
TLP 5 (4 & 5): 467–501, 2005. C© 2005 Cambridge University Press

doi:10.1017/S1471068405002395 Printed in the United Kingdom

467

CHR grammars

HENNING CHRISTIANSEN

Computer Science Department, Roskilde University,

P.O. Box 260, DK-4000 Roskilde, Denmark

(e-mail: henning@ruc.dk)

submitted 31 August 2002; revised 26 September 2004, 15 June 2004; accepted 9 August 2004

Abstract

A grammar formalism based upon CHR is proposed analogously to the way Definite Clause

Grammars are defined and implemented on top of Prolog. These grammars execute as

robust bottom-up parsers with an inherent treatment of ambiguity and a high flexibility

to model various linguistic phenomena. The formalism extends previous logic programming

based grammars with a form of context-sensitive rules and the possibility to include extra-

grammatical hypotheses in both head and body of grammar rules. Among the applications

are straightforward implementations of Assumption Grammars and abduction under integrity

constraints for language analysis. CHR grammars appear as a powerful tool for specification

and implementation of language processors and may be proposed as a new standard for

bottom-up grammars in logic programming.

KEYWORDS: constraint logic programming, constraint handling rules, logic grammars

1 Introduction

Constraint Handling Rules (Frühwirth 1998b) (CHR) provide a natural framework

for extending logic programming with bottom-up evaluation which, together with

other qualities of CHR, makes it interesting to consider CHR for language pro-

cessing. In general, constraint solving techniques have proved to be important for

expressing and solving linguistic problems.

To promote and facilitate language processing in CHR, we propose a standard

for a grammar notation built upon CHR, called CHR Grammars or CHRG for

short. At a first glance, CHRG may be seen as a bottom-up counterpart to the

well-known Definite Clause Grammars (Pereira and Warren 1980) (DCG), but the

CHRG formalism includes additional facilities that are not obvious or possible in

DCG. Most notably, the notation supports context-sensitive rules that may consider

arbitrary symbols to the left and right of a sequence be matched. Counterparts to

the different sorts of rules of CHR (propagation, simplification, and simpagation)

are present in CHRG and grammar rules may also refer to extra-grammatical

hypotheses in both head and body of rules. CHRGs are implemented by a compiler

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

468 H. Christiansen

into CHR analogously to the way DCGs usually are translated into Prolog. This

provides a seamless integration with CHR and Prolog, so that the high-level notation

of CHRG is combined with the sort of tools and libraries that are relevant for

practical applications.

When executed as a parser, a CHRG is robust of errors and provides an elegant

handling of ambiguity: rules apply bottom-up as long as possible and grammar

nodes corresponding to the different parses can be read out of the final constraint

store.

The context-sensitive rules provide a high degree of expressiveness both for

simplifying the overall grammar structure and for modeling phenomena such as

long-distance reference and coordination in natural language. Context-sensitivity

can also be used for classifying lexical tokens in a way quite similarly to the

component called a tagger in language processing systems.

The possibility to apply extra-grammatical constraints in grammar rules makes

it straightforward to express abductive language interpretation with integrity con-

straints written as CHR rules; no extra meta-level overhead is necessary. Facilities

from Assumption Grammars (AG) are included in CHRG in a similar way; AGs are

in many ways similar to abduction but provide also primitive scoping mechanisms

not found in the abductive approach.

The CHRG system accepts any grammar whose context-free backbone

is without empty-productions and loops and it has no problems with

left-recursion as is the case for DCG. The efficiency is highly dependent on the

grammar: For locally unambiguous grammars (to be defined), execution is linear

and for a general context-free grammar cubic similarly to other general parsing

algorithms.

The CHRG system is implemented in SICStus Prolog and is available on the

Internet (Christiansen 2002b).

Overview

Section 2 provides the background and motivation of this work and reviews

important, related work. Section 3 describes syntax and semantics of the CHRG

notation together with the principles used for its implementation in CHR; Section 4

shows examples of CHRGs.

The approach to abductive language interpretation is described in Section 5,

firstly at an abstract level as a general method for transforming abductive language

interpretation into a deductive form which is not tied to a specific grammar

formalism. We then show how the principles can be applied in CHRG in a

version for unambiguous grammars and an extension for ambiguous grammars

(some extra machinery is needed as to avoid cluttering up abducibles for different

parses). Section 6 explains the implementation of Assumption Grammars in CHRG.

Section 7 gives a summary and discusses future perspectives.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 469

2 Background and related work

Our work can be described as filling out the lower right corner in the following

commutative diagram:

Prolog −−−−→ CHR�
�

DCG −−−−→ CHR Grammars

Definite Clause Grammars (Pereira and Warren 1980) (DCGs) have been an integral

component of most Prolog systems for decades and are basically a derivative of

Colmerauer’s Metamorphosis Grammars (Colmerauer 1975) that were designed

together with one of the first versions of Prolog.

DCGs are syntactic sugar for Prolog programs which in their now standard

implementation represent strings by means of difference lists. When executed as a

parser, a DCG inherits Prolog’s top-down strategy with backtracking for checking

out different alternatives. DCGs are very popular as they are very easy to write down

and get running, especially for toy languages and not too complicated fragments of,

say, natural language or programming languages. DCGs put very few restrictions

on the context-free backbone of the grammar, as do most traditional methods for

writing parsers; e.g. see Aho et al. (1986). The main drawbacks of DCGs are:

• lack of robustness, if the string to be analyzed does not conform with the

grammar the result is simply failure,

• backtracking may lead to combinatorial explosions, so a grammar for a larger

application needs to be tuned very carefully with cuts and the like to avoid

this,

• lacking ability to handle left-recursive grammars.

To compensate partly for this, different authors (not referenced here) have proposed

compiling DCGs into bottom-up parsers by traditional means.

The CHR language (Frühwirth 1998b) was introduced as a tool for writing con-

straint solvers in a declarative way for traditional constraint domains such as real or

integer numbers and finite domains. CHR has proved to be of more general interest

and is available as extension of, among others, SICStus Prolog (Swedish Institute of

Computer Science 2003). The CHR web pages (Constraint Handling Rules Online

2002) contain a growing collection of applications. Being of special interest to

language processing, Abdennadher and Schütz (1998) have shown that CHR adds

bottom-up evaluation to Prolog and a flexibility to combine top-down and bottom-

up computations; Abdennadher and Christiansen (2000) have taken this a step

further, showing that abductive logic programs can be expressed directly in CHR.

The metaphor given by the diagram above is very precise as we propose a notation

that can be seen as a layer of syntactic sugar over CHR rules that parses bottom-up.

A string is entered as a set of initial constraints and the rules apply over and over

producing more and more syntax nodes from those already found. In this way

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

470 H. Christiansen

we achieve a robustness not found in DCGs and avoid also the problems with

backtracking and left-recursion; furthermore, this approach gives an inherent and

elegant treatment of ambiguity without backtracking. In our approach, a string is

encoded by means of integer word boundaries as also used in Datalog grammars

(Dahl et al. 1994) and the classical paper on DCGs (Pereira and Warren 1980).

It is interesting to compare our CHRG formalism with Constraint Multiset

Grammars (Marriott 1994) (CMGs) that can apply also to multidimensional

languages such as diagrams. The rules of CMG include also context-conditions

which seems capable of expressing the sort of context conditions included in CHRG.

Meyer (2000) has applied CHR for parsing of CMGs with techniques very similar

to ours, however without considering the compilation of a grammar notation into

CHR. Recent work by (Bottoni et al. 2001) has proposed to apply a variant of linear

logic for parsing CMGs.

Morawietz (2000) has implemented deductive parsing (Shieber et al. 1995) in CHR

and shown that a specialization of a general bottom-up parser for context-free rules

leads to propagation rules similar to those produced by our compiler. Our proposal

for a grammar notation upon CHR was put forward in Christiansen (2001) and

presented briefly in Christiansen (2002c); the CHRG system has also been presented

as Christiansen (2003). An attempt to characterize the grammar of ancient Egyptian

hieroglyph inscriptions by means of context-sensitive rules in CHRG is given by

Hecksher et al. (2002).

In Christiansen and Dahl (2002; 2003), we have applied CHR for parsing with

error detection and correction in which we employ CHRs ability to combine

top-down and bottom-up computations, (Abdennadher and Schütz 1998): parsing

proceeds bottom-up as described in the present paper and when symptoms of an

error are seen, a top-down sweep for correcting the string is started, so that the

parser may continue.

The notion of constraints, with slightly different meanings, is often associated

with language processing. “Constraint grammars” and “unification grammars” are

often used for feature-structure grammars, and constraint programming techniques

have been applied for the complex constraints that arise in natural language

processing; e.g. see, Gazdar and Mellish (1989), Allen (1995) and Duchier (2000) for

an introduction and overview. One approach using CHR for this purpose in HPSG

is that of Penn (2000).

Blache (2000) proposes a formalism with specific kinds of constraints for natural

language which also seems to fit with an implementation in CHR. This approach

combines constraints on the order in which things must occur, on which things

imply the presence or absence of other things, etc. We have not tried to model this

in CHRG, but CHRGs contexts and possible use of arbitrary hypotheses seems

to be suited. See also Duchier and Thater (1999), Maruyama (1998) and Schröder

et al. (2000) for similar approaches.

Our approach to abductive language interpretation using CHR Grammars is

based on extension of our previous work (Abdennadher and Christiansen 2000)

who showed how an abductive logic program with integrity constraint (but limited

use of negation) can be rewritten as a CHR program; basically, the idea is to

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 471

declare abducibles as constraints and write integrity constraints as CHR rules, and

abduction works so to speak for free without any meta-level interpreter which

usually is associated with abduction. We are not aware of other approaches to

abductive language interpretation using CHR in this way.

The advantages of abduction for language interpretation – as theoretical model

or as implementation – has been recognized be several authors (Charniak and

McDermott 1985; Gabbay et al. 1997; Hobbs et al. 1993; Christiansen 1993), just

to mention a small fraction, and this is taken in the present work as an established

fact.

A conventional implementation of DCGs (Pereira and Warren 1980) applies a

purely deductive interpretation method, synthesizing the meaning of a phrase from

the meanings of its subphrases. This works well when context is known and every

piece of information to be extracted is expressed in an explicit way. Abduction

is in favour for more subtle meanings given, e.g., by linguistic implicature, and

when the attention is on context comprehension. In Christiansen (1999) we have

related Stalnaker’s (1998) view of context comprehension to abductive language

interpretation. One way to achieve abduction with logic grammars is, of course, to

interpret a DCG using an interpreter for abductive logic programs such as Kakas

et al. (2000); we have not made any benchmark tests but we expect this to be far

less efficient than what is described in the present paper. An interesting variation of

our method is to combine the core of our abduction method with DCGs as shown

in example 12 below: the DCG is processed in the usual way but it may refer to

abducible predicates defined as CHR constraints. An earlier paper (Christiansen

2002a) on our approach to abductive language interpretation discusses in more

detail the relation to other abduction methods. In Christiansen and Dahl (2004), we

have considered how our CHR versions of abduction and assumptions (Dahl et al.

1997) with integrity constraints can be used as an extension to Prolog.

3 Syntax, semantics, and implementation of CHRG

3.1 Preliminaries: First-order logic and CHR

First-order logic is assumed; variables are typically denoted by letters such as x ,

y , . . . or with capital letters in typewriter font in programming notation; constants

are typically denoted by letters such as a , b, . . .; notation with a horizontal bar as

in x̄ refers to a sequence of variables, similarly ā , . . . for sequences of constants and

t̄ , . . . for sequences of terms.

We give the necessary definitions and properties for Constraint Handling Rules

(CHR) in a slightly simplified form and refer to a general introduction elsewhere

(Frühwirth 1998b).

Two disjoint sets of constraint predicates are assumed, called defined constraints

(i.e. defined by the current program) and built-in constraints, the latter including “=”,

“�=”, true, and false. Atoms of constraint predicates are (with a slight overloading

of usage) called (defined and built-in) constraints. Conjunctions are written by either

“∧” or, in programming notation, a comma.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

472 H. Christiansen

The following CHR rules1 are recognized:

Progagation rules H ==>G|B ,

Simplification rules H <=>G|B , and

Simpagation rules H \H ′ <=>G|B being an abbreviation for H ,H ′ ==>G|H ,B .

Each H (and H \H ′) is called the head2 of the rule and is a conjunction of one

or more defined constraints indicated by commas, G the guard being a conjunction

of built-in atoms, and B the body being a conjunction of constraints. A guard

corresponding to true can be left out together with the vertical bar.

In examples and extensions to the framework we apply occasionally the possibility

in the implemented CHR system of including arbitrary Prolog code in rule bodies,

including those auxiliaries of the CHR system that goes beyond a declarative

semantics as well as the abstract, procedural semantics given below. The same goes

for the application of so-called deep guards in which constraints are called in the

guard. In such cases we supply suitable informal descriptions.

A CHR program is a finite set of rules with its declarative semantics given as

the conjunction of a logical reading of each rule as follows; the built-in “=” and

“�=” have their standard syntactic meaning. Propagation rules and simplification

rules in the format above are taken as abbreviations for the following respective

formulas:

∀x̄ ((∃ȳG) → (H → ∃z̄B))

∀x̄ ((∃ȳG) → (H ↔ ∃z̄B))

where x̄ refer to the variables in H , ȳ to those in G not overlapping with x̄ , and z̄

to those in B not overlapping with x̄ ; for simplicity it is assumed that ȳ and z̄ do

not overlap; see Frühwirth (1998a; 1998b) for a generalization.

A rule with z̄ empty is said to be range-restricted. A state is defined to be a set

of constraints and an initial state for a query Q (being a conjunction of constraints)

is Q itself; we do not distinguish between sets and conjunctions. We distinguish a

special state referred to as failure and any derivation step (below) leading to this

state is said to be failed.

To execute a(n instance of a) body C ∧ E ∧ N where C are defined constraints, E

and N built-in’s with predicates “=” and “ �=”, resp., in state S , consists of forming

the state (S ∪C ∪N)σ where σ is a common, most general unifier for E . In addition,

any s �= t with s and t nonunifiable is removed. However, if no such σ exists or

(S ∪ N)σ contains t �= t for some term t , the execution fails. Execution of a body

containing false fails.

For an instance H ==>G|B of a propagation rule, we say that it can be applied

in a state S whenever H ⊆ S and S |= ∃G , and to apply it means to execute B

leading to a new state. When referring to an application of a rule H ==>G|B of

1 Our usage is to consider “CHR” as a name of a language rather that a written shorthand for a
three-word term, thus “CHR rule” is not redundant.

2 Our terminology differs slightly from Frühwirth (1998b), who refers to each atom to the left of the
arrow as a head.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 473

the current program, this refers to some application of an instance (H ==>G|B)σ

where σ is a substitution to the variables of H (referred to as x̄ above). No rule

can be applied to a failure state. Application of simplification rules is defined in a

similar way except that the head constraints are removed from the state before the

body is executed.

A derivation for a query Q with a program P is a sequence of states Q =

S0, S1, . . . , Sn , where each Si , 0 < i � n is the result of applying a rule of P to Si−1

with Si−1 �= Si . A given propagation rule cannot be applied to the same constraints

more than once. A state in a derivation is final if it is not failed and no rule can

apply, and in this case the derivation is successful; a derivation ending with a failure

state is said to be failed.

In practice, CHR programs are executed in a specific left-to-right order which

may or may not restrict the final result. To define this, we must pay attention to

the order in which conjunctions are written and the textual order of the rules; the

actual computation rule applied in, say, the SICStus Prolog version of CHR (Swedish

Institute of Computer Science 2003) is quite complicated, but the following simplified

characterization is a good approximation that covers most cases. An LR-derivation

is one in which:

• A state is a sequence of constraints c1, . . .,cn .

• A built-in constraint is considered (as specified above) only when it appears

as c1 and this takes priority over rule applications.

• For all i , no rule application involves any of ci, . . .,cn if another application

of a rule is possible.

• Rules are tested for applicability in the textual order in which they occur in

the program.

• Whenever a rule is applied in a step, requiring constraints R to be removed

from and A (as a sequence given by textual order in rule body) to be added

to a state S = c1, . . .,cn , the new state is A,S ′ where S ′ is S with R removed

and with the order of the remaining constraints preserved.

This principle is also referred to as the LR computation rule and it implies that there

is only one possible derivation. The version of CHR that underlies the implemented

CHRG system (Christiansen 2002b) performs LR-derivations. A derivation without

this computation rule is called unrestricted.

The following correctness properties for CHR derivations follow from Frühwirth

(1998).

Proposition 1 (Soundness)

Let P be a CHR program, Q a ground query, and F a final state in a derivation for

Q . Then P |= Q ↔ ∃F and P ∪ Q |= ∃F .

Proposition 2 (Completeness)

Let P be a CHR program and Q a ground query which has at least one finite

derivation and let F be a conjunction of constraints so that P |= Q ↔ ∃F . Then

there exists a derivation with final state F ′ so that P |= ∃F ′ ↔ ∃F .

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

474 H. Christiansen

The following consequences are relevant for soundness and completeness of

bottom-up parsers written in CHR.

Proposition 3

Let P be a CHR program consisting of range-restricted propagation rules only and

let F be a final state for a ground query Q . Then F is the least Herbrand model for

P ∪ Q .

In our treatment of abduction we may occasionally arrive at rules that are not

range-restricted so the following refinement is useful.

Proposition 4

Let P be a CHR program consisting of propagation rules only and let F be a final

state for a ground query Q . Then there exists a ground instance of F which is a

least Herbrand model for P ∪ Q .

When using CHR for checking integrity constraints we rely on.

Proposition 5

Let P be a CHR program with the property that any derivation with P is finite.

We have, then, that P ∪ ∃Q for any query Q is consistent if and only if there is a

successful derivation for Q with P .

Soundness of disambiguation of grammars by replacing propagation rules by

simplification rules follows from the following.

Proposition 6

Let P be a CHR program consisting of propagation rules, and P ′ derived from P

by changing some rules into simplification or simpagation rules, and let S and S ′

be final states for a given query with the programs P and P ′. Then S ′ ⊆ S .

3.2 Syntax and informal semantics of CHRG

A CHR Grammar, or CHRG for short consists of finite sets of grammar symbols and

constraints and a finite set of grammar rules, each of which may be a propagation

(grammar) rule, a simplification (grammar) rule, or a simpagation (grammar) rule.

An attributed grammar symbol, for short called a grammar symbol, is formed as an

atom whose predicate symbol is a grammar symbol; a grammar symbol formed by

token/1 is called a terminal, any other grammar symbol a nonterminal. Sequences of

terminal symbols token(a1), . . ., token(an) may also be written [a1, . . ., an];

if ground, such a sequence is called a string.

A few grammar symbols and operators are given a special meaning (made precise

later):

• “...” and “i...j” with i < j called gaps3 supposed to match sequences of

arbitrary length, resp., length n with i � n � j ,

3 These gaps provide a superficial resemblance with Gapping Grammars (Dahl 1984), however, in the
present version of CHGR it is not possible to move around the string matched by a gap as in Gapping
Grammars.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 475

• “all” referring to the entire input string, which may be useful together with:

• “α $$ β”, called parallel match, supposed to match strings that are matched by

α as well as β.

When referring to a sequence of grammar symbols, this may involve applications of

the parallel match operator. A propagation rule is of the form

α -\ β /- γ ::> G | δ.

The part of the rule preceding the arrow ::> is called the head, G the guard, and

δ the body; α, β, γ, δ are sequences of grammar symbols and constraints so that β

contains at least one grammar symbol, and δ contains exactly one grammar symbol

which is a nonterminal (and perhaps constraints); α (γ) is called left (right) context

and β the core of the head; G is a conjunction of built-in constraints as in CHR and

no variable in G can occur in δ. If left or right context is empty, the corresponding

marker is left out and if G is empty (interpreted as true), the vertical bar is left out.

The convention from DCG is adopted that constraints (i.e. non-grammatical stuff)

in head and body of a rule are enclosed by curly brackets). Gaps and parallel match

are not allowed in rule bodies.

There is a restriction on the use of gaps in the core of a head so that the core

must be bounded defined in the following way. This ensures that the core matches

a specific interval of word boundaries when applied (and thus defines meaningful

boundaries for the body):

• The core is bounded if it is left and right bounded.

• A sequence A1, . . . ,An is left bounded (right bounded) if A1 (An) is not a gap.

• A parallel match A $$B is left bounded (right bounded) if at least one of A

and B is left bounded (right bounded).

Furthermore, it is assumed that any variable appearing in body as well as guard

also must occur in the head. A grammar rule is range-restricted if any variable in

the body appears in the head.

A simplification (grammar) rule is similar to a propagation rule except that the

arrow is replaced by <:>; a simpagation (grammar) rule is similar to a simplification

except that one or more grammar symbols or constraints in the core of the head

are prefixed by an exclamation mark “!”. The intended meaning is that head core

elements under a derivation are removed, except those prefixed by “!”. (As the order

of the elements in the head of a grammar rule does matter, we cannot take over the

syntax from CHR.)

Example 1

The following source text shows the actual syntax used in the implemented system.

The “handler” command is a reminiscent from the underlying CHR system;

grammar symbols are declared by the grammar_symbols construct as shown;

constraints to be used in grammar rules are declared as in CHR which will be

shown in subsequent examples. The final command has no effect in the present

example, but it adds extra rules needed for the extensions of CHRG described in

sections 5 and 6.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

476 H. Christiansen

handler my_grammar.

grammar_symbols np/0, verb/0, sentence/0.

np, verb, np ::> sentence.

[peter] ::> np.

[mary] ::> np.

[likes] ::> verb.

end_of_CHRG_source.

When the string “peter likes mary” is entered word by word, the words are recognized

as a respectively np, verb, and np in that order, and then the rule for sentence

can apply. Since this grammar consists of propagation rules, the lexical tokens as

well as the nps and verb are not consumed. If we added a rule, say np, [likes]

::> sentence1, a sentence as well as a sentence1 would be recognized. If all

rules were changed into simplification rules, i.e., replacing ::> by <:>, only one of

sentence and sentence1 would be recognized.

Left and right contexts of a rule may include “disjunctions” denoted by semicolon

of different alternatives, and this is considered syntactic sugar for the set of different

rules, taking one alternative for the left and one for the right.

Example 2

The rule

(a ; b) -\ c /- (d ; e) ::> f

is an abbreviation for the following four rules:

a -\ c /- d ::> f

b -\ c /- d ::> f

a -\ c /- e ::> f

b -\ c /- e ::> f

The implemented version of CHRG allows control structures in the body (condi-

tionals and Prolog-style disjunctions) and arbitrary Prolog goals inside {· · ·} as well

as bodies with no grammar symbols; for the reason of simplicity, we ignore these

options in this presentation.

3.3 Bottom-up derivations as semantics and the relation to top-down

syntax derivations

To capture the whole CHRG formalism, a semantic definition needs to be based on

bottom-up derivations and the simplest way to achieve this is by a translation of

CHRG into CHR. For comparison with traditional grammar formalisms, we provide

also a definition of top-down derivations that characterize a subclass of GHRGs.

For each grammar symbol N of arity n , we assume a corresponding constraint

also denoted by N of arity n + 2 called an indexed grammar symbol, with the extra

two arguments referred to as phrase (or word) boundaries.

For a grammar symbol S = N (ā), the notation S n0 ,n1 refers to the indexed

grammar symbol N (n0,n1,ā) with integers n0 < n1; in case of a terminal, n0+1 = n1

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 477

is assumed. For any sequence σ of grammar symbols S1, . . . , Sk and increasing

integers n0, n1, . . . , nk , we let σn0 ,nk refer to the set {S n0 ,n1

1 , . . . , S nk−1 ,nk

k } with the existence

of n1, . . . , nk−1 understood. For the parallel match operator, we define (α $$ β)n ,m =

αn ,m $$ βn ,m . This notation is extended so that for a sequence of grammar symbols

and constraints, we remove all constraints from the sequence, put indexes on the

remaining grammar symbols, and add again the constraints to the sequence in their

original position.

Gaps are removed from rule heads under this translation but give rise to

inequations to be added to the guard of the resulting CHR rule; we do not

formalize this here but illustrate the principle in Example 4 below.

The translation of rules from CHRG into CHR adds two extra variables to each

grammar symbol and we use a notation analogous to the above to indicate this. So

for a sequence σ of grammar symbols S1, . . . , Sk and variables x0, x1, . . . , xk , we let

σx0 ,xk refer to the set {S x0 ,x1

1 , . . . , S xk−1 ,xk

k } with the existence of x1, . . . , xk−1 understood.

The notation is extended to sequences of grammar symbols and constraints as above

so that constraints are unaffected.

The translation of a CHRG G into CHR is denoted C (G) and consists of the

translation C (R) of each rule R ∈ G . For propagation and simplification rules we

have

C (α -\ β /- γ ::>G|δ) = (αx0 ,x1,βx1 ,x2,γx2 ,x3 ==>G|δx1 ,x2),

C (α -\ β /- γ <:>G|δ) = (αx0 ,x1,γx2 ,x3\βx1 ,x2 <=>G|δx1 ,x2).

Simpagation grammar rules are translated similarly to simplifications except that

those elements of βx1 ,x2 that were preceded by “!” in the original grammar rule are

moved to the left of the backslash. Notice that a grammar rule R is range-restricted

if and only if the CHR rule C (R) is range-restricted.

Example 3

The rule in following source text:

constraints h/1.

grammar_symbols a/0, b/1, d/1, e/2.

a -\ b(X), [c], {h(Y)} /- d(Y) ::> e(X,Y).

is translated into this CHR rule:

a(N0,N1), b(N1,N2,X), token(N2,N3,c), h(Y), d(N3,N4,Y)

==> e(N1,N3,X,Y).

Example 4

The translation of gaps and parallel matching into CHR is illustrated for the

following CHRG rules.

a, ..., b /- ..., c(X) <:> d(X). a$$b ::> e.

They are translated into the following CHR rules:

c(N5,_,X) \ a(N1,N2),b(N3,N4) <=> N2=<N3, N4=<N5 | d(N1,N4,X)

a(N1,N2),b(N1,N2)==>e(N1,N2)

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

478 H. Christiansen

The gap in the context part of the first rule is used in order to make a “long-distance

reference” to c.

Notice that a gap in the head of core of a simplification rule does not imply

the removal of any grammar symbols recognized in the substring spanned by the

particular “instance” of the gap.

A (bottom-up) parsing derivation for a string σ with a CHRG G is a derivation

with the CHR program C (P) for the query σ0,n where n is the length of σ. An

interesting class of parsing derivations are those that apply an LR computation rule

as in the implemented CHRG system and for which we describe some optimizations

below.

Definition 1

A single-production is a grammar rule with singleton grammar symbols in head core

and in body. A grammar is loop-free if there is no chain of single productions

· · · g1(. . .) · · · >>> · · · g2(. . .) · · · , . . . , · · · gn−1(. . .) · · · >>> · · · gn (. . .) · · · ,

with g1 = gn ; here each occurrence of “>>>” may stand for any of “<:>” or “::>”.

To get rid of termination problems once and for all, any CHRG is assumed to be

loop-free.4

We notice without proof the following obvious properties.

Proposition 7

1. Any parsing derivation is finite (as we assume all grammars to be loop-free).

2. Any state in a parsing derivation with a range-restricted grammar is ground.

3. The final state in an LR parsing derivation for a given string is unique (up to

renaming of existentially quantified variables that may occur for non-range-

restricted grammars).

4. The final state in a parsing derivation with a propagation rule grammar is

unique (up to renaming . . .); thus LR-derivations are complete for propagation

rule grammars.

5. Completeness of LR-derivations does not necessarily hold for a grammar with

simplification or simpagation rules.

6. Let G be a propagation rule grammar without context parts, and G ′ be derived

from G by adding to some rules context parts and changing some rules into

simplification or simpagation rules, and let S and S ′ be final states for a given

string with the grammars G and G ′. Then S ′ ⊆ S . This holds also when we

restrict to LR-derivation for G ′ or for both G and G ′.

To discuss ambiguity, we define syntax trees but we do not intend that an

implementation should generate trees.

4 It is possible to weaken this definition slightly. Some chains of single-productions can be allowed
provided their arguments plus non-grammatical hypotheses do not grow in an application of the rule.
As we have assumed a set-based semantics for CHR (as opposed to multi-sets), we could allow even
p(X)::>p(X) but not p(X)::>p(f(X)) or p(X),{h(Y)}::>p(X),{h(f(Y))}.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 479

Definition 2

Let CHRG G and input string σ be given. The set of syntax trees over σ is defined

as follows:

• Any t = token(a,n,n + 1) in σ is a syntax tree with top node t .

• Whenever a rule instance α -\ β /- γ>>>G | δ, “>>>” being one of “::>” or

“<:>”, is applied in a derivation and T1, . . ., Tn are trees whose top nodes are

the grammar symbols in β, then

δ

/ · · · \

T1 · · · Tn

is a syntax tree with top node δ.

A syntax tree whose top node does not occur in the final state (i.e. it has been

consumed by a propagation or simpagation rule) is called a hidden syntax tree and

similarly for the node itself. The set of LR syntax trees is defined in a similar way,

considering only instances applied in the LR-derivation from σ with G . The notions

of subtree and proper subtree are defined in the usual way.

The relevant notion of unambiguity in the context of CHRG is called local

unambiguity and is a stronger property than the usual notion of unambiguity

for context-free grammars. CHRG works bottom-up with no sort of top-down

guidance so even with an unambiguous grammar (in traditional sense), it may be

the case that some subtree becomes part of two different, larger trees (but only one

of these contribute to a tree for the entire string).

Definition 3

Consider a CHRG G and a derivation for string σ and let T be a set of syntax trees

with set of top nodes N. The set T (and N) is said to be unambiguous whenever, for

any two grammar symbols p(i,j,· · ·), q(k,�,· · ·) ∈ N it holds that

• if i � k < j � �, then i = k and j = �, and

• if i � k � � � j , then q(k,�,· · ·) is top node of a subtree of p(i,j,· · ·) or

the other way round [the last case requires single productions in the grammar

and 〈i , j 〉 = 〈k , �〉].

If, furthermore no new syntax tree of the derivation can be added to T without

destroying unambiguity, we say that T and N are maximal. A CHRG G is locally

unambiguous if the set of syntax trees in the derivation from any input string is

unambiguous, and locally LR-unambiguous if the set of syntax tree in the LR-

derivation from any input string is unambiguous.

Maximal unambiguous sets for a given parsing derivation may overlap, and each

such set corresponds to one possible way of parsing the string. As we will see later,

when doing abduction with ambiguous grammars, it is possible to extend a grammar

so that the different unambiguous sets are kept apart by means of indexes. Although

CHRG provides an elegant handling of ambiguous grammars, it may be relevant

to aim at unambiguity, e.g. for efficiency or to avoid mixing up extragrammatical

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

480 H. Christiansen

constraints for different parses. One obvious way to achieve this is given by the

following which is easy to prove.

Proposition 8

A simplification rule CHRG is locally LR-unambiguous.

Although we have no theoretical result, it seems reasonable to believe that the local

unambiguity of CHRGs is undecidable as is unambiguity for context-free grammars.

If unambiguity is required this can be guaranteed by Proposition 8 or perhaps using

a combination of different sorts of rules, in which case the property needs to be

verified.

It should be noticed, that the definition of unambiguous sets does not take into

account left and right context parts of grammar rules. A rule that produces a node

belonging to one unambiguous set may very likely do so by referring to contextual

nodes belonging to other sets. This may be considered a bug or a feature but it

seems to be the only solution that fits with our general implementation principle. To

compare with traditional grammar formalisms having their meaning defined by top-

down derivations we consider definite clause grammars; to simplify the comparison,

we make a restriction on how variables can be used.

Definition 4

A definite clause grammar (DCG) D consists of rules of the form

A-->B1, . . .,Bn,{G}

where A is a nonterminal, B1, . . ., Bn are grammar symbols, and G a conjunction of

built-in’s so that any variable in A and G occurs in some Bi . A DCG is assumed to

be loop-free and without single productions (defined in the usual way).

For any ground sequence of grammar symbols αAβ (A a single grammar symbol),

define the relation αAβ ⇒ αB1 . . .B2β whenever there is a rule in D with a ground

instance A-->B1, . . . ,Bn , {G} with G satisfied. The reflexive, transitive closure of ⇒
is denoted ⇒∗.

Proposition 9

Let D be a DCG and C the CHRG that for each rule in D of the form indicated

above contains

B1, . . .,Bn ::>G|A.

For ground grammar symbol A and terminal string α, the following statements are

equivalent:

• A ⇒∗ α using the rules of D ,

• A is contained in the final state in any parsing derivation for α using rules of

C .

The proof is easily made by induction over the length of the derivations.

Combining this with Proposition 7, part 6, we see that a CHRG with context

parts corresponds to a DCG with context-sensitive restrictions on the derivation

relation (that are not easily formalized in the setting of DCG). Finally, notice that

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 481

CHRG do not provide empty productions. These, however, are easily mimicked by

inserting for each DCG rule A-->[] grammar symbols A(0, 0), A(1, 1), . . . into the

initial constraint store.

3.4 A compile-on-consult implementation

We describe here very briefly the principles used for the implementation of CHRG

in SICStus Prolog (Swedish Institute of Computer Science 2003) and describe some

additional features of the implemented system not already covered; all facilities are

described at the online Users Guide to CHRGs available at Christiansen (2002b).

Similar to DCG and CHR, CHRG is implemented by changing Prolog’s reader

so that the terms read are translated into another form before given to the Prolog

compiler (or interpreter). SICStus Prolog includes a so-called hook predicate called

term expansion that can be extended by the user and which is called automatically

by the Prolog reader for each term read from a source file. The term_expansion

clauses defining the CHRG syntax must work together with those already defined

by CHR. The general structure of the CHRG implementation is illustrated by the

following fragment that treats the grammar_symbols declaration:

term expansion((grammar symbols G), T):-

add 2 to arities of gr. sym. spec’s G and add token/3 and a few more to form C,

term expansion((constraints C), T).

Similar rules catch terms formed by the operators <:> and ::>, translate them into

CHR rules as described in Section 3.3, and let the CHR system translate them

further into Prolog rules.5 The CHRG notation includes counterparts to CHR’s

pragmas and rule names (in CHR using an @ operator), but since it is not possible

for override the term expansion clauses given by CHR, it has been necessary to

rename these operators in the CHRG syntax, gpragma and @@.

Notice that this sort of implementation makes it possible to mix freely the rule

formats of Prolog, CHR and CHRG, and DCG for that matter. Finally, the CHRG

notation includes a where notation which can be applied to rules of Prolog and

CHR as well. We describe it by an example:

a(A) -\ B /- ..., q(X,Y) ::> {C}, funny_sentence(A,Z)

where A = ugly(st(r,u,c(t,u,r(e)))),

B = (np, verb, np),

C = (append(X,Y,Z), write(Z))

The meaning is that any occurrence in the rule of A, B, and C is replaced by the

indicated term. The implementation is very simple and one might wonder why this

syntax is not standard in Prolog systems:

5 It is not possible to compile CHR into ordinary Prolog clauses and the SICStus Prolog implementation
of CHR is based on the low-level library of Attributes Variables.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

482 H. Christiansen

term_expansion((Rule where Goal), Result):-

(Goal -> term_expansion(Rule, Result)

; write(’Error: where-clause failed: <rule> where ’),

write(Goal),nl,write(’Compilation stopped’), abort).

The CHRG system includes a number of options of which the most important is an

optimization in the compilation of grammar rules, so that all but leftmost symbols

of core and possible right context are marked by passive pragmas; see the section

on CHR at the SWICS web site (Swedish Institute of Computer Science 2003) for

a detailed explanation of these concepts. For example, with this option the rule np,

verb, np ::> sentence gets compiled into

np(X0,X1)#A, verb(X1,X2)#B, np(X2,X3) ==> sentence(X0,X3)

pragma passive(A), passive(B).

This has significant influence on the efficiency that we analyze in detail in Section 3.5.

Operationally, the principle means that this rule is not checked for applicability at

the moment when a new verb constraint is created as is the case if no pragma

passive stuff were added. And, as the system performs LR-derivation, this check

for applicability would anyhow fail. For the nps it means that when a new np is

created, the system does not check if it might be followed (qua the word boundary

arguments) by verb, np; it is only checked if the new np happens to follow some

existing np, verb sequence. It can be shown that the semantics is not changed for

propagation rule grammars with only right contexts. When left and right context or

simplification or simpagation rules are used, there are subtle cases where a rule is

not applied although it intuitively should be applied. When this optimization is used

for a grammar of simplification rules only, the constraint store is used effectively as

a parsing stack in quite the same way as in a traditional LR(k) parser.

For parsing a specific string, the system includes an auxiliary predicate parse

that converts a list of constants to a sequence of calls to token constraints. This

predicate may (as an option that can be switched on and off) display the word

boundaries which makes it easy to compare input and result. Assuming the grammar

of Example 1 above, we have the following dialogue.

?- parse([peter,likes,mary]).

<0> peter <1> likes <2> mary <3>

np(0,1),

verb(1,2),

np(2,3),

sentence(0,3),

token(0,1,peter),

token(1,2,likes),

token(2,3,mary) ?

This grammar consists of propagation rules; if all are changed into simplification

rules, only sentence(0,3) appears as the answer.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 483

3.5 Time complexity

An apparent advantage of CHRG as compared with DCG is that we avoid the

combinatorial explosions that may arise under backtracking in case a wrong choice

of rule is made in beginning of the string to be analyzed.

Here we give theoretical measures for the running time of CHRGs, more precisely

the CHR rules that are produced by their compilation, and discuss the behaviour

of the implemented system. For simplicity, we do not consider context parts or the

use of extra-grammatical constraints. Without loss of generality, we consider only

rules with one or two grammar symbols in the head. The CHR rules to consider

are, thus, of one of the following forms, possibly with <=> instead of ==>.

1. A(i , j , t̄1) ==>B (i , j , t̄2).

2. A(i , j , t̄1),B (j , k , t̄2) ==>C (i , k , t̄3).

We refer to the so-called meta-complexity theorems of McAllester (2001) and

Ganzinger and Mcallester (2001; 2002) for bottom-up evaluation of logic programs

including deletion. CHR rules, such as those we use, with one constraint in the body

are covered by this scheme. The main theorem of Ganzinger and Mcallester (2001)

gives that time complexity for reaching a final state is of order O(n + p) where n is

number of constraints in an initial state and p the number of prefix firings that have

appeared in some state in the derivation. The number n is the length of the string

in our case. Estimating p is more difficult. For each rule of type 1 (above), we count

the number of occurrences of A(i , j , t̄1) that have occurred in a state; summing for

all type 1 rules, we can limit the contribution by size of grammar times total number

of grammar symbols that have occurred in the derivation. For each rule of type 2,

the prefix firings are of two kinds:

• occurrences of A(i , j , t̄1) (that can be estimated as for type 1), and

• occurrences in any state of a pattern matching the entire head A(i , j , t̄1),

B (j , k , t̄2).

The dominant contribution is the last one for type 2 rules, i.e. for each rule of type 2

and each C (i , k , t̄3) occurring in a state, the possible ways the interval [i , k] can be

split up into [i , j] and [j , k] so that some A(i , j , t̄1),B (j , k , t̄2) have appeared at the

same time in the state during the derivation.

We continue the analysis for two special cases:

• Locally unambiguous grammars: each C (i , k , t̄3) in some state is created exactly

once from a specific A(i , j , t̄1),B (j , k , t̄2) combination. Thus the overall time

complexity is proportional to the total number of grammar symbols that have

appeared in the derivation, and we argue that it is of order O(n) for a locally

unambiguous grammar: Worst case is a binary branching everywhere, so a

syntax tree over a string of length n has n nodes in its deepest layer, �n/2� in

the second deepest layer, �n/4� in the next one and so. Summing up, we get

at most 2n − 1 tree nodes.

• Arbitrary grammars without attributes: first, let us estimate the maximum

number of nodes. There are O(n2) different substrings of the input string, each

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

484 H. Christiansen

of which can represent up to g different nodes where g is the number of

different grammar symbols in the vocabulary; this is constant, so number of

different nodes is O(n2). Each such node C (i , k) spans over an interval [i , k],

and the maximum number of ways it can be split up into two subintervals by

some j , i < j < k , possibly representing A(i , j),B (j , k), is k − i − 1. This adds

another factor n , so we end up with a total time complexity of O(n3).

The general cubic complexity for context-free grammars is similar to that of classical

algorithms such as Early and Cocke-Younger-Kasami. Its interesting to notice that

parsing is linear for locally unambiguous grammars despite the very naive parsing

algorithm which simply applies rules over and over as long as possible.

It is straightforward to show that the results also hold for grammars with

context parts. So if a grammar is made locally unambiguous by a combination

of simplification rules and context parts, it runs in linear time; the presence of

attributes does not affect this.

When attributes are added in the general case, we can have much worse than

cubic complexity as it appears in the following example:

Example 5

Consider the grammar

[a]::>a(0) a(T1),a(T2)::>a(t(T1,T2))

For each pair of i , j marking a substring of the input string, there will be as many

different nodes as there are binary trees with a frontier of j − i +1 nodes. It appears

that each node is constructed in a unique way, but the total number of nodes is

given by a terrible combinatorial expression far beyond n3.

How do these results compare with practice? First of all, the optimization in

section 3.4 adding passive pragmas to all but rightmost symbols is necessary in

order to achieve an execution as the one assumed in the theorem of Ganzinger and

Mcallester (2001). Secondly, the method behind the implementation of CHR that we

have used (based on attributed variables), as described by Holzbaur and Frühwirth

(1999), indicates that word boundaries should be uninstantiated Prolog variables to

achieve full efficiency and not integers as we have used.

Experiments with Prolog variables for boundaries confirm these results but even

with integer indexes, CHRGs without too much local ambiguity execute equally fast

for strings up to several hundreds of tokens.

Unfortunately, CHR does not construct explicit prefix-firings during execution,

which means that only grammars with at most two grammar symbols show the

expected running times. It is possible to have the CHRG compiler reduce the size of

heads to at most two, but a general improvement of CHR so that it incrementally

builds prefix firings would solve the problem. In practice, however, grammars with

heads with up to three or four symbols may run almost linearly provided the

passive pragma optimization is used and local ambiguity is limited.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 485

4 Examples in plain CHRG

4.1 Disambiguation with simplification and context parts

It is often the case that an unambiguous grammar, e.g. a context-free grammar for

a programming language, can be written in a much simpler form as an ambiguous

grammar with additional “disambiguation principles” specified outside the grammar

formalism; e.g. see Aho et al. (1986). As we have noticed already, simplification rule

grammars are unambiguous and by means of context parts, we can direct the

derivations as to respect the priorities we have in mind.

Example 6

The following simplification rule CHRG is based on a simple and highly ambiguous

grammar for arithmetic expressions with addition, multiplication, and exponenti-

ation. Right contexts have been added which provides a conventional operator

precedence.

e, [+], e /- ([’+’];[’)’];[eof]) <:> e.

e, [*], e /- ([*];[+];[’)’];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

[’(’], e, [’)’] <:> e.

[N] <:> integer(N) | e.

In general, both left and right contexts are relevant, and for natural language

application, it may be relevant to disambiguate some portions of the grammar in

this way but keeping, say, possibilities of ambiguity at the sentence structure level.

Natural language processing often involves a phase called tagging in which the

different words are classified before the “real” parsing process takes place. Tagging

is often performed by means of context sensitive rules that take into account what

is immediately to the left and to the right of the given word (Brill 1995). Such rules

can be expressed in quite natural way in CHRG using context parts.

Example 7

We consider a languages including sentences such as “Peter and Paul like Martha

and Eve”. The following rules classify the names as subject or object according to

their position relative to the verb.

name(A) /- verb(_) <:> subject(A).

name(A), [and], subject(B) <:> subject(A+B).

verb(_) -\ name(A) <:> object(A).

object(A), [and], name(B) <:> object(A+B).

4.2 Long-distance reference in natural language parsing

Context parts can also be used as a way to access attributes of grammar symbols

at a certain distance. This is relevant in natural language when a part of a sentence

is left out when this part is understood to be identical to the matching part of a

neighbouring sentence.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

486 H. Christiansen

Example 8

Let us extend the language of Example 7 with coordination as in “Peter and Paul

likes and Mary hates Martha and Eve”; the first sentence is incomplete but is

understood to borrow its subject from the second sentence. This can be expressed

as follows:

subject(A), verb(V), object(B) ::> sentence(s(A,V,B)).

subject(A), verb(V) /- [and], sentence(s(_,_,B))

::> sentence(s(A,V,B)).

For the sample sentence above, the final constraint store contains sentence nonter-

minals with attributes s(peter+paul,like,martha+eve) and s(mary,hate,

martha+eve). These rules work also in the case when three or more sentences

share a common object. For analyzing texts consisting of a single sentence, a rule

with a gap could have been used instead:

subject(A), verb(V) /- [and], ..., object(B)

::> sentence(s(A,V,B))

4.3 Post-parsing processing in CHRG

In an application program using CHRG for text analysis it may be relevant to make

some formatting of the constraint store produced by the parser. As we have noticed,

parsing with an ambiguous propagation rule grammar may result in a large number

of nodes, most of them not relevant for the further processing (but necessary to

guide parsing). It may be the case that we do not want to reduce ambiguity in the

grammar, so some elaboration of the constraint store needs to take place following

parsing. Part of such post-parsing processing can in fact be specified conveniently

in CHRG.

Example 9

Assume we are scanning a text for noun phrases (nps) by means of a highly

ambiguous grammar with a detailed description of sentence structure as a way to

obtain a high degree of precision in the parser. When the parser has finished its

job, we are only interested in noun phrases and let us suppose that only maximal

noun phrases are of interest, maximality with respect to text inclusion. This can be

achieved by using a constraint cleanup defined by the following rules:

vp(_), {!cleanup} <:> true.

pp(_), {!cleanup} <:> true.

sentence(_), {!cleanup} <:> true.

% etc.

(..., np(_), ... $$!np(_)), {!cleanup} <:> true.

cleanup <=> true.

Recall that the exclamation mark combined with the double arrow indicates simp-

agation rules: All but those symbols marked by “!” are removed from the store.

Assume the following query is issued:

?- parse([string]), cleanup.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 487

The cleanup rules does not affect parsing as there is no cleanup constraint in the

store before all token constraints have been entered and no parsing rule can apply

anymore. Now the call to cleanup will, via the first set of rules, remove all non-np

nodes; these simpagation rules will apply over and over until all such nodes are

removed but each application leaves cleanup in the store. Then the rule concerning

nps will apply to each occurrence of one np textually included in a larger np; recall

that $$ is the parallel match operator and the three dots are a gap. The final rule,

conveniently written as a CHR rule, will apply when the other rules are exhausted

and thus clean up the cleanup constraint. Left in the constraint store is the set of

all maximal nps.

5 Abductive language interpretation in CHRG

As shown by Abdennadher and Christiansen (2000), and developed further in

Christiansen (2002a), abduction with integrity constraints can be implemented in

a straightforward fashion in CHR, basically by declaring abducible predicates as

constraints: When an abducible atom is called, it is added to the constraint store and

possible integrity constraints will be triggered automatically. The approach is limited

with respect to negation: explicit negation of abducibles is easily implemented by

means of an integrity constraint but more general application of negation-as-failure

in background clauses or CHR rules has no obvious representation.

We can illustrate the application to language interpretation in CHRG by means

of an example. Consider the following grammar rule in which F refers to a fact

about the semantical context for a given discourse:

a, b, {F} ::> ab (1)

If two subphrases referred to by a and b have been recognized and the context

condition F holds, it is concluded that an ab phrase is feasible, grammatically as

well as with respect to the context. Language analysis with such rules works quite

well when context is completely known in advance, and a given discourse can be

checked to be syntactically and semantically sound.

Here we provide a solution to the extended problem referred to as language

interpretation, of finding proper context theory so that an analysis of an observed

discourse is possible. This involves a transformation of grammar rules as above by

moving contextual predicates to the other side of the implication:

a, b ::> {F}, ab (2)

Intuitively it reads: if suitable a and b are found, it is feasible to assert F and (thus,

under this assumption) to conclude ab.

Although (1) and (2) are not logically equivalent it is straightforward to formulate

and prove correctness of this transformation, as we will see below.

A grammar as depicted by (1) can be thought of as part of a speaker’s capabilities,

embedding his knowledge about the context into language, whereas (2) is relevant

for a listener who wants to gain new context knowledge by an interpretation of the

spoken.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

488 H. Christiansen

5.1 Abduction as bottom-up deduction

The transformation indicated above can be formulated without detailed assumptions

about the grammar formalism applied, it may in principle include any kind of

transformations, multiple passes and be based on trees, graphs or something

completely different. The input need not necessarily be strings or sequences but

might also be a combination of sensor signals or multidimensional structures, e.g.

described by means of Constrained Multiset Grammars (Marriott 1994).

The vocabulary for a language interpretation problem consists of disjoint sets of

constraints referred to as grammar symbols and context predicates. Grammar symbols

are separated into token level symbols and phrase level symbols.

The basic components in a language interpretation scenario are the following.

Discourse: a set of ground token level atoms giving the set of input tokens and their

relative order (e.g., sequentially or in the shape of a graph for a visual language)

and, if available, extra information such as prosody, colour, etc.

Context: a set of ground context atoms describing a part of the world.

IC: a set of integrity constraints which must be satisfied by Context, each of the

form H → B where H is a conjunction of context atoms and B a conjunction

of built-in’s and context atoms; however, the total set of integrity constraints

must not be recursive (or should satisfy some weaker criterion that guarantees

termination).

Phrases: a set of ground phrase level atoms giving the phrases contained in the

Discourse that are grammatically correct and consistent with Context.

Grammar: a set of formulas for the form

∀(Constituents ∧ Facts → Phrase),

where Constituents and Phrase are nonempty conjunctions of grammar atoms,

Facts a conjunction of context atoms. Each rule must be range-restricted in the

sense that any variable in Phrase must occur in Constituents or Facts and the

grammar must be loop-free defined analogously to definition 1 (for CHRG).

Furthermore, each argument in the left-hand side must be a variable that do not

occur elsewhere in that lefthand side.

We require the following fundamental relation referred to as faithfulness between

the components:
{

Grammar ∧ Discourse ∧ Context → Phrases

IC ∪ Context is consistent
(3)

This means that the Discourse and the Phrases in it are true to the Context and

correctly formulated with respect to the Grammar.

In the case of an ambiguous grammar, we can expect different interpretations

for different parses of the string. However, we do not require the grammar to be

unambiguous, but assume a criterion of unambiguity of a set of Phrases which is

particular to the grammar formalism applied; a criterion for CHRG is given by

Definition 3.

Not every pair of unambiguous Phrases and Context is interesting.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 489

Definition 5

A pair of unambiguous Phrases and Context is a competent interpretation of given

Discourse with respect to given Grammar whenever faithfulness and the following

conditions hold:

1. (Minimality of Context) If any element is removed from Context, faithfulness

fails to hold.

2. (Maximality of Phrases) If any new element is added to Phrases, unambiguity

or faithfulness fails to hold.

3. (Analysis is exhaustive) No new elements can be added to Context which allow

an extension of Phrases so that points 1 and 2, and faithfulness are preserved.

A language interpretation problem is a problem, given Grammar and Discourse of

finding a competent interpretation.

The condition of exhaustive interpretation excludes Context = Phrases = ∅ unless

the Discourse is completely senseless.

Language interpretation is partly deductive and partly abductive. The Context is

a premise in (3) and by standard usage, the finding of it is an abductive problem.

Identifying phrases is a mainly deductive parsing process, applying grammar rules

over and over, however, interacting with abduction in order to have the necessary

contextual facts ready.

The translation of a grammar G into an version that can be executed in a purely

deductive way is defined by a transformation T (G) in which each rule

∀(C ∧ F → P) (4)

is replaced by the rule

∀(C → ∃z̄ (F ∧ P)) (5)

where z̄ are the variables in F that do not occur in C . The fact that T (G) may

not be range-restricted indicates some technical problems that we have to deal

with, but it should be emphasized that T (G) being non-range-restricted does not

necessarily indicate that G is too weakly specified: Although a variable in F does not

receive a value by the matching of C , it may receive a value later from an integrity

constraint – or it may remain unbound in case the discourse does not provide

enough information. The presence of such variables indicates that we cannot expect

derivations to produce ground Context and Phrases, and an arbitrary grounding

(instantiation of variables) in such cases will produce a more specific solution than

there is evidence for – even if it is minimal wrt. set-inclusion. This discussion should

clarify the following correctness theorems.

Theorem 1 (Completeness)

Let Grammar, T (Grammar) and ground Discourse be given as above. If there exist

ground Context and Phrases so that faithfulness (3) holds with Context minimal wrt.

this property, then there exist Context ′ and Phrases ′ so that

T (Grammar) ∧ Discourse ∧ IC → ∃(Context ′ ∧ Phrases ′) (6)

where 〈Context,Phrases〉 is an instance of 〈Context ′,Phrases ′〉.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

490 H. Christiansen

Theorem 2 (Soundness)

Let Grammar, T (Grammar) and ground Discourse be given as above. If there exist

Context ′ and Phrases ′ so that

T (Grammar) ∧ Discourse ∧ IC → ∃(Context ′ ∧ Phrases ′), (7)

then there exists a ground instance 〈Context,Phrases〉 of 〈Context ′,Phrases ′〉 so that

IC ∪ Context ′ is consistent and

Grammar ∧ Discourse ∧ Context ′ → Phrases ′ (8)

Proof of Theorem 1

Let Grammar, T (Grammar), ground Discourse, Context and Phrases be as in the

theorem so that (3) holds. Define G to be the set of all ground instances of rules in

Grammar, and let

G0 = {c → p | (c ∧ f → p) ∈ G and f ∈ Context}

GT = {c → f ∧ p | (c ∧ f → p) ∈ G and f ∈ Context}

We have from (3) that

G ∧ Discourse ∧ Context → Phrases

and from this that

G0 ∧ Discourse → Phrases.

That is, we have eliminated Context by using a specialized grammar. The rules of

GT differs from those of G0 by introducing on the right-hand side an element of

Context. Referring to minimality of Context, we have that

GT ∧ Discourse → Context ∧ Phrases.

Consider now a “proof” of Context ∧ Phrases applying a finite sequence of rules

ci → fi ∧ pi , i = 1, . . . , n to generate the following sets:

C0 = Discourse, F0 = ∅

Ci = Ci−1 ∪ pi , ci ⊆ Ci−1

Fi = Fi−1 ∪ fi

Cn = Phrases, Fn = Context

From this, we construct another parallel proof in which the rules applied are

instances of clauses of T (Grammar), (c′
i → f ′

i ∧ p ′
i)σi where σi is a substitution to the

variables of c′
i so that

C ′
0 = Discourse, F ′

0 = ∅

C ′
i = C ′

i−1 ∪ p ′
iσi , c′

iσi ⊆ C ′
i−1

F ′
i = F ′

i−1 ∪ f ′
i σi

C ′
n = Phrases ′, F ′

n = Context ′

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 491

By induction over i , it is straightforward to prove that

T (Grammar) ∧ Discourse → ∃(Context ′ ∧ Phrases ′)

and that 〈Context,Phrases〉 is an instance of 〈Context ′,Phrases ′〉. From this, (6)

follows immediately. �

Example 10

The restriction that each argument in the head of a grammar rule must a variable

that do not occur elsewhere in that head is necessary as indicated by the following

example. Let a/0, b/1, and c/1 be grammar symbols, f /1 a context predicate and

let Grammar consist of

(i) ∀x (a ∧ f (x) → b(x)), (ii) b(7) → c(7).

Then T (Grammar) consists of (ii) and

(i′) ∀x (a → f (x) ∧ b(x)).

Given Discourse = {a} and Context = {f (7)} we have that Phrases = {a , b(7), c(7)}
satisfies the faithfulness condition 3. However, a proof using T (Grammar) will only

give Phrases ′ = {a , ∃x b(x)}, and it not sound to set this x = 7 so that rule (ii) can

be applied. If the head of (ii) had an unrestricted variable instead of a constant, it

would be possible to relate it to the existentially quantified ∃x b(x).

Proof of Theorem 2

Similar to the proof of Theorem 1. �

5.2 First version of abduction in CHRG: locally unambiguous grammars

The general model developed in Section 5.1 fits perfectly with locally unambiguous

CHRGs. For simplicity, we formulate the approach for propagation rule grammars

without left and right context parts, but it is obvious that it works also in the

general case; especially interesting are CHRGs of simplification rules only that are

guaranteed to be locally unambiguous. (Section 5.3 describes a generalization to

ambiguous grammars.)

Let us define an abductive CHRG as a grammar with range-restricted rules of the

form

constituents,{context-facts} ::> nonterminal

in which (cf. Section 5.1) each argument in constituents and context-facts is a unique

variable. The grammar may be extended with a set of integrity constraints expressed

as CHR propagation rules.

Combining Theorems 1 and 2 with the completeness and soundness properties for

parsing derivations, shows that a locally unambiguous, abductive grammar, written

in the format

constituents ::> {context-facts},nonterminal

produces competent interpretations of the given input string. The implemented

CHRG system does not include this translation but assumes the user to write

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

492 H. Christiansen

abductive grammars directly in the “translated form” which is anyhow the intuitively

simplest for someone with experience in CHR programming.6

Example 11

We consider language interpretation of discourses such as the following:

Garfield eats Mickey, Tom eats Jerry, Jerry is mouse,

Tom is cat, Mickey is mouse. (9)

What we intend to learn from (9) are the categories to which the mentioned proper

names belong and which categories that are food items for others. An interesting

question is to which category Garfield belongs as this is not mentioned explicitly. We

define the following vocabulary; the abducibles declaration is synonymous with

CHR’s constraints except that it also introduces predicates for negated abducibles

with integrity constraints that implement explicit negation.7

abducibles food_for/2, categ_of/2.

grammar_symbols name/1, verb/1, sentence/1, category/1.

The background theory is the following consisting of integrity constraints only.

categ_of(N,C1), categ_of(N,C2) ==> C1=C2.

food_for(C1,C), food_for(C2,C) ==> C1=C2.

That is, the category for a name is unique, and for the sake of this example it is

assumed that a given category is the food item for at most one other category. The

following part of the grammar classifies the different tokens:

[tom] ::> name(tom).

...

[is] ::> verb(is).

...

verb(is) -\ [X] <:> category(X).

The last rule applies a syntactic left context part to classify any symbol to the right

of an occurrence of “is” as a category.

A sentence such as “Tom is cat” is only faithful to a context if categ of(tom,

cat) holds in it. So the grammar in the original specification of the current language

interpretation problem may contain the following rule:

name(i1, i2, N) ∧ verb(i2, i3, is) ∧ category(i3, i4, C) ∧ categ-of(N,C)

→ sentence(is(N,C)) (10)

By moving the context condition from the premises to the conclusion we achieve a

rule that can contribute to solve the problem deductively. In CHRG it becomes the

following:

6 The user may, so to speak, use abduction for text interpretation in this deductive fashion without being
aware that he or she is using a “nonstandard” reasoning technique; abduction works so to speak for
free in CHRG.

7 The declaration of an abducible a/1 introduces also constraint a /1 (representing “not a”) and integrity
constraint a(X), a (X) ==> fail.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 493

name(N), verb(is), category(C) ::>

{categ_of(N,C)},

sentence(is(N,C)).

A sentence such as “Tom eats Jerry” is only faithful to a context if the proper

categ of and food for facts hold in it. A CHRG rule with this in its conclusion

looks as follows:

name(N1), verb(eats), name(N2) ::>

{categ_of(N1,C1), categ_of(N2,C2), food_for(C1,C2)},

sentence(eats(N1,N2)).

Let us now trace the processing of the discourse (9) when entered into the constraint

store; we record only the context facts. “Garfield eats Mickey” gives rise to

categ_of(garfield,X1), categ_of(mickey,X2), food_for(X1,X2).

The “X”s are uninstantiated variables. The next “Tom eats Jerry” gives

categ_of(tom,X3), categ_of(jerry,X4), food_for(X3,X4).

“Jerry is mouse” gives categ_of(jerry,mouse), and the background theory im-

mediately unifies X4 with mouse. In a similar way “Tom is cat” gives rise to a

unification of X3 with cat and food_for(X3,X4) has become

food_for(cat,mouse).

Finally, “Mickey is mouse” produces categ_of(mickey,mouse) that triggers the

first integrity constraint unifying X2 with mouse and thus the second integrity

constraint sets X1=cat and there is no other possibility. So as part of the solution

to this language interpretation problem, we have found that Garfield is a cat.

In addition to what we have shown, the user may also define background theories

involving Prolog rules that include calls to abducibles. The only restriction is that a

call to an abducible must not be embedded in an application of Prolog’s negation

by failure.

Interestingly, this form of abduction works also together with a definite clause

grammar: Declare your abducibles as CHRG abducibles (or CHR constraints), add

integrity constraints and apply them in the body of your DCG rules.

Example 12

The following DCG together with the declarations of abducibles and integrity

constraints written as CHR rules will produce the same abducibles as the CHRG

described above.

name(tom) --> [tom].

% etc.

category(mouse) --> [mouse].

% etc.

sentence(is(N,C)) -->

name(N), [is], category(C),

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

494 H. Christiansen

{categ_of(N,C)}.

sentence(eats(N1,N2)) -->

name(N1), [eats], name(N2),

{categ_of(N1,C1), categ_of(N2,C2), food_for(C1,C2)}.

The DCG+CHR approach to abductive language interpretation works also correctly

for ambiguous grammars as backtracking keeps separated the different possible

parses with their abducibles.

Compacting abductive answers

The final state may include abducible atoms with variables with the meaning that

any ground assignment to such variables (not conflicting with integrity constraints)

represents a solution to the abductive problem. Consider as an example the following

set of abducible atoms returned as part of the answer {abd(X), abd(Y)}. It may

subsume solutions with X=Y as well as X�=Y, e.g. {abd(a)}, {abd(b), abd(c)}; both

may be minimal but the application may impose reasons to prefer the one with

fewest elements.

It is possible to extend our method so that it dynamically tries to compact

solutions by equating new abducibles to existing ones as a first choice, and then

generate the other possibilities under backtracking. In fact, such a step is included

in many abduction algorithms (e.g. Kakas et al. 2000). To provide this, we may add

for each abducible predicate, an integrity constraint here shown for a predicate abd

of arity one:

abd(X), abd(Y) ==> (X=Y ; dif(X,Y)) (11)

The semicolon is Prolog’s disjunction realized by means of backtracking and dif/2

is a lazy test for syntactic nonidentity that behaves the way we specified for built-in

“�=” constraints in Section 3.1. Whenever a new abducible fact, say h(a) or h(X),

is created by the application of some rule, (11) is applied provided there is another

fact p(t) in the constraint store. Notice that (11) is logically redundant and only

affects the execution.

An optimization of (11) using facilities of the implemented version of CHR (see

SWICS (Swedish Institute of Computer Science 2003) for details) is in place:

h(X), h(Y)#Id ==> (\+X==Y, unifiable(X,Y)) | (X=Y ; dif(X,Y))

pragma passive(Id) (12)

The pragma prevents the rule from being activated twice due to the symmetry in its

head and the purpose of the guard is to suppress useless applications.

The implemented CHRG system (Christiansen 2002b) includes this compaction

principle as an option. However, in many cases the problem does not exist as

user-defined integrity constraints may instantiate and equate abducibles sufficiently

during the computation; this is the case in the example with Garfield and friends

above.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 495

5.3 Evaluation of all abductive answers in parallel

The implemented CHRG system incorporates a technique for keeping track of the

different unambiguous sets of grammar symbols that are created with a locally

ambiguous grammar.

Each syntax tree and the abducibles associated with it are identified by an index,

actually a Prolog variable, hence referred to in the following as an index variable.

Grammar symbols (apart from token/1) and abducibles are given an extra argument

to hold the index.

Whenever a rule applies to syntax nodes with indices x1,. . .,xn , a new index x is

created for the new node. Fresh copies are made of any abducible with an index

among x1, . . . ,xn , but now with x as index. These constraints are called together with

any new abducibles from the body of the rule (also indexed by x). This activates

possible integrity constraints (translated in a suitable way to cope with indexes;

see below). This may result in a failure and to avoid the whole computation to

stop (as does a failure in a committed choice language such as CHR), a suitable

control structure is embedded in the body of the rule. If such a failure occurs, the

rule simply succeeds but avoids the creation of a new syntax node (and cleanses

the constraint store for the newly constructed constraints); this effectively stops this

branch of computation but allows other successful syntax trees to continue growing.

The compilation of integrity constraints ensures that they only apply to ab-

ducibles with identical indices. The compilation of the sample father(F1,C) \

father(F2,C) <=> F1=F2 shows the principle:

father(X,F1,C) \ father(X,F2,C) <=> F1=F2 (13)

The final state in a derivation contains the collection of all constraints relating to

the different parses; each parse, i.e. each competent interpretation can be printed

out separately.

This implementation principle involves a quite heavy overhead due to the continual

copying of constraints and repeated execution of integrity constraints that have been

executed already. It is available as an option in the CHRG system.

Obviously this is not an ultimate method for evaluation of all different abductive

interpretations in parallel, but it may give inspiration for more efficient methods;

we discuss this topic in the final section.

6 Assumption grammars in CHRG

As our implementation of abduction has shown, CHRG can work with different sort

of hypotheses passed through the constraint store. Assumption Grammars (Dahl

et al. 1997) (AGs) are similar to abductive grammars in many respect but differ in

that hypotheses are explicitly produced and explicitly used, possible being consumed.

Assumption grammars provide a collection of operators that makes it possible to

control the scope of these hypotheses which is not possible with an abductive

approach.

We describe here an extension of CHRGs with a version of AG which is included

in the available implementation of the system (Christiansen 2002b). For simplicity,

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

496 H. Christiansen

we describe it in a version that is only correct for locally unambiguous grammars

but it is easily extended to ambiguous grammars with the technique described for

abductive grammars in Section 5.3.

In an AG, the expression +h(a) means to assert a linear hypothesis which can

be used once in the subsequent text by means of the expression -h(a) (or -h(X),

binding X to a) called an expectation. Asserting the hypothesis by *h(a) means that

it can be used over and over again. We deviate slightly from the syntax of (Dahl

et al. 1997) as to achieve a more symmetric notation and introduce three operators

for so-called time-less hypotheses, =+, =-, and =*, whose meaning are similar except

that hypothesis can be used and consumed in any order. Compared with the initial

proposal for AG, our version extends also with other features of CHRG, most

notably integrity constraints and context parts.

These operators are defined as constraints in CHR and can be called from the

body of grammar rules. We introduce the principle by a simplified and incorrect

version of the time-less versions given by the following CHR rules:

=+A, =-B <=> A=B.

=*A \ =-B <=> A=B.

By the first rule, a pair of assumption =+h(a) and expectation =-h(X) are removed

from the constraint store producing the effect of binding X to a. If assumption =*h(a)

were used instead, the second rule can apply to several instances of =-h(· · ·). The

problems with this implementation are:

• The computation fails in case one of the rules is applied for incompatible

hypotheses, e.g. =+h(a) and =-g(X).

• If two different hypotheses can apply for the same expectation =-h(X) things

go wrong: Rule one will only apply one of them and forget all about the other

one, and rule two applies both of them leading obviously to failure.

To repair this, we introduce backtracking and give back hypotheses to the store

when a choice of an expectation-hypothesis pair is given up; the latter is necessary

as CHR uses committed choice. In order to avoid loops, some book-keeping is

added so that a choice already tested is not tried again. For =+ the following is

sufficient; the rule for =* is quite similar.

=+A, =-B <=>

(\+ has_tried_rule1(A,B), unifiable(A,B))

|

(A=B ; tried_rule1(A,B), =+A, =-B).

(14)

The predicate has_tried_rule1 uses CHR facilities to check whether the indicated

instance of the auxiliary constraint tried_rule1 is present in the store. The test for

unifiability in the guard is an obvious optimization which in principle could have

been left out. The operators denoted by prefix +, -, and * are implemented in a quite

similar way, with the CHRG compiler adding an extra argument corresponding

to positions in the input string; a test that assumption is created textually before

expectation is easily added to the guard.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 497

Example 13 (Adapted from Dahl et al. 1997)

We consider sentences with pronouns and coordination such as “Martha likes and

Mary likes Paul, she hates her”. We add gender to names and pronouns, and

whenever a name appears as subject or object (in this grammar grouped as nps),

an assumption is made that the given name is acting. A pronoun as subject or

object gives rise to an expectation for someone acting of appropriate gender. The

principles is shown by the following excerpt:

[mary] <:> name(mary, fem).

[she] <:> pronoun(fem).

name(X,Gender) <:> *acting(X,Gender), np(X,Gender).

pronoun(Gender) <:> -acting(X,Gender), np(X,Gender).

To handle the coordination problem, an incomplete sentence followed by and raises

a time-less expectation for a subject which is met by the assumption produced by

the full sentence at the end:

np(A,_), verb(V) /- [and] <:> =-ref_object(B), sentence(s(A,V,B)).

np(A,_), verb(V), np(B,_) <:> =*ref_object(B), sentence(s(A,V,B)).

One of the possible final states produced for the sample text above contains sentence

symbols with the following attributes:

s(martha,like,paul),s(mary,like,paul), ands(mary,hate,martha).

The AG operators are included in the available CHRG package (Christiansen

2002b) together with other facilities of AGs described in Dahl et al. (1997).

As mentioned, the CHRG version of AG goes beyond the original proposal

by adding integrity constraints. To see the use of this, consider again Example 13.

Another final state for the given sentence gives s(mary,hate,mary). We can exclude

this by an integrity constraint to prevent that people hate themselves:

sentence(s(A,hate,A)) ::> fail.

In general we can have such rules produce new hypotheses, e.g. =*depressed(A)

instead of failing in the rule above, and combinations of hypotheses can give rise

other hypotheses.

7 Summary and future perspectives

CHR Grammars founded on current constraint logic technology have been in-

troduced, and their application to aspects of natural language syntax has been

illustrated by small examples. CHRG can bee seen as a technologically updated

ancestor of Definite Clause Grammars: A relative transparent layer of syntactic sugar

over a declarative programming language, providing both conceivable semantics and

fairly efficient implementation. In CHRG we have replaced Prolog by Constraint

Handling Rules. The result of this shift is a very powerful formalism in which several

linguistic aspects, usually considered to be complicated or difficult, are included more

or less for free:

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

498 H. Christiansen

• Ambiguity and grammatical errors are handled in a straightforward way as

all different (partial) parses are evaluated in parallel.

• Context-sensitive rules, which are an inherent part of the paradigm, handle

examples of coordination in an immediate way.

• Abduction, which is useful for identifying indirectly implied information, is

expressed directly with no additional computational devices being involved.

Context-sensitive rules combined with the ability to handle left-recursion (as opposed

to DCG) are a great help for producing grammars with relatively few, concise rules

without artificial nonterminals; a drawback is the lack of empty production.

No real-world applications have been developed in CHRG yet, but we have

good expectation for scalability as selected grammars can run in linear time.

Furthermore, the full flexibility of the underlying CHR and Prolog machinery is

available for optimizations. Independently, CHRG is available as powerful modeling

and prototyping tool.

The approach of using Constraint Handling Rules for language possesses a

potentiality for getting closer to a full integration of lexical, semantic, and pragmatic

analysis. A lexical schism S , for example, in the beginning of a discourse may be

delayed until a few sentences later when the semantic context is identified so that S

can be resolved and, thus, that analysis can resume for the first sentence.

Although being a very powerful system in itself, CHRG and the examples we have

tested appear only to touch upon the surface of what is possible. It is obvious that

weights can be added and used to suppress all but the most likely interpretation, and

arbitrary constraint solvers can be incorporated in this process. Although presented

here as a strict bottom-up paradigm, it is possible to add top-down guidance to

parsing in CHR and CHRG which is useful in order to prevent local ambiguity to

result in the creation of a lot of useless constraints; top-down guidance is applied

in the work of Christiansen and Dahl (2002; 2003) but for other purposes.

The basic principle may seem quite näıve, almost too näıve, just applying grammar

rules bottom-up over and over until the process stops. However, we can rely now

on the underlying, well-established computational paradigm of CHR for such

rules-based computations. Furthermore, the approach can profit from any future

improvements of CHR and similar deductive systems.

As noticed above, our implementation in CHR for parallel evaluation of different

abductive interpretations of a discourse is far from ideal, but it may serve as an

important source of inspiration for the development of better systems. Instead of

simulating several constraint stores by means of extra index arguments, it seems

obvious to apply a sort of shared representation for the different stores so that

copying of constraints is avoided.

Acknowledgements

Part of this work has been carried out while the author visited Simon Fraser

University, Canada, partly supported by the Danish Natural Science Council; thanks

to Verónica Dahl for helpful discussion and providing a stimulating environment.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 499

This research is supported in part by the OntoQuery funded by the Danish Research

Councils, and the IT-University of Copenhagen.

References

Abdennadher, S. and Christiansen, H. 2000. An experimental clp platform for integrity

constraints and abduction. Proceedings of FQAS2000, Flexible Query Answering Systems:

Advances in Soft Computing series. Physica-Verlag (Springer), 141–152.

Abdennadher, S. and Schütz, H. 1998. CHR∨: A flexible query language. Proc. Int.

Conference on Flexible Query Answering Systems FQAS: LNCS 1495, Roskilde, Denmark,

T. Andreasen, H. Christansen and H. L. Larsen, Eds. Springer-Verlag, 1–15.

Aho, A., Sethi, R. and Ullman, J. 1986. Compilers. Principles, techniques, and tools. Addison-

Wesley.

Allen, J. 1995. Natural Language Understanding, 2nd ed. Benjamin Cummings.

Blache, P. 2000. Constraints, linguistic theories and natural language processing: LNCS 1835.

Springer, 221–232.

Bottoni, P., Meyer, B., Marriott, K. and Presicce, F. P. 2001. Deductive parsing of visual

languages. Lecture Notes in Computer Science 2099, 79–94.

Brill, E. 1995. Transformation-based error-driven learning and natural language processing:

A case study in part-of-speech tagging. Computational Linguistics 21(4), 543–565.

Charniak, E. and McDermott, D. 1985. Introduction to Artificial Intelligence. Addison-

Wesley.

Christiansen, H. 1993. Why should grammars not adapt themselves to context and discourse?

4th International Pragmatics Conference, Kobe, Japan. International Pragmatics Association,

23. Extended version: http://www.dat.ruc.dk/˜henning/IPRA93.ps.

Christiansen, H. 1999. Open theories and abduction for context and accommodation.

Proceedings of the 2nd International and Interdisciplinary Conference on Modeling and Using

Context (CONTEXT-99): LNAI 1688, P. Bouquet, L. Serafini, P. Brézillon, M. Benerecetti

and F. Castellani, Eds. Springer, 455–458.

Christiansen, H. 2001. CHR as grammar formalism, a first report. Annual Workshop of

the ERCIM Working group on Constraints. Available at CoRR: http://arXiv.org/abs/

cs.PL/0106059.

Christiansen, H. 2002a. Abductive language interpretation as bottom-up deduction. Natural

Language Understanding and Logic Programming, S. Wintner, Ed. Datalogiske Skrifter,

vol. 92. Roskilde, Denmark, 33–47.

Christiansen, H. 2002b. CHR Grammar web site; released 2002. http://www.ruc.dk/˜

henning/chrg.

Christiansen, H. 2002c. Logical grammars based on constraint handling rules. In Logic

Programming: LNCS 2401, P. J. Stuckey. Springer-Verlag, 481.

Christiansen, H. 2003. A constraint-based bottom-up counterpart to DCG. In Proceedings

of RANLP 2003, Recent Advances in Natural Language Processing, Bovorovets, Bulgaria,

G. Angelova, K. Bontcheva, R. Mitkov, N. Nicolov and N. Nikolov, Eds. INCOMA Ltd.,

105–111.

Christiansen, H. and Dahl, V. 2002. Logic grammars for diagnosis and repair.

ICTAI’02, Proc. of 14th IEEE International Conference on Tools with Artificial Intelligence,

Washington, DC. IEEE, 307–314.

Christiansen, H. and Dahl, V. 2003. Logic grammars for diagnosis and repair. International

Journal on Artificial Intelligence Tools 12, 3, 227–248.

Christiansen, H. and Dahl, V. 2004. Assumptions and abduction in Prolog. 3rd International

Workshop on Multiparadigm Constraint Programming Languages, MultiCPL’04, at the 20th

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

500 H. Christiansen

International Conference on Logic Programming, ICLP’04, Saint-Malo, France. E. Albert,

M. Hanus, P. Hofstedt, and P. Van Roy, Eds. To appear.

Colmerauer, A. 1975. Les grammaires de metamorphose. Technical report, Groupe

d’Intelligence Artificielle, Université de Marseille-Luminy.

Colmerauer, A. 1978. Metamorphosis grammars. In Natural Language Communication with

Computers: LNCS 63, L. Bolc, Ed. Springer-Verlag, 133–189.

Constraint Handling Rules Online 2002. Constraint handling rules online. http://www.pms.

informatik.uni-muenchen.de/˜webchr.

Dahl, V. 1984. More on gapping grammars. Proceedings of the International Conference on

Fifth Generation Computer Systems (ICOT), Tokyo, 669–677.

Dahl, V., Tarau, P. and Li, R. 1994. Datalog Grammars: Proc. GULP-PRODE’94.

Dahl, V., Tarau, P. and Li, R. 1997. Assumption grammars for processing natural language.

In Proceedings of the 14th International Conference on Logic Programming, L. Naish, Ed.

MIT Press, Cambridge, 256–270.

Duchier, D. 2000. Constraint Programming For Natural Language Processing. Lecture Notes,

ESSLLI 2000.

Duchier, D. and Thater, S. 1999. Parsing with tree descriptions: A constraint-based

approach. In 6th International Workshop on Natural Language Understanding and Logic

Programming (NLULP ’99). Las Cruces, NM, 17–32.

Frühwirth, T. 1998a. A declarative language for constraint systems – Theory and Practice of

Constraint Handling Rules. Habilitation, Computer Science Institute, LMU Munich.

Frühwirth, T. 1998b. Theory and practice of constraint handling rules, special issue on

constraint logic programming. Journal of Logic Programming 37, 1–3 (Oct.), 95–138.

Gabbay, D., Kempson, R. and Pitt, J. 1997. Labeled abduction and relevance reasoning.

In Nonstandard Queries and Nonstandard Answers, R. Demolombe and T. Imielinski, Eds.

Oxford Science Publications, 155–185.

Ganzinger, H. and McAllester, D. 2001. A new meta-complexity theorem for bottom-up

logic programs: LNCS 2083, Springer, 514–528.

Ganzinger, H. and McAllester, D. 2002. Logical algorithms. In Logic Programming: LNCS

2401, P. J. Stuckey, Ed. Springer-Verlag, 209–223.

Gazdar, G. and Mellish, C. 1989. Natural Language Processing in Prolog: An Introduction

to Computational Linguistics. Addison-Wesley.

Hecksher, T., Nielsen, S. T. B. and Pigeon, A. 2002. A CHRG model of the ancient

Egyptian grammar. Unpublished student project report, Roskilde University, Denmark.

Hobbs, J. R., Stickel, M. E., Appelt, D. E. and Martin, P. 1993. Interpretation as abduction.

Artificial Intelligence 63, 1–2 (Oct.), 69–142.

Holzbaur, C. and Frühwirth, T. 1999. Compiling constraint handling rules into prolog

with attributed variables. Principles and Practice of Declarative Programming, International

Conference PPDP’99: LNCS 1702, Paris, France, G. Nadathur, Ed. Springer-Verlag, 117–

133.

Kakas, A. C., Michael, A. and Mourlas, C. 2000. ACLP: Flexible solutions to complex

problems. Journal of Logic Programming 44 (1–3), 129–177.

Marriott, K. 1994. Constraint multiset grammars. Proceedings of the Symposium on Visual

Languages, A. L. Ambler and T. D. Kimura, Eds. IEEE Press, Los Alamitos, CA, 118–127.

Maruyama, H. 1994. Structural disambiguation with constraint propagation. Proceedings of

the 28th Annual Meeting of the ACL. Pittsburgh, 31–38.

McAllester, D. A. 2000. Meta-complexity theorems: Talk abstract. In Principles and Practice

of Constraint Programming – CP 2000, 6th International Conference: LNCS 1894, Singapore,

R. Dechter, Ed. Springer, 13–17.

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

CHR grammars 501

Meyer, B. 2000. A constraint-based framework for diagrammatical reasoning. Journal of

Applied Artificial Intelligence 14, 327–244.

Morawietz, F. 2000. Chart parsing as contraint propagation. Proceedings of COLING-2000.

Penn, G. 2000. Applying Constraint Handling Rules to HPSG. Workshop on Rule-Based

Constraint Reasoning and Programming. Available at http://www.cs.cmu.edu/˜gpenn/

trale.ps.gz.

Pereira, F. C. N. and Warren, D. H. D. 1980. Definite clause grammars for language

analysis – A survey of the formalism and a comparison with augmented transition networks.

Artificial Intelligence 13, 3, 231–278.

Schröder, I., Menzel, W., Foth, K. and Schulz, M. 2000. Dependency modelling

with restricted constraints. International Journal Traitement Automatique des Langues: Les

grammaires de dépendance 41(1), 113–144.

Shieber, S. M., Schabes, Y. and Pereira, F. C. N. 1995. Principles and implementation of

deductive parsing. Journal of Logic Programming 24, 1–2, 3–36.

Stalnaker, R. 1998. On the representation of context. Journal of Logic, Language, and

Information 7, 3–19.

Swedish Institute of Computer Science. 2003. SICStus Prolog user’s manual, Version 3.10.

Most recent version available at http://www.sics.se/isl

https://doi.org/10.1017/S1471068405002395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002395

