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Superhydrophobic surfaces can retain gas pockets within their microscale textures
when submerged in water. This property reduces direct contact between water and
solid surfaces and presents opportunities for improving hydrodynamic performance
by decreasing viscous drag. In most realistic applications, however, the flow regime
is turbulent and retaining the gas pockets is a challenge. In order to overcome this
challenge, it is crucial to develop an understanding of physical mechanisms that can
lead to the failure of superhydrophobic surfaces in retaining gas pockets when the
overlying liquid flow is turbulent. We present a study of the onset of failure in gas
retention by analysing direct numerical simulations (DNS) of turbulent flows over
superhydrophobic surfaces coupled with the deformation of air–water interfaces that
hold the gas pockets. The superhydrophobic surfaces are modelled as periodic textures
with patterned slip and no-slip boundary conditions on the overlying water flow. The
liquid–gas interface is modelled via a linearized Young–Laplace equation, which
is solved coupled with the overlying turbulent flow. A wide range of texture sizes
and interfacial Weber numbers are considered in this study. Our analysis identifies
flow-induced upstream-travelling capillary waves that are coherent in the spanwise
direction as one mechanism for failure in retention of gas pockets. To confirm physical
understanding of these waves, a semianalytical inviscid linear analysis is developed;
the wave speeds obtained from the space–time correlations in the DNS data were
found to match with the predictions of the semianalytical model. The magnitude of
the pressure fluctuations due to these waves was found to increase with decreasing
surface tension, and increase with a much stronger dependence on the slip velocity,
when all numbers are reported in wall units. Based on a fitted scaling, a threshold
criterion for the failure of superhydrophobic surfaces is developed that is based
on estimates of the onset condition required for the motion of contact lines. The
second contribution of this work is the development of boundary maps that identify
stable and unstable zones in a parameter space consisting of working parameter and
design parameters including texture size and material contact angle. We provide a
brief description of previously identified failure modes of superhydrophobic surfaces,
namely the stagnation pressure and shear-driven drainage mechanisms. In an overlay
map, the stable and unstable zones due to each mechanism are presented. For various
input conditions, we provide scaling laws that identify the most critical mechanism
limiting the stability of gas retention by superhydrophobic surfaces.

† Email address for correspondence: alimani@stanford.edu
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1. Introduction

Among recent progress on developments of drag-reduction methods, the slip
property of superhydrophobic surfaces has been highlighted for applications involving
high-Reynolds-number hydrodynamic flows. Superhydrophobic surfaces can entrap a
thin air layer on the surface, suggesting a remarkable potential for passive viscous
drag reduction (Rothstein 2010; Golovin et al. 2016). Superhydrophobic surfaces
are made of hydrophobic materials with roughness textures in a size range of
nanometres to micrometres. When submerged in water, superhydrophobic surfaces
hold gas bubbles in their roughness and preventing them from direct contact with
water. This non-wetting state is called the Cassie–Baxter state (Cassie & Baxter
1944), which is in contrast to the Wenzel state, a fully wetted state where the liquid
fills roughness elements (Wenzel 1936). In the Cassie–Baxter state, the contact area
between solid and liquid is partially replaced by gas–liquid interfaces. Due to the
low viscosity ratio of air to liquid (e.g. µair/µwater ≈ 2 %), flows over gas–liquid
interfaces experience ‘slippery’ boundaries, which lead to a skin fiction reduction
when compared to the conventional smooth, no-slip walls. Many experiments have
utilized this slip effect and demonstrated drag reductions of more than 25 % in laminar
flows (Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Choi & Kim 2006; Lee,
Choi & Kim 2008; Lee & Kim 2009, 2011). Additional experiments further extended
the drag-reduction capability of superhydrophobic surfaces to the turbulent flow
regime. For boundary layers with fixed thickness and free-stream velocity, a given
superhydrophobic surface is expected to achieve higher percentage drag reduction
in the turbulent regime than in the laminar one due to the inner-versus-outer scale
separation in turbulent flows, as discussed by Seo & Mani (2016). The flow regime
associated with applications in most naval vehicles is indeed turbulent. Significant drag
reductions of approximately 20 % have been measured in a variety of experiments
on turbulent flows over superhydrophobic surfaces, consisting of either structured
textures with regular arrays (Daniello, Waterhouse & Rothstein 2009; Woolford et al.
2009; Park, Sun & Kim 2014), or randomly distributed textures (Bidkar et al. 2014;
Haibao et al. 2015; Srinivasan et al. 2015; Zhang et al. 2015; Rosenberg et al. 2016).
Bidkar et al. (2014) and Ling et al. (2016) showed that when the surface textures
have height variation, the resulting roughness in the overlying air–water interface can
contribute to drag increase due to the form drag when the roughness size becomes
on the order of the viscous sublayer.

Detailed analyses of turbulent flow fields have been carried out by numerical
simulations that model the superhydrophobic surfaces as slip boundary conditions.
DNS of turbulent flows over walls with a homogenized, prescribed slip length (Min
& Kim 2004; Fukagata, Kasagi & Koumoutsakos 2006; Busse & Sandham 2012)
investigated the effect of finite slip length on the overlying turbulent flows. Min
& Kim (2004) identified that drag reduction was mainly gained by streamwise slip
while any finite spanwise slip was found to lead to drag increase. Assuming that
the homogenized slip length model is a valid model for textured superhydrophobic
surfaces, Fukagata et al. (2006) presented a prediction model for drag reduction in
terms of prescribed spanwise and streamwise slip lengths. More recently, DNS with
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Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces 47

patterned slip boundary conditions resolved detailed surface geometry and investigated
the effect of geometric parameters on turbulent flows over superhydrophobic surfaces.
In these simulations, the slip length is a result of texture parameters such as gas
fraction, texture spacing (Martell, Perot & Rothstein 2009; Martell, Rothstein & Perot
2010; Park, Park & Kim 2013; Jelly, Jung & Zaki 2014; Türk et al. 2014; Lee, Jelly
& Zaki 2015; Rastegari & Akhavan 2015; Seo, García-Mayoral & Mani 2015; Seo &
Mani 2016), or texture height (Jung, Choi & Kim 2016). These studies indicate that
slip lengths achieved under turbulent flows are different from nominal slip lengths
that are obtained from Stokes flow analyses, which are solely functions of surface
geometry. More recently, Seo & Mani (2016) presented a scaling relation predicting
the slip length under turbulent flows for a wide range of texture size. They found
that when the texture size is small compared to the overlying turbulent eddies, the
slip length is independent of the overlying flow, consistent with Stokes flow solutions.
However, in the large-texture limit, the slip length was found to decrease with flow
velocity to the two-thirds power (Seo & Mani 2016). In the latter case, they found
that homogenized slip boundary conditions are inappropriate representatives of the
effects of patterned boundaries.

While kinematics of flows over superhydrophobic surfaces are widely investigated,
only a few investigations have studied the mechanism of gas bubble depletion under
turbulent flows, even though gas depletion is a critical bottleneck towards real
applications. In reality, superhydrophobic surfaces exposed to turbulent boundary
layers increase drag if the surfaces lose their gas bubbles under high shear and
pressure fluctuations (Aljallis et al. 2013). As a result, successful drag reductions
reported by experiments are limited to less than 30 % (Daniello et al. 2009; Woolford
et al. 2009; Bidkar et al. 2014; Haibao et al. 2015; Srinivasan et al. 2015; Zhang
et al. 2015; Rosenberg et al. 2016). Most previous computational studies assumed flat
gas–liquid interfaces and a stable Cassie–Baxter state under infinite surface tension;
these idealized assumptions inevitably result in unrealistically large drag reductions,
often more than 50 %. Under a static pressure, Patankar (2010) discussed two causes
of interface breakup: de-pinning transition, which occurs when the microscopic contact
angle at the corner of the roughness is larger than its threshold; and sag transition,
which occurs when a curved interface touches the bottom of roughness. Li, Alame
& Mahesh (2017) analytically and computationally studied the effect of gas–liquid
interface on drag reduction, resolving texture spacing and height in laminar channel
flow over superhydrophobic surfaces. Considering laminar flow regimes, Wexler,
Jacobi & Stone (2015b) identified the shear-driven drainage mechanism as a failure
mode for drag reduction by slippery surfaces. They found that when texture grooves
are longer than a threshold length, the streamwise pressure difference due to the
imposed shear on a lubricant fluid can overcome the stabilizing surface tension force
and lead to drainage of lubricant from the surface. A similar mechanism can lead
to drainage of air bubbles from superhydrophobic surfaces in both the laminar and
turbulent regimes. However, as we shall see, the thresholds are significantly higher
in this case since air bubbles, due to their low viscosity, are exposed to much lower
shear compared to slippery lubricants. The first study on the failure mechanisms of
superhydrophobic surfaces in turbulent flows was introduced in Seo et al. (2015) by
investigating averaged pressure fields from DNS data. Seo et al. (2015) demonstrated
that the stagnation of slip flows encountering roughness elements can pressurize the
gas–liquid interface, eventually leading a transition to the Wenzel state, when texture
size becomes large compared to near-wall eddies. The deleterious effect on plastron
stability by increasing texture size is consistent with a theoretical analysis by Piao &
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Park (2015) that considered unsteady pressure fluctuations on the gas–liquid interface
in a superhydrophobic surface. However, in the analysis by Seo et al. (2015) the
interface deformation was studied as a postprocessing of pressure data obtained from
DNS of turbulence on superhydrophobic textures with a flat interface. More accurate
analysis requires investigations of direct coupling between the two effects, where one
also considers the dynamic influence of interface deformation on the overlying flow.

In this paper, we investigate DNS of turbulent flows over superhydrophobic surfaces
while direct dynamic coupling between flow and interface deformation is simulated
via solutions to the Young–Laplace equation. We reveal that such coupling can lead
to a new failure mechanism, which we refer to as flow-induced capillary waves. For
the purpose of this investigation we conducted DNS of turbulent channel flows over
superhydrophobic surfaces considering a wide range of texture size. The motion of the
gas–liquid interface is modelled via realtime coupled linearized boundary conditions
considering a wide range of Weber numbers. The failure onset is defined by the
conditions required for the initiation of motion of the contact line. By considering
a broad range of input parameters, the scaling laws of flow-induced capillary waves
and the resulting failure onsets are developed and verified. In this way we analyse
the effect of flow and interfacial parameters on the depletion of gas bubbles.

The first objective of our investigation is to determine whether dynamic turbulence-
interface coupling can result in any effect on flow statistics, most importantly on
drag reduction. While bent meniscus shapes due to pressure differences between
trapped gas bubbles and overlying liquid have been observed in many experiments
for laminar flows (Byun et al. 2008; Tsai et al. 2009; Karatay et al. 2013; Xue et al.
2015), the effect of interface deformation on turbulent flows has often been ignored
in many computational studies that assumed flat interfaces (Martell et al. 2009, 2010;
Park et al. 2013; Jelly et al. 2014; Türk et al. 2014; Rastegari & Akhavan 2015;
Seo et al. 2015; Jung et al. 2016; Seo & Mani 2016). In laminar flows, the bubble
deformation significantly impacts the slip property shown by theory (Davis & Lauga
2009), experiments (Karatay et al. 2013), and numerical simulations (Steinberger
et al. 2007; Hyväluoma & Harting 2008; Teo & Khoo 2010, 2014). Steinberger et al.
(2007) demonstrated that the protrusion angle of the gas bubbles, an angle created
by a solid element, liquid, and gas pocket, can change a slippery surface to a sticky
surface even in the Cassie–Baxter state. In agreement with Steinberger et al. (2007),
Hyväluoma & Harting (2008) showed that the slip length is maximized when the
gas–liquid interface is flat, and it can be negative when the interface protrudes into
the liquid. Karatay et al. (2013) experimentally controlled a bubble shape by changing
pressure in the gas layer and reported that the slippage was a function of meniscus
curvature. Although the magnitude of deformation is expected to be small in the
air–water interfaces on superhydrophobic surfaces (Martell et al. 2010), fully coupled
turbulent flow simulations with dynamics of the interface should be conducted to
examine the outcome of the interaction. Beyond the impact on the performance,
interface deformation can critically affect the stability of the gas pockets.

As the second objective of this study, we investigate the onset mechanism of
interface breakage as texture size and Weber number increase, leading to the loss
of the drag-reducing effect. We characterize the dependence of the flow-induced
capillary waves on texture size and Weber number, and thereby suggest a failure
onset by considering the pressure required to initiate the motion of contact lines from
their approximate pinned condition.

The paper is organized as follows. In § 2 we present the governing equations,
including dynamics associated with flows as well as the gas–liquid interface, and
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FIGURE 1. Schematic representation of a channel flow with superhydrophobic surfaces on
both top and bottom walls: (a) isotropic posts (b) streamwise ridges.

discuss the key dimensions and dimensionless parameters for the problem. In § 3,
algorithms and computational details to numerically solve the set of equations
are presented. The DNS results of our simulations are presented and discussed
in § 4. A semianalytical model for the capillary waves appearing in the gas–liquid
interface is proposed and compared with DNS data in § 5. In § 6, we present scaling
laws for dynamic characteristics and fluctuations of capillary pressure. Section 7
provides a boundary map indicating the stable and unstable zones of operation of
superhydrophobic surfaces under turbulent flow conditions. Specifically, we provide
quantitative comparison with the previously identified failure mechanisms, namely the
stagnation pressure mechanism and shear-driven drainage mechanism, and provide
conditions determining the most critical mode of failure in terms of input parameters.
Finally, our discussion and conclusions are summarized in § 8.

2. Problem formulation
We study the turbulent liquid flow in a periodic channel enclosed with superhydro-

phobic walls that entrap gas pockets, as sketched in figure 1. The periodic roughness
structure is defined by its width, w, and period, L, as shown in figure 2(a). We
consider the incompressible Navier–Stokes equations for fluid flow,

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇p+ ν∇2u, (2.2)

where ν is the kinematic viscosity of liquid and the pressure p is normalized by the
liquid density.

In the channel, both top and bottom walls are superhydrophobic surfaces with
periodic solid roughness elements and gas pockets fully trapped in between the
roughness elements. We assume no-slip on the solid surface and free shear on
gas–liquid interface. The imposed shear-free boundary condition on the gas–liquid
interface is

du
dy
+

dv
dx
= 0,

dw
dy
+

dv
dz
= 0. (2.3a,b)

This ideal free-shear condition is standard in the literature for DNS of turbulent
flows over superhydrophobic surfaces considering a low viscosity ratio of air to water
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FIGURE 2. (a) Schematic of patterned slip and no-slip boundary conditions at
superhydrophobic surfaces with deformable interfaces. The interface location is defined as
η, which is the vertical distance from the wall plane. (b) Gas–liquid interface on solid
posts. For both figures, the baseline wall location (y= 0) is denoted by dashed lines.

(Martell et al. 2009, 2010; Park et al. 2013; Jelly et al. 2014; Türk et al. 2014; Lee
et al. 2015; Seo et al. 2015; Seo & Mani 2016). We assume a sufficiently large
texture depth and we do not resolve the texture height. Schönecker, Baier & Hardt
(2014) examined the ideal free-shear assumption in flows over superhydrophobic
surfaces and showed this treatment to be essentially correct for the air–water system
if the texture height is larger than a threshold comparable to L. We consider the
wall-normal velocity terms in (2.3) since the interface is allowed to deform so that
the wall-normal velocity on the wall, v(y= 0), can be non-zero. We assume viscous
effects from the gas layer are negligible (see appendix A).

We define η as the interface height, measured from the plane that contains the
no-slip, flat top of the posts, y= 0, as sketched in figure 2. The deformation of the
interface is obtained via the linearized Young–Laplace equation,

∇
2η≈

Pliquid − Pgas

σ
, (2.4)

where σ is the surface tension. Within the gas pockets, we assume Pgas is uniform,
and governed by the mass conservation of the gas,∫∫

η dx dz= 0. (2.5)

The gas–liquid interface is assumed to be effectively pinned to the post edges,
as in figure 2. The pinned interface assumption is widely adopted in simulations of
flows over superhydrophobic surfaces with curved interfaces (Steinberger et al. 2007;
Hyväluoma & Harting 2008; Teo & Khoo 2010, 2014; Seo et al. 2015). As discussed
by Seo et al. (2015), the pinned assumption is an asymptotic model for a contact line
moving on a round corner, in the limit that the corner radius is much smaller than
L, and the microscopic contact angle is within the advancing and receding contact
angles.

We assume that η is small, and model its fluctuations through a linearized boundary
condition for the wall-normal velocity at y+= 0. The motion of the interface generates
a non-zero wall-normal velocity at the interface,

v(x, y= η, z, t)=
Dη
Dt
=
∂η

∂t
+ u

∂η

∂x
+w

∂η

∂z
. (2.6)
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The Taylor expansion of (2.6) at y= 0, combined with the continuity equation, leads
to

v(x, y= 0, z, t)=
∂η

∂t
+
∂(ηu)
∂x
+
∂(ηw)
∂z

. (2.7)

This non-zero wall-normal velocity is imposed as a boundary condition for the
overlying, turbulent, liquid flow. The validity and outcome of linearization of the
boundary conditions is discussed in appendix B.

2.1. Dimensionless parameters
In this problem we consider three key dimensionless parameters on scales relevant to
turbulence, superhydrophobic surfaces, and surface tension of the gas–liquid interface.
The first dimensionless parameter is the friction Reynolds number Reτ = uτδ/ν,
which measures the separation of length scales from the boundary layer thickness,
δ, to the viscous unit length δν = ν/uτ , where uτ is the friction velocity defined by
√
τw/ρ and τw is wall shear stress. τw is the mean shear averaged over the entire

interface area (including solid zones and shear-free air zones). This mean shear can
be computed from the mean pressure gradient, using a momentum balance leading
to 2τw = (dp/dx)(2δ). In this work we run our simulations at Reτ ≈ 200–400. These
Reynolds numbers are much lower than realizable numbers in practical applications
for naval applications, typically Reτ & 4000; for example, a free-stream velocity of
∼5 m s−1 over a plate ∼1 m long.

However, since superhydrophobic surfaces only modify the inner region of turbulent
wall-bounded flows, their effects can be studied using low Reτ ≈ 180–200 as long
as the dimensionless quantities based on the inner scale match the application of
interest (Martell et al. 2010; Seo et al. 2015). Martell et al. (2010) first showed that
the mean velocity profiles with two different Reτ are collapsed when L+ is fixed.
Seo et al. (2015) showed that the effects of superhydrophobic surfaces on turbulent
flows are confined to the near-wall region, y+ / 80, as long as the superhydrophobic
surface texture scale is smaller than the outer scale of the flow. They concluded that
this modification to the inner region of the flow can be captured insensitive to the
Reynolds number down to Reτ ≈ 200. Increasing Reynolds number only modifies the
outer flow in the same fashion as in the boundary layer over a smooth wall. In other
words, the Reynolds number effects can be captured well by extending the log-layer
in turbulent wall-bounded flows.

Another important dimensionless parameter is the size of the texture in viscous
units L+ = L/δν , a measure of how large the texture is compared to the near-wall
eddies. Many computational (Martell et al. 2010; Park et al. 2013; Türk et al. 2014;
Lee et al. 2015; Rastegari & Akhavan 2015; Seo et al. 2015; Seo & Mani 2016)
and experimental (Daniello et al. 2009; Park et al. 2014) investigations show that
the slip length, and thus drag reduction, increase with larger L+ when the solid
fraction is fixed. Seo & Mani (2016) showed that the slip length followed a linear
scaling of texture size, and matched with the analytical solution from Stokes flow
(Ybert, Barentin & Cottin-Bizonne 2007; Davis & Lauga 2010) that obtained from
the same geometry, when texture size in wall units is smaller than approximately 10
for isotropic posts. When the texture size becomes larger, the slip length in wall units
increases nonlinearly with a scaling exponent less than 1 (Park et al. 2013; Türk
et al. 2014; Rastegari & Akhavan 2015; Seo & Mani 2016). For small L+, flows
with superhydrophobic surfaces preserve the behaviour of canonical smooth-wall flows,
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while for large L+ the effect of superhydrophobic surfaces completely disrupts the
buffer layer, similar to the behaviour of flows over rough walls. Recent DNS (Türk
et al. 2014; Rastegari & Akhavan 2015; Seo et al. 2015) reached L+ down to the
size relevant to practical applications L+ ≈ 6–8, comparable to typical experimental
values of the texture period L+ ≈ 0.5–5 (Daniello et al. 2009; Woolford et al. 2009;
Park et al. 2014). In the present work, we have investigated textures with sizes
L+ ≈ 13–155, where the smallest texture size is close to the realistic texture size.
Texture size on the order of hundreds is not considered in our study since the gas
pockets would be destroyed due to high momentum of turbulent shear and slip flows.

Another texture-related dimensionless parameter is the solid fraction, which is equal
to φs = w2/L2 in the case of isotropic posts. This parameter is typically in the range
10 %–20 % and does not vary by an order of magnitude. In the present study we
considered φs = 1/9, which is in the range of practical scenarios. We considered one
case for a streamwise ridge with a solid fraction of φs =w/L= 1/3.

The last dimensionless number is the Weber number, which measures the relative
importance of the surface tension to the momentum. Using inner scalings, Weber
number could be defined as We+ = ρu2

τδν/σ . Noting uτδν = ν, this parameter can be
also presented as a Capillary number We+=Ca+=µuτ/σ . When discussing the DNS
results, we will use an alternative Weber number defined based on the texture size,
WeL = ρu2

τL/σ = We+L+. In our simulations we use WeL = 10−3–8 × 10−3. Another
Weber number can be defined based on the slip velocity, Us, as Wes = ρU2

s L/σ . We
will show that this definition leads to collapse of data related to the flow-induced
capillary waves. However, since Wes is not known a priori, we prefer to keep WeL (or
We+) as an input dimensionless parameter, and to provide explicit relations leading
to Wes after investigating DNS data.

In § 7, we will discuss the parameter space and regions of stable design. In this
case, it is beneficial to use We+ as the dimensionless parameter instead of WeL.
This is because We+ is solely dependent on the imposed flow, and independent of
superhydrophobic surface design choices (e.g., L+ and advancing and receding contact
angles). For channel flows with a prespecified pressure gradient, uτ is known a priori
and so is We+. For boundary layers, U∞ is known instead of uτ , and thus We+ is not
exactly independent of texture parameters. As a useful rough approximation, however,
one can write We+ in terms of the free-stream velocity as We+ ' µU∞/(25σ). This
approximation can be justified given that the ratio U∞/uτ is in the range 22–30
in boundary layers over practical ranges of Reynolds numbers, Reτ ≈ 1000–20 000,
with a weak logarithmic dependence on the Reynolds number. In situations with
slip velocity, one can use the shifted-TBL model (Seo & Mani 2016) and find that
the same approximation holds as long as drag reduction is much less than the drag
itself. In other words, in a design problem, a reasonable approximation of We+ is
available prior to the decision on the design details, while one can easily improve on
these approximations a posteriori via algebraic relations provided for the shifted-TBL
model and slip length in Seo & Mani (2016). These small corrections are expected
to converge very rapidly with a small number of iterations.

In § 7 we will discuss additional parameters relating to design, including the
advancing contact angle, which is related to the surface chemistry and determines
the onset of failure. Another design consideration is the use of barriers in between
the texture grooves to keep air regions in the form of isolated pockets. However,
for the majority of the paper, where the physics of flow-induced capillary waves are
discussed, we only need L+ and We+ as the key controlling parameters.
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Case Surface type L+ WeL (×10−3) Reτ D+x D+z Nx ×Nz ×Ny DR (%)

P13W8 Posts 12.93 8 197.5 1240.9 620.5 1152× 576× 128 13
P26W4 Posts 25.85 4 197.5 1240.9 620.5 576× 288× 128 36
P26W8 Posts 25.85 8 197.5 1240.9 620.5 576× 288× 128 36
P39W2 Posts 38.78 2 197.5 1240.9 620.5 768× 384× 128 42
P39W4 Posts 38.78 4 197.5 1240.9 620.5 768× 384× 128 42
P78W1 Posts 77.56 1 197.5 1240.9 620.5 384× 192× 128 55
P78W2 Posts 77.56 2 197.5 1240.9 620.5 384× 192× 128 55
P78W4 Posts 77.56 4 197.5 1240.9 620.5 384× 192× 128 55
P78W5 Posts 77.56 5 197.5 1240.9 620.5 384× 192× 128 55
P155W1 Posts 155.1 1 197.5 2481.9 620.5 384× 192× 128 69
P155W2 Posts 155.1 2 197.5 1240.9 620.5 192× 192× 128 69
P155W4 Posts 155.1 4 197.5 1240.9 620.5 192× 192× 128 69
P155W2Re Posts 155.1 2 395.0 2481.9 1240.9 384× 384× 192 69
R155W2 Ridges 155.1 2 197.5 1240.9 620.5 192× 192× 128 59

TABLE 1. Simulation parameters. L+ is the pattern spacing, WeL is Weber number based
on L and uτ , and Reτ is the friction Reynolds number. Domain size in viscous units is
D+x and D+z for the streamwise and spanwise directions, respectively. The number of grid
points is Nx, Nz, and Ny, for streamwise, spanwise, and wall-normal directions respectively.
The grid size is given by the computational domain size and number of grid points. DR
is the drag reduction obtained by DR= (Cf ,smooth − Cf ,SHS)/Cf ,smooth, where SHS stands for
superhydrophobic surface.

3. Numerical method

The Navier–Stokes equations are numerically discretized and solved with the code
of Seo et al. (2015), modified to simulate a deformable interface on superhydrophobic
surfaces. In each time step, the motion of turbulent flow is fully coupled with
the Young–Laplace equation and the kinematic conditions on the interface. The
code uses the second-order finite-difference scheme on a staggered, Cartesian mesh
with a uniform grid size in the streamwise (x) and spanwise (z) directions, and a
non-uniform grid-size in the wall-normal (y) direction (Morinishi et al. 1998). The
time discretization scheme for liquid flow is the second-order Adams–Bashforth
method. The domain size is 2πδ × πδ × 2δ in the streamwise, spanwise and
wall-normal directions, respectively. All simulations were run under a constant mean
pressure gradient condition, which ensured fixed Reτ and thereby predefined L+. We
mainly use Reτ ≈ 200 for computational cost and add one simulation at Reτ ≈ 400 to
examine the Reynolds number dependence. We study two types of pattern geometries
with a finite period L sketched in figure 1(a), isotropically distributed posts, and
figure 1(b), streamwise-aligned ridges. The width of the pattern is fixed to w= L/3,
which leads to a 1/9 solid fraction for isotropic posts and a 1/3 solid fraction for
streamwise ridges. All simulation parameters are summarized in table 1. Though not
specified, results with a flat interface (We+ = 0) from Seo et al. (2015) are used.

The spatial resolution in the wall-parallel direction is restricted by texture size, as
even the grid size for the largest texture is finer than the resolution requirement for
DNS of turbulent flows, 1x+ ≈ 6.4, 1z+ ≈ 3.2. The non-uniform grid in the wall-
normal direction has a minimum size 1y+= 0.15 at the wall, and a maximum 1y+=
12 at the centre of the channel. The grid resolutions and the number of grid points per
texture period are sufficient to provide grid-converged statistics with finer resolutions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.733


54 J. Seo, R. García-Mayoral and A. Mani

20

25

30

35

100 102101

6

9

3

0
100 102101

6

9

3

0
100 102101

(a) (b) (c)

FIGURE 3. Comparison of statistics for post geometries at L+≈155, Reτ ≈200, and WeL=

2×10−3. (a) Mean streamwise velocity profile; (b) velocity r.m.s. fluctuations; (c) pressure
r.m.s. fluctuations. –E–, posts with 1x+=6.4,1z+=3.2 –f–, posts with 1x+=3.2,1z+=
1.6.

within 1 % error, when the interface is flat. We have conducted a resolution test for
a simulation with a deformable interface at L+ ≈ 155, Reτ ≈ 200, and WeL = 2 ×
10−3 and the results showed grid-converged statistics. Specifically, for this case we
refined the computational mesh from 1x+ = 6.4, 1z+ = 3.2 to 1x+ = 3.2, 1z+ =
1.6. Figure 3 confirms that the velocity statistics are not affected by the change in
grid size. Specifically, the mean flow rate was within 0.7 % difference between the
two calculations and the slip velocity was within 0.8 % difference. The wavelength
of capillary waves obtained by space–time correlations showed grid-converged results
within 4 % error.

On gas–liquid interfaces, the coupling among pressure pi(x, z, t), velocity at the
gas–liquid interface, ui(x, z, t), and deformation of interface, η(x, z, t), is resolved
explicitly using the second-order Adams–Bashforth scheme consistent with that
used for the overlying flows, where the subscript i denotes the location at the first
computational cells right above the interface. The first step for the coupling is to
advance the interface location through (2.7),

ηn+1
= ηn

+1t
(

3
2

(
vn

i −
∂(ηui)

∂x

n

−
∂(ηwi)

∂z

n)
−

1
2

(
vn−1

i −
∂(ηui)

∂x

n−1

−
∂(ηwi)

∂z

n−1))
, (3.1)

where the superscript ‘n’ denotes the information at the current time step, ‘n + 1’
denotes the information at the next time step, and ‘n − 1’ denotes the information
at the previous time step. The spatial discretization of (3.1) is a second-order
finite-difference scheme. The resulting ηn+1 is used in the Young–Laplace equation,
equation (2.4), to find the pressure in the cells right above the interface, pn+1

i =

σ∇2ηn+1. Then pn+1
i is used as boundary conditions in the Poisson system for

continuity of the overlying fluid equations, ∇2pn+1
= ∇u(n+1/2)/1t, in which u(n+1/2)

is the intermediate velocity fields before the projection in the fractional step method
(Kim & Moin 1985). In this case, solving the Poisson system satisfies continuity
of the overlying fluid, except for the cells right above the interface. For those cells,
instead of solving the Poisson system, continuity is satisfied by determining the
v-component of the velocity on the interface. The wall-normal velocity determined in
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this way, vn+1
i , is used to advance interface deformation in the next time step in (3.1).

The implementation of this coupling in the code is verified through an analytical
solution of the perturbation problem under uniform velocity, in which one wall is
fully covered by an initially perturbed gas–liquid interface with finite surface tension.
The code verification against the analytical solution is confirmed by matching the
time frequency of a single spatial wave mode as well as the corresponding velocity
and pressure fields. Details of this verification are described in appendix C.

Fast Fourier transform (FFT) of the Poisson system in periodic directions can be
exploited to significantly save the computational cost by forming a tri-diagonal matrix
system, (−k2

x − k2
z + ∂

2
y )p̂

n+1
= Ŝ, where p̂ is the Fourier transformed pressure fields,

(kx, kz) are the modified wavenumbers for spatial discretization operators in x and
z direction, and Ŝ is the Fourier transformed right-hand side of the Poisson system
(Kim & Moin 1985). However, the above-mentioned coupled algorithm results in an
inhomogeneous boundary treatment for the Poisson system since the treatment on the
gas–liquid interface is different from those on solid–liquid boundaries, i.e. on posts.
This prevents us from taking advantage of FFT when solving the Poisson system. To
remedy this, we model the solid texture using a method consistent with the air–water
interface. Specifically, we assumed very high but finite stiffness for the solid post
in the y-direction. The solid stiffness is selected to be much larger than any other
stiffness in the system, and we have verified independence of the DNS result from
the choice of stiffness by comparing statistics of turbulent channel flows over the wall
with finite stiffness against a smooth-wall channel of Moser, Kim & Mansour (1998).
Over the solid posts, the non-deformation of the boundary is imposed such as

Psolid ≈ ksη, (3.2)

where ks is the artificial spring constant, k+s = ks/(ρuτ 2/δν)= 4000, chosen so that both
the interface deformation and its time derivative remain negligible, η+max = 0.005 and
v+y=0,max= 0.003. Both values are much smaller than deformations observed in the gas–
liquid interface. This approach leads to a limitation on our time step, but significant
time saving, approximately an order of magnitude, is gained due to the use of FFT
for the Poisson system.

The simulations were run with constant time step, and the CFL number is variable
but restricted below 0.2,

1t
CFL
=min


(
|u|

21x
+
|v|

21y
+
|w|
21z
+

4
Re

(
1
1x2
+

1
1z2

))−1

,

√
ρ1x3

σ
,

√
ρ1x

ks

 .

(3.3)

The first requirement is the usual restriction for the stability of the time integration
of the viscous and convective terms, while the other two are restrictions for the
deformation of the gas–liquid interfaces and solid–liquid interfaces. All deformable
interface simulations take the initial fields from flow snapshots of flat interface
simulations (Seo et al. 2015). When the interface is allowed to deform, there is an
initial transient period for the interface to evolve to a statistically steady state. The
simulations were run for at least 20δ/uτ after the initial snapshot, where δ/uτ is the
characteristic turnover time for the largest turbulent eddies. The first 3δ/uτ interval
was left out of the statistical sampling, to avoid contamination by initial transients
from the simulation with flat interfaces.
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FIGURE 4. Comparison of statistics at L+ ≈ 155, w+ ≈ 52 at Reτ ≈ 200. (a,d) Mean
streamwise velocity profile; (b,e) three components of velocity root-mean-square (r.m.s.)
fluctuations; (c, f ) pressure r.m.s. fluctuations. –u–: P155, posts with WeL = 0 (Seo et al.
2015); –E–: P155W2, posts with WeL = 2 × 10−3; –D–: R155, streamwise ridges with
WeL= 0 (Seo et al. 2015); –t–: R155W2, streamwise ridges with WeL= 2× 10−3; – – – –:
smooth walls, Reτ ≈ 200 (Seo et al. 2015).

4. DNS results
4.1. Effects of interface deformation

4.1.1. Turbulence statistics
First, we investigate the impact of the deformability of the gas–liquid interface

on turbulence statistics. Figure 4 presents a comparison of flow statistics between
simulations with flat gas–liquid interfaces (We+ = 0) and those with deformable
interfaces. It is apparent that the kinematic statistics, including mean flow and
root-mean-square (r.m.s.) of velocity fluctuations, are not affected by the interface
deformability, while pressure fluctuations are significantly affected in the cases in
which the surface texture consisted of isotropic posts. The drag reduction is thus
unchanged by deformability of interface, as shown in table 1. The fact that the mean
flow is not affected by the interface deformability implies that the slip velocity can
be estimated from the relations proposed by Seo & Mani (2016). Using DNS of
flows over flat but patterned interfaces, Seo & Mani (2016) identified two scaling
regimes for the slip velocity U+s , which is also equal to the slip length, b+, when
reported in wall units. For small textures they found U+s ∼ L+/

√
φs, while for large

textures U+s ∼ L+(1/3)/
√
φs. We will later use these relations to approximate Wes.

Figure 4 indicates that, even in cases with a flat interface, there is a significant
difference between pressure fluctuations in post versus ridge geometry. This difference
is shown to be due to stagnation pressure induced by slipping flow in the streamwise
direction that encounters the leading edge of solid posts (Seo et al. 2015). However,
here we show that interface deformability further increases the near-wall pressure
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FIGURE 5. Comparison of instantaneous interface heights, η+ = η/δν , for two different
superhydrophobic textures for Reτ ≈200, L+≈155 and WeL=2×10−3. (a) Posts, P155W2,
(b) streamwise ridges, R155W2. The dashed lines are the baseline wall location y+ = 0.
The axis for η+ is 300 times magnified for visualization purposes.

fluctuations. This increase is significant in the case of surfaces with distributed
posts, which are better representative of realistic scenarios where superhydrophobic
surfaces are manufactured by sprayed coatings and/or etching processes compared to
streamwise ridges.

4.1.2. Interface deformations
We show deformations of gas–liquid interfaces in viscous units η+, for the isotropic

posts and the streamwise ridges with L+ ≈ 155 and WeL = 2× 10−3 in figure 5. For
the isotropic posts, the time-averaged statistics of the maximum magnitude of interface
deformation is |η|+max = 0.30 and the r.m.s. of the interface fluctuation (in time and
space) is η+rms = 0.09. For the streamwise ridges, the interface deformation is much
smaller than the isotropic posts, |η|+max = 0.06, η+rms = 0.01. The maximum η+ and
minimum η+ is 0.9 and −0.9 in wall units and the maximum of the interface angle
in the streamwise direction is 1.8◦ for the case of L+ = 155 and WeL = 4× 10−3. All
of these interface fluctuations are very small compared to either channel height or
viscous lengths; therefore, the effect of surface deformation does not alter the mean
and fluctuations of velocity profiles in turbulent statistics.

4.1.3. Pressure fluctuations on gas–liquid interfaces
To better understand the augmented pressure fluctuations near the wall, we

plot instantaneous wall pressure snapshots with flat and deformable interfaces in
figure 6. A comparison of wall pressure fluctuations (figure 6) with a corresponding
interface deformation (figure 5) shows that positive pressure loads deflect the interface
downwards and negative pressure loads deflect it upwards.

The pressure fluctuations on deformable interface on isotropic posts have distinct
spanwise-coherent structures, which can be seen best in figures 6(b) and 7. The
stagnation pressure induced by slipping flows, as in the case with a flat interface
(Seo et al. 2015), still remains on the deformable interface and the spanwise-coherent
pressure appears superposed on top of the stagnation pressure. The phase-shift
relation between wall deformation and pressure, and spanwise-coherent pressure
waves have been observed for turbulent flows over compliant walls, in which the wall
is responding to the overlying pressure fluctuations (Kim & Choi 2014), although
in that case the compliant wall has zero tangential velocity. Streamwise ridges
have no notable changes on wall pressure fluctuations. Therefore, in the remaining
portion of the paper, we focus on the analysis of flow interactions with post textures.
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FIGURE 6. (Colour online) Comparison of instantaneous pressure contours, p+= p/(ρu2
τ ),

at y+ = 0, for cases at Reτ ≈ 200, and L+ ≈ 155. (a) P155, WeL = 0, (Seo et al. 2015)
(b) P155W2, WeL = 2× 10−3, (c) R155, WeL = 0, (Seo et al. 2015) (d) R155W2, WeL =

2 × 10−3. From blue to yellow, the fluctuations range between −10 and 10 wall units.
Snapshots from cases with finite surface tension are taken at the same instance in which
the interface deformations in figure 5 are taken. The main flow direction is left to right.

Compared to streamwise ridges, post structures better represent practically scalable
superhydrophobic surfaces, such as those manufactured by sprayed coatings.

4.1.4. Space–time characteristics of the pressure wave
A remarkable feature of the detected spanwise-coherent pressure, which we will

refer to as flow-induced capillary waves, is upstream propagation. Successive time
snapshots of the pressure fluctuations on deformable interfaces are portrayed in
figure 7 (supplementary movies are available on https://doi.org/10.1017/jfm.2017.733).
In figure 7, the spanwise-coherent pressure travels upstream, with a rough wavelength
in the streamwise direction λ+x ≈ 2L+. While the pressure patches sporadically break
and reform as time progresses, they sustain coherent structures indicated by the same
sign of pressure bands across the spanwise direction. In figure 7, the time period for
a coherent structure is T ≈ 10δν/uτ . This propagation of spanwise-coherent pressure
is clearly different from the Kelvin–Helmholtz-type wave due to its direction against
the main flow.

Quantitative representations of the upstream-travelling wave are obtained through
space–time correlations of the wall pressure signal plotted in figure 8. To obtain
space–time correlations for only ‘dynamic’ components of the pressure fluctuations,
excluding stagnation pressure, we subtract the mean stationary pressure from the
instantaneous pressure data. In figure 8(a), the correlation for the deformable interface
case distinctively shows two separate motions at the interface, one aligned with the
flow direction (U+c1

> 0), and another opposed to the flow direction (U+c2
< 0). This

is in contrast to the space–time correlation of pressure from the simulation with
a flat interface in figure 8(b), which has unidirectional convection in the direction
of the mean flow. The first velocity component, U+c1

≈ 24, is the advection of
near-wall turbulence, which is equivalent to the value from the simulation with a flat
interface. Due to slippage on the wall, U+s = 21, this convection velocity is larger than
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FIGURE 7. (Colour online) Successive instantaneous snapshots of wall pressure
fluctuations, p+, in time for P155W2 with Reτ ≈ 200, L+ ≈ 155 and WeL = 2 × 10−3.
From (a) to ( f ), t= t0+ [0 : 2 : 10] 1t, where 1t= δν/uτ . The main flow direction is left
to right. From blue to yellow, the fluctuations range between −10 and 10 wall units.
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FIGURE 8. Comparison of space–time correlations of dynamic pressure signals, p+ at y+=
0, for cases with Reτ ≈ 200 and L+ ≈ 155. From black to white, the correlation ranges
between −1 and 1. (a) WeL = 2× 10−3, (b) WeL = 0. The solid lines represent the mean
advection of the turbulent eddies, U+c1

≈ 24. The dashed line represents the phase velocity
of the upstream-travelling, spanwise-coherent structures, U+c2

≈−38.

the advection of turbulence pressure produced by traditional smooth no-slip walls,
U+c ≈ 13 (Kim 1988; Choi & Moin 1990; Kim & Hussain 1993). On the other hand,
the upstream-travelling pressure is solely an outcome of the interface deformability.
For the considered case, the spanwise-coherent upstream-travelling waves have a
convection velocity of U+c2

≈ −38. The wavelength in the streamwise direction is
approximately twice the texture wavelength, λx ≈ 380δν , and the time period is
T ≈ 10δν/uτ . λx and T can be quantified from the intercept of the correlation ridge
(dashed line) with the axis in figure 8(a).

4.2. Reynolds number dependence
Next, we examine the dependence of the upstream-travelling capillary waves on
system parameters in wall units. We first change the friction Reynolds number from
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FIGURE 9. Comparison of statistics for posts geometries with L+≈ 155, WeL= 2× 10−3 at
Reτ ≈ 200 and Reτ ≈ 400. (a) Mean streamwise velocity profile minus the slip velocity; (b)
velocity r.m.s. fluctuations; (c) pressure r.m.s. fluctuations. –u–, P155W2, posts at Reτ ≈
200; – – – –, smooth walls, Reτ ≈ 200; –E–, P155W2Re, posts at Reτ ≈ 400; ——, smooth
walls, Reτ ≈ 400.
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FIGURE 10. (Colour online) (a) Instantaneous pressure contours, p+, at y+ = 0 for the
P155W2Re case with L+ ≈ 155, WeL = 2× 10−3 at Reτ ≈ 400. Inset figure in the bottom
left quarter of figure is an overlay of instantaneous pressure contours at Reτ ≈ 200. From
blue to yellow, the fluctuations range between −10 and 10 wall units. (b) Space–time
correlations of dynamic pressure signals at Reτ ≈ 400. ——: U+c1

≈ 24; – – – –: U+c2
≈−38.

From black to white, the correlation ranges between −1 and 1.

Reτ ≈ 200 to Reτ ≈ 400 and investigate the effect of Reτ . In figure 9, turbulence
statistics show that the near-wall behaviour of superhydrophobic surfaces with a
deformable interface is essentially independent of Reynolds number when the other
parameters are fixed in wall units. The mean quantities at the wall, for instance
the slip velocity or the wall pressure, are well collapsed to the same values at two
Reynolds numbers. The statistics away from the wall are identical to the outer region
of smooth-wall channel flows and consistent with previous studies. The investigation
of wall pressure in figure 10(a) qualitatively confirms that the structure of the
flow-induced capillary waves remains essentially unmodified. Space–time correlation
of the pressure signal in figure 10(b) further confirms that the convection velocity of
higher Reynolds number, U+c2

≈ −38, is unaltered from the lower Reynolds number
simulation. Therefore, we believe our current results near the gas–liquid interface
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FIGURE 11. (Colour online) Instantaneous wall pressure, p+, contours for cases with
Reτ ≈ 200 and L+ ≈ 77. (a) WeL = 10−3, (b) WeL = 2× 10−3, (c) WeL = 4× 10−3.

can be extended to higher Reynolds numbers, and the characteristics of pressure
fluctuations are mainly governed by L+ and WeL.

4.3. Effect of surface tension
In DNS, we systematically change WeL and investigate how the dynamic characteristics
of pressure changes. In figure 11, we plot instantaneous realizations of wall
pressure with three different Weber numbers for L+ ≈ 77. As WeL increases, the
spanwise-coherent pressure becomes dominant and its magnitude intensifies. In
addition, it is visually shown that the wavelength λ+x changes with WeL. For instance,
wavelength becomes shortened approximately from λ+x ≈ 3L+ to λ+x ≈ 2L+ as WeL

increases from 2× 10−3 to 4× 10−3.
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FIGURE 12. Instantaneous interface deformation, η+, for cases with Reτ ≈ 200 and L+ ≈
77. (a) WeL = 10−3, (b) WeL = 2× 10−3, (c) WeL = 4× 10−3. The dashed lines represent
the baseline wall location y+ = 0. Snapshots are taken at the same instance in which the
pressure snapshots in figure 11 are taken. The dashed lines are the baseline wall location
y+ = 0. The axis for η+ is 300 times magnified for visualization purposes.
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FIGURE 13. Comparison of space–time correlations of dynamic wall pressure signals, p+,
for cases with Reτ ≈ 200 and L+ ≈ 77. (a) WeL = 10−3, – – – –: U+c2

≈ −23; (b) WeL =

2× 10−3, – – – –: U+c2
≈−42; (c) WeL = 4× 10−3, – – – –: U+c2

≈−78. ——: U+c1
≈ 21 for

all cases.

The consequent interface fluctuations in figure 12 intensify with larger WeL in
response to the increased spanwise-coherent pressure. The large deformation of the
interface implies that the gas–liquid interface becomes less stable when WeL increases.

In figure 13, the space–time correlations of the pressure signal show that for
the larger WeL, λ+x becomes shorter, the wave period, T+ becomes longer, and
thus U+c becomes slower. The advection of turbulence remains unchanged,U+c1

≈ 21,
regardless of the change of WeL since slip velocity is the same for same L+. That is,
the advection of turbulence is not affected by pressure fluctuations imposed by
deformability of the interface while the upstream-travelling wave is strongly dependent
on the Weber number.

4.4. Dependence on the texture size
Next, we investigate the effect of texture size by reducing the texture size down
to L+ ≈ 13. In figure 14, we portray wall pressure snapshots with texture size
spanning L+ ≈ 26–77 at fixed WeL = 4 × 10−3 and Reτ ≈ 200. At texture size
L+ ≈ 26, the stagnation pressure and the footprint from overlying turbulence, which
scales ∼100δν , are dominant components of the total pressure fluctuations, and
the pressure due to the capillary wave is hard to recognize. The weakness of the
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FIGURE 14. (Colour online) Instantaneous wall pressure contours, p+ with (a) L+ ≈ 26,
(b) L+ ≈ 38, (c) L+ ≈ 77 at WeL = 4 × 10−3 and Reτ ≈ 200. From blue to yellow, the
fluctuations range between −10 and 10 wall units.

capillary pressure holds for smaller texture size L+ ≈ 13, and in that case the
capillary pressure is completely overwhelmed by other fluctuations so that only the
downstream-propagating component remains in the space–time correlation analysis.
These results indicate that the deleterious effect of spanwise-coherent waves on the
stability of gas pockets becomes significant when L+ becomes large.

The phase velocity, wavelength, and time scale of the capillary wave covering a
wide range of L+ and WeL are summarized in figure 15. The wavelength and time
period are calculated from space–time correlations of the capillary pressure. The
averaged data from at least four different uncorrelated time windows are plotted with
error bars. The results show that λ+x is comparable to several times L+, and becomes
longer for increasing L+ under the same WeL. With larger L+ for fixed WeL, the time
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FIGURE 15. Statistics of interfacial quantities scaled in viscous units versus WeL.
(a) Wavelength of upstream-travelling wave in the streamwise direction, λ+x ; (b)
time period of the upstream-travelling wave, T+; (c) convection velocity of the
upstream-travelling wave, U+c .f: L+≈ 26,p: L+≈ 38,q: L+≈ 77,u: L+≈ 155. Symbols
are computed by averaging at least four uncorrelated signals, and error bars plotted on top
of the symbols.

scale of the capillary waves increases, and the convection speed decreases. In the
present form, the data do not show collapse on any of the measured quantities.

4.5. Data collapse with Wes

So far we have reported the capillary wave speed, wavelength, and period in wall
units, i.e. uτ , δν , for length and velocity scales. The friction Reynolds number
independence shown in § 4.2 indicates that the interfacial phenomena would be
not directly connected to the overlying outer turbulence scales. Since the interface
deformation is small and its effect is confined to the near-wall region, we hypothesize
that the interfacial phenomena are separable from the scales associated with the
overlying turbulence. In this case, a more suitable set of reference dimensions would
be the texture size, L, and the flow slip velocity, Us.

In figure 16, we rescale the wavelength, time frequency, and convection velocity
with L and Us. As a result, the dimensionless time T∗ = TUs/L and velocity
U∗c = Uc/Us show excellent collapse when scaled with Wes = ρU2

s L/σ . The
dimensionless wavelength λ∗ = λx/L shows reasonable collapse. This data collapse
reveals that the main parameter governing the interfacial flow is Wes. This result
supports the hypothesis that the observed coherent pressure waves are capillary waves
that develop as modes of oscillation of the interface as a membrane.

5. A semianalytical model for the induced capillary waves
In this section we study the dynamics of interfacial waves by a simple analytical

model to better understand the observed phenomena from DNS. We have developed
a simplified model for prediction of natural frequency modes associated with flexible,
free slip interfaces in between solid posts.

5.1. Model formulation
We consider an inviscid flow of density ρ slipping over a superhydrophobic surface
with posts separated by a distance L, with uniform mean velocity U, and with small
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FIGURE 16. Statistics of interfacial quantities scaled with L and Us versus Wes. (a)
wavelength of the upstream-travelling wave scaled by the texture size, λ∗= λx/L; (b) time
frequency of the upstream-travelling wave, T∗ = TUs/L; (c) convection velocity of the
upstream-travelling wave scaled by the slip velocity, U∗c =Uc/Us.f: L+≈ 26,p: L+≈ 38,
q: L+ ≈ 77,u: L+ ≈ 155.

fluctuations (u, v, w; p) on the mean flow induced by a deformable interface with
finite surface tension σ . This problem is analogous to the wave propagation in liquid
films (Squire 1953; Taylor 1959), except for the presence of the solid posts, which
make the film discontinuous. The base state involves a uniform streamwise velocity,
with no interface deformation, which trivially satisfies the Euler equation, continuity,
and the no-penetration condition on the interface. The fluctuating velocity field can be
described in terms of a potential ψ(x, y, z), which satisfies

∇
2ψ = 0. (5.1)

Using Fourier decomposition along the wall-parallel directions (x and z), the above
Poisson equation adopts the form (−k2

x − k2
z + ∂

2
y ) ψ̂ = 0 for each (kx, kz) mode, where

ψ̂ means Fourier coefficient of ψ . For vanishing ψ̂ at y→∞, the solution is ψ̂(y)=
ψ̂y=0 exp(−

√
k2

x + k2
z y). This allows us to establish a relationship at y= 0 between the

potential and its y-derivative,

(∂yψ)y=0 = F−1KFψy=0, (5.2)

where F and F−1 denote discrete direct and inverse discrete Fourier transform
operators, and K is the diagonal matrix formed by the derivative eigenvalues
−
√

k2
x + k2

z . Note that, by the definition of the potential, ∂yψ = v. Therefore, we
are interested only in the restriction of (5.2) that also satisfies (∂yψ)y=0 = vy=0 = 0
over the solid posts.

The potential ψ can also be related to the fluctuating pressure through the linearized
inviscid momentum equation,

(∂t +U∂x)ψ =−
1
ρ

p, (5.3)

which can be particularized at y= 0. Let us also note that the fluctuating deformation
of the interface satisfies the Young–Laplace equation

(∂2
x + ∂

2
z )η=

1
σ

p, (5.4)
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where η is connected to the wall-normal velocity through the material derivative,

(∂t +U∂x)η= (∂yψ)y=0. (5.5)

We are interested in wave solutions of the fully coupled system of equations (5.2)–
(5.5). Using the corresponding transformation ∂t = iω, the problem can be written in
the frequency-ω domain,

A(ω)ψy=0 = 0, (5.6)

where the dependence of A on ω is quadratic. The problem then reduces to finding
values of ω for which the determinant of A is zero, and the corresponding eigen-
solutions in the null subspace. The above system of equations can be normalized using
reference scales of length, Lr = L, velocity Ur = U, which lead to subsequent scales
of time, Tr = L/U, pressure, pr = ρU2, and surface tension σr = ρU2L. In the end, the
dimensionless system of equation requires only one physical input parameter – that is,
the Weber number, We=ρU2L/σ . Solutions exist only for a discrete set of frequencies
ω∗ = ωL/U, and take the form of either upstream- or downstream-travelling waves
with a phase velocity Uc that can be several times larger than the flow velocity U.

5.2. Methodology
To solve problem (5.6) numerically, we have used a second-order, central finite-
difference scheme on a uniform grid to discretize equations (5.3)–(5.5), with
1x = L/24 and 1z = L/24. The domain is a periodic box in x and z. The domain
size is an integer number of L.

This semianalytical approach is used to predict the natural frequency of capillary
waves observed in DNS. The first solution for ω∗ spans the full domain considered,
thus the wavelength associated with the first frequency mode must be determined a
priori for the model prediction. We provide the analytical model with wavelengths
from several cases observed from DNS, mostly close to an integer number of L. To
establish a corresponding U, the most reasonable choice is to use U+s from those DNS
cases. In that case, note that We is actually the Weber number based on slip velocity,
Wes = ρU2

s L/σ .

5.3. Results
We find that the first solution, that of smallest ω∗, is always an upstream-travelling,
spanwise-coherent wave. A solution corresponding to the DNS case P155W2 when
using U+s to estimate Wes is portrayed as an example in figure 17. The qualitative
structure and behaviour of travelling pressure is similar to the DNS case, though the
DNS case shows more complex behaviour. In DNS, the random nature of overlying
turbulence changes the pressure fluctuations in time and space as opposed to simple
periodic analytical solutions. DNS is also likely to contain multiple modes of capillary
waves while only the most dominant mode is detected in the space–time correlation
analysis. However, an explanation of the mechanism energizing these modes has yet
to be provided.

To capture the solutions observed in our DNS with λx≈ 2L− 4L over a wide range
of L+ and WeL, we seek solutions for (5.6) in a domain of length λx. The values of
the dimensionless Wes= ρU2

s L/σ for the model are chosen to match our DNS set-ups.
Table 2 compiles solutions for Wes values estimated using U+s , and for values of λx/L
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FIGURE 17. (Colour online) Successive instantaneous realizations of the pressure at y= 0
for the model problem with λx= 2L and ω≈ 6.1U/L. From (a) to ( f ), t= t0+ 2π/ω×[0 :
0.2 : 1].

DNS U+s Wes (λx/L)DNS λ∗model ω∗model U+c,model U+c2,DNS

P78W4 14.9 0.888 2.1 2 5.8 27.3 24.2
P155W2 20.4 0.833 2.3 2 6.1 39.3 34.7
P78W2 14.9 0.444 3.2 3 7.1 50.5 46.4
P155W1 20.4 0.417 3.0 3 7.4 72.2 61.0
P39W2 10.2 0.208 4.1 4 9.5 62.0 57.3

TABLE 2. Solutions to the linearized, inviscid flow over superhydrophobic posts. From
each DNS, U for the model is estimated as the slip velocity, U = Us to obtain a Weber
number Wes =WeLU+s

2. From all the possible frequencies ω∗ = ωL/U for which (5.6) is
satisfied, only the one with wavelength λ∗ = λx/L close to that observed in the DNS is
shown. U+c is the convection velocity of the corresponding solution, for which the model
U+c,model is to be compared with that measured from the DNS, U+c,DNS.

close to those observed in the DNS. The results of convective speed, U+c , predicted
by the semianalytical model agree reasonably well with those measured from space–
time correlation of the DNS data. The model can predict not only the direction of
propagation of these modes, but also the magnitude of the propagation velocity versus
Wes.

5.4. A dispersion relation of semianalytical capillary waves
In order to develop some intuition about the prediction of the semianalytical model,
in this section we present a comparison between the results of this model and
phenomenological scaling laws of the frequency versus wavelength relations. We
note, however, this comparison is made in simplifying limits and regimes that do not
necessarily represent the considered turbulent flow scenarios. We first recall that in
the small-capillary-wavelength limit, λ∗ = λ/L� 1, the texture would not affect the
capillary waves, and the standard theory would be capable of predicting the dispersion
relation.

This scaling can be obtained by combining a system of equations from (5.3) to
(5.5), providing ωψ ∼ P/ρ, η/λ2

∼ P/σ , and ωη ∼ ψ/λ, therefore ω ∼
√
σ/(ρλ3).
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FIGURE 18. Dimensionless time frequency solutions, ω∗, from the semianalytical model.
(a) ω∗ versus λ∗ with an arrow with increasing Wes= 0.1–2.0 with successive interval 0.1.
(b) ω∗

√
λ∗ versus Wes with an arrow with increasing λ∗ = 22, 23, 24.

When scaled with L and Us, the time frequency associated with this wave, ω∗≡ωL/Us,
would be

ω∗ ∼We−0.5
s λ∗−1.5

. (5.7)

In the large-wavelength-limit λ�L, however, this scaling should be modified. When
the wavelength is sufficiently larger than texture size, one can assume that dependence
of pressure on the amplitude would scale as p∼ ση/L2. This is because the dominant
spatial variation of the capillary wave would depend on L. This relation combined with
ωψ ∼ P/ρ, and ωη∼ψ/λ, results in ω∼

√
σ/(ρλL2). The consequent dimensionless

frequency of the wave is

ω∗ ∼We−0.5
s λ∗−0.5

. (5.8)

In this analysis, in addition to the large-wavelength limit, we also assume that the
capillary speed, Uc ∼

√
σλ/(ρL2), is much larger than the slip velocity, Us, and thus

the effect of the background advection can be ignored (i.e., small Wes). In figure 18,
we show log–log plots of time frequency of the interface from a semianalytical
solution for the range of 0.1 6 Wes 6 2.0 and 22 6 λ/L 6 24. In figure 18(a), the
semianalytical model shows the expected inverse square root scaling for λ∗ for the
whole range of Wes. In figure 18(b), the frequency is rescaled with w∗

√
λ∗. As λ∗

becomes large, λ∗� 1, the whole range of Wes exhibits the inverse square root scaling
with respect to Wes, as expected from (5.8).

While this phenomenological scaling provides an understanding of the dispersion
relations in the induced capillary waves, the DNS data does not necessarily fall in the
assumed simplified regimes considered here. Therefore, the prediction of dispersion
relations in the DNS results requires comparison with the full semianalytical model.
Another shortcoming is that the provided scalings do not predict which capillary
wavelength(s) are most energized by the overlying turbulent flow, neither do they
predict the amplitude of these waves in the statistically stationary condition. In the
next section we use DNS data directly to infer scaling laws predicting the capillary
wavelength and amplitude in terms of input conditions. In the discussion section we
suggest possible methods for a physics-based explanation of these observations.
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FIGURE 19. Decomposition of wall pressure fluctuations for L+≈ 155 and WeL= 4× 10−3.
(a) total r.m.s. pressure fluctuation, p′+rms, (b) r.m.s. stagnation pressure fluctuation, p̃+rms, (c)
r.m.s. capillary pressure p′′+c,rms, (d) r.m.s. turbulence pressure, p′′+t,rms.

6. On the scaling of capillary pressure and interface deformation
6.1. Amplitude of capillary pressure and interface deformation

To assess the magnitude of flow-induced capillary pressure fluctuations, we decompose
the spatio-temporal pressure fields. We have identified three separate phenomena
contributing to pressure fluctuations: the overlaying turbulent flow, stagnation
phenomena, and capillary waves. First, we exclude the effect of stagnation pressure
by a decomposition of the total signal to obtain an unsteady signal, p′′, so that

p′′(x, z, y, t)= p(x, z, y, t)− p̄(y)− p̃(x̃, z̃, y), (6.1)

where p̄(y) is averaged pressure over wall-parallel domain and time, and x̃ =
modulo(x, Lx) and z̃ = modulo(z, Lz) are the periodic streamwise and spanwise
coordinates within each pattern unit. The stagnation component p̃ is averaged over
time and over the number of periodic units. The above decomposition method, first
introduced by Reynolds & Hussain (1972), was used to analyse turbulent flows
over stagnation wall modifications (Choi, Moin & Kim 1993; García-Mayoral &
Jiménez 2011; Jelly et al. 2014; Türk et al. 2014; Seo et al. 2015). The resulting
pressure fluctuation p′′ is a sum of the two time-dependent effects from overlying
turbulence p′′t , and flow-induced capillary pressure p′′c . We assume the capillary
pressure is statistically uncorrelated from the stagnation pressure and overlying
turbulence. Therefore, r.m.s. fluctuation of capillary pressure is obtained by

p′′c,rms =

√
p′′2rms − p′′2t,rms, (6.2)

where p′′t,rms is the wall pressure fluctuation from overlying turbulence when the
interface is flat. p′′t,rms is calculated from the DNS data by Seo et al. (2015). The total
wall pressure fluctuation p′+rms, and each pressure component from stagnation pressure
p̃+rms, capillary pressure p′′+c,rms, and turbulence pressure p′′+t,rms are plotted in figure 19.

We do not apply this decomposition method to extract the capillary contribution
from the η+ fluctuation, since decomposition of the turbulence contribution to interface
deformation requires solution of the Young–Laplace equation over a smooth wall, in
a one-way coupled fashion. This is a more cumbersome postprocessing step than
decomposing the pressure data.

Figure 20 presents η+rms and p′′+c,rms against the input Weber number WeL for different
texture sizes. In figure 20(a), η+rms includes all interfacial responses to pressure
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FIGURE 20. Statistics of fluctuations of interface deformation and capillary pressure
versus WeL. (a) r.m.s. interface deformation in wall units, η+rms, (b) r.m.s. capillary pressure
p′′+c in wall units,s: L+ ≈ 13,f: L+ ≈ 26,p: L+ ≈ 38,q: L+ ≈ 77,u: L+ ≈ 155.

fluctuations from stagnation, capillary waves, and turbulence, while in figure 20(b),
p′′+c,rms includes only the flow-induced capillary pressure fluctuation. The error bars in
figure 20(b) are obtained from standard error of mean (SEM) of each p′′rms and p′′t,rms
sampling mean values in subdivided time intervals. Both interface deformations and
capillary pressure fluctuations increase with increasing WeL for a fixed L+; however,
they do not collapse for different texture sizes.

Similar to § 4.5, we reconsider what is the most relevant physical quantities for the
capillary wave. Again, Wes should be used instead of WeL. Considering input variables
Wes, L+, and U+s , we report the best collapsed fit of data to seek the power law for
each input variables. We use a linear least squares fit to find the coefficients, ai, of
log(p′′+c ) = a0 + a1 log(Wes) + a2 log(L+) + a3 log(U+s ), in which Wes, L+, and U+s
values are used for the corresponding p′′+c data. As a result, a fitting law for the
capillary wave is

p′′+c,rms ≈ 0.06We0.57
s U+s

2.8L+−0.74
, (6.3)

as shown in figure 21. We note that the prefactor 0.06 is specifically obtained for φs=

1/9. For superhydrophobic surface design purposes, using We+ is more suitable than
using Wes, since it is dependent only on the imposed flow and independent of texture
size. Noting that Wes is simply a combination of the non-dimensional parameters of
the system, Wes = We+L+U+s

2, the equation (6.3) can be rewritten in terms of wall
units as

p′′+c,rms ≈ 0.06We+0.57U+s
3.9L+−0.17

. (6.4)

Equation (6.4) is one of the key results of this study. This equation shows that
the capillary pressure has a strong dependency on slip velocity. For cases that the
working flow and the flow conditions are prespecified, We+ would be fixed. However,
if the texture size increases, the slip velocity increases accordingly, and the capillary
pressure rapidly increases corresponding to the slip velocity.
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FIGURE 21. Statistics of fluctuations of dimensionless r.m.s. capillary pressure, p′′+c , versus
Wes. s: L+ ≈ 13, f: L+ ≈ 26, p: L+ ≈ 38, q: L+ ≈ 77, u: L+ ≈ 155. – – – –: p′′+c,rms ≈

0.06We0.57
s U+s

2.8L+−0.74.
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FIGURE 22. Scaling of interfacial quantities scaled in L and Us versus Wes.
(a) Wavelength of capillary wave in streamwise direction, λ∗; (b) convection velocity
of capillary wave, U∗c . f: L+ ≈ 26, p: L+ ≈ 38, q: L+ ≈ 77, u: L+ ≈ 155. – – – –:
λ∗ ≈ 1.9Wes

−0.5, — · —: U∗c ≈ 1.2Wes
−1.

6.2. Scaling of wavelength and phase speed
We report scalings as well as fitting coefficients for the estimation of expected
behaviour of capillary waves. The log–log scale of data presented in figure 22 reveals
that λ∗ scales with We−0.5

s , and U∗c scales with We−1
s . The best fit for λ∗ is

λ∗ ≈ 1.9Wes
−0.5. (6.5)

The best fit for phase speed U∗c measured from DNS data is

U∗c ≈ 1.2We−1
s . (6.6)

Both (6.5) and (6.3) are plotted in figure 22.
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FIGURE 23. (a) Scalings of wall pressure fluctuations, p+0,rms. p̃+s is wall pressure
fluctuation by stagnation pressure, p̃+s,rms ≈ 0.28U+s + 1.26 (Seo et al. 2015). p′′+c is wall
pressure fluctuation by capillary pressure, p′′+c,rms ≈ 0.06We+0.57U+s

3.9L+−0.17. (b) Schematic
of example calculation showing interface deformation due to an overlying pressure field.
When the slope of the interface at the edge of the post form an angle, θL, larger than the
advancing contact angle, the interface starts to move.

While Wes is directly measured from DNS in the presented plots, we note
that Wes can be predicted a priori, given the texture parameters, flow conditions,
and fluid properties, from the relation introduced by Seo & Mani (2016), that is
U+s =U+s (L

+, φs). Specifically they predicted U+s ∼ L+ in the small-texture-size limit,
and U+s ∼ L+1/3 for the large-texture-size limit.

7. Implications on design
7.1. Onset of failure by capillary pressure

We compare the pressure fluctuations from the stagnation pressure versus capillary
pressure as a function of slip velocity in wall units in figure 23(a). While previous
analysis by Seo et al. (2015) suggested a linear scaling of the stagnation pressure with
respect to slip velocity, p̃+0,rms ≈ 0.28U+s + 1.26, the pressure load imposed by flow-
induced capillary waves is p′′+c,rms ≈ 0.06We+0.57U+s

3.9L+−0.17. Therefore, the capillary
pressure becomes dominant over stagnation pressure shortly after U+s & 5, when we
consider the surface tension in the practical application regime, We+ = 10−3–10−2.

Similar to Seo et al. (2015), we define the onset of failure as the conditions
resulting in microscopic contact angles leading to the onset of motion for contact
lines. A proper dimensional analysis of the Young–Laplace equation leads to the
following scaling law for this failure criterion for interface breakage (Seo et al.
2015),

p′+0 We+L+ ∼O(1). (7.1)

The order one coefficient on the right-hand side of the equation is determined by the
failure criteria that the contact angle of gas–liquid interface, θL=π/2+ tan−1(dη/dx|L),
exceeds the advancing contact angle, θadv, where dη/dx|L is the slope of the gas–liquid
interface at the leading edge of the post as shown in figure 23(b). Seo et al. (2015)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.733


Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces 73

used the self-similar stagnation pressure fields to obtain the O(1) constant on the right-
hand side of (7.1) for θadv = 100◦ and 120◦. For instance, the resulting relationship
for stagnation pressure is 0.28U+s We+L+ = f (θadv), where f is computed to be equal
to 1.7 for θadv = 120◦ and equal to 0.5 for θadv = 100◦. U+s is a known function of L+
obtained by the scaling introduced in Seo & Mani (2016) as:

(U+s
√
φs)

(0.325− 0.44
√
φs)
+ 0.328(U+s

√
φs)

3
= L+. (7.2)

We repeated the same procedure for the capillary waves. Given that the capillary
waves observed in DNS have wavelengths larger than the texture size, L, we used
a uniform pressure on the textured interface to approximate f (θadv) = O(1) constant
on the right-hand side of (7.1) for this mechanism. The f constant is computed by
measuring the uniform p+ that leads to deformation angle equal to advancing contact
angle. With this simplification the right-hand-side constant is computed to be equal
to 0.6 and 0.2, respectively, for θadv = 120◦ and 100◦, considering square patterns
with φs = 1/9. In order to consider the worst case scenario we used the peak of the
capillary pressure estimated as Ppeak '

√
2p′′c,rms. The resulting equation for capillary

waves with θadv = 120◦ is

0.06
√

2We+1.57U+s
3.9L+0.83

= 0.6, (7.3)

where the coefficient 0.06 is subject to change with φs, and U+s can be estimated from
(7.2). In appendix B, we discuss the validity of linearization of the Young–Laplace
equation to obtain the coefficient on the right-hand side.

7.2. Boundary map for stable superhydrophobic surface design
Using the failure mode described in § 7.1, we provide boundary maps for stable
drag reduction of superhydrophobic surfaces. The boundary map consists of two
independent design parameters: the texture size in wall units, L+c , and Weber number
in wall units, We+ = µuτ/σ . We will consider multiple contributions to the failure
mode, so thus using L+ and We+ in design space is suitable while Wes is the
controlling parameter only for the capillary pressure. In figure 24(a), both criteria
from stagnation pressure and capillary pressure fluctuations are represented together.
In most of the practical applications of hydrodynamic flows, We+ = 10−3–10−2, and
the texture size regime of interest for noticeable drag reduction is L+ > 1. In this
regime, the capillary pressure sets a more restrictive boundary than the criterion
imposed by the stagnation pressure. The change of slope in each plot indicates
transition from U+s ∼ L+ to U+s ∼ L+1/3, respectively, for small and large texture sizes,
as discussed by Seo & Mani (2016) and indicated in (7.2). The error bar, indicated
by the dashed dotted line in figure 24(a), is computed from the error of the fit in
figure 21. The 95 % confidence interval of the fit in figure 21 is computed from

1.96
√

mean[(0.06Wes
0.57U+s

2.8L+−0.74
− p′′+c )2 + SEM(p′′+c )2 )]. This error, translated in

the stability diagram, leads to 45 % error in the L+c for We+ = 10−4 and 35 % error
in the L+c for We+ = 10.

Next, we include more practical considerations to the presented analysis to make
it more relevant to realistic applications. Our recent finding on the effect of texture
randomness (Seo & Mani 2017) indicates that the maximum deformation angle of
the randomly distributed textured superhydrophobic surface is approximately twice
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FIGURE 24. Design map for the stable drag reduction of superhydrophobic surfaces in
turbulent flows. L+c is the maximum allowable texture size for stable drag reduction. We+=
µuτ/σ is Weber number based on inner scaling. The grey area is the unstable region and
the white area is the stable region. (a) Shows the stability criteria imposed by stagnation
pressure and capillary pressure. The dashed-dot lines are error bounds of the estimation
of stability boundary for capillary pressure. (b) Shows the effect of texture randomness on
the total stability region. Dashed lines are stability criteria imposed by stagnation pressure
and capillary pressure for aligned posts. (c) Shows the effect of turbulence pressure on
the total stability region. Dashed line is the solid curve in panel (b). Three different lines
are plotted from different confidence intervals for pressure variation: 95 % (c), 99 % (b),
99.99 % (a). The area below the dotted lines indicates the region where DR is less than
1 %. All analyses use the advancing contact angle θadv = 120◦ with the solid fraction of
φs = 0.11.

that of the perfectly aligned posts considered in this study. For randomly distributed
textured superhydrophobic surfaces, produced by spray coating or an etched process,
this geometric randomness will push the boundaries imposed by our analysis from
aligned, periodic textured superhydrophobic surfaces as shown in figure 24(b).

Moreover, the stability region will be further shrunk when we consider unsteady,
intermittent turbulence pressure fluctuations in addition to the stagnation pressure
and capillary pressure. The worst scenario for the interface stability can occur
instantaneously when some of travelling turbulence pressure with high-intensity
encounters an interface. An instantaneous local turbulence pressure fluctuation can be
estimated by multiplication of 1.96 on p′′+t,rms with 95 % confidence. We consider the
multiplier 2.58 for 99 % confidence and 4.0 for 99.99 % confidence and the effect of
using different confidence intervals is shown in figure 24(c). Here we avoid a higher
number of digits in the confidence interval since the extremely rare high-pressure
events are local in space and time (unlike capillary waves that have large features).
Therefore, although they can cause instant deformation of the interface, it is unclear
whether they lead to failure, as they may not persist long enough over a significant
portion of a texture. In this analysis we use p′′+t,rms ≈ 3, which has been observed in
DNS of turbulent channel flow up to Reτ ≈ 5000 (Lee & Moser 2015). Our previous
analysis has shown that the turbulence pressure fluctuation from overlying turbulent
flows in the presence of texture, p′′+t,rms, is marginally modified from a conventional
smooth channel flow (Seo et al. 2015). Higher Reynolds number involves slightly
higher p′′+t,rms with a logarithmic dependence on Reτ . As an example, a case with
extremely large Reτ = 5 × 105 would lead to p′′+t,rms ≈ 4.5 (Farabee & Casarella
1991). This modification is smaller than the uncertainty associated with the discussed
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FIGURE 25. Total design map for the stable drag reduction of superhydrophobic surfaces
in turbulent flows. L+c is the maximum allowable texture size for stable drag reduction.
We+ =µuτ/σ is Weber number based on inner scaling. Arrows indicate the variability of
stability of gas pockets when increasing velocity fixing fluid and design parameters. The
upper solid line uses θadv= 120◦, and the bottom solid line uses θadv= 100◦ in the analysis
of the failure mechanisms. Dashed lines are the failure boundaries imposed by stagnation
and capillary pressure fluctuations. The dotted line is a boundary below which the drag
reduction is expected to be under 1 %. The boundary map is obtained for the solid fraction
φs = 0.11 and 95 % confidence level for the effect of turbulence pressure.

precision of the confidence interval. With these considerations, the boundary map,
between stable and unstable designs, in figure 24(c) shows the stable design spaces,
considering all of the aforementioned effects.

In summary, we recap the design criteria for stable drag reduction in figure 25.
If the speed of overlying flow, U, increases for fixed design parameters and fluid
properties (L, φs, σ , ρ, µ), the viscous length, δν , decreases, leading to a proportional
increase in both L+ and We+, and thus the state in the design map would move
along the 45◦ line up and to the right, as indicated by the arrows in figure 25. The
maximum allowable drag reduction can be estimated by the shifted-TBL model and
a phenomenological model for slip length suggested by Seo & Mani (2016) for the
critical texture size in figure 25. We note that drag reduction is not only a function
of slip length, but subject to change with Reynolds number. In this particular case
we consider a scenario when the solid fraction is φs = 1/9 and Reτ ≈ 5000 for the
estimation of drag reduction. The critical texture length in figure 25 shows that the
maximum allowable drag reduction in a realistic superhydrophobic surface with flow
condition We+ = 10−3–10−2 would be approximately from 15 % to 45 % for the best
chemically coated superhydrophobic surfaces with the maximum microscopic contact
angle of θadv = 120◦. If a superhydrophobic surface has a different chemistry which
lowers the advancing contact angle, e.g. θadv = 100◦, the boundary would be further
pushed downwards, limiting the maximum allowable drag reduction from ≈45 % to
30 % at We+ ≈ 10−3. The overall prediction of the maximum stable drag reduction
by our analysis is consistent with current experimental observations, in which most
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FIGURE 26. Schematic representations of barriers to prevent the shear-driven drainage and
stability criteria. L is pattern period of post arrays, L∞ is period of barriers, and Np is the
number of periods in a barrier, Np = L∞/L. (a) Posts enclosed by barriers with Np = 4,
(b) posts enclosed by barriers with Np = 2. (c) Change of stability criteria according to
the relative importance of shear-driven failure mechanism to stagnation pressure failure
mechanism. µa is viscosity of air, µw is viscosity of water, L+ is pattern period in
wall units. Dashed lines are predicted stability boundaries imposed by shear-driven failure
depending on the ratio between stagnation and shear-driven pressure.

successful drag reductions were limited to be approximately less than 30 % (Bidkar
et al. 2014; Haibao et al. 2015; Srinivasan et al. 2015; Zhang et al. 2015).

7.3. Considerations of failure due to shear-driven drainage
An additional failure mechanism for superhydrophobic surfaces is shear-driven
drainage (Wexler et al. 2015b; Liu et al. 2016). Wexler et al. (2015a) proposes
a remedy for the shear-driven drainage, by installing barriers with finite periodicity
which should be smaller than or equal to a threshold length, L∞, that can retain the
enclosed fluid. Two examples of such barriers with different barrier periodicity defined
by Np = L∞/L, are portrayed in figure 26(a,b). According to Wexler et al. (2015b),
the threshold length for shear-driven drainage is ∼O(1)σγ h/τyx, where h is the height
of the texture, τyx is the imposed shear on top of the cavity, and γ is the curvature
of the interface. Assuming the texture height is ∼L, the shear-driven pressure that
can balance the capillary pressure, σγ , would then be pshear ∼ O(1)µairUsNp/L.
Considering the stagnation pressure scales as pstagnation ∼ 0.28µwaterUs/δν (Seo et al.
2015), the ratio between the shear-driven pressure to the stagnation is

pshear

pstagnation
∼

µairNp

µwaterL+
. (7.4)

For superhydrophobic surfaces, due to the low viscosity ratio of air to water,
µair/µwater ≈ 2 %, this ratio remains small if Np is on the order of 10 or smaller.
When Np is comparable to the viscosity ratio, the shear-driven pressure will dominate
the stagnation pressure.

In figure 26(c), we show the rough estimate of the change of the stability boundary
according to the ratio between the shear-driven pressure and the stagnation pressure.
When the number of periods within barriers, Np, becomes large, the shear-driven
failure will be the dominant mechanism for the interface breakage. The optimal
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choice of Np is required since small Np ensures stable gas pockets from shear-driven
drainage, but it also suppresses the drag reduction due to additional solid–liquid
contact area. For example, an extremely small Np = 1 formulates shear-free holes
with periodicity, L, which separately contain air pockets. While this configuration
may consist a highly robust design for superhydrophobic surfaces, the drag reduction
is significantly impacted. Our preliminary results show isolated holes can lead to half
the drag reduction compared to posts with the same φs = 1/9. Based on the scaling
analysis of (7.4) we estimate that Np ∼ O(10) provides a good compromise between
robustness and drag reduction for superhydrophobic surfaces subject to turbulent
flows.

8. Summary and conclusion

We presented an investigation of the dynamic behaviour of gas–liquid interfaces
on a superhydrophobic surface in response to hydrodynamic turbulence in an
overlying flow. DNS of turbulent channel flows over a wide range of parameters
were developed to perform this investigation. The DNS take into account the
physics of superhydrophobic surface via patterned slip/no-slip boundary conditions
on the overlying flow, and deformability of the air–water interface via a linearized
Young–Laplace equation. Our investigations identified flow-induced capillary waves
as a mechanism where turbulence can energize capillary modes in the form of
streamwise coherent waves that travel upstream. While kinematic statistics, such as
slip length, are not sensitive to the presence of capillary waves, the pressure fields
are strongly affected by these modes. Via various analyses, including identification of
scalings for data collapse and semianalytical linear inviscid analysis, we developed
insights into the behaviour of flow-induced capillary waves.

The knowledge gained from investigation of DNS data led to the development
of threshold criteria for the failure of superhydrophobic surfaces under realistic
conditions. To this end, the onset of contact line movement was used to quantify a
failure condition, leading to the boundary maps between stable and unstable zones
in We+ versus L+ parameter space, considering various contact angle scenarios. A
major contribution of this paper is the presentation of an overview of other failure
modes that have been identified in recent literature in the context of the developed
parameter maps. Namely, we considered failure due to stagnation pressure (studied
by Seo et al. 2015), and found that this mode is the critical limiter of stability only
in the limit of very large We+; for typical We+ values, robustness of air pocket
retention is more critically limited by the capillary pressure modes discussed in the
present study. However, direct evidence of these failure modes should be provided
by experiment. Additionally, we presented an overview of the shear-driven drainage
mechanism (Wexler et al. 2015b) and identified the conditions under which this
mechanism may compete with the other two mechanisms in limiting the robustness
of air retention. Specifically, the shear-driven drainage is not the limiting mechanism
as long as the height of the posts is not small compared to the pattern wavelength,
and as long as gas pockets are kept isolated with barriers distanced within tens of
pattern wavelengths.

Considering a solid fraction of φs ≈ 0.11, and including the overall contribution
of all identified mechanisms of failure, we estimate that maximum possible drag
reduction in the turbulent flow regime to be in the range 45 % to 15 % for Weber
numbers from 10−3 to 10−2 in wall units for a surface microscopic contact angle of
120◦. The maximum drag reduction decreases from 45 % to 30 % in the case of a
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surface microscopic contact angle of 100◦ for We+ = 10−3. This result is consistent
with the experimental measurements of drag reduction by superhydrophobic surfaces.
While increasing φs is likely to shrink the unstable zones in the developed design
maps, surfaces with larger φs result in less drag reduction; the impact of varying φs
on the prefactor of the developed scalings should be studied in a future investigation.

A number of extensions and improvements to the present work can be envisioned.

(i) While reasonable understanding of the dispersion relation governing the induced
capillary waves is provided, it is still unclear how turbulence decides which
capillary modes to excite. It is also unclear why this excitement dominantly
involves a compact representation of capillary modes. To this end, various
analysis techniques such as the resolvent technique (McKeon & Sharma 2010;
McKeon, Sharma & Jacobi 2013) or its variants adopted for non-rigid surfaces
(Luhar, Sharma & McKeon 2015, 2016) may be the most suitable technique to
consider.

(ii) Considering realistic surfaces that typically involve random posts, it is useful
to extend the present DNS investigations to the case of surfaces with randomly
distributed posts. In the limit of a flat interface, Seo & Mani (2017) investigated
the effects of randomness and quantified their impact on increased maximum
stagnation pressure and deterioration of drag-reduction performance. In the
figures presented in § 7, the same trends were hypothesized for the capillary
wave mechanism, but confirming this hypothesis requires a thorough and original
investigation.

(iii) The presented analysis is based on a linearized interface model which is only
useful for the prediction of onset of nonlinear events. Extension of DNS to fully
coupled two-phase flows with appropriate contact line models can shed light into
processes that lead to full bubble drainage and perturbations beyond the discussed
early onsets.

(iv) The analysis presented here considers an ideal scenario where all texture posts
have the same height; realistic surfaces are likely to introduce rough interfaces,
even in the complete Cassie–Baxter state. The form drag induced by interfacial
roughness further lowers the performance in drag reduction (Ling et al. 2016)
and may also affect the instability threshold. An extension of the presented
analysis to rough superhydrophobic surfaces can provide useful insights into the
competition between performance and robustness under such conditions.

(v) The effects of static pressure and mean pressure gradient were not considered in
the current analysis. We assumed a scenario of applications of superhydrophobic
surfaces where within each block between barriers the air pressure balances the
static pressure of the overlaying fluid. The variation of streamwise pressure due
to mean pressure gradient is assumed negligible, if the barrier size is smaller than
the boundary layer thickness, such as p′+ ≈ (dp/dx)+L+

∞
. 1, which is less than

pressure fluctuations from overlying turbulence.
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Appendix A. Energy absorption by viscous effects in the gas layer

For textures whose height is on the order of their width, the ratio of energy
absorption by the gas layer to that absorbed by the surface tension scales as

εg ∼

(
µgas

µliquid

)
We+L+ω+, (A 1)

where ω+ is the frequency of the capillary waves. In the settings considered here,
We+L+ is much less than unity and always less than O(1), and ω+ is either O(1)
or mostly smaller than unity as shown in figure 15(b) for the capillary wave period
in wall units. Given that µair/µwater is much smaller than unity, the viscous effects in
the gas are negligible.

Appendix B. Linearization on the gas–liquid interface
B.1. Accuracy of linearization of the Young–Laplace equation

We discuss the validity of the linearized boundary condition for a gas–liquid interface
in our study and report errors of using it against the Young–Laplace equation without
linearization. The nonlinear Young–Laplace equation equates pressure difference
across the interface and curvature of the interface,

∂2η

∂x2

(
1+

∂η

∂z

)
+
∂2η

∂z2

(
1+

∂η

∂x

)
− 2

∂η

∂x
∂η

∂z
∂2η

∂x∂z(
1+

(
∂η

∂x

)2

+

(
∂η

∂x

)2
)3/2 ≈

Pliquid − Pgas

σ
. (B 1)

The linearized Young–Laplace equation (2.4) is the first-order approximation of (B 1)
if the slope of the interface is assumed smaller than unity, (∂η/∂x, ∂η/∂z)� 1.

We additionally conducted a simulation resulting in the largest deformation P155W4
in table 1 by using the Young–Laplace equation without linearization. The simulation
was run for more than a 15 eddy turnover time, and the last 12 eddy turnover
time data were used and averaged for statistics. The error of DNS results using the
linearized Young–Laplace equation against the Young–Laplace without linearization
for mean convection velocity (U+c ), time period (T+), and wavelength of capillary
wave (λ+) are 2.6 %, 0.3 % and 2.7 %. The root-mean-square error for pressure
fluctuation is less than 3 % and the error for r.m.s. interface deformation is 3.3 %.
Since all errors associated with linearization are under 4 % for the largest deformation
case, we expect all other cases with smaller Wes are not affected by the linearization.

We examined the error of using the linearized Young–Laplace equation to determine
the onset condition of failure by capillary waves, introduced in § 7.1. In the case of
a moving contact angle of 120◦, the Young–Laplace equation without linearization
predicts an 11 % smaller critical texture size than the prediction from the linearized
Young–Laplace equation. The right-hand-side coefficient of the (7.3) is then reduced
by 11 %. For the system where the moving contact angle is 100◦ this error reduces to
less than 1 %. The remaining conclusion on the design map is marginally changed by
this correction for linearization since the key factor for determining onset is a rapid
increase of slip velocity and an order one change with respect to We+.
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FIGURE 27. Representation of DNS parameters on the design map. s: L+ ≈ 13,
f: L+ ≈ 26,p: L+ ≈ 38,q: L+ ≈ 77,u: L+ ≈ 155.

B.2. Accuracy of linearization of the kinematic condition
The leading error associated with linearization of the kinematic boundary condition,
equation (2.7), is second-order O(η2), neglecting the leading (η2/2)(∂2v/∂y2)|y=η
term. The most deformed case is simulation P155W4 in table 1, where the r.m.s.
deformation is 0.1 in wall units, and in this case the leading-order error term is on
the order of 10−2. The resulting error is less than 10 % for wall-normal velocities.

B.3. Regime of parameters in current study
We note that the current simulations are conducted in a stable operation of
superhydrophobic surfaces keeping gas pockets safe. The predicted onset failure
used the projection of scalings from well-collapsed DNS data. In figure 27, we
plot our simulation parameters on a design map. Although We+ in current study is
smaller than the practical regime of interest, the range of Wes considered in this
study, 0.2 . Wes . 1.7, matches with realistic cases. Plugging in values in a realistic
operating condition, ρ = 1000 kg m−3, L ≈ 50 µm, σ = 0.071 N m−1, Us ≈ 3uτ ,
where uτ ≈ 0.3 m s−1 for U∞ = 10 m s−1, Wes would be approximately 0.7, which
is in the middle of span for Wes in this study. In practice L+ tends to be smaller
(requiring expensive DNS) and We+ tends to be larger, leading to similar Wes ranges
to those considered here.

Appendix C. Verification of the code with a perturbation problem with
deformable interface

We consider a perturbation problem where one wall is fully covered by a gas–liquid
interface with a finite surface tension. We use normal modes, which consists
of introducing sinusoidal disturbances on a basic state. In this way we compare
simulations against analytical solutions for different modes of perturbation. On the
base state described by U = (U, 0, 0), we superpose a disturbance of the form

q(x, y, z, t)= q̂(y) exp(ωt+ ikxx+ ikzz), (C 1)

where q represents the perturbed quantities (u, v, w; p). We consider all real
wavenumbers (kx, kz) in a periodic x–z domain. The physical solutions described
by (C 1) can be obtained by computing the real part of the complex fields. We
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assume the perturbation amplitude is much smaller than the background velocity,
u, v,w�U. The continuity equation (2.1) is then

D · û= 0, (C 2)

where D= (ikx, ∂y, ikz), and momentum equation (2.2) becomes

(ω+ ikxU)û=−
1
ρ

Dp̂+ ν(−k̃2
+ ∂2

y )û, (C 3)

where k̃=
√

k2
x + k2

z . At the boundary, we use the linearized Young–Laplace equation,

p̂y=0 =−σ k̃2η̂, (C 4)

and the kinematic condition on the interface (2.7),

vy=0 = (ω+ ikxU)η̂, (C 5)

as boundary conditions at y= 0, where η(x, z)= η̂ exp(ωt+ ikxx+ ikzz). Note that the
velocity and pressure fields are fully coupled with the deformation of interface. By
solving the equations from (C 1) to (C 5) together with the shear-free condition (2.3),
a solution for time frequency is obtained as

ω=−ikxU − νk̃2
±

√
ν2k̃4 − σ k̃3, (C 6)

where the first term in the time frequency represents the advection of the solution with
background velocity. The remaining real part of the solution is the decay rate, while
the imaginary part of the solution is oscillation due to the surface tension effect. The
real form of the solution is

q(x, y, z, t)= q̂(y) exp
((
−νk̃2

±

√
ν2k̃4 − σ k̃3

)
t
)

cos(kx(x−Ut)) cos(kzz), (C 7)

when ν2k̃− σ > 0,

q(x, y, z, t)= q̂(y) exp(−νk̃2t) cos
(

t
√
σ k̃3 − ν2k̃4

)
cos(kx(x−Ut)) cos(kzz), (C 8)

when ν2k̃− σ < 0.
The full solution fields for q̂(y) are

û=
νkx(m2

+ k̃2)

ik̃

(
e−k̃y
−

(
2mk̃

m2 + k̃2

)
e−my

)
η̂, (C 9)

v̂ = ν(m2
+ k̃2)

(
e−k̃y
−

(
2k̃2

m2 + k̃2

)
e−my

)
η̂, (C 10)

p̂=−ρσ k̃2e−k̃yη̂, (C 11)

and ŵ= (kz/kx)û, where m= (k̃4
− σ k̃3/ν2)

1/4
.

We verified our code against the above analytical solution of the diffusion–
oscillation–advection problem, in which the interface responds to the overlying
fluid motion. Our numerical scheme for deformable interface fully coupled with
the overlying flow can capture the motion of an interface with the given surface
tension. We compare our numerical results with analytical solutions when σ =U= 1,
kx = kz = 8, ν = 0.1 in figures 28 and 29.
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FIGURE 28. (Colour online) Streamwise velocity (a–c) and pressure (d–f ) snapshots in
z/δ = 0 at time tU/δ = 0, 0.02, 0.04, respectively. Blue and red solid lines are from
numerical simulations, and black dashed lines are analytical solutions (C 9), (C 11). Blue
line is for negative values, and red line is for positive values.
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FIGURE 29. (Colour online) Time evolution of interface location normalized by its initial
magnitude. (a) Oscillation–diffusion–advection of gas–liquid interface. From blue to red,
the lines are from time snapshots in tU/δ = 0–1.5 with a time interval 0.1. (b) A trace
of a peak point in the initial condition. The solid magenta line is the numerical solution.
For both plots, dashed-dot lines are analytical solutions.
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