− 3

4κ− 9
64κ

4
]−1

e3 FDC ≈ −6πV
(0)
B3

[
1− 9

8κ+ 1
2κ

3 − 135
256κ

4 − 1
8κ

5
]−1

e3

(Fuentes et al. 1988)

Deformation
(equations (24) and (31))

f
(δ)
2 ≈ 2α

(
1 + 3

8κ
3
) x1x3

r2
+ 3

8V
(0)
B3κ

2
(
1 + 3

4κ
)(

3
x2

3

r2
− 1

)
f

(δ)
2 ≈ 19

9 α
(
1 + 15

16κ
3
) x1x3

r2
+ 9

16V
(0)
B3κ

2
(
1 + 9

8κ
)(

3
x2

3

r2
− 1

)
Corrections to the drag
(equations (52) and (54))

(
δF

(δ)
M + GF

(G)
M

)
· e3 ≈ 3

10πδκ
2
(

2(V
(0)
B3 )2 + 54

7 α
2
)

+ 11
72πGα

2
(
δF

(δ)
M + GF

(G)
M

)
· e3 ≈ 171

320πδκ
2
(

3(V
(0)
B3 )2 + 54

7 α
2
)

+ 55
96πGα

2

Horizontal slip velocity
(equation (57))

VS1 ≈ − α
8
κ2 + G

{
1
5Oh

−1 − 5
32κ
−1 + 83

384 −
ρ̄

3

}
αV

(0)
B3 VS1 ≈ − 5

16ακ
2 + G

{
19
80Oh

−1 − 15
64κ
−1 + 4133

23040 − 2
9 ρ̄
}
αV

(0)
B3

Table 2. Summary of (a) slip-induced effects for the case of a vertical wall, (b) shear-induced effects for the case of a vertical wall,
(c) results for the case of a horizontal wall.
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of the present results are accurate down to separation distances between the drop
centroid and the wall of about one drop diameter, some of them even providing fairly
accurate approximations much closer to the wall. Since the viscosity ratio between
the two fluids was kept arbitrary all along the calculations, the expressions derived
here show how this ratio influences the various results through the differences in the
strength of the stokeslet (Rµ), irrotational dipole (Dµ), and stresslet (RS ) present in
the unbounded solution. The main results obtained in the situation of a buoyant
drop moving near a vertical wall in a fluid at rest at infinity are summarized in
table 2(a) for the two limit cases of an inviscid bubble and a very viscous drop. In
this situation the deformation is inversely proportional to the square of the distance
to the wall. Inertial and deformation-induced lift forces are both positive, so that both
types of particle migrate away from the wall whatever the value of the Ohnesorge
number (however our prediction shows that the deformation-induced migration is
towards the wall for drops corresponding to an O(1) viscosity ratio). The shear-
induced contributions determined in the case of a buoyant drop moving in a linear
shear flow near a vertical wall are summarized in table 2(b). The shear rate tends
to increase the drag force near the wall, thus resulting in a negative slip velocity for
neutrally buoyant particles. The inertial and deformation-induced lift forces involve
a positive near-wall contribution proportional to the square of the shear rate, and a
term proportional to the product of the shear rate and the slip velocity. The latter
contribution may dominate for large enough slip velocities and may then reverse the
sign of the migration compared to the case of a neutrally buoyant particle. Finally,
results obtained for a buoyant drop moving near a horizontal wall in a fluid at rest
or in a linear shear flow are given in table 2(c). Here the wall-induced drag correction
is stronger than in the case of a particle moving parallel to the wall, owing to the
different near-wall pattern of the streamlines of the disturbance. The net contribution
of the inertial and deformation-induced corrections has two components. The vertical
one is directed away from the wall, so that it increases (resp. decreases) the drag force
on a particle moving towards (resp. away from) the wall. The horizontal contribution
modifies the slip velocity in a quite complex way. While the particle always lags
behind the fluid for small separations, it may lead it for moderate separations if the
deformation is large enough.

These various results are of direct use for computing particle trajectories in the
presence of a wall. We think that they may help to improve the modelling of dilute
buoyant suspensions in the neighbourhood of solid walls.

J. M. and D. L. are very grateful to Howard A. Stone for helpful discussions on the
problems addressed in this work and for his many suggestions that greatly improved
the form of the manuscript.

Appendix A
The central point of Faxén’s (1921, 1924) technique is the recognition that the

fundamental solution of Laplace’s equation in free space may be expressed in the
integral form

1

r
=

1

2π

∫ +∞

−∞

∫ +∞

−∞
1

k
ei(αx1+βx2)−k|x3| dα dβ, (A 1a)

with k = (α2 + β2)1/2 and i2 = −1 (the wavenumber α must not be confused with
the shear rate defined in the main text). Equation (A 1a) may be differentiated at
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any order to give higher-order singular solutions. Terms of the form xγ∇(n)(1/r) with
n > 1 and xγ = (x1, x2) are also readily transformed with the help of the identity∫ +∞

−∞

∫ +∞

−∞
xγF(α, β, k) ei(αx1+βx2)−k|x3| dα dβ

= i

∫ +∞

−∞

∫ +∞

−∞

(
∂F

∂kγ
− kγ

k
|x3|F

)
ei(αx1+βx2)−k|x3| dα dβ, (A 1b)

with kγ = (α, β).
Using the above results, Faxén established that any elementary singular velocity

field 1U S satisfying Stokes equation may be expressed in the generic form

1U S =
1

2π

∫ +∞

−∞

∫ +∞

−∞
ei(αx1+βx2)−k|x3|

{
2

k
g1e1 +

i

k
g2(αe1 + βe2)

− x3

|x3| (g3e1 + g2e3) +
α

k
x3

(
g3(αe1 + βe2) + i

(
k
x3

|x3|g3 − g1

)
e3

)
− α

k3
(k|x3|+ 1)g1(αe1 + βe2)

}
dα dβ, (A 2a)

where functions g1 to g3 are determined by applying transformations (A 1a, b) to the
velocity field under consideration. The corresponding reflection on the wall, 2U S , may
then be sought in the generic form

2U S =
1

2π

∫ +∞

−∞

∫ +∞

−∞
ei(αx1+βx2)−k(x3+2/κ)

{
2

k
g4e1 +

i

k
g5(αe1 + βe2) + ike3)

+
α

k
x3(g6(αe1 + βe2)− ig4e3)−

(
α

k3
g4(αe1 + βe2)− iα

k
g6e3

)
(kx3 + 1)

}
dα dβ,

(A 2b)

where the unknown functions g4 to g6 are determined by applying the no-slip condition

1U S + 2U S = 0 at the wall.
Using (A 1a, b), the unit stokeslet (i.e. that corresponding to Rµ = 1 in (5a)), U Sto

say, may be recast in the form (A 2a) by setting g1 = 1
2
, g2 = g3 = 0. Seeking 2U Sto in

the form (A 2b) yields g4 = − 1
2
, g5 = −i(α/κk)(1− k/κ), g6 = −1/κ. Expanding 2U Sto

near the drop, i.e. for small values of κr, and keeping terms up to O(κ3) we obtain
after performing integrations

2U Sto(κr � 1) = I ′De1 + I ′S (x3e1 + x1e3)

+
(

1
2
(I ′C2 + I ′C3)x

2
1 + I ′Q2x

2
2 + I ′Q3x

2
3

)
e1

−I ′C2x1x2e2 − I ′C3x1x3e3 + O(κ4), (A 3a)

with

I ′D = − 3
8
κ, I ′S = 3

16
κ2, I ′Q2 = 5

64
κ3, I ′Q3 = − 1

16
κ3,

I ′C2 = − 1
32
κ3, I ′C3 = 1

4
κ3. (A 3b)

Similarly, expressing the unit irrotational dipole UD of (5a) within Faxén’s form
we find g1 = g3 = 0, g2 = −iα|x3|, and the image 2UD with respect to the wall is
obtained by setting g4 = 0, g5 = iα(1−2k/κ), g6 = 2k in (A 2b). Expanding 2UD in the
vicinity of the drop and keeping terms of O(κ4) and O(κ5) in view of the higher-order
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approximation derived in § 3.3, we obtain

2UD(κr � 1) = I0e1 + IDS (x3e1 + x1e3) + IDR(x3e1 − x1e3)

+
[

1
2
(IDC2 + IDC3)x

2
1 + IDQ2x

2
2

]
e1

−IDC2x1x2e2 − IDC3x1x3e3 + O(κ6), (A 4a)

with

I0 = 1
4
κ3, IDS = − 9

16
κ4, IDR = 3

8
κ4, IDQ2 = − 3

16
κ5,

IDC2 = 3
8
κ5, IDC3 = − 3

2
κ5. (A 4b)

The velocity field corresponding to the unit stresslet in (8a), U Str say, is recast within
the form (A 2a) by setting g1 = g2 = 0, g3 = − 1

3
and we find that the image 4U Str of

U Str corresponds to g4 = k/6, g5 = −(2iα/3κ)(−1 + κ/4k + k/κ), g6 = − 1
6
(1 − 4k/κ)

in (A 2b). The velocity field 4U str may then be expanded in the vicinity of the drop
as

4U Str(κr � 1) = ISDe1 + ISS (x3e1 + x1e3) + ISR(x3e1 − x1e3) + O(κ4), (A 5a)

with

ISD = 1
8
κ2, ISS = − 3

16
κ3, ISR = 1

16
κ3. (A 5b)

In the complementary problem (§ 4), the unit stokeslet (corresponding to Rµ = 1) in
(26a), uSto say, may be recast within the form (A 2a) by setting g1 = i/2αx3, g2 = x3/2,
g3 = i/αkx3, so that we obtain g4 = 0, g5 = k/κ2, g6 = i

2α
(1+2k/κ) in (A 2b). Similarly,

the unit dipole uD in (26a) corresponds to g1 = g3 = 0, g2 = kx3/|x3|, and its reflection
on the wall is found by setting g4 = 0, g5 = k(1− 2k/κ), g6 = −2ik2/α in (A 2b). Then
the images of the stokeslet and dipole are respectively found to be

2uSto(κr � 1) = J ′De3 + J ′S (x− 3x3e3)

−J ′C(x1x3e1 + x2x3e2) + (J ′Cx
2
3 + J ′Q(x2

1 + x2
2))e3 + O(κ4), (A 6a)

with

J ′D = − 3
4
κ, J ′S = − 3

16
κ2, J ′Q = 5

16
κ3, J ′C = − 1

8
κ3 (A 6b)

and

2uD(κr � 1) = J0e3 + JDS (x− 3x3e3)− JDCx3(x1e1 + x2e2)

+[JDCx
2
3 + JDQ(x2

1 + x2
2)]e3 + O(κ6), (A 7a)

with

J0 = κ3, JDS = 9
16
κ4, JDC = 3

4
κ5, JDQ = − 9

8
κ5. (A 7b)

To obtain the O(κ4) correction to the drag force in the case of a drop moving
perpendicular to the wall, we also need the image 4uStr of the stresslet in (28a). This
image corresponds to g4 = 0, g5 = k(1 − 2k/κ + 2k2/κ2), g6 = −i(k/α)(1 − 2k/κ) in
(A 2b). Thus, performing integrations we obtain

4uStr(κr � 1) = JSDe3 + JSS (x− 3x3e3) + O(κ4), (A 8a)

with

JSD = − 3
4
κ2, JSS = − 1

2
κ3. (A 8b)
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Appendix B

The prefactors involved in (15a–c) are

KSD =

n=5∑
n=0

(−1)nInD − Dµ(I0 +KD)(1− 2ID + 3I2
D) + 2ISRSISD(1− 2ID)

−D
2
µ

Rµ
KDD + O(κ6), (B 1)

KSS = IS

[
3∑
n=0

(−1)nInD − 2RSISS

]
+ Dµ[IDS (1− ID)− (I0 +KD)IS ] + O(κ6), (B 2)

KR = DµIDR(1− ID)− 2RSISISR + O(κ6), (B 3)

KSO =

2∑
n=0

(−1)nInD + O(κ3), (B 4)

with KDD = IDC2 + IDC3 + 2IDQ2 = − 3
2
κ5, KD being defined in § 3.1 just below (8b). In

(B 1), the various prefactors involving ID may be considered as the first terms of an
infinite series, so that KSD may be written approximatively in the fractional form

KSD ≈ 1

1 + ID + Dµ(I0 +KD)− 2ISRSISD + (D2
µ/Rµ)KDD

. (B 5)

These results may be easily transposed to the case of a drop moving perpendicularly
to the wall. Using the coefficients given by (A 6b), (A 7b) and (A 8b) we find that the
counterpart of (B 5) is

KSDC ≈ 1

1 + JD + Dµ(J0 +KDC)− JSRSJSD + (D2
µ/Rµ)KDDC

, (B 6)

with KDDC = 2(JDC + +2JDQ) = −3κ5, KDC being defined in the main text just below
(28b). Similarly the counterpart of (B 2) giving the strength of the model-2 deformation
is

KSSC = JS

[
3∑
n=0

(−1)nJnD − 2RSJSS

]
+Dµ[JDS (1− JD)− (J0 +KDC)JS ] +O(κ6). (B 7)

Appendix C

To obtain the expression for Ū
(0)

and ū valid in the whole fluid domain, the

key step is the determination of the image fields 2Ū
(0)

and 2ū. We illustrate the
corresponding technique on the case of the image 2U Sto of the unit stokeslet involved
in the fundamental solution (5a). Replacing the functions g4 to g6 in (A 2b) by their
expressions, defining the outer variables x̄i = κxi (i = 1, 3), r̄ = κr, the associated
wavenumbers k̄ = k/κ, ᾱ = α/κ, β̄ = β/κ, and changing to polar coordinates allows
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us to write 2U Sto in the form

2Ū Sto =
κ

2

∫ ∞
0

e−k̄(x̄3+2)

{
1
2
J0(k̄ρ̄)

(
− 3

2
+
k̄

2
(2 + x̄3)− k̄2(1 + x̄3)

)
e1

+J2(k̄ρ̄)

(
1
2

+ k̄

(
1 +

x̄3

2

)
− k̄2

(1 + x̄3)

)(
1
2

x̄2
2 − x̄2

1

ρ̄2
e1 − x̄1x̄2

ρ̄2
e2

)

+
x̄1

ρ̄
J1(k̄ρ̄)

(
−k̄ x̄3

2
+ k̄

2
(1 + x̄3)

)
e3

}
dk̄ (C 1)

with ρ̄ = (x̄2
1 + x̄2

2)
1/2, Jn(k̄ρ̄) being the Bessel function of the first kind of order n. The

latter expression can be integrated analytically (Gradshteyn & Ryzhik 1980, p. 712),
yielding

2Ū Sto =
κ

2

{
−
(
e1

τ̄
+
x̄1x̄

τ̄3

)
+ 2

1 + x̄3

τ̄5
[(3x̄1(x̄+ 2e3)− τ̄2e1)]

}
, (C 2)

with τ̄ = (ρ̄2 + (x̄3 + 2)2)1/2 and x̄ = x̄1e1 + x̄2e2 + x̄3e3. Applying similar techniques
to other contributions in (5a), (7)–(8a), we finally obtain the required approximation
of Ū (0) for the case where the fluid is at rest at infinity in the form

Ū (0) = V
(0)
B1

[
− e1 +

κ

2
Rµ

(
2∑
n=0

(−1)nInD

){(
e1

r̄
+
x̄1x̄

r̄3

)
−
(
e1

τ̄
+
x̄1x̄

τ̄3

)

+2
1 + x̄3

τ̄5
(3x̄1(x̄+ 2e3)− τ̄2e1)

}
+ κ3Dµ

{(
e1

r̄3
− 3

x̄1x̄

r̄5

)
−
(
e1

τ̄3
− 3

x̄1x̄

τ̄5

)

+

(
6

(1 + x̄3)(2 + x̄3)

τ̄7
[(τ̄2e1 − 5x̄1(x̄+ 2e3))]

}]
+ O(κ4) . (C 3)

By similar techniques we find that the expression of the complementary velocity ū is

ū = −e3 +
κ

2
Rµ

(
2∑
n=0

(−1)nJnD

){(
e3

r̄
+
x̄3x̄

r̄3

)(
e3

τ̄
+
x̄3x̄

τ̄3

)
− 2

1 + x̄3

τ̄5

×(3(x̄3 + 2)(x̄+ 2e3) + τ̄2e3)

}
+ κ3Dµ

{(
e3

r̄3
− 3

x̄3x̄

r̄5

)
−
(
e3

τ̄3
+ 3

(x̄3 + 2)x̄

τ̄5

)

−6
1 + x̄3

τ̄7
((τ̄2 − 5(x̄3 + 2)2)(x̄+ 2e3) + (x̄3 + 2)τ̄2e3)

}
+ O(κ4). (C 4)

In the case of a linear shear flow, the O(κ3)-approximation of Ū (0) involves the
image of the stresslet. Having determined this elementary solution, the prefactors are
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readily identified in § 3.4. Hence we obtain

Ū (0) = (κ−1αx̄3 − V (0)
S1 )e1 +

κ

2
Rµ

(
V

(0)
S1

2∑
n=0

(−1)nInD + αRSISD

)

×
{(

e1

r̄
+
x̄1x̄

r̄3

)
−
(
e1

τ̄
+
x̄1x̄

τ̄3

)
+ 2

1 + x̄3

τ̄5
(3x̄1(x̄+ 2e3)− τ̄2e1)

}

+κ3DµV
(0)
S1

{(
e1

r̄3
− 3

x̄1x̄

r̄5

)
−
(
e1

τ3
− 3

x̄1x̄

τ̄5

)
+ 6

(1 + x̄3)(2 + x̄3)

τ̄7

×[(τ̄2e1 − 5x̄1(x̄+ 2e3))]

}
− 2κ2RSα

{(
x̄3

r̄5
+

2 + x̄3

τ̄5

)
x̄1x̄

+2
1 + x̄3

τ̄7
[τ̄2((2 + x̄3)e1 + x̄1e3)− 5x̄1(2 + x̄3)(x̄+ 2e3)]

}
+ O(κ4). (C 5)

REFERENCES

Ambari, A., Gauthier-Manuel, B. & Guyon, E. 1983 Effect of a plane wall on a sphere moving
parallel to it. J. Phys. Lett. 44, 143–146.

Ascoli, E. P., Dandy, D. S. & Leal, L. G. 1990 Buoyancy-driven motion of a deformable drop
toward a planar wall at low Reynolds number. J. Fluid Mech. 213, 287–311.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Becker, L. E., McKinley, G. H. & Stone, H. A. 1996 Sedimentation of a sphere near a plane wall:
weak non-Newtonian and inertial effects. J. Non-Newtonian Fluid Mech. 63, 201–233.

Brenner, H. 1961 The slow motion of a sphere through a viscous flow towards a plane surface.
Chem. Engng Sci. 16, 242–251.

Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number.
J. Fluid Mech. 14, 284–304.

Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Particle motions in sheared suspensions XVIII:
Wall migration (theoretical). Rheol. Acta 4, 64–72; and Corrections. Rheol. Acta 6, 100, 1967.

Chan, P. C. H. & Leal, L. G. 1977 A note on the motion of a spherical particle in a general
quadratic flow of a second-order fluid. J. Fluid Mech. 82, 549–559.

Chan, P. C. H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid.
J. Fluid Mech. 92, 131–170.

Chan, P. C. H. & Leal, L. G. 1981 An experimental study of drop migration in shear flow between
concentric cylinders. Intl J. Multiphase Flow 7, 83–99.

Cherukat, P. & McLaughlin, J. B. 1990 Wall-induced lift on a sphere. Intl J. Multiphase Flow 16,
899–907.

Cherukat, P. & McLaughlin, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow
field near a flat wall. J. Fluid Mech. 263, 1–18.

Chervenivanova, E. & Zapryanov, Z. 1985 On the deformation of two droplets in a quasisteady
Stokes flow. Intl J. Multiphase Flow 11, 721–738.

Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.

Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech.
37, 601–623.

Cox, R. G. & Brenner, H. 1968 The lateral migration of solid particles in Poiseuille flow: 1. Theory.
Chem. Engng Sci. 23, 147–173.

Cox, R. G. & Hsu, S. K. 1977 The lateral migration of solid particles in a laminar flow near a
plate. Intl J. Multiphase Flow 3, 201–222.
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