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Abstract

We study the isomorphic structure of (
∑
�q)c0 (1 < q < ∞) and prove that these spaces are complementably

homogeneous. We also show that for any operator T from (
∑
�q)c0 into �q, there is a subspace X of (

∑
�q)c0

that is isometric to (
∑
�q)c0 and the restriction of T on X has small norm. If T is a bounded linear operator

on (
∑
�q)c0 which is (

∑
�q)c0 -strictly singular, then for any ε > 0, there is a subspace X of (

∑
�q)c0 which is

isometric to (
∑
�q)c0 with ‖T |X‖ < ε. As an application, we show that the set of all (

∑
�q)c0 -strictly singular

operators on (
∑
�q)c0 forms the unique maximal ideal of L((

∑
�q)c0 ).
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1. Introduction

Let X be a Banach space and L(X) be the space of bounded linear operators on X.
The question of determining maximal ideals of L(X) has been studied intensively in
the past twenty years. It is well known that the set of compact operators is the unique
maximal ideal of L(X) when X = c0 or �p (1 ≤ p < ∞) [5]. In these cases, the set of
compact operators coincides with the set

MX = {T ∈ L(X) : IX does not factor through T}.
There are many other Banach spaces X for whichMX is the unique maximal ideal of
L(X), including Lp(0, 1) (1 ≤ p < ∞) [4], �∞ [3], (

∑∞
n=1 �

n
2)c0 , (

∑∞
n=1 �

n
2)�1 , (

∑∞
n=1 �

n
1)c0 ,

(
∑∞

n=1 �
n
∞)�1 , (

∑∞
n=1 �

n
∞)�p (1< p<∞) [13, 8, 10–12], (

∑
�q)�p (1≤q< p<∞) [2], (

∑
�q)�1

(1 < q < ∞) [16], dw,p [7] and an Orlicz sequence space which is close to �p [14].
The main purpose of this paper is to show that MX is also the unique maximal

ideal in L(X) when X = (
∑
�q)c0 (1 < q < ∞). A key step is to prove that (

∑
�q)c0

(1 < q < ∞) is complementably homogeneous. Recall that a Banach space X is called
complementably homogeneous [2] if every subspace Y of X that is isomorphic to X
contains a further subspace isomorphic to X and complemented in X.
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THEOREM 1.1. Let 1 < q < ∞ and let X be a subspace of (
∑
�q)c0 which is

C-isomorphic to (
∑
�q)c0 . Then for any ε > 0, there is a subspace Y of X which is

(C + ε)-isomorphic to (
∑
�q)c0 and (C + ε)-complemented in (

∑
�q)c0 .

Our second result is that, for any operator from (
∑
�q)c0 into �q, there is a subspace

of (
∑
�q)c0 that is isometric to (

∑
�q)c0 and the restriction of the operator on this

subspace has small norm.

THEOREM 1.2. Let 1 < q < ∞ and let T : (
∑
�q)c0 → �q be a bounded linear operator.

Then for any ε > 0, there exists a subspace X of (
∑
�q)c0 such that X is isometric to

(
∑
�q)c0 with ‖T |X‖ < ε.

A further result follows from Theorems 1.1 and 1.2.

THEOREM 1.3. Let 1 < q < ∞ and let T be a bounded linear operator on (
∑
�q)c0

which is (
∑
�q)c0 -strictly singular. Then for any ε > 0, there is a subspace X of (

∑
�q)c0

which is isometric to (
∑
�q)c0 and ‖T |X‖ < ε.

As an application, we derive the following corollary.

COROLLARY 1.4. For 1 < q < ∞, the set of all (
∑
�q)c0 -strictly singular operators on

(
∑
�q)c0 is the unique maximal ideal in the space L((

∑
�q)c0 ).

2. Operators on (
∑
�q)c0

Let X be a Banach space with a Schauder basis (ei) and let SX denote the unit sphere
of X. A sequence (xi) of nonzero vectors in X is a block basic sequence of (ei) if there
exists a sequence of strictly increasing integers (Ni) with N0 = 0 and a sequence of real
numbers (ai) so that xi =

∑Ni
j=Ni−1+1 ajej for every i ∈ N. A block subspace of X is the

closed linear span of a block basic sequence in X. A bounded linear operator between
two Banach spaces X and Y is an isomorphism if there exists a δ > 0 such that ‖Tx‖ > δ
whenever x ∈ X and ‖x‖ = 1. For C ≥ 1, X and Y are C-isomorphic if there exists an
isomorphism T from X onto Y so that ‖T‖ ‖T−1‖ ≤ C. When the isomorphic constant
C is not relevant, we simply say X and Y are isomorphic. Two sequences (xi) ⊂ X and
(yi) ⊂ Y are equivalent if there exists a constant C ≥ 1 such that for all sequences of
real numbers (ai),

C−1
∥∥∥∥∥
∑

aiyi

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

aixi

∥∥∥∥∥ ≤ C
∥∥∥∥∥
∑

aiyi

∥∥∥∥∥.
If T : X → Y is an operator between Banach spaces and Z is a subspace of X, define

f (T , Z) = inf{‖Tz‖ : ‖z‖ = 1, z ∈ Z} (= ‖(T |Z)−1‖−1).

Then, f (T , Z) > 0 if and only if T |Z is an isomorphism, f (T , Z) = ‖T‖ > 0 if and only
if T |Z is a multiple of an isometry and ‖T‖ ≥ f (T , Z1) ≥ f (T , Z2) if Z1 ⊂ Z2 ⊂ X.

When X = (
∑
�q)c0 , we use �(n)

q to denote the nth �q in the corresponding direct
sum and for x = (x1, x2, x3, . . .) ∈ X, we define ‖x‖ = supi{‖xi‖�q}. Other notations and
definitions can be found in [1, 15].
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Let X, Y and Z be Banach spaces. A bounded linear operator T : X → Y is Z-strictly
singular if there is no subspace Z0 ⊂ X which is isomorphic to Z and such that T |Z0 is
an isomorphism onto its range; T is strictly singular if there is no infinite-dimensional
subspace Z0 ⊂ X such that T |Z0 is an isomorphism onto its range. So an operator is
strictly singular if and only if it is Z-strictly singular for every infinite-dimensional
space Z. (See [2–3, 16, 17] for more details on this topic.)

The proof of the next lemma is similar to the proof of Lemma 2.2 in [2]. An
important ingredient is that if X is a subspace of (

∑
�q)c0 which is isomorphic to �q,

then there exists a subspace Y of X so that Y is almost isometric to �q. That is, for any
ε > 0, there exists a subspace Y of X which is (1 + ε)-isomorphic to �q. This fact can
be derived using the techniques in [6, 9].

LEMMA 2.1. Let 1 < q < ∞ and let T : �q → (
∑
�q)c0 be a bounded linear operator.

Then for any ε > 0, there exists a block subspace Z of �q so that ‖T |Z‖ < f (T , Z) + ε.

PROOF. We divide the proof into two parts.

Case 1: T is a strictly singular operator. Then f (T , Z) = 0 for all infinite-dimensional
subspaces Z ⊂ �q. Let ε > 0 and choose εi > 0 such that

∑
εi < ε. Let (ei)∞i=1 be the

unit vector basis of �q. Since f (T , �q) = 0, we can pick a norm one element x1
from �q such that ‖Tx1‖ < ε1/2. If x1 =

∑∞
i=1 a1,iei, then we can choose n1 ∈ N and

define y1 =
∑n1

i=1 a1,iei so that ‖y1‖ > 1/2 and ‖Ty1‖ < ε1/2. Let Z1 = [(ei)∞i=n1+1]. Since
f (T , Z1) = 0, we can pick a norm one element x2 from Z1 such that ‖Tx2‖ < ε2/2.
If x2 =

∑∞
i=n1+1 a2,iei, then we can choose n2 ∈ N and define y2 =

∑n2
i=n1+1 biei such

that ‖y2‖ > 1/2 and ‖Ty2‖ < ε2/2. Define Z2 = [(ei)∞i=n2+1]. Continuing in this way, we
obtain a block basic sequence (yi) of (ei) such that ‖yi‖ > 1/2 and ‖Tyi‖ < εi/2 for all i.
Let Z = [(yi)]. Then Z is a block subspace of �q and hence isometric to �q. For any
z =
∑∞

i=1 bi(yi/‖yi‖) in SZ , we have |bi| ≤ 1 and

‖Tz‖ =
∥∥∥∥∥T

∞∑
i=1

bi

( yi

‖yi‖

)∥∥∥∥∥ =
∥∥∥∥∥
∞∑

i=1

bi

‖yi‖
T(yi)
∥∥∥∥∥ ≤ 2

∞∑
i=1

‖Tyi‖ <
∞∑

i=1

εi < ε.

Since f (T , Z) = 0, we have ‖T |Z‖ < f (T , Z) + ε.

Case 2: T is not strictly singular. Then there is an infinite-dimensional subspace
Z1 ⊂ �q such that T |Z1 is an isomorphism onto its range. By [1, Theorem 2.2.1], Z1
contains a closed subspace Z2 which is isomorphic to �q. Using the fact that a subspace
of (
∑
�q)c0 which is isomorphic to �q contains a smaller subspace almost isometric

to �q, we deduce that T(Z2) contains a subspace Z3 almost isometric to �q. Since ε > 0,
there is enough room for a small perturbation, so the problem reduces to the case where
T maps �q into an isometric copy Y of �q.

Since T is bounded, (Ten)∞n=1 converges weakly to zero. By passing to a subsequence
of (en)∞n=1 and perturbing, we can assume that (Ten)∞n=1 is disjointly supported in Y.
Let lim infn→∞ ‖Ten‖ = δ > 0. Then by passing to a further subsequence of (en)∞n=1 and
perturbing again, we can assume that limn→∞ ‖Ten‖ = δ and δ − ε/2 < ||Ten|| < δ + ε/2
for all n and Z = [(en)] is a block subspace of �q.
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Let x =
∑∞

n=1 anen ∈ Z with
∑∞

n=1 |an|q = 1. Then
∥∥∥∥∥T
( ∞∑

n=1

anen

)∥∥∥∥∥ =
( ∞∑

n=1

|an|q‖Ten‖q
)1/q
> δ − ε/2.

Hence, f (T , Z) ≥ δ − ε/2 and δ ≤ f (T , Z) + ε/2. However,
∥∥∥∥∥T
( ∞∑

n=1

anen

)∥∥∥∥∥ =
( ∞∑

n=1

|an|q||Ten||q
)1/q
< δ + ε/2.

So,

||T |Z || ≤ δ + ε/2 ≤ f (T , Z) + ε/2 + ε/2 = f (T , Z) + ε. �

Next we will use Lemma 2.1 to prove Theorem 1.2.

PROOF OF THEOREM 1.2. First, we prove the theorem for the case when there is
an infinite subset M ⊂ N such that T |�(n)

q
is strictly singular for all n ∈ M. Hence,

f (T , Z) = 0 for any infinite-dimensional subspace Z of �(n)
q . In particular, f (T , �(n)

q ) = 0.
Now, let ε > 0 and let (δn)∞n=1 be a sequence of positive reals decreasing to zero
so that

∑
n∈M δn < ε. For each n ∈ M, choose (εn,i)∞i=1 converging to zero so fast that∑∞

i=1 εn,i < δn. Fix n ∈ M and pick a norm one element x1 =
∑∞

i=1 a1,ien,i ∈ �(n)
q such

that ||Tx1|| < εn,1/2. Choose N1 ∈ N and define y1 =
∑N1

i=1 a1,ien,i so that ‖y1‖ > 1/2 and
||Ty1|| < εn,1/2.

Let Z1 = [(en,i)∞i=N1+1]. Since f (T , Z1) = 0, we can pick x2 =
∑∞

i=N1+1 a2,ien,i ∈ Z1
with norm one such that ||Tx2|| < εn,2/2. Then we can find N2 ∈ N such that y2 =∑N2

i=N1+1 a2,ien,i, ‖y2‖ > 1/2 and ‖Ty2‖ < εn,2. Let Z2 = [(en,i)∞i=N2+1]. Continuing in this
way, we obtain a block basic sequence (yi)∞i=1 of the canonical basis of �(n)

q . Let
Xn = [(yi)]. Then Xn is a block subspace of �(n)

q which is isometrically isomorphic to �(n)
q

and it is easy to check that ‖T |Xn‖ < δn and X =
∑

n∈M Xn is isometrically isomorphic
to (
∑
�q)c0 . Moreover,

‖T |X‖ =
∥∥∥T | ∑

n∈M
Xn

∥∥∥ =
∥∥∥∥∥
∑
n∈M

T |Xn

∥∥∥∥∥ ≤
∑
n∈M
‖T |Xn‖ <

∑
n∈M
δn < ε.

This completes the proof for the particular case.
Now, suppose that T |�(n)

q
is not strictly singular for all but finitely many n ∈ N.

Discarding those finitely many n ∈ N, we get a sequence of operators {T |�(n)
q
}n∈I which

are not strictly singular. Hence for each n ∈ I, there exists an infinite-dimensional
subspace Zn,1 of �(n)

q such that T |Zn,1 is an isomorphism. By [1, Theorem 2.2.1], Zn,1

contains a subspace Zn,2 which is isomorphic to �q. Let (xi)∞i=1 be a unit vector basis
of Zn,2 equivalent to the canonical basis of �(n)

q . Then, (xi)∞i=1 converges weakly to zero.
Passing to a subsequence and doing a small perturbation, without loss of generality, we
may assume (xi)∞i=1 is a block basis of �(n)

q . Hence, Zn,3 = [(xi)∞i=1] is a block subspace
of �(n)

q which is isometrically isomorphic to �(n)
q . Since T |Zn,3 is an isomorphism, by
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Lemma 2.1, we get a block subspace Zn of Zn,3 such that

‖T |Zn‖ < f (T , Zn) + 2−n(ε/2).

We claim that limn→∞ f (T , Zn) = 0. Suppose this is not the case. Then, there exist
a δ > 0 and a sequence (nk)∞k=1 ⊂ N such that f (T , Znk ) > δ. For each k ∈ N, choose
xnk ∈ Znk with norm one such that ‖Txnk‖ ≥ δ. Then, (xnk )

∞
k=1 is 1-equivalent to the

canonical basis of c0. Since T is bounded, (T(xnk ))
∞
k=1 is weakly null. Passing to a

subsequence and doing a small perturbation again, we may assume that (Txnk )
∞
k=1 is a

block basic sequence which is equivalent to the canonical basis of �q. This contradicts
the boundedness of T. Therefore, limn→∞ f (T , Zn) = 0. Choose a subsequence (Znk ) of
(Zn) so that f (T , Znk ) < 2−(k+1)ε. Let X =

∑∞
k=1 Znk . Then X is isometric to (

∑
�q)c0 and

‖T |X‖ = ‖T |∑∞k=1 Znk
‖ ≤

∞∑
k=1

‖T |Znk
‖ <

∞∑
k=1

2−(k+1)ε + 2−nk (ε/2) < ε. �

For m, n ∈ N ∪ {∞} with m ≤ n, let P[m,n] denote the natural projection on (
∑
�q)c0

so that P[m,n](
∑∞

i=1 xi) =
∑n

i=m xi whenever
∑∞

i=1 xi ∈ (
∑
�q)c0 with xi ∈ �(i)q for all i.

LEMMA 2.2. Let 1 < q < ∞ and T : (
∑
�q)c0 → (

∑
�q)c0 be a bounded linear operator.

Then for all m ∈ N,
lim
n→∞
‖P[1,m]TP[n,∞)‖ = 0.

PROOF. We will prove this by contradiction. Noting that the sequence of norms is
monotone in n, we suppose there exists δ > 0 and m0 ∈ N, such that ‖P[1,m0]TP[n,∞)‖ > δ
for every n ∈ N. Then there is a sequence (xn) ∈ (

∑
lq)c0 with ‖xn‖ = 1, such that

‖P[1,m0]TP[n,∞)xk‖ ≥ δ for every n ∈ N.

Then, by passing to a subsequence (P[nk ,∞)xk)∞k=1 of (P[n,∞)xn)∞n=1 and doing a trunca-
tion, without loss of generality, we can assume (P[nk ,∞)xk)∞k=1 is a block basis which
converges to zero weakly, but not in norm. Therefore, (P[nk ,∞)xnk )

∞
k=1 is equivalent to

the canonical basis of c0. However, (P[1,m0]TP[nk ,∞)xnk )
∞
k=1 converges to zero weakly

in �q, but not in norm. Hence by passing to a further subsequence, we may assume
that (P[1,m0]TP[nk ,∞)xnk )

∞
k=1 is equivalent to the canonical basis of �q. However, this

contradicts the boundedness of T. �

PROOF OF THEOREM 1.3. We will prove the theorem by considering two cases.

Case 1: There is an infinite subset M ⊂ N so that T |�(n)
q

is strictly singular for all n ∈ M.
Since the proof of the first case of Theorem 1.2 does not use any property of the range
space of T, it also works here.

Case 2: For all but finitely many n ∈ N, T |�(n)
q

is not strictly singular.
Discarding finitely many n ∈ N and following the same line of proof as in Theorem

1.2, for each n ∈ N, we can prove the existence of block subspaces Zn ⊂ �(n)
q such that

‖T |Zn‖ < f (T , Zn) + 2−n(ε/2).
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We claim that limn→∞ f (T , Zn) = 0. If not, then there exist a δ > 0 and a sequence of
numbers (nk) such that f (T , Znk ) > δ which implies T |Znk

is an isomorphism. Consider
the operator T(

∑
Znk )c0 → (

∑
�q)c0 . By passing to further subspaces of each Znk and

perturbing, we can assume that Tx1 and Tx2 are disjointly supported in (
∑
�q)c0

whenever x1 ∈ Znk1
, x2 ∈ Znk2

and k1 � k2. Let x =
∑

k xk ∈ (
∑

Znk )c0 with xk ∈ Znk and
let k0 ∈ N be such that ‖xk0‖ ≥ 1

2‖x‖. Then

‖Tx‖ =
∥∥∥∥∥T
(∑

k

xk

)∥∥∥∥∥ =
∥∥∥∥∥
∑

k

Txk

∥∥∥∥∥ ≥ ‖Txk0‖ ≥ δ‖xk0‖ ≥
δ

2
‖x‖.

Thus T |(∑ Znk )c0
is an isomorphism, which contradicts the fact that T is (

∑
�q)c0 -strictly

singular on (
∑
�q)c0 .

Since f (T , Zn) converges to zero, by passing to a subsequence of (Zn)∞n=1 and
relabelling, we can assume that f (T , Zn) < 2−n(ε/2) for all n ∈ N. Thus,

‖T |Zn‖ < 2−n(ε/2) + 2−n(ε/2).

So X = (
∑

Zn) is isometrically isomorphic to (
∑
�q)c0 and

‖T |X‖ = ‖T |∑ Zn‖ =
∥∥∥∥∥
∑

T |Zn

∥∥∥∥∥ ≤
∑
‖T |Zn‖ <

∑
2−nε = ε. �

3. Maximal ideal of L((
∑
�q)c0 )

In this section, we will prove that (
∑
�q)c0 is complementably homogeneous. The

following two lemmas will be used in the proof.

LEMMA 3.1 (Johnson and Schechtman [2, Lemma 2.5]). Suppose that X has an
unconditionally monotone basis with p-convexity constant one and that (xk)n

k=1, for
n ∈ N ∪ {∞}, is a disjoint sequence in X so that for some θ with 0 < θ < 1 and all
scalars (αk),

θ
(∑

k

|αk |p
)1/p
≤
∥∥∥∥∥
∑

k

αkxk

∥∥∥∥∥ ≤
(∑

k

|αk |p
)1/p

.

Then there is an unconditionally monotone norm ! ·! on X with p-convexity constant
one so that for all scalars (αk),

(1) θ! x!≤ ‖x‖ ≤! x! for all x ∈ X;
(2) (

∑
k |αk |p)1/p =!

∑
k αkxk!.

LEMMA 3.2 (Johnson and Schechtman [2, Lemma 2.6]). Suppose that X has an uncon-
ditionally monotone basis with p-convexity constant one (1 ≤ p < ∞) and (xk)n

k=1,
for n ∈ N ∪ {∞}, is a disjoint sequence of unit vectors in X which is isometrically
equivalent to the unit vector basis for �p. Then span xk is norm one complemented
in X.

PROOF OF THEOREM 1.1. Let ε > 0 be given and (εj) be a sequence of positive
real numbers decreasing to 0 so fast that εj < ε for each j. Write X =

∑
Xj, where
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X is C-isomorphic to (
∑
�q)c0 and each Xj maps onto �q under this isomorphism.

By the stability of �q, by passing to a subspace for each Xj, we can assume that
Xj is (1 + εj)-isomorphic to �q. Let (xi,j)i be a normalised basis of Xj which is
(1 + εj)-equivalent to the canonical basis of �q. Again, by passing to a subspace for
each Xj and perturbing, we can assume that Xj is a block subspace of (

∑
�q)c0 . By

passing to a further subspace and perturbing, we can assume that the Xj subspaces are
disjointly supported with respect to the canonical basis of (

∑
�q)c0 . Let (ei,j)i,j be the

canonical basis of (
∑
�q)c0 , where (ei,j)i is the standard basis for �(j)q and define

Jj =

∞⋃
i=1

Support(xi,j).

Define norm one projections

PJj :
(∑

�q

)
c0

→
(∑

�q

)
c0

by PJj (x) =
∑

(i,j)∈ Jj

ai,jei,j,

for all x =
∑

i,j ai,jei,j ∈ (
∑
�q)c0 . Define Aj = [(ei,j)(i,j)∈ Jj ] which has an unconditionally

monotone basis with q-convexity constant one. Since Support(Xj) ⊂ Jj, Xj is a subspace
of Aj. By Lemma 3.1, we can define a new norm ! ·! on Aj such that ! ·! is
(1 + εj)-equivalent to ‖ · ‖ and the sequence (xi,j)∞i=1 under the new norm is 1-equivalent
to the canonical basis of �q. By Lemma 3.2, there exists a projection Qj : Aj → Xj with
! Qj!= 1. Since the formal identity I : (Aj, ! ·! )→ (Aj, ‖ · ‖) is an onto isomorphism
with isomorphism constant 1 + εj, we see that Xj is also complemented in Aj under
the original norm ‖ · ‖ and ‖Qj‖ ≤ 1 + εj. Now, consider the projection

∑∞
j=1 QjPJj :

(Σ�q)c0 → ΣXi. We have
∥∥∥∥∥
∞∑

j=1

QjPJj

∥∥∥∥∥ = sup
{∥∥∥∥∥

∞∑
j=1

QjPJj x
∥∥∥∥∥ : ‖x‖ = 1

}

= sup
{
C sup

j
‖QjPJj x‖ : ‖x‖ = 1

}
< C(1 + ε). �

PROOF OF COROLLARY 1.4. First, we show that the set of all (
∑
�q)c0 -strictly

singular operators on (
∑
�q)c0 is a linear subspace of L((

∑
�q)c0 ). Let T and Q be

two (
∑
�q)c0 -strictly singular operators on (

∑
�q)c0 . If T + Q is not a (

∑
�q)c0 -strictly

singular operator on (
∑
�q)c0 , then there exists a subspace X of (

∑
�q)c0 , isomorphic to

(
∑
�q)c0 such that (T + Q)|X is an isomorphism. Thus, there exists a δ > 0 such that

‖(T + Q)(x)‖ ≥ δ‖x‖, for all x ∈ X.

Since T is (
∑
�q)c0 -strictly singular on (

∑
�q)c0 , by Theorem 1.3, there exists a subspace

Y of X which is isomorphic to (
∑
�q)c0 such that ‖T |Y‖ < δ/2. Similarly, there exists a

subspace Z of Y which is isomorphic to (
∑
�q)c0 such that ‖Q|Z‖ < δ/2. Now, for z ∈ Z,

observe that

‖(T + Q)(z)‖ ≤ ‖T(z)‖ + ‖Q(z)‖ < δ‖z‖.

https://doi.org/10.1017/S0004972722000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000028


[8] Operators on (
∑
�q)c0 347

This is a contradiction. Therefore, T + Q is a (
∑
�q)c0 -strictly singular operator on

(
∑
�q)c0 . It is easy to see that αT is a (

∑
�q)c0 -strictly singular operator on (

∑
�q)c0 for

all scalars α and the ideal property of the set of all (
∑
�q)c0 -strictly singular operators

is also trivial.
Next we prove that the set of all (

∑
�q)c0 -strictly singular operators on (

∑
�q)c0 is

maximal. Let T be an operator in L((
∑
�q)c0 ) which is not (

∑
�q)c0 -strictly singular.

Then, there exists a subspace X of (
∑
�q)c0 , which is isomorphic to (

∑
�q)c0 such that

T |X is an isomorphism. Hence by Theorem 1.1, the subspace TX contains a subspace Z
which is isomorphic to (

∑
�q)c0 and complemented in (

∑
�q)c0 . Let Q1 : Z → (

∑
�q)c0

be an onto isomorphism and let P : (
∑
�q)c0 → Z be a continuous projection onto Z.

Since Z is isomorphic to (
∑
�q)c0 , W = X ∩ T−1(Z) is isomorphic to (Σ�q)c0 . Let Q2 :

(Σ�q)c0 → W be defined by Q2 = (T |W )−1 ◦ Q−1
1 . Then Q2 is an onto isomorphism. By

the definition of Q2, the identity map on (
∑
�q)c0 is equal to (Q1 ◦ P) ◦ T ◦ Q2. Since

Q2 and Q1 ◦ P are inL((
∑
�q)c0 ), the identity map belongs to in any ideal containing T.

Hence, any ideal containing T must coincide with L((Σ�q)c0 ). Therefore, the set of all
(
∑
�q)c0 -strictly singular operators on (

∑
�q)c0 is the unique maximal ideal. �
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