
Modulation of murine intestinal immunity
by Moringa oleifera extract in experimental

hymenolepiasis nana

M. Abdel-Latif1*, G. El-Shahawi1, S.M. Aboelhadid2 and
H. Abdel-Tawab1

1Department of Zoology, Faculty of Science, Beni-Suef University,
Beni-Suef, Egypt: 2Department of Veterinary Parasitology, Faculty of

Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt

(Received 26 December 2016; Accepted 8 March 2017; First published online 6 April 2017)

Abstract

The potential therapeutic value of Moringa oleifera extract (MOE), due to its
anti-inflammatory and anti-oxidant effects, has been reported previously. In
this study, Hymenolepis nana antigen (HNA) in combination with MOE was
used in immunization against H. nana infection. Adult worm and egg counts
were taken, while histological changes in the intestine were observed. Mucosal
mast (MMCs) and goblet cells (GCs) were stained with specific stains, while
serum and intestinal IgA were assayed using enzyme-linked immunosorbent
assay (ELISA). Reduced glutathione (GSH) and lipid peroxidation (thiobarbituric
acid reactive substances, TBARS) were assayed. Real-time polymerase chain re-
action (PCR) was used for detection of mRNA expression in ileum tissue. The re-
sults demonstrated an improvement in the architecture of intestinal villi,
decreased inducible nitric oxide synthase (iNOs) and TBARS, and increased
GSH in HNA, MOE and MOE +HNA groups. In the same groups, an increase
in GCs, mucin 2 (MUC2), interleukins (IL)-4, -5 and -9, and stem cell factor
(SCF) versus a decrease in both interferon-gamma (IFN-γ) and transforming
growth factor (TGF-β) expression appeared. HNA and MOE +HNA increased
serum and intestinal IgA, respectively. MOE decreased MMCs and achieved
the highest reductions in both adult worms and eggs. In conclusion, MOE
could achieve protection against H. nana infections through decreased TGF-β,
IFN-γ and MMC counts versus increased GC counts, T-helper cell type 2 (Th2)
cytokines and IgA level.

Introduction
Hymenolepis nana is the most common tapeworm of hu-

mans, particularly in young children in developing coun-
tries (Abdi et al., 2016; Rostami et al., 2016). It was often
referred to as the dwarf tapeworm due to its small size
(about 2–4 cm long and only 1mm wide). The life cycle
of H. nana may be either direct or indirect. Direct
human to human transmission is the most common

route of infection, particularly in areas of poor hygiene
and inadequate sanitation (Willcocks et al., 2015). The ap-
pearance of both eosinophils and mucosal mast cells
(MMCs) in the intestinal mucosa was suggested as the
most effective immune response against H. nana infections
(Bortoletti et al., 1989; Watanabe et al., 1994). Immune
potentiation of the intestinal immunity, using different
immune stimulators, could accelerate the eradication of
H. nana (Sanad & Al-Furaeihi, 2006). The pattern of
cytokines after infection differed according to the parasite
developmental stage: eggs enhanced interferon (IFN)-γ
while, 4–5 days later, interleukin (IL)-4 and IL-5 were*E-mail: mahmoud_1232000@yahoo.com
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predominant (Conchedda et al., 1997). Effective vaccin-
ation against H. nana infection was found to depend on
the immunization route (Gabriele et al., 1985).

Moringa oleifera (MOE) grows throughout the tropical
and subtropical regions of the world (Leone et al., 2015).
Many reports have described the potential therapeutic
values of MOE, including anti-cancer, anti-diabetes,
anti-rheumatoid arthritis, anti-fungal and anti-microbial
effects (Chuang et al., 2007). These have been attributed
to the anti-inflammatory and anti-oxidative activities
of MOE (Adedapo et al., 2015). MOE was also reported
to be protective against intestinal parasite infections
(Ola-Fadunsin & Ademola, 2013; Salles et al., 2014).
Moringa leaves contain significant amounts of vitamins
A, B and C, minerals such as calcium ions, iron and potas-
sium, and proteins, as well as traces of carotenoids, sapo-
nins, phytates and phenolic constituents (Siddhuraju &
Becker, 2003; Ferreira et al., 2008). These constituents
might be responsible for its immunomodulatory activity,
by enhancing the cell-mediated, humoral immune re-
sponses and secretion of cytokines (Maggini et al., 2007;
Banji et al., 2012; Nfambi et al., 2015).

This study aimed to test the effect of MOE alone or as a
mucosal adjuvant with H. nana antigen (HNA) on murine
infection with H. nana. MOE and MOE +HNA decreased
adult worm and egg counts. MOE was responsible for de-
creased MMC infiltration and oxidative stress but in-
creased goblet cell (GC) and IgA levels. Application of
MOE in mucosal immunization modulated the immune
responses and induced protection against H. nana
infection.

Materials and methods
Parasite

Hymenolepis nana was isolated from infected Mus mus-
culus and maintained in outbred mice. The eggs were col-
lected from infected mice which were sacrificed 14 days
post infection. Infective shell-free eggs were prepared
from gravid segments of adult worms by stirring the
egg suspension with glass beads (3mm in diameter) just
before use (Ito et al., 1991).

Collection of adult worms and preparation of HNA

Adult worms of H. nana were collected from the small
intestines of infected mice. Worms were homogenized in
physiological phosphate-buffered saline (pH 7.4) at 4°C
and then sonicated four times at 30 kHz (Branson sonifier
250, Danbury, Connecticut, USA) for 5min continuously.
The suspension was subsequently centrifuged at 8000 × g
and 4°C for 30min. The supernatant was collected, di-
vided into aliquots and stored at −70°C until use. The
protein content was determined by the method of
Bradford (1976).

Preparation of plant extract

The leaves of M. oleifera were harvested from different
trees cultivated in the Sids research station, Beni-Suef
Governorate and identified by the Botany Department,
Faculty of Science, Beni-Suef University. The leaves were

first rinsed with distilled water, and dried at room tem-
perature for 3 weeks. The leaves were subsequently pul-
verized with a Warring 240 V 4-litre blender (Thomas
Scientific, Swedesboro, New Jersey, USA). The pulverized
material was then macerated in 70% ethanol and left for
48 h at room temperature. The extract was then filtered
through muslin cloth on a plug of glass wool in a glass
column, as described by Ugwu et al. (2013). The resulting
ethanol extract was concentrated and evaporated to dry-
ness using a rotary evaporator (BÜCHI Labortechnik
AG, Postfach, Switzerland) at an optimum temperature
between 40 and 45°C to avoid denaturation of the active
ingredients. The concentrated extract was stored in the re-
frigerator, weighed and dissolved in saline with the help
of a cyclomixer just before oral administration (Sinha
et al., 2012).The study was conducted using a single
batch of plant extract to avoid batch-to-batch variation.

Animals

Female Swiss albino mice (22–25 g weight and 6–8
weeks old), free of parasitic infections, were used in this
study. Animals were housed in a specific pathogen-free
environment under controlled temperature (21°C) with
12 h of light and 12 h of dark, and had free access to
water and a standard mouse chow diet.

Immunization, sacrifice and examination

Mice were divided randomly into five groups (ten mice
each), where the experimental groups were orally immu-
nized/treated once a week for 4 weeks. The first and se-
cond groups functioned as non-infected and infected
controls, respectively. The experimental groups were
manipulated as following: the third group was treated
with MOE alone (400mg/kg body weight). The fourth
and fifth groups were immunized with HNA alone
(50 μg/mouse) or MOE +HNA, respectively. One week
after the final immunization, the second to fifth groups
of mice were challenged with 2000 eggs/mouse, using a
stomach tube. After 3 weeks of challenge, blood was col-
lected by retro-orbital puncture immediately before the
mice were euthanized and the small intestines were re-
moved. The small intestines were opened longitudinally
and the worm burdens determined (Henderson &
Hanna, 1987). Eggs/gram of faeces (EPG) were counted
(Levecke et al., 2011). The percentage efficacy of the treat-
ment was calculated using the following formula (Coles
et al., 1992): % Efficacy = [(mean EPG control−mean
EPG treated)/mean EPG control] × 100.

Sample and tissue preparations

Intestinal washings were obtained by dissecting out the
small intestine and flushing with 3ml 50mM EDTA plus
0.1mg/ml of soybean trypsin inhibitor. The contents
were collected in a conical tube and 20 μl of 100mM phe-
nylmethylsulphonyl fluoride (PMSF) in isopropanol was
added per tube. The tubes were vortexed and centrifuged
at 23,000 × g for 30min at 4°C. The supernatant was stored
at 20°C prior to assay. Parts of the ileum were homo-
genized to give 50% (w/v) homogenate in ice-cold
medium containing 50mM Tris–HCl and 300mM sucrose
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(Tsakiris et al., 2004). The homogenate was centrifuged at
500 × g for 10min at 4°C. The supernatant was used for
the biochemical determinations. Tissue samples were col-
lected from the intestine of all animals and immediately
fixed in 10% formalin, then these samples were processed
(Bancroft & Gamble, 2008). After fixation for 48 h, the
samples were washed in running water (1 h), dehydrated
in graduated ethyl alcohol 50%, 70%, 95% and 100% (2 h
each), cleaned in xylene (two changes, 2 h each) and em-
bedded in paraffin wax (three changes, 2 h each). After
microtomy, 5-μm tissue sections were mounted on clean
glass slides and stained with haematoxylin and eosin
(H&E). Sections were examined for histopathological
and histochemical changes.

Determination of oxidative stress markers

The lipid peroxidation level was determined according
to the method described by Ohkawa et al. (1979). This
method employed measurement of the concentration of
thiobarbituric acid reactive substances (TBARS). Results
were expressed as nmol TBARS/mg of protein. The con-
centration of reduced glutathione (GSH) was also deter-
mined (Ellman, 1959; Sedlak & Lindsay, 1968). The GSH
level was expressed as mmol/mg of protein. Protein con-
centration was determined according to the method de-
scribed by Bradford (1976), using bovine serum albumin
as a standard.

Histochemistry

Paraffin sections were deparaffinized with xylene (two
times, 5min each) and rehydrated gradually with 100%
ethanol, 95% ethanol, 70% ethanol and water. Sections
were then either stained with Alcian blue (AB) or periodic
acid–Schiff (PAS) for determination of GCs (Allen et al.,
1986). Sections were also stainedwith naphthol AS-D chlor-
oacetate (Sigma, St. Louis, Missouri, USA) and counter-
stained with haematoxylin for counting MMCs (Leder,
1979;Caughey et al., 1988;Gounaris et al., 2007). Foreachani-
mal, the number of GCs in the ileumwas counted on at least
ten well-orientated villous crypt units (VCUs). Results were
expressed as the mean number of GCs per ten VCUs.

Real-time polymerase chain reaction (RT-PCR)

The protocol was performed as described byAbdel-Latif
et al. (2016). Total RNAwas isolated from part of the ileum,
using SV Total RNA Isolation system (Promega, Madison,
Wisconsin, USA). Contaminating genomic DNA was di-
gested with the DNA-free™ kit (Applied Biosystems,
Darmstadt, Germany), before cDNA was synthesized
using a Reverse Transcription kit (Stratagene, La Jolla,
California, USA). RT-PCR was performed in a
TaqMan7500 (Applied Biosystems) using the
QuantiTect™ SYBR® Green PCR kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.
Qiagen delivered the primers for the following genes:
mucin 2 (MUC2), inducible nitric oxide synthase (iNOs),
IFN-γ, stem cell factor (SCF), transforming growth factor-
beta (TGF-β), IL-4, IL-5, IL-9 and 18S rRNA (table 1). The
initial incubation was done at 50°C for 2min, followed by
Taq polymerase activation at 95°C for 10min, 1 cycle,

followed by 30 cycles at 95°C for 10min, 60°C for 35 s
and 72°C for 30 s. All PCR reactions yielded only a single
product of the expected size, as detected by melting point
analysis and gel electrophoresis. Quantitative evaluation
was performed with TaqMan7500 system software
(Applied Biosystems). Expression of geneswasnormalized
to that of 18S rRNA (Delic et al., 2010).

Determination of HNA-specific IgA

Immulon (Dynatech Labs, Chantilly, Virginia, USA)
96-well plates were coated with HNA in 50mM bicarbon-
ate buffer (pH 9.6; 100 μl/well; overnight at 4°C) with the
optimum antigen concentration (2 μg protein/well) based
on results obtained from preliminary block titration ex-
periments. Plates were washed with 0.1 M phosphate-
buffered saline (PBS) (pH 7.2) containing 0.05% Tween
20 (PBS-T) and blocked with 1% bovine serum albumin
(Sigma) in PBS-T (200 μl/well) for 1 h at 37°C.
Individual mice sera and intestinal washes were diluted
1:100 and 1:10, respectively, loaded on to the plate wells
in duplicate (100 μl/well) and incubated for 2 h at room
temperature (RT). IgA was detected with horseradish per-
oxidase (HRP)-conjugated goat anti-mouse IgA antibodies
(SeraCare Life Sciences, Maryland, USA) diluted 1:4000
and incubated for 1 h at room temperature followed by de-
velopment with ortho-phenyldiamine (Sigma)/hydrogen
peroxide. After antibody incubations, the plates were
washed three times with PBS-T. The reaction was stopped
by the addition of 0.01% sodium azide in citrate buffer (pH
5.0). The absorbance was read at 492 nm using a multi-well
plate reader (Techan Group Ltd., Männedorf, Switzerland).

Statistical analysis

Statistical analysis was carried out as described by
Ahmed et al. (2015). SPSS (version 20) statistical program
(SPSS Inc., Chicago, Illinois, USA) was used to carry out a
one-way analysis of variance (ANOVA) on our data.
When significant differences by ANOVA were detected,
analysis of differences between the means of infected
and non-infected controls, or infected and immunized/
treated, were performed using Dunnett’s t-test.

Table 1. Primer sequences of detected mouse genes in RT-PCR.

Target gene Sequence

MUC2 F: 5′-GCTGACGAGTGGTTGGTGAATG-3′
R: 5′-GATGAGGTGGCAGACAGGAGAC-3′

IL-4 F: 5′-ATGGGTCTCAACCCCCAGCTAGT-3′
R: 5′-GCTCTTTAGGCTTTCCAGGAAGTC-3′

IL-5 F: 5′-ACCGAGCTCTGTTGACAAG-3′
R: 5′-TTTCTCTTCACACCGCTCCT-3′

IL-9 F: 5′-GTG ACA TAC ATCCTT GCC TC-3′
R: 5′-GTG GTA CAA TCA TCAGTT GGG-3′

SCF F: 5′-TGAGGCCAGGGAAGAGTGAG-3′
R: 5′-GACACATGGCGATGAATGGA-3′

iNOs F: 5′-GCCTCATGCCATTGAGTTCATCAACC-3′
R: 5′-GAGCTGTGAATTCCAGAGCCTGAAG-3′

TGF-β F: 5′-CGGGGCGACCTGGGCACCATCCATCAG-3′
R: 5′-CTGCTGCACCTTGGGCTTGCGACCCAC-3′

IFN-γ F: 5′-CGGCACAGTCATTGAAAGCCTA-3′
R: 5′-GTTGCTGATGGCCTGATTGTC-3′
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Results
Protective effect of MOE against H. nana infection

Immunization with HNA could significantly reduce the
number of adult worms in the intestine and eggs in faeces
(46 and 86.3%, respectively; table 2) compared to infected
controls. When MOE was used as an adjuvant with HNA,
reductions were higher (86.5 and 97.1%, respectively).
Comparing MOE +HNA with HNA, MOE as a mucosal
adjuvant could significantly reduce the adult worm
count (P < 0.01) but reduction of egg count was not signifi-
cant. MOE alone also reduced the adult worms and eggs
(89.3 and 97.2%, respectively).

Histological observations

Experimental infection of mice with H. nana eggs led to
damage in the villi (fig. 1b) compared to non-infected con-
trols (fig. 1a). Immunization with HNA caused less de-
generation of villi and leucocytic infiltration (fig. 1c).
Treatment with MOE inhibited damage to villi and mod-
erately increased the number of GCs (fig. 1d), while im-
munization with MOE+HNA led to the same effect
with obviously increased occurrence of GCs (fig. 1e).

Effect of MOE and HNA on intestinal MMCs and GCs

In the infected control group, a non-significant (P > 0.05)
increase in the number of MMCs appeared in comparison
with non-infected controls (fig. 2). Immunization with
HNA caused a non-significant increase in MMCs, while
MOE treatment caused a significant decrease compared
to the infected control (P < 0.05). Application of MOE as
an adjuvant with HNA caused a significant (P < 0.05) re-
duction inMMCs compared toHNAgroups. Specific stain-
ing for GCs with either AB or PAS showed similar counts
(fig. 3a, b). With both stains, the infected control group
showed a significant decrease (P < 0.01) in GCs (fig. 3c).
Compared to this group, immunization with MOE in-
creased GCs (P < 0.05). In the MOE+HNA group, AB-
and PAS-stained GCs increased significantly (P < 0.001,
P < 0.01, respectively). Similarly, a significant decrease
(P < 0.001) in mRNA expression of MUC2 was observed
in infected compared to non-infected controls (fig. 3d).
All the other groups showed significant increases
(P < 0.001) in expression compared to the infected control.
Obviously, the increased level of GCs was found to be nor-
malized when compared to the level in the non-infected
control. However, the MUC2 test indicated lower levels
in all infected groups compared to the non-infected group.

Effect of MOE and HNA on oxidative stress in intestines

Compared to the non-infected group, a significant
(P < 0.001) decrease and increase in GSH and TBARS, re-
spectively, were shown in the infected control group
(fig. 4). Other groups of treatment showed significant in-
creases (P < 0.001) in GSH and decreases (P < 0.001) in
TBARS compared to the infected control. The results of
iNOs mRNA expression clearly confirm the results of
GSH and TBARS. Ta
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Effect of MOE and HNA on serum and intestinal IgA levels

Compared to the non-infected group, infected serum
and intestinal IgA levels did not show any changes (fig.
5). Immunization with HNA increased serum IgA

(P < 0.001) but did not affect intestinal IgA. Treatment
with MOE increased both serum and intestinal IgA
(P < 0.05 and P < 0.01, respectively). Increased levels
were also observed when MOE was used as an adjuvant
(P < 0.01 and P < 0.001, respectively). Compared to

Fig. 1. Effect of HNA, MOE or MOE+HNA on intestinal histological structures in experimental hymenolepiasis nana. The figure shows
damage in intestinal villi in the infected group (b) compared to non-infected group (a). Pre-treatments with MOE (d) or MOE +HNA (e)
were better than HNA alone (c), and could reverse the intestinal changes. dv, Degenerated or disrupted villi; td, tissue debris; lin,

leucocyte infiltration; gc, goblet cell. Scale bar: 100 μm.
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HNA, MOE +HNA increased intestinal IgA significantly
(P < 0.001).

Effect of MOE and HNA on mRNA expression of cytokines

Compared to the non-infected group, mRNA expres-
sion of IFN-γ and TGF-β increased (P < 0.001) but IL-4,
-5, -9 and SCF expression decreased (P < 0.001) in the in-
fected control group (fig. 6). In contrast, IFN-γ and
TGF-β decreased in HNA, MOE and MOE+HNA groups
(P < 0.001) in comparison with the infected control. For
other cytokines, such as IL-4, -5 and SCF, mRNA expres-
sion increased significantly (P < 0.001). For IL-9,
MOE +HNA showed higher significance (P < 0.001) than
either MOE or HNA alone (P < 0.01).

Discussion
MOE has been known as an anti-inflammatory

medicinal plant because it could reduce pro-inflammatory
mediators released by lipopolysaccharide-activated macro-
phages (Fard et al., 2015). It has also been found to increase
cellular immunity against viral infection through increased
production of IFN-γ (Kurokawa et al., 2016).

In this study, MOE has been tested alone or in combin-
ation with HNA against H. nana infection in mice. MOE
showed protective effects against infection through
reduced adult worm and egg counts in the intestine and
faeces, respectively. The results of immunization using
MOE+HNA, compared to HNA, could indicate that
MOE is a useful and protective mucosal adjuvant. This
could be assigned to the anti-inflammatory and anti-
oxidant effects of MOE. In addition, increased levels of
IgA and modulation of cytokine responses to the infection
were also found. MOE could obviously reduce alterations
in intestinal histology caused by H. nana infection because
of reduced adult worm counts and associated inflamma-
tory reactions/oxidative stress. This plant extract was
found previously to be a protective treatment against coc-
cidian parasite infections (Ola-Fadunsin & Ademola,
2013; Kifleyohannes et al., 2014). In vitro treatments were
also effective against Trypanosoma and Leishmania para-
sites (Mekonnen et al., 1999; Singh et al., 2015). Groups
of mice treated with MOE or MOE +HNA could show
relatively normal histological structures compared to
HNA-treated groups. This could be a result of MOE treat-
ment, due to the high percentage reductions in adult
worm and egg counts after MOE treatments rather than
HNA alone. Histological observations were also

Fig. 2. Effect of HNA, MOE or MOE+HNA on intestinal mast cell infiltration. Mast cells were stained with naphthol AS-D chloroacetate
and appeared at the base of villi (a and b). (c) Mean number of mast cells per 10 villi ± SD in MOE +HNA versus HNA, or MOE versus

infected groups, showed significant decreases (*, P < 0.05). Scale bars in (a) and (b): 50 and 20 μm, respectively.
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consistent with reduced and increased numbers of MMCs
and GCs, respectively, after MOE compared to HNA
treatments. Moreover, increased levels of intestinal wash
IgA were found obviously in MOE alone or as adjuvant,
and not in HNA treatments. Intestinal mastocytosis was
found to increase during the response of mice to
Hymenolepis infections, accompanied by GC hyperplasia
(Starke & Oaks, 2001). Indeed, the contribution of
MMCs to adult worm expulsion was controversial
(McLauchlan et al., 1999; Ishih & Uchikawa, 2000). In
the current study, MOE could reduce the MMC numbers
and adult worms. This could lead to the conclusion that
MMCs are not required for expulsion of adult worm
(Featherston et al., 1992). In contrast, the decrease in the
number of GCs of infected controls was reversed after
MOE treatments and was also confirmed by increased
MUC2 expression. This could explain the mechanism of
worm expulsion (Webb et al., 2007). Both AB and PAS
stains were used, to stain acid and neutral mucus, respect-
ively (Adams & Dilly, 1989), to exclude the possibility of

mucus extrusion from GCs rather than changes in cell
numbers. Nevertheless, a change from neutral to acidic
mucins together with alteration of terminal sugars in
GCs was observed around the time of worm expulsion
(Ishikawa et al., 1993). The mechanisms for the protective
role of mucins against infectious agents include parasite
trapping in the mucus and inhibition of both parasite mo-
tility and feeding capacity (Khan & Collins, 2004; Ishiwata
& Watanabe, 2007). Intestinal IgA increased significantly
in both MOE and MOE +HNA treatments, and this was
consistent with higher reduction percentages in both
adult and egg counts. Thus, IgA might also play a role
in adult worm expulsion (Matsuzawa et al., 2008).
HNA could increase MUC2 expression but not GC

number. Thus, the test for MUC2 expression showed
that oral immunization with HNA was protective against
infection by increased MUC2 expression independently of
GC count. Mucin hypersecretion was found to be an im-
portant component of the innate immune system against
gastrointestinal infection in IL-4-deficient mice (Shekels

Fig. 3. Effect of HNA, MOE or MOE +HNA on GC hypoplasia (P < 0.01; c) and decreased mRNA expression of MUC2 (P < 0.001; d) in
infected versus non-infected groups. Mean number of (a) AB or (b) PAS-stained GCs per 10 villi ± SD in MOE and MOE+HNA groups
increased significantly (P < 0.05 and P < 0.001, respectively) in comparison with the infected group (c). MUC2 expression increased
significantly (P < 0.001) in all treated groups in comparison with the infected group. gc, Goblet cell. # and * represent statistical P

values for infected versus non-infected, and treated versus infected groups, respectively. Scale bar: 50 μm.
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et al., 2001). However, in the current study, IL-4 and other
cytokines, such as IL-5, -9 and SCF, were associated with
increased mucin production.

Experimental infection with H. nana was associated
with increased oxidative stress, as revealed by increased
TBARS and iNOs expression versus decreased GSH.
However, immunization with HNA could reduce such
oxidative stress. Previously, oxidative stress was also
found to increase after H. diminuta infection, but anti-
oxidant activity of the worms against host oxidative stress
was also found (Czeczot et al., 2013). Moreover, the

reduction of oxidative stress after HNA injection could
also be referred to the existence of anti-oxidant enzymes
in strobilae (Skrzycki et al., 2011). Similarly, MOE could
also have an anti-oxidant effect and inhibited iNOs ex-
pression, while MOE +HNA could show a synergetic ef-
fect. Generally, the anti-oxidant and iNOs inhibition
effects for MOE were reported previously (Sinha et al.,
2012; Lee et al., 2013). These results were also consistent
with decreased IFN-γ expression.
Although MOE and HNA+MOE could increase the

levels of IgA in both serum and intestinal washes,
HNA was effective only in serum samples. This could
also explain the higher protective effects of MOE or
MOE+HNA against infection, compared to HNA. The
IgA response was found to be associated with secondary
infection and essential for resistance (Murray et al., 1984).
Obviously, the increased IgA levels were consistent with
increased mRNA expression of IL-4, -5, -9 and SCF, but
not IFN-γ, TGF-β or MMC counts. Although intestinal
IgA production was shown previously to depend on
TGF-β (Kaneko et al., 2005), treatment with MOE seemed
to have a different mechanism. This illustrated a predom-
inance of protective T-helper cell type 2 (Th2) immune cy-
tokines which elicited IgA levels (Fonseca-Coronado et al.,
2001; Artis, 2006). Unlike IL-4, -5, -9 and SCF, the de-
creased IFN-γ and TGF-β response was consistent with de-
creased numbers of MMCs. This can be attributed
predominately to the essential role of TGF-β in the regula-
tion and differentiation of MMCs in mice and humans
(Wright et al., 2002; Gebhardt et al., 2005; Pemberton
et al., 2006). This also illustrated an MMC-independent
IgA response to infection. In the human intestine, IFN-γ
was found to increase MMC proliferation and decrease
apoptosis (Sellge et al., 2014). The findings of the current
study could also clarify that the decreased IFN-γ expres-
sion was consistent with a decreased MMC count after
MOE treatment.
Increased production of IL-5 has been found to be re-

lated to decreased worm fecundity (Ovington et al., 1998),
while SCF production was enhanced by intestinal smooth
muscle as a response against infection (Morimoto,
2011). These cytokines, together with IL-4 were reported
previously as good proliferating agents for intestinal mast
cells (Lorentz et al., 2005). The ability of MOE to reduce
MMCs and increase the expression of these cytokines indi-
cated that MOE could affect the cells independently of cyto-
kines. The immune reaction against helminths has been
shown to be dominated by CD4+ Th2 cytokines (e.g. IL-4,
-5 and -13), which activated a battery of cell types (e.g.
mast cells, eosinophils, goblet cells, B cells) and effector mo-
lecules (e.g. IgE, IgG1, complement) aimed at destroying the
parasite (Finkelman et al., 1997; Hayes et al., 2004; Persaud
et al., 2007). High IFN-γ production was observed during
the tissue phase that follows an experimental egg infec-
tion. In contrast, a Th2 response, characterized by IL-4
and IL-5 production, was detectable during the lumenal
phase (Conchedda et al., 1997). Indeed, polarization of
the Th response towards either Th1 or Th2 relies on con-
ditions such as mouse strain, genetic factors, route of anti-
gen administration and parasite-derived influence. This
may illustrate why the levels of Th2 cytokines were low
in the infected compared to the non-infected group in
the present study.

Fig. 4. Effect of HNA, MOE or MOE+HNA on GSH (a), TBARS
(b) and iNOs mRNA (c) levels in intestinal tissue. Compared to
the non-infected group, GSH decreased (P < 0.001) while
TBARS and iNOs increased (P < 0.001) in the infected group.
Compared to the infected group, GSH increased (P < 0.001),
while TBARS and iNOs decreased (P < 0.001) in treatment
groups. # and * represent statistical P values for infected versus
non-infected, and treated versus infected groups, respectively.
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Fig. 5. Effect of HNA, MOE or MOE+ HNA on IgA levels in serum and intestinal washes. The figure shows non-significant changes in the
serum and intestinal wash samples of the infected group versus the non-infected group. Compared to the infected group, HNA increased
serum (P < 0.001) but not intestinal IgA. MOE and MOE+HNA increased serum (P < 0.05 and P < 0.01, respectively) and intestinal
(P < 0.01 and P < 0.001, respectively) IgA. * and # represent statistical P values for treated versus infected groups, or MOE +HNA

versus HNA, respectively.

Fig. 6. Effect of HNA, MOE or MOE+HNA on intestinal mRNA expression of IL-4, IL-5, IL-9, IFN-γ, SCF and TGF-β. Compared to the
non-infected group, the infected group showed a decrease (P < 0.001) in IL-4, -5, -9 and SCF expression and an increase (P < 0.001) in IFN-γ
and TGF-β. In relation to the infected group, treated groups indicated significant increases in IL-4, -5, -9 and SCF, and decreases in IFN-γ

and TGF-β. # and * represent statistical P values for infected versus non-infected, and treated versus infected groups, respectively.
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Taken together, MOE was an anti-inflammatory plant
extract that could induce protection against H. nana infec-
tion due to some obvious mechanisms, including polar-
ization of the immune response toward Th2. It could
increase GC number, MUC2 expression, IgA level and
cytokine (IL- 4, -5, -9 and SCF) expression. Conversely,
it could significantly reduce MMC numbers, IFN-γ and
TGF-β. Compared to immunization with HNA, MOE as
an adjuvant with HNA achieved higher reduction percen-
tages of adult worms and eggs.
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