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Abstract We prove formulas of different types that allow us to calculate the Gerstenhaber bracket
on the Hochschild cohomology of an algebra using some arbitrary projective bimodule resolution for it.
Using one of these formulas, we give a new short proof of the derived invariance of the Gerstenhaber
algebra structure on Hochschild cohomology. We also give some new formulas for the Connes differential
on the Hochschild homology that lead to formulas for the Batalin–Vilkovisky (BV) differential on the
Hochschild cohomology in the case of symmetric algebras. Finally, we use one of the obtained formulas to
provide a full description of the BV structure and, correspondingly, the Gerstenhaber algebra structure
on the Hochschild cohomology of a class of symmetric algebras.
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1. Introduction

Let A be an associative unital algebra over a field k. The Hochschild cohomology HH∗(A)
of A has a very rich structure. It is a graded commutative algebra via the cup product
or the Yoneda product, and it has a graded Lie bracket of degree −1 so that it becomes
a graded Lie algebra; these make HH∗(A) a Gerstenhaber algebra [4]. These structures
have a good description in terms of the bar resolution of A, but this resolution is huge
and so it is frequently useless for concrete computations.

The cup product has been well studied. There are various formulas for computing it
using an arbitrary projective resolution, which have been used in many examples. The
situation with the Lie bracket is more complicated. Almost all computations of it are
based on the method of so-called comparison morphisms. This method allows elements of
the Hochschild cohomology to be transferred from one resolution to another. For example,
this method was used for the description of the Lie bracket on the Hochschild cohomology
of the group algebra of a quaternion group of order 8 over a field of characteristic 2 in
[6]. Later, it was applied to all local algebras of the generalized quaternion type over a
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field of characteristic 2 in [5]. Applications of the method of comparison morphisms can
be found also in [1,12,14].

Recently, a formula for computing the bracket via a resolution which is not the bar
resolution appeared in [11]. The proof given there is valid for a resolution that satisfies
some conditions. Other formulas for the Lie bracket are proved in the current work. These
formulas use chain maps from a resolution to its tensor powers and homotopies for some
null homotopic maps defined by cocycles. Then the formula of [11] is slightly changed
and proved for an arbitrary resolution. Note also that a nice formula for the bracket of a
degree one element with an arbitrary element is given in [16].

It is well known that the Hochschild cohomology is a derived invariant. The proof of this
fact can be found, for example, in [13]. The invariance of the cup product easily follows
from this proof, while the derived invariance of the Gerstenhaber bracket was proved
much later. In [8,9], derived invariance of the Gerstenhaber bracket is proved using two
different (relatively advanced) methods. In [9], Keller employs the derived Picard group,
while [8] relies on the use of DG categories. Here, using our new formulation of the bracket
and the approach to the Hochschild homology proposed in [18], we provide a direct proof
of the derived invariance of the bracket which does not require any advanced technology.

Further, we give some formulas for the Lie bracket using so-called contracting homo-
topies. Then we discuss some formulas for the Connes differential on the Hochschild
homology. One of these formulas is a slight modification of the formula from [7]. Also we
give a formula using contracting homotopies for the Connes differential. Thus, in the case
where the Connes differential induces a Batalin–Vilkovisky (BV) structure on Hochschild
cohomology, we obtain an alternative way to compute the Lie bracket. We discuss this in
the case where the algebra under consideration is symmetric.

Finally, we give an example of an application of the discussed formulas. We describe
the BV structure and the Gerstenhaber bracket on the Hochschild cohomology of one
family of symmetric local algebras of dihedral type. The Hochschild cohomology for these
algebras was described in [2,3]. Note also that the Hochschild cohomology groups and
the Hochschild cohomology ring modulo nilpotent radical were described in [15] for a
class of self-injective algebras, including the family of symmetric algebras considered in
this work.

2. Hochschild cohomology via the bar resolution

In this paper, A always denotes some algebra over a field k. We write simply ⊗ instead
of ⊗k.

Let us recall how to define the Hochschild cohomology, the cup product and the Lie
bracket in terms of the bar resolution. The Hochschild cohomology groups are defined as
HHn(A) ∼= Extn

Ae(A,A) for n ≥ 0, where Ae = A⊗Aop is the enveloping algebra of A.

Definition 2.1. An Ae-complex is a Z-graded A-bimodule P with a differential of
degree −1, i.e. an A-bimodule P with some fixed A-bimodule direct sum decomposition
P = ⊕n∈ZPn and an A-bimodule homomorphism dP : P → P such that dP (Pn) ⊂ Pn−1

and d2
P = 0. Let dP,n denote dP |Pn

. The nth homology of P is the vector space Hn(P ) =
(Ker dP,n)/(Im dP,n+1). An Ae-complex P is called acyclic if Hn(P ) = 0 for all n ∈ Z
and is called bounded on the right if Pn = 0 for small enough n. A map of Ae-complexes
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is a homomorphism of A-bimodules that respects the grading. If it also respects the
differential, it is called a chain map. A complex is called positive if Pn = 0 for n < 0. A
pair (P, μP ) is called a resolution of the algebra A if P is a positive complex, Hn(P ) = 0
for n > 0 and μP : P0 → A is an A-bimodule homomorphism inducing an isomorphism
H0(P ) ∼= A.

Given an Ae-complex P , (P,A) denotes the k-complex ⊕n�0HomAe(P−n, A) with
differential d(P,A),n = HomAe(dP,−1−n, A). Let μA : A⊗A→ A be the multiplication
map.

Let Bar(A) be the positive Ae-complex with nth member Barn(A) = A⊗(n+2) for n � 0
and differential dBar(A) defined by the equality

dBar(A)(a0 ⊗ · · · ⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1

for n > 0 and ai ∈ A (0 � i � n+ 1). Then (Bar(A), μA) is a projective Ae-resolution of
A that is called the bar resolution.

The Hochschild cohomology of the algebra A is the homology of the complex C(A) =
(Bar(A), A). We write Cn(A) instead of C−n(A) and δn instead of dC(A),−1−n. Note that
C0(A) 	 A and Cn(A) 	 Homk(A⊗n, A). Given f ∈ Cn(A), we introduce the notation

δi
n(f)(a1 ⊗ · · · ⊗ an+1) :=

⎧⎪⎨
⎪⎩
a1f(a2 ⊗ · · · ⊗ an+1) if i = 0,
(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1) if 1 � i � n,

(−1)n+1f(a1 ⊗ · · · ⊗ an)an+1 if i = n+ 1.

Then δn =
∑n+1

i=0 δ
i
n. We have HHn(A) = (Ker δn)/(Im δn−1).

The cup product α � β ∈ Cn+m(A) = Homk(A⊗(n+m), A) of α ∈ Cn(A) and β ∈
Cm(A) is given by

(α � β)(a1 ⊗ · · · ⊗ an+m) := α(a1 ⊗ · · · ⊗ an)β(an+1 ⊗ · · · ⊗ an+m).

This cup product induces a well-defined product in the Hochschild cohomology

� : HHn(A) × HHm(A) −→ HHn+m(A)

that turns the graded k-vector space HH∗(A) =
⊕

n≥0 HHn(A) into a graded commuta-
tive algebra [4, Corollary 1].

The Lie bracket is defined as follows. Let α ∈ Cn(A) and β ∈ Cm(A). If n,m ≥ 1, then,
for 1 ≤ i ≤ n, we define α ◦i β ∈ Cn+m−1(A) by the equality

(α ◦i β)(a1 ⊗ · · · ⊗ an+m−1)

:= α(a1 ⊗ · · · ⊗ ai−1 ⊗ β(ai ⊗ · · · ⊗ ai+m−1) ⊗ ai+m ⊗ · · · ⊗ an+m−1);

if n ≥ 1 and m = 0, then β ∈ A and, for 1 ≤ i ≤ n, we set

(α ◦i β)(a1 ⊗ · · · ⊗ an−1) := α(a1 ⊗ · · · ⊗ ai−1 ⊗ β ⊗ ai ⊗ · · · ⊗ an−1);
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and for any other case, we set α ◦i β to be zero. Now we define

α ◦ β :=
n∑

i=1

(−1)(m−1)(i−1)α ◦i β and [α, β] := α ◦ β − (−1)(n−1)(m−1)β ◦ α.

Note that [α, β] ∈ Cn+m−1(A). The operation [ , ] induces a well-defined Lie bracket on
the Hochschild cohomology

[ , ] : HHn(A) × HHm(A) −→ HHn+m−1(A)

such that (HH∗(A), �, [ , ]) is a Gerstenhaber algebra (see [4]).

3. Comparison morphisms

Here we recall the method of comparison morphisms. First, we introduce some notation.
If P is a complex, then we denote by P [t] the complex that is equal to P as an A-

bimodule, with grading P [t]n = Pt+n and differential defined as dP [t] = (−1)t dP . Note
that dP defines a map from P to P [−1]. Let us now take some map of complexes f :
P → Q. For any t ∈ Z, f [t] denotes the map from P [t] to Q[t] induced by f , i.e. such a
map that f [t]|P [t]i = f |Pi+t

. For simplicity we will write simply f instead of f [t], since in
each situation t can be easily recovered. Let df denote the map f dP − dQf : P → Q[−1].
We will frequently use the equality d(fg) = (−1)m(df)g + f dg : N → Q[m− 1], which
is valid for any g : N → P [m]. For two maps of complexes f, g : P → Q, we write f ∼ g
if f − g = ds for some s : U → V [1]. Note that if f ∼ 0 and dg = 0, then fg ∼ 0 and
gf ∼ 0 (for a composition that makes sense). Also, we always identify an A-bimodule M
with the complex M̃ such that M̃i = 0 for i �= 0 and M̃0 = M . Note also that if f ∼ 0,
then df = 0. It is not hard to see that if P is a projective complex, Q is exact in Qi for
i � n, and Qi = 0 for i < n, then for any f : P → Q the equality df = 0 holds if and only
if f ∼ 0. Moreover, we have the following fact.

Lemma 3.1. Let P be a projective complex, let Q be exact in Qi for i > n, and let
Qi = 0 for i < n. Let μQ : Q→ Hn(Q) denote the canonical projection. If f : P → Q is
such that df = 0 and μQf ∼ 0, then f ∼ 0.

Proof. Assume that μQf = φdP . Since Pn−1 is projective, there is some ψ : Pn−1 →
Qn such that μQψ = φ. Then f − dψ is a chain map such that μQ(f − dψ) = 0. Then it
is easy to see that f ∼ dψ ∼ 0. �

Now let (P, μP ) and (Q,μQ) be two Ae-projective resolutions of A. The method of
comparison morphisms is based on the following idea. Since P is positive projective and
Q is exact in Qi for i > 0, there is some chain map of complexes ΦQ

P : P → Q such that
μQΦQ

P = μP . Analogously, there is a chain map ΦP
Q : Q→ P such that μP ΦP

Q = μQ. Then
ΦQ

P and ΦP
Q induce maps from (Q,A) to (P,A) and backwards. Thus, we also have the

maps
(ΦQ

P )∗ : H∗(Q,A) → H∗(P,A) and (ΦP
Q)∗ : H∗(P,A) → H∗(Q,A).

Since d(1P − ΦP
QΦQ

P ) = 0, we have 1P ∼ ΦP
QΦQ

P by the arguments above. Then it is easy to
see that (ΦQ

P )∗(ΦP
Q)∗ = (ΦP

QΦQ
P )∗ = 1H∗(P,A) and, analogously, (ΦP

Q)∗(ΦQ
P )∗ = 1H∗(Q,A).
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So we can define the Hochschild cohomology of A as the homology of (P,A), and this
definition does not depend on the Ae-projective resolution (P, μP ) of A. If we define some
bilinear operation ∗ on (Q,A) that induces an operation on HH∗(A), then we can define
the operation ∗Φ on (P,A) by the formula f ∗Φ g = (fΦP

Q ∗ gΦP
Q)ΦQ

P for f, g ∈ (P,A). It
is easy to see that ∗Φ induces an operation on HH∗(A) and that the induced operation
coincides with ∗. Now we can take Q = Bar(A) and define the cup product and the Lie
bracket on (P,A) by the equalities

f �Φ g = (fΦP
Bar(A) � gΦP

Bar(A))Φ
Bar(A)
P and [f, g]Φ = [fΦP

Bar(A), gΦ
P
Bar(A)]Φ

Bar(A)
P .

Thus, to apply the method of comparison morphism one has to describe the maps
ΦBar(A)

P and ΦP
Bar(A) and then use them to describe the bracket in terms of the resolution

P . The problem is that for some x ∈ P the formula ΦBar(A)
P (x) is complicated, and to

describe ΦP
Bar(A) one has to define it on a lot of elements.

Let now recall one formula for the cup product that uses an arbitrary Ae-projective
resolution of A instead of the bar resolution. But first let us introduce some definitions
and notation.

Definition 3.2. Given Ae-complexes P and Q, we define the tensor product com-
plex P ⊗A Q by the equality (P ⊗A Q)n =

∑
i+j=n Pi ⊗A Qj . The differential dP⊗AQ is

defined by the equality dP⊗AQ(x⊗ y) = dP (x) ⊗ y + (−1)ix⊗ dQ(y) for x ∈ Pi, y ∈ Qj .

We always identify P ⊗A A and A⊗A P with P by the obvious isomorphisms of com-
plexes. For any n ∈ Z we also identify P ⊗A Q[n] and P [n] ⊗A Q with (P ⊗A Q)[n].
Note that this identification uses isomorphisms αn

P,Q : P ⊗A Q[n] → (P ⊗A Q)[n] and
βn

P,Q : P [n] ⊗A Q→ (P ⊗A Q)[n] defined by the equalities αn
P,Q(x⊗ y) = (−1)inx⊗ y

and βP,Q(x⊗ y) = x⊗ y for x ∈ Pi and y ∈ Q. In particular, we have two different iso-
morphisms βn

P,Qα
m
P [n],Q and αm

P,Qβ
n
P,Q[m] from P [n] ⊗A Q[m] to (P ⊗A Q)[n+m]. For

convenience, we always identify P [n] ⊗A Q[m] with (P ⊗A Q)[n+m] using the isomor-
phism βn

P,Qα
m
P [n],Q, which sends x⊗ y to (−1)(i+n)mx⊗ y for x ∈ Pi and y ∈ Q. In

particular, we identify A[n] ⊗A A[m] with A[n+m] by the isomorphism βn
A,Aα

m
A[n],A,

which sends a⊗ b to (−1)mnab for a, b ∈ A.

Definition 3.3. Given an Ae-projective resolution (P, μP ) of A, a chain map ΔP :
P → P⊗An is called a diagonal n-approximation of P if μ⊗n

P ΔP = μP .

Let (P, μP ) be an Ae-projective resolution of A. Suppose also that ΔP : P → P ⊗A P is
a diagonal 2-approximation of P . Then the operation �ΔP

on (P,A) defined for f : P →
A[−n] and g : P → A[−m] by the equality f �ΔP

g = (−1)mn(f ⊗ g)ΔP induces the
cup product on HH∗(A). Note also that if f ∈ Cn(A) and g ∈ Cm(A), then the equality
f � g = (−1)mn(f ⊗ g)Δ holds for Δ defined by the equality

Δ(1 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1) =
n∑

i=0

(1 ⊗ a1 ⊗ · · · ai ⊗ 1) ⊗A (1 ⊗ ai+1 ⊗ · · · ⊗ an ⊗ 1). (3.1)
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4. Gerstenhaber bracket via an arbitrary resolution

In this section we prove some new formulas for the Gerstenhaber bracket. The existence
of these formulas is based on the following lemma.

Lemma 4.1. Let (P, μP ) be an Ae-projective resolution of A and let f : P → A[−n]
be such that f dP = 0. Then f ⊗ 1P − 1P ⊗ f : P ⊗A P → P [−n] is homotopic to 0.

Proof. It is easy to check that d(f ⊗ 1P − 1P ⊗ f) = 0. Since μP (μP ⊗ 1P − 1P ⊗
μP ) = 0, there is some map φ : P ⊗A P → P [1] such that μP ⊗ 1P − 1P ⊗ μP = dφ. Then
μP (f ⊗ 1P − 1P ⊗ f) = −fdφ ∼ 0 and so f ⊗ 1P − 1P ⊗ f ∼ 0 by Lemma 3.1. �

Corollary 4.2. Let P , f be as above and ΔP be some diagonal 2-approximation of
P . Then (f ⊗ 1P − 1P ⊗ f)ΔP : P → P [−n] is homotopic to 0.

Proof. Since dΔP = 0, everything follows directly from Lemma 4.1. �

Definition 4.3. Let P , f and ΔP be as above. We call φf : P → P [1 − n] a homotopy
lifting of (f,ΔP ) if dφf = (f ⊗ 1P − 1P ⊗ f)ΔP and μPφf + fφ ∼ 0 for some φ : P →
P [1] such that dφ = (μP ⊗ 1P − 1P ⊗ μP )ΔP .

One can show following the proofs of Lemmas 3.1 and 4.1 that some homotopy lifting
exists for any cocycle. Alternatively, the existence of some φ̃f such that dφ̃f = (f ⊗ 1P −
1P ⊗ f)ΔP follows from Corollary 4.2 and, in particular, there is some φ satisfying the
equality from the definition of a homotopy lifting. Easy calculation shows that μP φ̃f + fφ

is a cocycle. Then there is u : P → P [1 − n] such that du = 0 and μPu = μP φ̃f + fφ, and
hence φ̃f − u is a homotopy lifting. Now we are ready to prove our first formula.

Theorem 4.4. Let (P, μP ) be an Ae-projective resolution of A, and let ΔP : P →
P ⊗A P be a diagonal 2-approximation of P . Let f : P → A[−n] and g : P → A[−m]
represent some cocycles. Suppose that φf and φg are homotopy liftings for (f,ΔP ) and
(g,ΔP ), respectively. Then the Gerstenhaber bracket of the classes of f and g can be
represented by the class of the element

[f, g]φ,Δ = (−1)mfφg + (−1)m(n−1)gφf . (4.1)

Proof. We will prove the assertion of the theorem in three steps.
(1) Let us prove that the operation induced on the Hochschild cohomology by [, ]φ,ΔP

does not depend on the choice of ΔP and φ. We do this in two steps.

• If φg and φ′g are two homotopy liftings for g, then d(φg − φ′g) = 0 and μP (φg −
φ′g) ∼ gε for some chain map ε : P → P [1]. Then ε ∼ 0 and μP (φg − φ′g) ∼ 0. Hence,
φg − φ′g ∼ 0 and fφ′g ∼ fφg. Analogously, gφ′f ∼ gφf and so [f, g]φ′,Δ ∼ [f, g]φ,Δ.

• Let Δ′
P and ΔP be two diagonal 2-approximations of P , and let φf and φg be homo-

topy liftings for (f,ΔP ) and (g,ΔP ) correspondingly. Then Δ′
P = ΔP + du for some

u. Note that if dφ = (μP ⊗ 1P − 1P ⊗ μP )ΔP , then d(φ+ (μP ⊗ 1P − 1P ⊗ μP )u) =
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(μP ⊗ 1P − 1P ⊗ μP )Δ′
P , hence φ′f = φf + (f ⊗ 1P − 1P ⊗ f)u and φ′g = φg + (g ⊗

1P − 1P ⊗ g)u are homotopy liftings for (f,Δ′
P ) and (g,Δ′

P ). Now we have

[f, g]φ′,Δ′ − [f, g]φ,Δ = (−1)mf(g ⊗ 1P − 1P ⊗ g)u

+ (−1)m(n−1)g(f ⊗ 1P − 1P ⊗ f)u

= ((−1)m+mng ⊗ f − (−1)mf ⊗ g + (−1)m(n−1)+mnf

⊗ g − (−1)m(n−1)g ⊗ f)u = 0.

(2) Let us prove that the operation induced on the Hochschild cohomology does not
depend on the choice of an Ae-projective resolution of A. Let (Q,μQ) be another Ae-
projective resolution of A. Let ΦQ

P : P → Q and ΦP
Q : Q→ P be comparison morphisms,

and let φfΦP
QΦQ

P
and φgΦP

QΦQ
P

be homotopy liftings for (fΦP
QΦQ

P ,ΔP ) and (gΦP
QΦQ

P ,ΔP )

correspondingly. It is not difficult to check that φfΦP
Q

= ΦQ
PφfΦP

QΦQ
P
ΦP

Q and φgΦP
Q

=

ΦQ
PφgΦP

QΦQ
P
ΦP

Q are homotopy liftings for (fΦP
Q,ΔQ) and (gΦP

Q,ΔQ) correspondingly in

this case. Here, ΔQ denotes the map (ΦQ
P ⊗ ΦQ

P )ΔP ΦP
Q. Then

[fΦP
Q, gΦ

P
Q]φ,Δ = (−1)mfΦP

QΦQ
PφgΦP

QΦQ
P
ΦP

Q + (−1)m(n−1)gΦP
QΦQ

PφfΦP
QΦQ

P
ΦP

Q

= [fΦP
QΦQ

P , gΦ
P
QΦQ

P ]φ,ΔP
ΦP

Q = [f, g]φ,ΔΦP
Q.

(3) Suppose now that (P, μP ) = (Bar(A), μA) and ΔP = Δ, where Δ is the map from
(3.1). Let us define

φg(1 ⊗ a1 ⊗ · · · ai+m−1 ⊗ 1) =
i∑

j=1

(−1)(m−1)j−1 ⊗ a1 ⊗ · · · ⊗ aj−1

⊗ g(aj ⊗ · · · ⊗ aj+m−1) ⊗ aj+m ⊗ · · · ⊗ ai+m−1 ⊗ 1

and analogously for φf . Then we have (−1)mfφg + (−1)m(n−1)gφf = [f, g] by definition.
Direct calculations show that φf and φg are homotopy liftings for (f,Δ) and (g,Δ) (in
fact, φg coincides with (−1)mG(1B ⊗ g ⊗ 1B)Δ(2) in [11, Notation 2.3], and the fact that
φg is a homotopy lifting follows from [11, Proposition 2.4] and our discussion below). �

Let (P, μP ) be an Ae-projective resolution for A, and let Δ(2)
P : P → P ⊗A P ⊗A P be

a diagonal 3-approximation of P . There is some homotopy φP for μP ⊗ 1P − 1P ⊗ μP .
Since

(μP ⊗ μP )(μP ⊗ 1P ⊗ 1P − 1P ⊗ 1P ⊗ μP )Δ(2)
P = 0,

there is some homotopy εP for (μP ⊗ 1P ⊗ 1P − 1P ⊗ 1P ⊗ μP )Δ(2)
P . We define

f ◦
Δ

(2)
P ,φP ,εP

g = fφP (1P ⊗ g ⊗ 1P )Δ(2)
P − (−1)m(f ⊗ g)εP : P → A[1 − n−m] (4.2)

and
[f, g]

Δ
(2)
P ,φP ,εP

= f ◦
Δ

(2)
P ,φP ,εP

g − (−1)(n−1)(m−1)g ◦
Δ

(2)
P ,φP ,εP

f.

This formula is a slightly corrected variant of the formula from [11].
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Corollary 4.5. The operation [, ]
Δ

(2)
P ,φP ,εP

induces an operation on HH∗(A) that

coincides with the usual Lie bracket on the Hochschild cohomology.

Proof. By Theorem 4.4 it is enough to check that −(1P ⊗ g)εP + (−1)mφP (1P ⊗ g ⊗
1P )Δ(2)

P is a homotopy lifting for (g, (μP ⊗ 1P ⊗ 1P )Δ(2)
P ) if g dP = 0. Let us verify the

first condition:

− d((1P ⊗ g)εP + (−1)mφP (1P ⊗ g ⊗ 1P )Δ(2)
P )

= −(1P ⊗ g)dεP + dφP (1P ⊗ g ⊗ 1P )Δ(2)
P

= (1P ⊗ g)(1P ⊗ 1P ⊗ μP − μP ⊗ 1P ⊗ 1P )Δ(2)
P

+ (μP ⊗ 1P − 1P ⊗ μP )(1P ⊗ g ⊗ 1P )Δ(2)
P

= (g ⊗ 1P − 1P ⊗ g)(μP ⊗ 1P ⊗ 1P )Δ(2)
P .

The second condition can be easily verified after noting that ImφP ⊂ ⊕i>0Pi ⊂ KerμP .
Indeed, we have

μP (−(1P ⊗ g)εP + (−1)mφP (1P ⊗ g ⊗ 1P )Δ(2)
P ) + gφP (μP ⊗ 1P ⊗ 1P )Δ(2)

P

= g(φP (μP ⊗ 1P ⊗ 1P )Δ(2)
P − (μP ⊗ 1P )εP ) ∼ 0

because d(φP (μP ⊗ 1P ⊗ 1P )Δ(2)
P − (μP ⊗ 1P )εP ) = 0. �

Remark 4.6. Usually, the diagonal 3-approximation Δ(2)
P is constructed using some

2-approximation ΔP by the rule Δ(2)
P = (ΔP ⊗ 1P )ΔP . It often occurs that the maps ΔP

and μP satisfy the equality

(μP ⊗ 1P )ΔP = 1P = (1P ⊗ μP )ΔP . (4.3)

In this case, some things become easier. First, one can set φ = 0 in the definition of a
homotopy lifting. Then the second condition simply means that μPφf is a coboundary.
In particular, one can simply set φf |Pn−1 = 0. Second, if (4.3) holds and the diagonal
3-approximation is defined as above, then one can set εP = 0 in equality (4.2). Thus, we
get the formula from [11] in the case where (4.3) holds. Note that the condition (4.3) is
weaker than the conditions proposed in [11].

On the other hand, we always can set εP = (φP ⊗ 1P + 1P ⊗ φP )Δ(2)
P and obtain the

following formula for the bracket:

[f, g]
Δ

(2)
P ,φP ,εP

= −fφP (g ⊗ 1P ⊗ 1P − 1P ⊗ g ⊗ 1P + 1P ⊗ 1P ⊗ g)Δ(2)
P

+ (−1)(n−1)(m−1)gφP (f ⊗ 1P ⊗ 1P − 1P ⊗ f ⊗ 1P + 1P ⊗ 1P ⊗ f)Δ(2)
P . (4.4)

Remark 4.7. In fact, Corollary 4.2 can be proved directly without Lemma 4.1. Then
one can show that homotopy liftings exist using only the projectivity of P and not of its
tensor powers over A. This allows us to define the Gerstenhaber bracket on Ext∗Ae(A,A)
for any associative ring A, even in the case where one cannot use the bar resolution for
this.
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5. Derived invariance of the Gerstenhaber bracket

Let D−A and K−
p A denote the derived category of bounded on the right complexes of

A-modules and the homotopy category of bounded on the right complexes of A-projective
modules, respectively. Note that the construction of a projective resolution for a com-
plex induces an equivalence between D−A and K−

p A. In this section, (P, μP ) is called
a projective bimodule resolution of A if P ∈ K−

p A
e and the morphism of Ae-complexes

μP : P → A induces an isomorphism in homology, i.e. P does not have to be concentrated
only in non-negative degrees. Then the chain map ΔP : P → P ⊗A P is called a diagonal
2-approximation of P if (μP ⊗A μP )ΔP ∼ μP .

One can easily check that all the arguments of the previous sections are valid for the
settings of this section. In particular, for any map f : P → A[−n] there exists a homotopy
lifting for (f,ΔP ) and the statement of Theorem 4.4 holds.

We will say that A is standardly derived equivalent to B if there exist U ∈ D−(A⊗Bop)
and V ∈ D−(B ⊗Aop) such that U ⊗L

B V ∼= A in D−Ae and V ⊗L
A U ∼= B in D−Be. We

will assume without loss of generality that U ∈ K−
p (A⊗Bop) and V ∈ K−

p (B ⊗Aop). The
paper [13] guarantees that if A and B are algebras over a field, then they are standardly
derived equivalent if and only if they are derived equivalent. Since U ∈ K−

p (A⊗Bop),
V ∈ K−

p (B ⊗Aop), U ⊗L
B V ∼= A in D−Ae and V ⊗L

A U ∼= B in D−Be, there are chain
maps α : U ⊗B V → A and β : V ⊗A U → B that induce isomorphisms in homology. We
will need the following technical lemmas.

Lemma 5.1. The maps α and β above can be chosen in such a way that

α⊗ 1U ∼ 1U ⊗ β : U ⊗B V ⊗A U → U and 1V ⊗ α ∼ β ⊗ 1V : V ⊗A U ⊗B V → V.

Proof. Let β̃ : V ⊗A U → B be some chain map inducing isomorphism in homology.
Note that α(α⊗ 1U⊗BV − 1U⊗BV ⊗ α) = 0. Since α is a quasi-isomorphism, we have

α⊗ 1U⊗BV ∼ 1U⊗BV ⊗ α : U ⊗B V ⊗A U ⊗B V → U ⊗B V.

Analogously, β̃ ⊗ 1V ⊗AU ∼ 1V ⊗AU ⊗ β̃. Let β be a chain map that equals

β̃(1V ⊗ α⊗ 1U )(1V ⊗AU ⊗ β̃−1)

in HomD−Be(V ⊗L
A U,B). In the derived category of A⊗Bop-modules we have

1U ⊗ β = (1U ⊗ β̃)(1U⊗BV ⊗ α⊗ 1U )(1U⊗BV ⊗AU ⊗ β̃−1)

= (1U ⊗ β̃)(α⊗ 1U⊗BV ⊗AU )(1U⊗BV ⊗AU ⊗ β̃−1)

= (1U ⊗ β̃)(α⊗ 1U ⊗ β̃−1) = α⊗ 1U .

Since U ⊗B V ⊗A U is A⊗Bop-projective, we have α⊗ 1U ∼ 1U ⊗ β. Analogously, 1V ⊗
α ∼ β ⊗ 1V . �
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Lemma 5.2. Suppose that α and β satisfy the compatibility conditions of Lemma 5.1
and the maps

ϕαβ : U ⊗B V ⊗A U → U [1] and ϕβα : V ⊗A U ⊗B V → V [1]

are such that dϕαβ = α⊗ 1U − 1U ⊗ β and dϕβα = β ⊗ 1V − 1V ⊗ α. Then

β(ϕβα ⊗ 1U + 1V ⊗ ϕαβ) : V ⊗A U ⊗B V ⊗A U → B[1]

is a null-homotopic chain map.

Proof. Let us set ψ = β(ϕβα ⊗ 1U + 1V ⊗ ϕαβ). Since

ψdV ⊗AU⊗BV ⊗AU = β(β ⊗ 1V ⊗AU − 1V ⊗ α⊗ 1U + 1V ⊗ α⊗ 1U − 1V ⊗AU ⊗ β) = 0,

ψ is a chain map. Note that ψ(β ⊗ β)−1 ∈ HomD−Be(B,B[1]) = 0. Consequently, ψ equals
0 in the derived category of Be-modules. Since V ⊗A U ⊗B V ⊗A U is projective, we have
ψ ∼ 0. �

Suppose that A and B are derived equivalent algebras, U and V are as above, and
α, β, ϕαβ and ϕβα are as in Lemma 5.2. If (P, μP ) is a projective bimodule resolu-
tion of A, then it is easy to see that (V ⊗A P ⊗A U, β(1V ⊗A μP ⊗A 1U )) = (P̃ , μP̃ )
is a projective bimodule resolution of B. For f : P → A[−n], we will denote by f̃
the map 1V ⊗A f ⊗A 1U : P̃ → B[−n]. There is an isomorphism χ : HH∗(A) → HH∗(B)
that sends the element corresponding to f : P → A[−n] to the element correspond-
ing to χ(f) = βf̃ : P̃ → B[−n]. Note that μP̃ = χ(μP ). Now let ΔP : P → P ⊗A P be
a diagonal 2-approximation for (P, μP ). Since the map 1P ⊗A α⊗A 1P : P ⊗A U ⊗B

V ⊗A P → P ⊗A P is a quasi-isomorphism and all the complexes under consideration
are projective, there exists a chain map γ : P ⊗A P → P ⊗A U ⊗B V ⊗A P such that
γ(1P ⊗A α⊗A 1P ) ∼ 1P⊗AU⊗BV ⊗AP and (1P ⊗A α⊗A 1P )γ ∼ 1P⊗AP . Then it is easy
to check that the map ΔP̃ = 1V ⊗A γΔ ⊗A 1U is a diagonal approximation for (P̃ , μP̃ ).
Note also that (1P ⊗A α⊗A 1P )γΔP is a diagonal approximation for (P, μP ). We have
the following lemma.

Lemma 5.3. Let f : P → A[−n] be a map of Ae-complexes and φf : P → P [1 − n] be
a homotopy lifting for (f, (1P ⊗A α⊗A 1P )γΔP ). Then

ψf = 1V ⊗A φf ⊗A 1U + (−1)n
(
ϕβα(f̃ ⊗B 1V ) ⊗A 1P⊗AU

+ 1V ⊗AP ⊗A ϕαβ(1U ⊗B f̃)
)
ΔP̃

is a homotopy lifting for (χ(f),ΔP̃ ).
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Proof. Direct calculations show that

dψf = (1V ⊗A f ⊗A α⊗A 1P⊗AU − 1V ⊗AP ⊗A α⊗A f ⊗A 1U )ΔP̃ + (βf̃ ⊗B 1P̃

− 1V ⊗A f ⊗A α⊗A 1P⊗AU + 1V ⊗AP ⊗A α⊗A f ⊗A 1U − 1P̃ ⊗B βf̃)ΔP̃

= (χ(f) ⊗B 1P̃ − 1P̃ ⊗B χ(f))ΔP̃ .

In particular, dψμP
= (μP̃ ⊗B 1P̃ − 1P̃ ⊗B μP̃ )ΔP̃ . By the definition of the homotopy

lifting, we have μPφf + fφμP
∼ 0, and hence

μP̃ψf + χ(f)ψμP
∼ (−1)nβ(ϕβα(f̃ ⊗B 1V ) ⊗A μP ⊗A 1U + 1V ⊗A μP ⊗A ϕαβ

× (1U ⊗B f̃))ΔP̃ + β(1V ⊗A f ⊗A 1U )(ϕβα(μ̃P ⊗B 1V ) ⊗A 1P⊗AU

+ 1V ⊗AP ⊗A ϕαβ(1U ⊗B μ̃P ))ΔP̃

= (−1)nβ(ϕβα ⊗A 1U + 1V ⊗A ϕαβ)(f̃ ⊗B μ̃P + μ̃P ⊗B f̃)ΔP̃ ∼ 0

by Lemma 5.2. Thus, ψf is a homotopy lifting for (χ(f),ΔP̃ ). �

Now we are ready to prove the following theorem.

Theorem 5.4. Suppose that A and B are k-algebras. If A is derived equivalent to B,
then HH∗(A) ∼= HH∗(B) as Gerstenhaber algebras.

Proof. It is well known that the isomorphism χ defined above preserves the cup prod-
uct. In fact, it coincides with the isomorphism from [13]. Thus, it remains to prove that
it preserves the Gerstenhaber bracket.

By Lemma 5.3 and Theorem 4.4, it is enough to show that

(−1)mχ(f)ψg + (−1)m(n−1)χ(g)ψf ∼ χ((−1)mfφg + (−1)m(n−1)gφf )

for any two maps f : P → A[−n] and g : P → A[−m] of Ae-complexes. We have

(−1)mχ(f)ψg + (−1)m(n−1)χ(g)ψf − χ((−1)mfφg + (−1)m(n−1)gφf )

= β(1V ⊗A ((−1)mfφg + (−1)m(n−1)gφf ) ⊗A 1U ) − χ((−1)mfφg + (−1)m(n−1)gφf )

+ β(1V ⊗A f ⊗A 1U )(ϕβα(g̃ ⊗B 1V ) ⊗A 1P⊗AU + 1V ⊗AP ⊗A ϕαβ(1U ⊗B g̃))ΔP̃

− (−1)(m−1)(n−1)β(1V ⊗A g ⊗A 1U )(ϕβα(f̃ ⊗B 1V ) ⊗A 1P⊗AU

+ 1V ⊗AP ⊗A ϕαβ(1U ⊗B f̃))ΔP̃

= (−1)(m−1)nβ(ϕβα ⊗A 1U )(g̃ ⊗B f̃)ΔP̃ + (−1)nβ(1V ⊗A ϕαβ)(f̃ ⊗B g̃)ΔP̃

+ (−1)nβ(ϕβα ⊗A 1U )(f̃ ⊗B g̃)ΔP̃ + (−1)(m−1)nβ(ϕβα ⊗A 1U )(f̃ ⊗B g̃)ΔP̃

= (−1)nβ(ϕβα ⊗A 1U + 1V ⊗A ϕαβ)(f̃ ⊗B g̃ + (−1)mng̃ ⊗B f̃)ΔP̃ ∼ 0

by Lemma 5.2. Thus, the theorem is proved. �
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6. A formula via contracting homotopy

In this section, we present a formula that expresses the Lie bracket on the Hochschild
cohomology in terms of an arbitrary resolution and a left contracting homotopy for it.
Note that contracting homotopies can be used to construct comparison maps between
resolutions; this method was applied to compute the bracket, for example, in [6].

Definition 6.1. Let (P, μP ) be a projective Ae-resolution of A. Let tP : P → P and
ηP : A→ P be homomorphisms of left modules such that tP (Pi) ⊂ Pi+1 and ηP (A) ⊂ P0.
The pair (tP , ηP ) is called a left contracting homotopy for (P, μP ) if dP tP + tP dP +
ηPμP = 1P and tP (tP + ηP ) = 0.

Since A is projective as a left A-module, any Ae-projective resolution of A splits as a
complex of left A-modules. Hence, a left contracting homotopy exists for anyAe-projective
resolution of A (see [6, Lemma 2.3] and the remark after it for details).

Let us fix an Ae-projective resolution (P, μP ) of A and a left contracting homotopy
(tP , ηP ) for it.

For any n � 0, the map πn : A⊗ Pn → Pn defined by the equality πn(a⊗ x) = ax for
a ∈ A, x ∈ Pn is an epimorphism of A-bimodules. Since Pn is projective, there is ιn ∈
HomAe(Pn, A⊗ Pn) such that πnιn = 1Pn

. Let us fix such ιn for each n � 0. Then πn

and ιn (n � 0) determine homomorphisms of graded A-bimodules π : A⊗ P → P and
ι : P → A⊗ P .

Let us define

tL := (1P ⊗ π)(tP ⊗ 1P )(1P ⊗ ι) : P ⊗A P → (P ⊗A P )[1],

ηL := (1P ⊗ π)(ηP ⊗ 1P )ι : P → P ⊗A P,

dL := dP ⊗ 1P ,dR := 1P ⊗ dP : P ⊗A P → (P ⊗A P )[−1],

μL := μP ⊗ 1P , μR := 1P ⊗ μP : P ⊗A P → P.

Note that all the defined maps are homomorphisms of A-bimodules. Note also that we
omit isomorphisms α1

P,P and β±1
P,P in our definitions according to our agreement. It is

easy to see that the map tL dR : P ⊗A P → P ⊗A P is locally nilpotent in the sense that
for any x ∈ P ⊗A P there is an integer l such that (tL dR)l(x) = 0. This follows from the
fact that tL dR(P ⊗A Pj) ⊂ P ⊗A Pj−1 if j > 0 and tL dR(P ⊗A P0) = 0. Hence, the map
1P⊗AP + tL dR is invertible.

Now let f : P → A[−n] and g : P → A[−m] be maps of complexes. Let us define

f ◦ g = −fμRStL(1P ⊗ g ⊗ 1P )(1P ⊗ SηL)SηL,

where S = (1P⊗AP + tL dR)−1.

Theorem 6.2. In the notation above, the operation defined by the equality [f, g] =
f ◦ g − (−1)(n−1)(m−1)g ◦ f induces the usual Lie bracket on the Hochschild cohomology.

We divide the proof into several lemmas. First of all, note that

dLtL + tL dL + ηLμL = 1P⊗AP , μLηL = 1P , (dR)2 = (dL)2 = 0 and dL dR + dR dL = 0.
(6.1)
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Lemma 6.3. (dL + dR)S = S(dL + ηLμL dR).

Proof. Let us multiply the desired equality by 1P⊗AP + tL dR on the left and on the
right at the same time. We obtain that we have to prove that

dL + dR + tL dR dL + tL(dR)2 = dL + ηLμL dR + dLtL dR + ηLμL dRtL dR.

Using (6.1) one can see that it is enough to show that ηLμL dRtL dR = 0. But the
last equality follows from the fact that the image of dRtL dR lies in ⊕n>0Pn ⊗A P ⊂
KerμL. �

Lemma 6.4. SηL is a diagonal 2-approximation of P .

Proof. By Lemma 6.3 we have

d(SηL) = (dL + dR)SηL − SηL dP = S(dL + ηLμL dR)ηL − SηL dP .

Since Im ηL ⊂ Ker dL, it is enough to prove that ηLμL dRηL = ηL dP . It is easy to see
that μL dR = dPμL. Hence, ηLμL dRηL = ηL dPμLηL = ηL dP by (6.1). �

Proof of Theorem 6.2. It follows from Lemma 6.4 that ΔP = (1P ⊗ μRSηL)SηL is
a diagonal 2-approximation of P .

It is enough to show that φg = (−1)m−1μRStL(1P ⊗ g ⊗ 1P )(1P ⊗ SηL)SηL is a homo-
topy lifting for (g,ΔP ). Using Lemma 6.3, we get μR d(S)tL = μR(1P − ηLμL) dRtL =
μR dRtL − μRηL dPμLtL = 0. Since S dR = dR and μLSηL = 1P , we now get

dφg = −μRS((dL + dR)tL + tL(dL + dR))(1P ⊗ g ⊗ 1P )(1P ⊗ SηL)SηL

= μRS(ηLμL − 1P⊗AP − tL dR)(1P ⊗ g ⊗ 1P )(1P ⊗ SηL)SηL

− μR dRtL(1P ⊗ g ⊗ 1P )(1P ⊗ SηL)SηL

= (μP ⊗ g ⊗ μRSηL)(1P ⊗ SηL)SηL − (1P ⊗ g ⊗ μP )(1P ⊗ SηL)SηL

= (g ⊗ 1P )(1P ⊗ μRSηL)SηLμLSηL − (1P ⊗ g)(1P ⊗ μRSηL)SηL

= (g ⊗ 1P − 1P ⊗ g)ΔP .

Note also that μLΔP = μRSηL = μRΔP and μPφg = 0. Hence, φg is a homotopy lifting
for (g,ΔP ) and the theorem is proved. �

7. Formulas for the Connes differential

In this section we discuss some formulas for the Connes differential. These formulas are
based on the formula from [7]. In the case of a symmetric algebra, a formula for the
Connes differential gives a formula for a BV differential. Thus, we obtain in this section
an alternative way of computing the Lie bracket on the Hochschild cohomology of a
symmetric algebra.

Let Tr denote the functor A⊗Ae − from the category of A-bimodules to the category
of k-linear spaces. If M and N are A-bimodules, then there is an isomorphism σM,N :
Tr(M ⊗A N) → Tr(N ⊗A M) defined by the equality σM,N (1 ⊗ x⊗ y) = 1 ⊗ y ⊗ x for
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x ∈M and y ∈ N . Moreover, for f ∈ HomAe(M1,M2) and g ∈ HomAe(N1, N2), one has
σM2,N2Tr(f ⊗ g) = Tr(g ⊗ f)σM1,N1 . It is easy to see also that Tr induces a functor from
the category of Ae-complexes to the category of k-complexes. In this case, σP,Q is defined
by the equality σP,Q(1 ⊗ x⊗ y) = (−1)ij ⊗ y ⊗ x for x ∈ Pi and y ∈ Qj and satisfies the
property σP2,Q2Tr(f ⊗ g) = Tr(g ⊗ f)σP1,Q1 for f : P1 → P2 and g : Q1 → Q2.

The Hochschild homology HH∗(A) of the algebra A is simply the homology of the
complex Tr(Bar(A)). As in the case of cohomology, any comparison morphism ΦQ

P : P →
Q between resolutions (P, μP ) and (Q,μQ) of the algebra A induces an isomorphism
Tr(ΦQ

P ) : H∗ Tr(P ) → H∗ Tr(Q). Thus, the Hochschild homology of A is isomorphic to
the homology of Tr(P ) for any projective bimodule resolution (P, μP ) of A.

Note that Tr(Barn(A)) ∼= A⊗(n+1). Connes differential B : HHn(A) → HHn+1(A) is the
map induced by the map from Tr(Barn(A)) to Tr(Barn+1(A)) that sends a0 ⊗ a1 ⊗ . . .⊗
an ∈ A⊗(n+1) to

n∑
i=0

(−1)in1 ⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1

+
n∑

i=0

(−1)inai ⊗ 1 ⊗ ai+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1.

In fact, it follows from some standard arguments that the homological class of the second
summand is zero. The following result is essentially stated in [7] (see Equation (4.8) of
the cited paper and the explanations before and after it).

Proposition 7.1 (D. Kaledin). Let (P, μP ) be a projective bimodule resolution of
A, let ΔP be a diagonal 2-approximation for P , and let φP : P ⊗A P → P [1] be such that
μP ⊗ 1P − 1P ⊗ μP = dφP . Then the map

Tr(φP )(1P⊗AP + σP,P )Tr(ΔP ) : Tr(P ) → Tr(P [1])

induces the Connes differential on the Hochschild homology.

This result can be written in a slightly different form.

Corollary 7.2. Let (P, μP ), ΔP and φP be as in Proposition 7.1, and let ε : P → P [1]
be such that (μP ⊗ 1P − 1P ⊗ μP )ΔP = dε. Then the map

Tr(φP )σP,PTr(ΔP ) + Tr(ε) : Tr(P ) → Tr(P [1])

induces the Connes differential on the Hochschild homology.

Proof. Since d(φP ΔP ) = (μP ⊗ 1P − 1P ⊗ μP )ΔP , it is enough to note that the
map H∗(Tr(φP )σP,PTr(ΔP ) + Tr(ε)) : HH∗(A) → HH∗(A) does not depend on the
choice of ε. �

Now it is not difficult to express the Connes differential in terms of a contracting
homotopy.
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Corollary 7.3. Let S, tL and ηL be as in the previous section. Then the
map −Tr(μRStL)σP,PTr((1P ⊗ (μRSηL)2)SηL) induces the Connes differential on the
Hochschild homology.

Proof. It follows from Lemma 6.4 that μRSηL : P → P is a comparison morphism, i.e.
there is some u : P → P [1] such that 1 − μRSηL = du. It is not hard to show using Lemma
6.3 (see also the proof of Theorem 6.2) that dφP = μL − μR for φP = u(μL − μR) −
μRStL(μRSηL ⊗ 1P ). Note also that (μL − μR)ΔP = 0 for ΔP = (1P ⊗ μRSηL)SηL.
Then the Connes differential is induced by the map

Tr(φP )σP,PTr(ΔP ) = −Tr(μRStL)σP,PTr((1P ⊗ (μRSηL)2)SηL). �

Now we explain how one can obtain a formula for a BV differential on the Hochschild
cohomology of a symmetric algebra in terms of an arbitrary resolution.

First of all, let us recall that there are well-known maps if : HH∗(A) → HH∗(A) for f ∈
HH∗(A), whose definition can be found, for example, in [10]. These maps satisfy the con-
dition if ig = if�g. We also need the facts that if |HHn(A) = 0 for n < |f | and if |HH|f|(A)

is the map induced by Tr(f̃) : Tr(Pn) → Tr(A) ∼= HH0(A), where f̃ ∈ HomAe(Pn, A)
represents f . After the correction of signs one obtains by [10, Lemma 15] that

i[f,g](x) = (−1)(|f |+1)|g|(−(−1)(|f |+|g|)Bif�g(x)

+ ifBig(x) − (−1)|f ||g|igBif (x) − if�gB(x))

for all f, g ∈ HH∗(A), x ∈ HH∗(A). Considering x ∈ HH|f |+|g|−1(A), we get

Tr([f, g]) = −(−1)(|f |+1)|g|(Tr(f � g)B − Tr(f)Big − (−1)|f ||g|Tr(g)Bif ). (7.1)

Definition 7.4. A BV algebra is a Gerstenhaber algebra (R•, �, [ , ]) with an
operator D : R• → R•−1 of degree −1 such that D ◦ D = 0 and

[a, b] = −(−1)(|a|+1)|b|(D(a � b) −D(a) � b− (−1)|a|a � D(b))

for homogeneous elements a, b ∈ R•.

Definition 7.5. A finite-dimensional algebra A is called symmetric if A ∼= Homk(A, k)
as an A-bimodule.

Let A be symmetric. Let θ : A→ k be an image of 1 under some bimodule isomorphism
from A to Homk(A,k). Then it is easy to see that θ induces a map from Tr(A) to k. We
also denote this map by θ. Note also that if f ∈ HomAe(M,A), then θTr(f) = 0 if and
only if f = 0.

Let BP : Tr(P ) → Tr(P [1]) be a map inducing the Connes differential on the
Hochschild homology. Then we can define DP (f) : P → A[1 − n] for f : P → A[−n] as
the unique map such that θTr(DP (f)) = θTr(f)BP .

Proposition 7.6 (see [17]). DP induces a BV differential on the Hochschild
cohomology.
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Proposition 7.6 is the remark after [17, Theorem 1]. To see that it is valid, one can
apply θ to the equality (7.1) with B = BP and get

θTr([f, g]) = −(−1)(|f |+1)|g|(θTrDP (f � g) − θTrDP (f)ig − (−1)|f ||g|θTrDP (g)if )

= −(−1)(|f |+1)|g|θTr(DP (f � g) −DP (f) � g − (−1)|f |f � DP (g)).

Note also that if one knows the BV differential and the cup product, then it is easy to
compute the Gerstenhaber bracket.

8. Example of an application

Here, we apply the results of the previous sections to describe the BV structure on the
Hochschild cohomology of the family of algebras considered in [2,3]. For this section, we
fix some integer k > 1 and set A = k〈x0, x1〉/〈x2

0, x
2
1, (x0x1)k − (x1x0)k〉. The index α in

the notation xα is always specified modulo 2. If a is an element of k〈x0, x1〉, then we also
denote by a its class in A.

Let G be a subset of k〈x0, x1〉 formed by the elements (x0x1)i+1, x1(x0x1)i, (x1x0)i

and x0(x1x0)i for 0 � i � k − 1. Note that the classes of the elements from G form a
basis of A. Let G denote this basis too. Let lv denote the length of v ∈ G. Note that
the algebra A is symmetric with θ defined by the equalities θ((x0x1)k) = 1 and θ(v) = 0
for v ∈ G \ {(x0x1)k}. For v ∈ G, we introduce v∗ ∈ G as the unique element such that
θ(vv∗) = 1. Note that θ(vw) = 0 for w ∈ G \ {v∗}. For a =

∑
v∈G avv ∈ A, where av ∈ k

for v ∈ G, we define a∗ :=
∑

v∈G avv
∗ ∈ A. It is clear that (a∗)∗ = a for any a ∈ A. If

v, w ∈ G, then v/w denotes (v∗w)∗. If there is such u ∈ G that wu = v, then this u is
unique and v/w = u. If there is no such u, then v/w = 0. Note that (v/xαxβ)/xα is
equal to v/xα if α = β and v ∈ {xα, 1∗}, and is equal to 0 in all remaining cases. For
a =

∑
v∈G avv ∈ A and b =

∑
v∈G bvv ∈ A, where av, bv ∈ k for v ∈ G, we define a/b :=∑

v,w∈G avbwv/w ∈ A.
In this section, we will use the bimodule resolution of A described in [2]. Here we present

it in a slightly different form, but one can easily check that it is the same resolution.
Let us introduce the algebra B = k[x0, x1, z]/〈x0x1〉. We introduce the grading on B
by the equalities |x0| = |x1| = 1 and |z| = 2. Let us define the Ae-complex P . We set
P = A⊗B ⊗A as an A-bimodule. The grading on P comes from the grading on B and
the trivial grading on A. Let a (a ∈ B) denote 1 ⊗ a⊗ 1. For convenience we set a = 0 if
a = xi

αz
j , where α ∈ {0, 1} and i or j is less than 0. We define the differential dP by the

equality

dP (x
i
αz

j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j = 0,
xαxi−1

α + (−1)i
xi−1

α xα if j = 0, i > 0,∑
v∈G,β∈{0,1}

(−1)jlv+βv∗xβz
j−1

v

xβ
if i = 0, j > 0,

xαxi−1
α zj + (−1)i+j

xi−1
α zjxα

+(−1)i+α((−1)jx∗αxi+1
α zj−1 + xi+1

α zj−1x∗α) if i, j > 0,
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for α ∈ {0, 1}, i, j � 0. We define μP : P0 → A by the equality μP (1) = 1. Then one can
check that (P, μP ) is an Ae-projective resolution of A isomorphic to the resolution from
[2]. Let us define the left contracting homotopy (tP , ηP ) for (P, μP ). We define ηP by the
equality ηP (1) = 1. Now, for v ∈ G, α ∈ {0, 1} and i, j � 0, we define

tP (x
i
αz

jv) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
w∈G,β∈{0,1}

(−1)j(lw+lv+1)+1w
∗

v∗
xβz

j
w

xβ
if i = 0, v �= 1∗,

∑
w∈G

(−1)j(lw+1)+1w∗
xlw z

j
w

xlw

if i = 0 and v = 1∗,

(−1)i+j+1
xi+1

α zj
v

xα
+ (−1)jlv+j+lv

v

x∗1
zj+1 if i = 1 and α = 1,

(−1)i+j+1
xi+1

α zj
v

xα
otherwise.

In this section, we will use the notation of § 6. Our aim is to describe the BV struc-
ture on the Hochschild cohomology of A. As was explained in the previous section, it is
enough to describe the Connes differential. By Corollary 7.3, we have to describe the map
−Tr(StL)σP,PTr((1P ⊗ (μRSηL)2)SηL). We will give here only the descriptions of the
diagonal 2-approximation and the BV differential on the Hochschild cohomology, omit-
ting the details of computations that can be found in the arXiv version. Let us start with
the map SηL : P → P ⊗A P .

First, let us introduce the following notation:

At,j =
∑

v, w ∈ G
α, β ∈ {0, 1}

(−1)jlv+t(lw+lv+1)+βw
∗

v
xαz

t
w

xα
⊗ xβz

j−1
v

xβ
,

Bt,j =
∑

v∈G,β∈{0,1}
(−1)(j+t)(lv+1)

x∗β+1

v
x
2
β+1z

t(xβxβ+1)k−1 ⊗ x
2
βz

j−2
v

xβ
,

Ct,i,j,α = (−1)i+j+α
∑

w∈G,β∈{0,1}
(−1)tlw

w∗

xα
xβz

t
w

xβ
⊗ x

i+1
α z

j−1,

Dt,i,j,α = (−1)(i+1)t
∑

v∈G,β∈{0,1}
(−1)jlv+β

x
i+1
α z

t
v∗

xα
⊗ xβz

j−1
v

xβ
,

Et,i,j,α = (xα+1xα)k−1
x
2
α+1z

t(xαxα+1)k−1 ⊗ x
i+2
α z

j−2

+ (−1)it
x

i+2
α z

t(xα+1xα)k−1 ⊗ x
2
α+1z

j−2(xαxα+1)k−1.

Lemma 8.1. If j � 0 is some integer, then SηL(zj) =
∑j

t=0(−1)(j+1)t(zt ⊗ zj−t +
At,j−t +Bt,j−t).
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Lemma 8.2. If α ∈ {0, 1}, and j � 0 and i > 0 are some integers, then

SηL(x
i
αz

j) =
j∑

t=0

(−1)(i+j+1)t

×
( i∑

r=0

(−1)rt
x

r
αz

t ⊗ x
i−r
α z

j−t + Ct,i,j−t,α +Dt,i,j−t,α + Et,i,j−t,α

)
.

In particular, it follows from Lemmas 8.1 and 8.2 that μRSηL = 1P . This effect occurs
frequently and significantly simplifies the subsequent calculations.

Let us now recall the description of HH∗(A) given in [2,3]. Note that HomAe(Pn, A) ∼=
Homk(Bn, A) ∼= AdimkBn = An+1. We choose this isomorphism in the following way. We
send f ∈ HomAe(Pn, A) to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
p + 2j = n,

p > 0, α ∈ {0, 1}

f(x
p
αz

j)en
p+α if 2 � n,

f(z

n

2 )en
1 +

∑
p + 2j = n,

p > 0, α ∈ {0, 1}

f(x
p
αz

j)en
p+α if 2 | n.

Here, en
i ∈ An+1 is such an element that πn

j (en
i ) = 0 for j �= i and πn

i (en
i ) = 1, where

πn
j : An+1 → A (1 � j � n+ 1) is the canonical projection on the jth component of the

direct sum. We identify HomAe(Pn, A) and AdimkBn by the isomorphism just defined.
Let us introduce some elements of HomAe(P,A) =

⊕
n�0A

dimkBn .

• p1 = x0x1 + x1x0, p2 = x∗1, p
′
2 = x∗0 and p3 = 1∗ are elements of HomAe(P0, A) = A;

• u1 = (x0, 0), u′1 = (0, x1), u2 = (1, 0) and u′2 = (0, 1) are elements of HomAe(P1, A) =
A2;

• v = (1, 0, 0), v1 = (x0x1 − x1x0, 0, 0), v2 = (0, 1, 0), v′2 = (0, 0, 1) and v3 = (1∗, 0, 0)
are elements of HomAe(P2, A) = A3;

• w1 = (x0, 0, 0, 0), w2 = (x∗0, 0, 0, 0) and w′
2 = (0, x∗1, 0, 0) are elements of HomAe

(P3, A) = A4;

• t = (1, 0, 0, 0, 0) is an element of HomAe(P4, A) = A5.

It is proved in [2,3] that the algebra HH∗(A) is generated by the cohomological classes
of the elements from X , where

X =

⎧⎪⎨
⎪⎩
{p1, p2, p

′
2, p3, u1, u

′
1, u2, u

′
2, v} if chark = 2,

{p1, p2, p
′
2, u1, u

′
1, v1, v2, v

′
2, v3, w1, w2, w

′
2, t} if chark �= 2, chark | k,

{p1, p2, p
′
2, u1, u

′
1, v1, v2, v

′
2, t} if chark �= 2, chark � k.
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Note that our notation is essentially the same as that of [2], but slightly differs from the
notation of [3]. For simplicity, we denote the cohomological class of a ∈ HomAe(Pn, A)
by a too.

Obtaining the description of Tr(μRStL)σP,P on the image of Tr(SηL), we get the map
BP : Tr(P ) → Tr(P [1]). It follows from the previous section that we can define the BV
differential DP : HH∗(A) → HH∗(A) by the formula

DP (f)(a) =
∑
v∈G

θTr(f)BP (v ⊗ a)v∗

for a ∈ P . Finally, we get

DP (u2) = DP (p′2u2) = DP (u2
2) = DP (u′2) = DP (p2u

′
2) = DP ((u′2)

2)

= DP (v) = DP (p1v)

= DP (u1v) = DP (u′1v) = DP (u2v) = DP (u′2v) = DP (v2) = DP (v1)

= DP (p1v1) = DP (v2)

= DP (p′2v2) = DP (v2
2) = DP (v′2) = DP (p2v

′
2) = DP ((v′2)

2)

= DP (w1) = DP (t) = DP (p1t)

= DP (v1t) = DP (v2t) = DP (v′2t) = DP (w1t) = DP (t2) = 0,

DP (u1) = DP (u′1) = k, DP (p1u1) = (k − 1)p1, DP (p2u
′
1) = p2, DP (p′2u1) = p′2,

DP (v3) = u′1 − u1 ,DP (p2v) = u′2, DP (p′2v) = u2, DP (p3v) = u1 + u′1,

DP (u1u
′
1) = k(u′1 − u1), DP (u1u2) = ku2, DP (u′1u

′
2) = ku′2, DP (w2) = v2,

DP (w′
2) = −v′2, DP (u1v1) = (2k − 1)v1, DP (u1v2) = (k + 2)v2, DP (u1v

′
2) = kv′2,

DP (u′1v2) = kv2, DP (u′1v
′
2) = (k + 2)v′2, DP (v2v3) = 3w2, DP (v′2v3) = 3w′

2,

DP (u1t) = DP (u′1t) = 3kt, DP (v2w2) = v2
2 , DP (v′2w

′
2) = −(v′2)

2,

DP (v3t) = 3(u′1 − u1)t, DP (w2t) = 3v2t, DP (w′
2t) = 3v′2t.

During our calculations, the results of [2,3] were used. In particular, we used the formulas
for some products in HH∗(A) and the description of some coboundaries. Alternatively, one
can use the formula f � g = (f ⊗ g)SηL and Lemmas 8.1 and 8.2 to compute products
in HH∗(A). Note also that in each of the formulas above we assume that all the elements
included in the formula lie in X . For example, if v appears in some equality, then this
equality holds for chark = 2, but it does not have to hold for chark �= 2. We also have
DP (a) = 0 for all a ∈ HH0(A). Now it is not hard to recover the Gerstenhaber bracket
and the rest of the BV differential on the Hochschild cohomology of A using relations
between the generators of HH∗(A) described in [2,3] and the graded Leibniz rule for the
Gerstenhaber bracket and the cup product.

Acknowledgements. The author is grateful to Sergey Ivanov, Maria Julia Redondo,
Dmitry Kaledin and especially Sarah Witherspoon for productive discussions, helpful
advice and attention to this work.

https://doi.org/10.1017/S0013091518000901 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000901


836 Y. Volkov

References

1. G. Ames, L. Cagliero and P. Tirao, Comparison morphisms and the Hochschild
cohomology ring of truncated quiver algebras, J. Algebra 322(5) (2009), 1466–1497.

2. A. Generalov, Hochschild cohomology of algebras of dihedral type. II. Local algebras,
Zap. Nauch Sem. POMI 375 (2010), 92–129.

3. A. Generalov, Hochschild cohomology of algebras of dihedral type. III. Local algebras
in characteristic 2, Vestn. St.-Petersb. Univ. 43(1) (2010), 23–32.

4. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. (2) 78
(1963), 267–288.

5. A. Ivanov, BV-algebra structure on Hochschild cohomology of local algebras of quaternion
type in characteristic 2, Zap. Nauch Sem. POMI 430 (2014), 136–185.

6. A. Ivanov, S. Ivanov, Y. Volkov and G. Zhou, BV structure on Hochschild cohomol-
ogy of the group ring of quaternion group of order eight in characteristic two, J. Algebra
435 (2015), 174–203.

7. D. Kaledin, Cyclic homology with coefficients, Progress Math. Algebra Arith. Geom. 270
(2010), 23–47.

8. B. Keller, Derived invariance of higher structures on the Hochschild complex. https://
www.imj-prg.fr/∼bernhard.keller/publ/dih.pdf, 2003.

9. B. Keller, Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra 190
(2004), 177–196.

10. L. Menichi, Batalin–Vilkovisky algebra structures on Hochschild cohomology, Bull. Soc.
Math. France 137(2) (2009), 277–295.

11. C. Negron and S. Witherspoon, An alternate approach to the Lie bracket on Hochschild
cohomology, Homology Homotopy Appl. 18(1) (2016), 265–285.

12. M. J. Redondo and L. Roman, Comparison morphisms between two projective
resolutions of monomial algebras, Rev. Un. Mat. Argentina 59(1) (2018), 1–31.

13. J. Rickard, Derived equivalences as derived functors, J. Lond. Math. Soc. (2) 43(1)
(1991), 37–48.

14. S. Sánchez-Flores, The Lie module structure on the Hochschild cohomology groups of
monomial algebras with radical square zero, J. Algebra 320(12) (2008), 4249–4269.

15. N. Snashall and R. Taillefer, The Hochschild cohomology of a class of special biserial
algebras, J. Algebra Appl. 9(1) (2010), 73–122.
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