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Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean
vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years
worth of research, the mechanism that causes these oscillations and the frequencies
that characterise them remain unclear. Here we show that a three-dimensional
wave-like structure is responsible for the low-frequency switching of the dominant
Dean vortex. The present study, performed via direct numerical simulation, focuses
on the turbulent flow through a 90◦ pipe bend preceded and followed by straight
pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and
bend radius) is studied for a bulk Reynolds number Re = 11 700, corresponding
to a friction Reynolds number Reτ ≈ 360. Synthetic turbulence is generated at the
inflow section and used instead of the classical recycling method in order to avoid
the interference between recycling and swirl-switching frequencies. The flow field
is analysed by three-dimensional proper orthogonal decomposition (POD) which for
the first time allows the identification of the source of swirl-switching: a wave-like
structure that originates in the pipe bend. Contrary to some previous studies, the
flow in the upstream pipe does not show any direct influence on the swirl-switching
modes. Our analysis further shows that a three-dimensional characterisation of the
modes is crucial to understand the mechanism, and that reconstructions based on
two-dimensional POD modes are incomplete.

Key words: pipe flow boundary layer, turbulence simulation, turbulent flows

1. Introduction

Bent pipes are an essential component of a large number of industrial machines
and processes. They are ideal for increasing mass and momentum transfer, passively
mixing different fluids, which makes them effective as heat exchangers, inverters
and other appliances. For a review of the applications of bent pipes in industry see
Vashisth, Kumar & Nigam (2008); the most recent advances in experiments and
simulations can be found in the review by Kalpakli Vester, Örlü & Alfredsson (2016).

† Email address for correspondence: jcanton@mech.kth.se
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FIGURE 1. (Colour online) Schematic of the computational domain. (a) A section of
the pipe with curvature δ = R/Rc = 0.3, including the definition of the geometrical
parameters and an instantaneous flow field coloured by normal velocity, i.e. normal to
the bend symmetry plane. (b) Streamlines of the mean cross-flow showing the Dean
vortices on a cross-section extracted at so= 0. An animated view of the set-up is provided
in the supplementary online material available at https://doi.org/10.1017/jfm.2017.749,
movie1.m4v.

The high mass and momentum transfer are generated by the secondary motion caused
by the centrifugal force acting on the fluid in the curved sections. This secondary
motion, which is of Prandtl’s first kind, takes the shape of two counter-rotating
vortices, illustrated in figure 1, which move the fluid towards the outside of the bend,
along the centreline, and back towards the inside along the wall, therefore increasing
the mass and momentum transfer across the pipe section.

These vortices were first observed by Boussinesq (1868) and Eustice (1910), and
later described analytically by Dean (1928) from whom they received the name of
Dean vortices. The intensity of these vortices increases with Reynolds number, here
based on pipe diameter and bulk velocity (i.e. Re=DUb/ν, where ν is the kinematic
viscosity of the fluid), as well as with pipe curvature, defined as the ratio between pipe
radius and bend radius, δ = R/Rc (see Canton, Örlü & Schlatter (2017) for laminar
flow; Noorani, El Khoury & Schlatter (2013), the review by Kalpakli Vester et al.
(2016), and references therein, for turbulent flows).

For laminar, steady flow the Dean vortices are symmetric with respect to the bend
symmetry plane (the I–O plane in figure 1); but when the flow becomes unstable the
vortices start oscillating periodically (Kühnen et al. 2014, 2015; Canton, Schlatter &
Örlü 2016). These large-scale oscillations are caused by the appearance of periodic
travelling waves which, as also observed in other flows (see, e.g. Hof et al. 2004),
are at the base of transition to turbulence for toroidal and helical pipes.

A different kind of large-scale oscillation is observed for high Reynolds numbers:
here the turbulent flow is modulated by a low-frequency alternation of the dominant
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Dean vortex. This vortex alternation excites the pipe structure and is presumed to
be the cause of structural, low-frequency oscillations observed in heat exchangers
(e.g. in microgravity conditions such as in a test for the international space station;
Brücker 1998, and is associated to an oscillatory pressure force exerted on the pipe;
Chung & Wang 2017), as well as the origin of secondary motion in the bends of the
cooling system of nuclear reactors (Kalpakli Vester et al. 2016). The Dean vortex
alternation was initially, and unexpectedly, observed by Tunstall & Harvey (1968),
who experimentally studied the turbulent flow through a sharp, L-shaped bend (δ= 1).
These authors measured ‘low random-frequency’ switches between two distinct states
and, by means of flow visualisations, were able to identify an either clockwise or
anti-clockwise predominance of the swirling flow following the bent section. The
switching between the two states was found to have a Strouhal number St = fD/Ub,
where f is the measured frequency, highly dependent on Re and comprised between
2 × 10−4 and 4.5 × 10−3. Tunstall & Harvey attributed the origin of the switching
between the two states to the presence of a separation bubble in the bend and to the
‘occasional existence of turbulent circulation entering the bend’.

To the best of our knowledge, the first author to continue the work by Tunstall &
Harvey (1968) was Brücker (1998), who analysed the phenomenon via particle image
velocimetry (PIV) and coined the term ‘swirl-switching’. Brücker studied a smoothly
curved pipe with δ = 0.5 and identified the oscillations as a continuous transition
between two mirror-symmetric states with one Dean cell larger than the other. He
confirmed that the switching takes place only when the flow is turbulent, and he
reported two distinct peaks, St = 0.03 and 0.12, at frequencies considerably higher
than those measured by Tunstall and Harvey, despite the lower Reynolds numbers
considered.

Rütten, Meinke & Schröder (2001), Rütten, Schröder & Meinke (2005) were the
first to numerically study swirl-switching by performing large-eddy simulations (LES)
for δ = 0.167 and 0.5. The main result of this analysis is that the switching takes
place even without flow separation; moreover, Rütten and co-workers found that
the structure of the switching is more complex than just the alternation between
two distinct symmetric states, since the outer stagnation point ‘can be found at
any angular position within ±40◦’. Rütten et al. found a high-frequency peak at
St ≈ 0.2, attributed to a shear-layer instability, and, only for their high Reynolds
number case, one low-frequency peak for St ≈ 5.5 × 10−3, which was connected to
the swirl-switching. However, the simulations for Rütten et al.’s work were performed
by using a ‘recycling’ method, where the results from a straight pipe simulation were
used as inflow condition for the bent pipe. These periodic straight pipes were of length
L = 3.5D and 5D and likely influenced the frequencies measured in the bent pipes
since the periodicity of the straight pipes introduced a forcing for St=Ub/L= 1/3.5
and 1/5, respectively.

Sakakibara et al. (2010) were the first to analyse the flow by means of two-
dimensional (2-D) proper orthogonal decomposition (POD) performed on snapshots
extracted from stereo PIV. Their results for δ = 0.75 reveal antisymmetric structures
that span the entire pipe cross-section and contain most of the energy of the flow. A
spectral analysis of the corresponding time coefficients shows peaks between St≈ 0.07
at so = 2D and St ≈ 0.02 for so = 25D, in the range found by Brücker (1998). In a
subsequent work Sakakibara & Machida (2012) conjectured that the swirl-switching
is caused by very large-scale motions (VLSM) formed in the straight pipe preceding
the bend.

Hellström et al. (2013) and Kalpakli & Örlü (2013) also presented results based on
2-D POD. The former performed experiments for δ = 0.5 and found non-symmetric

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.749


The three-dimensional structure of swirl-switching in bent pipe flow 89

Reference δ Re St

Tunstall & Harvey (1968) 1 50 000–230 000 2× 10−4–4.5× 10−3

Brücker (1998) 0.5 5 000 0.03, 0.12
Rütten et al. (2001, 2005) 0.167, 0.5 27 000 5.5× 10−3

Sakakibara et al. (2010) 0.75 120 000 0.02–0.07
Hellström et al. (2013) 0.5 25 000 0.16, 0.33
Kalpakli & Örlü (2013) 0.31 34 000 0.04
Kalpakli Vester et al. (2015) 0.39 24 000 0.04
Carlsson et al. (2015) 0.32, 0.5, 0.7, 1 34 000 0.003–0.01, 0.13, 0.5–0.6
Noorani & Schlatter (2016) 0.1, 0.3 11 700 0.01, 0.087

TABLE 1. Reference Strouhal numbers measured in previous studies and attributed to swirl-
switching. The analysis in the present work is performed at Re = 11 700 in a bent pipe
with curvature δ = 0.3.

modes resembling a tilted variant of the Dean vortices with St = 0.16 and 0.33,
corresponding to the shear-layer instabilities found by Rütten et al. (2005). Kalpakli &
Örlü (2013), on the other hand, studied a pipe with δ= 0.31; differently from previous
works, the section of straight pipe following the bend was only 0.67 diameters long.
Their results at the exit of this short segment show clearly antisymmetric modes as
most dominant structures. The swirl-switching frequency obtained from the POD time
coefficients was St= 0.04; peaks of St= 0.12 and 0.18 were also measured but were
found not to be related to swirl-switching. In a later work Kalpakli Vester, Örlü &
Alfredsson (2015) repeated the experiments for δ= 0.39 and found again a dominant
frequency corresponding to St= 0.04.

Carlsson, Alenius & Fuchs (2015) performed LES in a geometry similar to that of
Kalpakli & Örlü (2013), namely, with a short straight section following the bend, for
four different curvatures. The inflow boundary condition was generated by means of
a recycling method, as in Rütten et al. (2001, 2005), with a straight pipe of length
7D, exciting the flow in the bent pipe at St = 1/7. The three lower curvatures were
therefore dominated by the spurious frequencies artificially created in the straight pipe
by the recycling method, while the frequencies measured for δ = 1, corresponding to
0.5< St< 0.6, were in the same range identified by Hellström et al. (2013) but were
found to be mesh dependent.

Noorani & Schlatter (2016) were the first to investigate the swirl-switching by
means of direct numerical simulations (DNS). By using a toroidal pipe they showed
that swirl-switching is not caused by structures coming from the straight pipe pre-
ceding the bend, but is a phenomenon inherent to the curved section. Two curvatures
were investigated, δ = 0.1 and 0.3, and both presented a pair of antisymmetric Dean
vortices as the most energetic POD mode with St= 0.01 and 0.087.

Table 1 summarises the main results of the aforementioned studies. It is clear from
this literature review that there is a strong disagreement among previous works not
only on what is the mechanism that leads to swirl-switching, but also on what is the
frequency that characterises this phenomenon. In the present work an answer to both
questions will be given, which will also explain the discrepancies between previous
studies.

The paper continues with a description of the numerical methods employed for the
analysis, presented in § 2, devoting special attention to the inflow boundary conditions.
The results of the simulations and POD analysis are presented in § 3 and are discussed
and compared with the literature in § 4.
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nel ndof 1r+ 1(Rθ)+ 1z+

δ = 0.3 480 000 595 258 500 (0.56, 4.89) (2.26, 4.40) (0.93, 10.29)

TABLE 2. Details of the mesh employed in the present work. nel corresponds to the
number of hexahedral elements, while ndof is the total number of degrees of freedom
(velocity and pressure). Quantities indicated as (·)+ are reported in viscous scaling, and
the numbers between parenthesis correspond to minimum and maximum values.

2. Analysis methods
2.1. Numerical discretisation

The present analysis is performed via DNS of the incompressible Navier–Stokes
equations. The equations are discretised with the spectral-element code Nek5000
(Fischer, Lottes & Kerkemeier 2008) using a PN − PN−2 formulation. After an initial
mesh-dependency study, the polynomial order was set to N = 8 for the velocity and,
consequently, N = 6 for the pressure. We consider a 90◦ bent pipe with curvature
δ = 0.3 for a Reynolds number Re = 11 700, corresponding to a friction Reynolds
number Reτ ≈ 360 (referred to the straight pipe sections). A straight pipe of length
Li= 7D precedes the bent section (see § 3.1), and a second straight segment of length
Lo = 15D follows it. Further details about the mesh, including element number and
size, are reported in table 2. The supplementary video movie1.m4v shows the set-up
and a visualisation of the flow.

2.2. Inflow boundary and divergence-free synthetic eddy method
Since the aim of the present work is to reproduce and study swirl-switching, a
periodic or quasi-periodic phenomenon, the treatment of the inflow boundary is of
utmost importance. The flow field prescribed at the inflow boundary should not
introduce any artificial frequency, in order to avoid the excitation of unphysical
phenomena or a modification of the frequencies inherent to the swirl-switching. A
recycling method, as the one used by Rütten et al. (2001, 2005) and Carlsson et al.
(2015), should therefore be avoided, as highlighted in § 1.

In the present work the velocity field at the inlet boundary of the straight pipe
preceding the bend is prescribed via a divergence-free synthetic eddy method
(DFSEM). This method, introduced by Poletto et al. (2011) and based on the original
work by Jarrin et al. (2006), works by prescribing a mean flow modulated in time
by fluctuations in the vorticity field. The superposition of the two reproduces, up to
second order, the mean turbulent fluctuations of a reference flow and requires a short
streamwise adjustment length to fully reproduce all quantities. The fluctuations are
provided by a large number of randomly distributed ‘vorticity spheres’ (or ‘eddies’)
which are generated and advected with the bulk velocity in a fictitious cylindrical
container located around the inflow section. When a sphere exits the container, a
new, randomly located sphere is created to substitute it. The cylindrical container
is dimensioned such that newly created eddies do not touch the inlet plane upon
their creation and they have stopped affecting it before exiting the container, i.e. the
cylinder extends from −max(Deddies) to max(Deddies) (see figure 5 in Poletto, Craft &
Revell 2013, for an illustration of the container).

The random numbers required to create the fluctuations are generated on a single
processor with a pseudo random number generator (Chandler & Northrop 2003)
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featuring an algorithmic period of 21376 iterations, large enough to exclude any
periodicity in the simulations, which feature approximately 10 000 synthetic eddies.
The size of the spheres is selected to match the local integral turbulence length
scale, and their intensity is scaled to recover the reference turbulent kinetic energy,
producing isotropic but heterogeneous second-order moments. The method prescribes
isotropic turbulence, instead of the correct anisotropic variant, because it was shown
that the former leads to a shorter adjustment length in wall-bounded flows (see
figure 11 in Jarrin et al. 2006). In order to satisfy the continuity equation, no synthetic
turbulence is created below (R− r)+ < 10; however, this does not significantly affect
the adjustment length since the dynamics of the viscous sublayer is faster than the
mean and converges to a fully developed state in a shorter distance. The turbulence
statistics necessary for the method, specifically the mean flow U(r), the turbulent
kinetic energy k(r) and the dissipation rate ε(r), were extracted from the straight
pipe DNS performed by El Khoury et al. (2013). Section 3.1 presents the validation
of our implementation of the DFSEM; more details can be found in Hufnagel (2016).

2.3. Proper orthogonal decomposition
Besides point measures, we use POD (Lumley 1967) to extract coherent structures
from the DNS flow fields and identify the mechanism responsible for swirl-switching.
More specifically, we use snapshot POD (Sirovich 1987) where n three-dimensional,
full-domain flow fields of dimension d (corresponding to the number of velocity
unknowns) are stored as snapshots. POD decomposes the flow in a set of orthogonal
spatial modes Φi(x) and corresponding time coefficients ai(t) ranked by kinetic
energy content, in decreasing order. The most energetic structure extracted by POD
corresponds to the mean flow and will be herein named ‘zeroth mode’, while the
term ‘first mode’ will be reserved for the first time-dependent structure.

A series of instantaneous flow fields (snapshots) is ordered column-wise in a matrix
S ∈Rd×n and decomposed as:

S =UΣVᵀ
=

d∑
i=1

Φiai, (2.1)

where U ∈Rd×d, Σ = diag(σ1, σ2, . . . , σm, 0), with m=min(d, n), and V ∈Rn×n. The
decomposition in (2.1) is obtained by computing the singular value decomposition
(SVD) of M1/2ST 1/2, where M is the mass matrix and T is the temporal weights
matrix, which results in ŨΣ Ṽ

ᵀ
, where Ũ and Ṽ are unitary matrices (Ũ

ᵀ
Ũ = I and

Ṽ
ᵀ
Ṽ = I); the POD modes are then obtained as U = M−1/2Ũ and V = T−1/2Ṽ . To

improve the convergence of the decomposition, we exploit the symmetry of the pipe
about the I–O plane, which results into a statistical symmetry for the flow, and store
an additional mirror image for each snapshot (Berkooz, Holmes & Lumley 1993).

3. Results and analysis
3.1. Inflow validation

An auxiliary simulation for Reτ = 360 was set-up to test the performance of the
DFSEM in a 25D long straight pipe, provided with the same mesh characteristics
used for the bent pipes. Classical statistical quantities were used for the validation and
compared with the reference values by El Khoury et al. (2013). The comparison is
presented in figure 2(a) as a function of distance from the inflow boundary, and shows
that the DFSEM approaches a fully developed turbulent state (within ±1 % of error)
at approximately 5D from the inflow boundary. Figure 2(b–d) presents the velocity,
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FIGURE 2. Recovery of fully developed turbulence statistics for the divergence-free
synthetic eddy method at Reτ = 360, compared to the reference values by El Khoury
et al. (2013). Panel (a) shows the ratio between the DFSEM and the reference data as
a function of streamwise distance from the inflow plane. The grey shaded area indicates
a ±1 % tolerance with respect to the data by El Khoury et al. (2013). Panels (b–d) show
classical statistical profiles as a function of radial position at si= 5D. Solid lines indicate
the reference data, while symbols represent the current results (note that the number of
shown points is reduced and does therefore not represent the grid resolution; see table 2).

stress profiles and the turbulent kinetic energy budget at the chosen streamwise
position of si = 5D, which confirm the recovery of fully developed turbulence by the
divergence-free synthetic eddy method.

A length of 7D was therefore chosen for the straight pipe preceding the bent section,
in order to allow for some tolerance and to account for the (weak, up to 1D) upstream
influence of the Dean vortices (Anwer, So & Lai 1989; Sudo, Sumida & Hibara 1998).
For comparison, the more commonly used approach where random noise is prescribed
at the inflow requires a development length between 50 and 110D (Doherty, Monty
& Chong 2007). POD modes were also computed to further check the correctness of
this method. The results, not reported here for conciseness, were in good agreement
with those presented by Carlsson et al. (2015) for a periodic straight pipe, that is,
streamwise invariant modes with azimuthal wavenumbers between 3 and 7.
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−1

0

1(i) (ii) (iii)

FIGURE 3. (Colour online) Pseudo colour of the streamwise velocity component and
streamlines of the in-plane velocity components for the first three POD modes (i–iii). The
modes are oriented as in figure 1(b). The snapshots were extracted at so = 2D.

3.2. Two-dimensional POD
Two-dimensional POD, considering all three velocity components, is employed as a
first step in the analysis of swirl-switching. Instantaneous velocity fields are saved at
a distance of 2D from the end of the bent section and are used, with their mirror
images, to assemble the snapshot matrices (Berkooz et al. 1993). The 1234 velocity
fields used for the decomposition were saved at a sampling frequency of St=0.25, and
the sampling was started only after the solution had reached a statistically steady state.
As a consequence of exploiting the mirror symmetry, all modes are either symmetric
or antisymmetric, a condition to which they would converge provided that a sufficient
number of snapshots had been saved.

The first three modes are shown in figure 3 by means of pseudo colours of their
streamwise velocity component and streamlines of the in-plane velocity components.
Two out of three modes are antisymmetric: (i, ii) and are in the form of a single swirl
covering the whole pipe section, (i), and a double swirl, (ii), formed by two counter-
rotating vortices disposed along the inner–outer direction on the symmetry plane. The
third mode, (iii), resembles a harmonic of the Dean vortices.

These findings are in agreement with previous experimental work, such as that of
Sakakibara et al. (2010) and Kalpakli & Örlü (2013), which attributed the dynamics
of swirl-switching to the antisymmetric modes. The frequency content of these modes
is presented in figure 4, in terms of Welch’s power spectral density estimate for the
time coefficients of the first three modes, corresponding to the structures shown in
figure 3. It can be observed that the spectra have a low peak-to-noise ratio and that
each mode is characterised by a different spectrum and peak frequency, in agreement
with previous 2-D POD studies: see, e.g. figure 8 in Hellström et al. (2013), which
presents peaks with similar values to the present ones, although their study was for a
slightly larger curvature of δ = 0.5. This fact has caused some confusion in the past,
with disagreeing authors attributing different causes to the various peaks, without
being able to come to the same conclusion about the frequency, or the structure, of
swirl-switching. The reason is that swirl-switching is caused by a three-dimensional
wave-like structure, as will be shown by 3-D POD in § 3.3, and a two-dimensional
cross-flow analysis cannot distinguish between the spatial and temporal amplitude
modulations created by the passage of the wave. A simple analytical demonstration
of this concept is provided in the appendix A, and shows that conclusions drawn
from a flow reconstruction based on 2-D POD modes (see, e.g. Hellström et al. 2013)
are incomplete.
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FIGURE 4. Welch’s power spectral density (PSD) estimate for the time coefficients ai of
the most energetic 2-D POD modes. The frequencies are scaled with pipe diameter and
bulk velocity. The 2-D modes were extracted at so = 2D. The markers and corresponding
labels report the frequency of the highest peak of each spectrum.

3.3. Three-dimensional POD
For the 3-D POD, the same snapshots as for 2-D POD were used. In order to reduce
memory requirements, the snapshots were interpolated on a coarser mesh before
computing the POD. This is, however, not a problem because the swirl-switching is
related to large-scale fluctuations in the flow.

The four most energetic modes are depicted in figure 5 by means of pseudo colours
of normal and streamwise velocity components, as well as streamlines of the in-plane
velocity. It can be observed that the modes come in pairs: 1–2 and 3–4, as is usual
for POD modes and their time coefficients in a convective flow. The first coherent
structure extracted by the POD is formed by modes 1 and 2 and constitutes a damped
wave-like structure that is convected by the mean flow (see figure 5 for the spatial
structure and figure 6 for the corresponding time coefficients; the supplementary video
movie2_modes0-2.mov shows their behaviour in time). This is not a travelling wave
such as those observed in transitional flows, as those of the examples mentioned
in the introduction, but a coherent structure extracted by POD from a developed
turbulent background that persists in fully developed turbulence, and is just a regular
component of the flow on which irregular turbulent fluctuations are superimposed
(see, e.g. Manhart & Wengle 1993, for a similar case). Nevertheless, the present
wave-like structure could be a surviving remnant of pre-existing, purely time-periodic,
flow structures formed in the bent section and arising in the process of transition
to turbulence past bends (see, e.g. the case of the flow past a circular cylinder by
Sipp & Lebedev (2007)). It was found that the first instability of the flow inside of
a toroidal pipe is characterised by the appearance of travelling waves (Kühnen et al.
2014; Canton et al. 2016). It is therefore possible that similar waves appear in the
transition to turbulence of the present flow case, and continue to modulate the large
scales of the flow at high Reynolds numbers while being submerged in small-scale
turbulence. To support this hypothesis, the frequencies and wavelengths of the present
coherent structures are in the same range as those measured in toroidal pipes (Canton
et al. 2016), and Brücker (1998) observed swirl-switching even for Re as low as
2000, although the measured oscillations had very low amplitude.
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FIGURE 5. (Colour online) Panel (a) shows the four most energetic three-dimensional
POD modes. The four longitudinal cuts show pseudo colours of the normal velocity
component un, while the eight cross-sections display the in-plane streamlines and are
coloured by streamwise velocity us. The supplementary material includes two videos
showing the reconstruction of the flow based on these modes. Panel (b) shows the swirl
intensity, measured by circulation Γ , along the streamwise axis of the two most energetic
modes, φ1 and φ2, and their envelope. The spatially decaying, wave-like behaviour can be
appreciated.

The present modes are, obviously, not strictly periodic in space nor in time: as
can be seen in figure 5(b) showing the swirl intensity, the intensity of the modes is
essentially zero upstream of the bend (s < 0), reaches a maximum at approximately
1D downstream of the bend end, and then decreases with the distance from the
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FIGURE 6. (Colour online) Time coefficients ai(t) of the two most energetic three-
dimensional POD modes. Panel (a) shows the temporal signal, which allows us to observe
the qualitative quarter-period phase shift of mode 2 with respect to mode 1; panel (b)
shows the (colour coded) time over coefficients a1 and a2, illustrating the oscillating
character. The time axis is (arbitrarily) cut at t = 50D/Ub for illustration purposes, the
total recorded signal is over 300D/Ub.
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FIGURE 7. Welch’s power spectral density estimate for the time coefficients ai of the
most energetic 3-D POD modes. The frequencies are scaled with pipe diameter and bulk
velocity. The markers and corresponding labels report the frequency corresponding to the
peak of each spectrum. The range of the Strouhal number is identical to that of figure 4
to ease comparison.

bend. Furthermore, the respective time coefficients are only quasi-periodic, as can be
observed from their temporal signal, depicted in figure 6(a), and by their frequency
spectra, figure 7(a). Nevertheless, it can be observed in figure 5 that the spatial
structure of these modes is qualitatively sinusoidal along the streamwise direction so,
with a wavelength of approximately 7 pipe diameters. The figures in Brücker (1998)
actually already suggest the appearance of a wave-like structure in the presence of
swirl-switching.

This wave-like structure is formed by two counter-rotating swirls, visible in the
2-D cross-sections in figure 5, which are advected in the streamwise direction while
decaying in intensity and, at the same time, move from the inside of the bend
towards the outside, as can be seen in the longitudinal cuts in figure 5 and in
the supplementary video movie2_modes0-2.mov. The temporal amplitude of these
modes is also qualitatively cyclic, as illustrated by the projection along the time
coefficients in figure 6(b). The wave-like behaviour can be appreciated even better
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in the aforementioned video showing the flow reconstructed with these two modes,
movie2_modes0-2.mov. Modes 1 and 2 are phase shifted by a quarter of their
quasi-period: figure 5 shows that the structure of mode 2 is located approximately
a quarter of a wavelength further downstream of the structure of mode 1; while,
figure 6 illustrates the constant delay of the time coefficient of mode 2 with respect
to that of mode 1.

The second structure, formed by modes 3 and 4, has a spatial layout that closely
resembles that of the first pair, i.e. it is also a wave-like structure, and constitutes
the first ‘harmonic’ of the wave formed by modes 1 and 2. The spatial structure
of modes 3 and 4 has half of the main wavelength of modes 1 and 2, and the
highest peak in the spectrum of the third and fourth time coefficients is at exactly
twice the frequency of the peaks of a1 and a2, as can be seen in figure 7(a). The
video movie3_modes0-4.mov shows the reconstruction of the flow field by including
modes 3 and 4. It can be observed that these modes introduce oscillations with higher
frequency and smaller amplitude when compared to the reconstruction employing only
modes 1 and 2.

As can be observed from figure 5, the modes do not present any connection to the
straight pipe section preceding the bend. This is in direct contrast with the findings
of Carlsson et al. (2015), whose results were likely altered by the interference of
an intrinsic frequency and wavelength on the recycling inflow boundary with the
structure of the swirl-switching. Our results are, instead, in agreement with Noorani
& Schlatter (2016) who observed swirl-switching in a toroidal pipe (i.e. in the absence
of a straight upstream section) confirming that these large-scale oscillations are not
caused by structures formed in the straight pipe, but by an effect which is intrinsic
to the bent section.

The power spectral density analysis of the time coefficients of these modes,
computed as a Welch’s estimate, is presented in figure 7. One can see that, unlike
the PSD of the two-dimensional POD modes (figure 4), the three-dimensional modes
present two distinct peaks, one per pair of modes. The peak for the first modal
pair is located at St ≈ 0.16, which is in the range of Strouhal numbers found by
both Brücker (1998) and Hellström et al. (2013). More importantly, this frequency
is the lowest for this pair of modes and matches that given by the wavelength and
propagation speed of the wave as well as that of the swirl-switching, as observed
by reconstructing the flow field with the most energetic POD modes (see the online
movies).

The present analyses were also performed on a pipe with curvature δ = 0.1 for
the same Reynolds number. Swirl-switching was observed in this case as well, with
dynamics which is qualitatively identical to the one observed for δ = 0.3, but is
characterised by lower frequencies, peaking at St≈ 0.045. The lower frequencies and
larger scales (wavelength of approximately 20D) characterising the wave-like structure
at this curvature meant that a quantitative analysis was too expensive with the present
set-up. We have therefore limited this work to the study of one curvature only, but
preliminary, not converged results can be found in Hufnagel (2016).

4. Summary and conclusions
This work presents the first DNS analysis of swirl-switching in a 90◦ bent pipe. The

simulations were performed by using a synthetic eddy method to generate high-quality
inflow conditions, in an effort to avoid any interference between the incoming flow
and the dynamics of the flow in the bent section, as was observed in previous
studies. Three-dimensional POD was used to isolate the dominant structures of
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the flow. This method allowed the identification of a wave-like structure, originating
in the bent section, constituted by the first modal pair. A reconstruction of the flow
field using the most energetic modal pair confirmed that the swirl-switching is caused
by this structure.

The swirl-switching frequency found in the present study is in the range of
those deduced by Brücker (1998) and Hellström et al. (2013). The structure of the
modes, which presents no connection to the upstream straight pipe, confirms what
was conjectured by Noorani & Schlatter (2016), who observed swirl-switching in a
toroidal pipe, namely that swirl-switching is a phenomenon intrinsic to the bent pipe
section.

Clearly, the present findings are in contrast with previous conclusions drawn
from flow reconstructions based on 2-D POD modes and Taylor’s frozen turbulence
hypothesis (see, e.g. Hellström et al. 2013): the 2-D analysis mixes convection and
true temporal variation, and thus cannot reveal the full three-dimensional structure
of travelling modes. This does not only apply to the present flow case, but to any
streamwise inhomogeneous flow in which 2-D POD is utilised in the cross-flow
direction.

The wave-like structure found in the present study is different from those observed
in transitional flows (see, e.g. Hof et al. 2004), in the sense that it is simply a
coherent structure extracted by POD from a turbulent background flow, as opposed
to an exact coherent state. Nevertheless, we conjecture that this structure may be a
surviving remnant of a global instability caused by the bend (Kühnen et al. 2014;
Canton et al. 2016).
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Appendix A. Considerations on the use of 2-D POD
This section explains, analytically, the reasons why a two-dimensional cross-flow

POD analysis is an ineffective tool for understanding swirl-switching. In order to
capture the essence of the phenomenon, the example is without spatial dissipation and
noise, but these can be added at will without changing the discussion or the results.
A Matlab script performing the operations described in this section is provided as
part of the supplementary online material.

Consider a sine wave of period 2πl, travelling at speed v, and with amplitude
modulated at a frequency ω/(2π):

g(x, t)= sin
(

x− vt
l

)
cos(ωt). (A 1)

When measuring its passage at a given spatial position, say g(xm, t), the recorded
time signal will contain two frequencies, f1= (ω− v/l)/(2π) and f2= (ω+ v/l)/(2π),
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that combine the spatial component, fs = v/(2πl), and the temporal component, ft =

ω/(2π). This combination is a result of the fact that g can be rewritten, using one
prosthaphaeresis formula, separating the time and space dependencies:

g(x, t)=
1
2

sin
[x

l
+

(
ω−

v

l

)
t
]
+

1
2

sin
[x

l
−

(
ω+

v

l

)
t
]
. (A 2)

The two components, fs and ft, would be measured in isolation if the function g
were a pure travelling wave (ω= 0) or a pure standing wave (v= 0). However, when
both aspects are present (ω 6= 0 and v 6= 0) a complete knowledge of g is necessary
in order to separate fs from ft. This, clearly, is possible in the present example,
where the analytical expression of g(x, t) is known. When studying an unknown
phenomenon (such as swirl-switching) the knowledge of f1 and f2 is insufficient: one
does not know what is causing the measured frequencies: it could be two travelling
waves advected at different speeds (or provided with different period); two standing
waves modulated at different frequencies; or, as in this case, one travelling wave with
modulated amplitude.

This problem can transferred to a POD analysis as well: the 2-D POD in the
pipe corresponds to a zero-dimensional POD in this example, which employs the
measurements g(xm, ti) as snapshots, while the 3-D POD of the bent pipe flow
corresponds to a one-dimensional POD which uses the function g(x, ti) over the
whole x domain as snapshots.

The 0-D POD returns a single mode which assumes a value of either +1 or −1
and does not provide any information about the spatial structure of g. The spectrum
of the time coefficient corresponding to this single mode contains both frequencies f1
and f2. When using 0-D POD one does not have any information about the spatial
nature of g, and is lead to believe that the oscillations measured in xm are caused by
two periodic phenomena with frequencies f1 and f2. This likely is what has caused so
much disagreement in the literature about the value of the Strouhal number related to
the swirl-switching and on the 2-D POD mode responsible for this phenomenon. The
answer is that none of the 2-D POD modes reported in the literature is actually the
swirl-switching mode, and the Strouhal numbers extracted from time coefficients do
not provide a correct description.

A 1-D POD analysis of the function g, which is the analogue of the 3-D POD in the
bent pipe, provides the correct answers. It results in two sinusoidal modes which, with
the corresponding time coefficients, reproduce the complete travelling and oscillatory
behaviour of g. The spectra of the time coefficients still contain only f1 and f2, but
have a much higher peak to noise ratio compared to the 0-D POD, as observed in the
bent pipe by comparing figures 4 and 7. Moreover, by analysing the reconstruction of
g, they allow the separation of fs from ft.

It is now clear why in the case of a streamwise-dependent spatial structure, such as
the one creating swirl-switching (as shown in § 3.3), only a fully three-dimensional
analysis can correctly identify the actual spatial and temporal components.
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