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Abstract

We study the isomorphic structure of (3 £,)., (1 < g < o) and prove that these spaces are complementably
homogeneous. We also show that for any operator T from (3 £,), into £,, there is a subspace X of (3 £;)c,
that is isometric to (3 £;)¢, and the restriction of T on X has small norm. If T is a bounded linear operator
on (3 £4)¢, whichis (3 €,)c,-strictly singular, then for any € > 0, there is a subspace X of (3 £,)., which is
isometric to (3 £,)c, With [|T|x|| < €. As an application, we show that the set of all (3, £,),-strictly singular
operators on (3, £;)c, forms the unique maximal ideal of L((3 £;)c,)-
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1. Introduction

Let X be a Banach space and £(X) be the space of bounded linear operators on X.
The question of determining maximal ideals of £(X) has been studied intensively in
the past twenty years. It is well known that the set of compact operators is the unique
maximal ideal of L(X) when X = ¢y or £, (1 < p < o0) [5]. In these cases, the set of
compact operators coincides with the set

My ={T € L(X) : Ix does not factor through T}.

There are many other Banach spaces X for which My is the unique maximal ideal of
LX), including L,(0,1) (1 < p < 0) [4], € [3], (X521 Eeos Xy Eers (s ey
(Zme1 G (s €6)e, (1<p<eo) [13, 8, 10-12], (X €y)e, (1=g<p<0) [2], (X Ly,
(1 < g < 00)[16], d,., [7] and an Orlicz sequence space which is close to £, [14].

The main purpose of this paper is to show that My is also the unique maximal
ideal in £(X) when X = (3 {;)¢, (1 < g < o0). A key step is to prove that (3 {,),
(1 < g < o) is complementably homogeneous. Recall that a Banach space X is called
complementably homogeneous [2] if every subspace Y of X that is isomorphic to X
contains a further subspace isomorphic to X and complemented in X.
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THEOREM 1.1. Let 1 <g < oo and let X be a subspace of (3, €,)., which is
C-isomorphic to (3, €y)c,- Then for any € > 0, there is a subspace Y of X which is
(C + e)-isomorphic to (3, €,)c, and (C + €)-complemented in (3, £y)c,.

Our second result is that, for any operator from (3] £,)., into £, there is a subspace
of (2 €4)c, that is isometric to (3 ¢,)., and the restriction of the operator on this
subspace has small norm.

THEOREM 1.2. Let1 < g < ocoandletT : (3, €y)c, — €4 be a bounded linear operator.

Then for any € > 0, there exists a subspace X of (3, €y)c, such that X is isometric to
(X lgde with |ITIx]| < €.

A further result follows from Theorems 1.1 and 1.2.

THEOREM 1.3. Let 1 < g < oo and let T be a bounded linear operator on (3 €y).,
which is (3 €,)c,-strictly singular. Then for any € > 0, there is a subspace X of (3. {4)c,
which is isometric to (3, {y), and ||T|x|| < e.

As an application, we derive the following corollary.

COROLLARY 1.4. For 1 < q < oo, the set of all (3] £,).,-strictly singular operators on
(2 €y)e, is the unique maximal ideal in the space L((3, €y)c,)-

2. Operators on (Y £;).,

Let X be a Banach space with a Schauder basis (e;) and let Sy denote the unit sphere
of X. A sequence (x;) of nonzero vectors in X is a block basic sequence of (e;) if there
exists a sequence of strictly increasing integers (N;) with Ny = 0 and a sequence of real
numbers (a;) so that x; = Z;V:"Ni_l L1 aje; for every i € N. A block subspace of X is the
closed linear span of a block basic sequence in X. A bounded linear operator between
two Banach spaces X and Y is an isomorphism if there exists a ¢ > 0 such that ||7x|| > ¢
whenever x € X and ||x|| = 1. For C > 1, X and Y are C-isomorphic if there exists an
isomorphism T from X onto Y so that ||T]|||7~!|| < C. When the isomorphic constant
C is not relevant, we simply say X and Y are isomorphic. Two sequences (x;) C X and
(v;) C Y are equivalent if there exists a constant C > 1 such that for all sequences of

real numbers (a;),
Zaiyi‘ < ”Zaixi ‘Zaiyi’

If T : X — Y is an operator between Banach spaces and Z is a subspace of X, define
F(T.2) =inf{||Tz]| - 1zl = LzeZ} (=TI~ "I,

Then, f(T,Z) > 0 if and only if T|z is an isomorphism, f(T,Z) = ||T|| > 0 if and only
if T|z is a multiple of an isometry and ||T|| > f(T,Z,) > f(T,2,)if Z, c Z, C X.

When X = (3 {,)c,, wWe use ff,") to denote the nth £, in the corresponding direct
sum and for x = (x1,x2,x3,...) € X, we define ||x|| = sup{l|xill¢,}. Other notations and
definitions can be found in [1, 15].

c! <C
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Let X, Y and Z be Banach spaces. A bounded linear operator T : X — Y is Z-strictly
singular if there is no subspace Zy C X which is isomorphic to Z and such that T, is
an isomorphism onto its range; T is strictly singular if there is no infinite-dimensional
subspace Zy C X such that T, is an isomorphism onto its range. So an operator is
strictly singular if and only if it is Z-strictly singular for every infinite-dimensional
space Z. (See [2-3, 16, 17] for more details on this topic.)

The proof of the next lemma is similar to the proof of Lemma 2.2 in [2]. An
important ingredient is that if X is a subspace of (3’ £,)., which is isomorphic to £,
then there exists a subspace Y of X so that Y is almost isometric to £,. That is, for any
€ > 0, there exists a subspace Y of X which is (1 + €)-isomorphic to £,. This fact can
be derived using the techniques in [6, 9].

LEMMA 2.1. Let 1 <g<ooand let T : t;, — (3 {y)c, be a bounded linear operator.
Then for any € > 0, there exists a block subspace Z of €, so that ||T\z|| < f(T,Z) + €.

PROOF. We divide the proof into two parts.

Case 1: T is a strictly singular operator. Then f(T,Z) = 0 for all infinite-dimensional
subspaces Z C ¢,. Let € > 0 and choose € > 0 such that }} € < €. Let (¢;);2, be the
unit vector basis of ¢,. Since f(T,{,) =0, we can pick a norm one element x;
from £, such that ||Tx|| < € /2. If x; = X}, aie;, then we can choose n; € N and
define y; = Z , arie; so that |lyg|| > 1/2 and ||Ty|| < € /2. Let Z; = [(e;);2 o 1]+ Since
f(T,Zy) =0, we can pick a norm one element x, from Z; such that ||sz|| < 6/2.
If x, = Z;’anﬂ apie;, then we can choose n, € N and define y, = ;an+1 b;e; such
that ||yz|| > 1/2 and ||Ty;|| < /2. Define Z, = [(e,-);.’inzﬂ]. Continuing in this way, we
obtain a block basic sequence (y;) of (¢;) such that |[y;|| > 1/2 and ||Ty;|| < /2 for all i.
Let Z = [(y;)]. Then Z is a block subspace of ¢, and hence isometric to ¢,. For any
z= 22, biyi/llyill) in Sz, we have |b;| < 1 and

Izl = HT H H —T(y, )H <2 ) ITyill< ) €<e
; Ily,II Z lyill ™~ ; ' ; ’

Since f(T,Z) = 0, we have ||T|z|| < f(T,Z) + €.

Case 2: T is not strictly singular. Then there is an infinite-dimensional subspace
Zy C {, such that Tz is an isomorphism onto its range. By [1, Theorem 2.2.1], Z;
contains a closed subspace Z, which is isomorphic to £,. Using the fact that a subspace
of (3 ¢4)¢, which is isomorphic to £, contains a smaller subspace almost isometric
to £4, we deduce that 7(Z,) contains a subspace Z3 almost isometric to £,. Since € > 0,
there is enough room for a small perturbation, so the problem reduces to the case where
T maps £, into an isometric copy Y of £,.

Since T is bounded, (7e,);” | converges weakly to zero. By passing to a subsequence
of (e,);”, and perturbing, we can assume that (7e,);”, is disjointly supported in Y.
Let liminf, . ||7e,|| = 6 > 0. Then by passing to a further subsequence of (e,);’, and
perturbing again, we can assume that lim,,_,, ||7e,|| = 6 and § — €/2 < ||Te,|| < 6 + €/2
for all n and Z = [(e,,)] is a block subspace of £,.

https://doi.org/10.1017/50004972722000028 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722000028

[4] Operators on (Y, £4)c, 343
Letx = )", ase, € Z with },°  |a,|? = 1. Then

> 1/q
= (D lanlTenllt) > 5= /2.

n=1

)

(S

n=1

Hence, f(T,Z) > 6 —€/2 and 6 < f(T,Z) + €/2. However,

(e8]

b l/q
‘T(Zanen)’ - (Zmnquennq) <5+e€/2
n=1

n=1

So,
ITIZl<6+€/2< f(T,Z)+€/2+€/2=f(T,Z)+e. m|

Next we will use Lemma 2.1 to prove Theorem 1.2.

PROOF OF THEOREM 1.2. First, we prove the theorem for the case when there is
an infinite subset M C N such that 7| is strictly singular for all n € M. Hence,
q

f(T,Z) = 0 for any infinite-dimensional subspace Z of {’é"). In particular, f(7, ff]") )=0.
Now, let € >0 and let (6,);”, be a sequence of positive reals decreasing to zero

so that ),y 6, < €. For each n € M, choose (g,,);2, converging to zero so fast that
22, €ni < 0y. Fix n € M and pick a norm one element x; = 7, aje,; € f,(;’) such
that ||7x|| < €,,1/2. Choose N; € N and define y; = Z?i‘l ajen,; so that||y;|| > 1/2 and
1Tyl < €n,1/2.

Let Z; = [(en,i)zzvm]- Since f(T,Z;) =0, we can pick x; = Z;’ZNIH azieni € Z)
with norm one such that ||Tx;|| < €,2/2. Then we can find N, € N such that y, =

foN]H azieni, |Iy2ll > 1/2 and ||Ty,|| < €,2. Let Z = [(e”»i);:NZH]' Continuing in this
way, we obtain a block basic sequence (y;);2, of the canonical basis of {’E]"). Let
X, = [(¥)]- Then X,, is a block subspace of {’f]") which is isometrically isomorphic to ff;')

and it is easy to check that ||Tx || < 6, and X = }},c, X, is isometrically isomorphic

to (3, €4)c,- Moreover,
DTl < DTl < > 6, <€
neM nemMm neM

This completes the proof for the particular case.
Now, suppose that 7| @ is not strictly singular for all but finitely many n € N.
Discarding those finitely many n € N, we get a sequence of operators {7| @ }.e1 Which

Il = {715 x,

are not strictly singular. Hence for each n € I, there exists an infinite-dimensional
subspace Z,; of ff]”) such that Tz , is an isomorphism. By [1, Theorem 2.2.1], Z,;

00

contains a subspace Z,, which is isomorphic to £,. Let (x;);>, be a unit vector basis

of Z,» equivalent to the canonical basis of 5;"). Then, (x;);2, converges weakly to zero.
Passing to a subsequence and doing a small perturbation, without loss of generality, we
may assume (x;);>, is a block basis of é’fI”). Hence, Z,3 = [(x;));2,] is a block subspace
of é’ﬁ,”) which is isometrically isomorphic to é’,(,”). Since Tz, , is an isomorphism, by
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Lemma 2.1, we get a block subspace Z, of Z, 3 such that
Tzl < f(T,Z,) +27"(e/2).

We claim that lim,,_,, f(T, Z,) = 0. Suppose this is not the case. Then, there exist

a 6 >0 and a sequence (1), C N such that f(7,Z,,) > ¢. For each k € N, choose
. € Zn, With norm one such that ||7x,,|| > 6. Then, (x,,);>, is 1-equivalent to the
canonical basis of ¢q. Since T is bounded, (T(x,,)),>, is weakly null. Passing to a
subsequence and doing a small perturbation again, we may assume that (Tx,,);”, is a
block basic sequence which is equivalent to the canonical basis of £,. This contradicts
the boundedness of 7. Therefore, lim,_,., f(T,Z,) = 0. Choose a subsequence (Z,,) of

(Z,) so that f(T,Z,) < 2~*®Ve. Let X = 3} | Z,,. Then X is isometric to (}, €,)., and

1Tl = 175z, 2,11 < Z ITlz, Il < 5274 e+ 274(e/2) < a
k=1
For m,n € N U {oo} w1th m<n, let Py, denote the natural projection on (3] £,)c,
50 that Py, (X2, %) = Y0, x; whenever Y2, x; € (3 £,),, with x; € £ for all i.

LEMMA 2.2. Let1 < g <ocoandT : (3, €y)e, = (X €g)e, be a bounded linear operator.
Then for all m € N,

lim (1P TPyl = 0

PROOF. We will prove this by contradiction. Noting that the sequence of norms is
monotone in n, we suppose there exists § > 0 and mg € N, such that [|P[; ;)1 TPn.c0)ll > 0
for every n € N. Then there is a sequence (x,) € (3] l;), With |[x,|| = 1, such that

I1P11.mo1 T Pin,coyXill = 6 for every n € N.

Then, by passing to a subsequence (P, c0)Xk)pe; Of (Plue0Xn),., and doing a trunca-
tion, without loss of generality, we can assume (P, «)Xt),, is a block basis which
converges to zero weakly, but not in norm. Therefore, (P, 00Xy, )}, 18 €quivalent to
the canonical basis of co. However, (P TPn.c0)Xn )z, CONVerges to zero weakly
in £,, but not in norm. Hence by passing to a further subsequence, we may assume
that (P(1,my TPny.c0)Xn)pe; 18 €quivalent to the canonical basis of £,. However, this
contradicts the boundedness of 7. o

PROOF OF THEOREM 1.3. We will prove the theorem by considering two cases.

Case 1: There is an infinite subset M C N so that 7| @ is strictly singular for all n € M.
Since the proof of the first case of Theorem 1.2 does not use any property of the range
space of T, it also works here.
Case 2: For all but finitely many n € N, T o is not strictly singular.

Discarding finitely many n € N and following the same line of proof as in Theorem
1.2, for each n € N, we can prove the existence of block subspaces Z, C 551") such that

Tzl < (T, Zy) + 27"(€/2).

https://doi.org/10.1017/50004972722000028 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722000028

[6] Operators on (Y, £4)c, 345

We claim that lim,,,, f(T,Z,) = 0. If not, then there exist a 6 > 0 and a sequence of
numbers (ny) such that f(T,Z,,) > 6 which implies T'|z, is an isomorphism. Consider
the operator T(}, Z,)c, — (2 £4)c,- By passing to further subspaces of each Z, and
perturbing, we can assume that Tx; and Tx, are disjointly supported in (3] £,)c,
whenever x| € Z,,k1 , Xy € Z,,k2 and k| # ky. Let x = X x¢ € (3 Zy,), With x; € Z,, and
let ko € N be such that |lxg,|| > 1|lx||. Then

T R

Thus Ty Zu ey is an isomorphism, which contradicts the fact that T is (3, £;),-strictly
singular on (3] £4)c,.

Since f(T,Z,) converges to zero, by passing to a subsequence of (Z,)", and
relabelling, we can assume that (7', Z,) < 27"(e/2) for all n € N. Thus,

IT1z,Il < 27"(e/2) + 27" (€/2).

0
17l = 2 [[Txi ]l 2 6l Il = =l

So X = (3 Z,) is isometrically isomorphic to (3; £;), and
DTl < YTl < Y 2 e =€

3. Maximal ideal of L((Z £,).,)

O

ITIxll = ITlg 2,1l =

In this section, we will prove that (3, £,)., is complementably homogeneous. The
following two lemmas will be used in the proof.

LEMMA 3.1 (Johnson and Schechtman [2, Lemma 2.5]). Suppose that X has an
unconditionally monotone basis with p-convexity constant one and that (x);_,, for
n € NU {oo}, is a disjoint sequence in X so that for some 6 with 0 <0 <1 and all

scalars (ay),
1/p
9(2 |01k|p) < Za'kxk < (Z |ak|p)
k k k

Then there is an unconditionally monotone norm ! -! on X with p-convexity constant
one so that for all scalars (ay),

() O'x!'< ||| <!'x! forall x € X;
2) i la”)P =13 arxi .

LEMMA 3.2 (Johnson and Schechtman [2, Lemma 2.6]). Suppose that X has an uncon-
ditionally monotone basis with p-convexity constant one (1 < p <o) and (x);_,,
for n e NU {oo}, is a disjoint sequence of unit vectors in X which is isometrically
equivalent to the unit vector basis for €,. Then spanx; is norm one complemented
inX.

PROOF OF THEOREM 1.1. Let € > 0 be given and (¢;) be a sequence of positive
real numbers decreasing to 0 so fast that € < € for each j. Write X = } X;, where
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X is C-isomorphic to (3 ¢,)., and each X; maps onto ¢, under this isomorphism.
By the stability of £,, by passing to a subspace for each X;, we can assume that
X; is (1 + ¢)-isomorphic to £,. Let (x;j); be a normalised basis of X; which is
(1 + ¢)-equivalent to the canonical basis of £,. Again, by passing to a subspace for
each X; and perturbing, we can assume that X; is a block subspace of (3] £;)c,. By
passing to a further subspace and perturbing, we can assume that the X; subspaces are
disjointly supported with respect to the canonical basis of (3 £,).,. Let (e;;);; be the

canonical basis of (3 £,).,, where (e;;); is the standard basis for fg) and define

Ji= U Support(x; ;).

i=1

Define norm one projections

(5], (5], e 3 e

0 @)e J;
forall x = 3;; a;jei; € (X €y)c,- Define Aj = [(e; )i je 5, ] which has an unconditionally
monotone basis with g-convexity constant one. Since Support(X;) C J;, X; is a subspace
of A;. By Lemma 3.1, we can define a new norm !-! on A; such that !-! is
(1 + g)-equivalent to || - [| and the sequence (x;;);>, under the new norm is 1-equivalent
to the canonical basis of £,. By Lemma 3.2, there exists a projection Q; : A; — X; with
!'Q;!'= 1. Since the formal identity I : (A;,!-!) — (A}, ]| - ||) is an onto isomorphism
with isomorphism constant 1 + ¢, we see that X; is also complemented in A; under
the original norm || -|| and ||Q)l| < 1 + €. Now, consider the projection Z]f’zl OiPy, :

(Zy)e, — ZX;. We have
= sup {H Z OiPx| : lIxll = 1}
j=1

H Z o;Py,
=
= sup{CsupllQ;Pal < il = 1} < (1 + o), .
J

PROOF OF COROLLARY 1.4. First, we show that the set of all (3 £,),-strictly
singular operators on (3, €,), is a linear subspace of L((} ¢,),). Let T and Q be
two (3} €4)¢,-strictly singular operators on (3] €)c,. If T+ Q is not a (3} £,),-strictly
singular operator on (3] £;).,, then there exists a subspace X of (3’ £,).,, isomorphic to
(2 €4)c, such that (T + Q)|x is an isomorphism. Thus, there exists a 6 > 0 such that

(T + Q)x)|| = 6llxll, forall x € X.

Since T'is (3 €;),-strictly singular on (3 £,),, by Theorem 1.3, there exists a subspace
Y of X which is isomorphic to (3} ,)., such that ||T|y|| < 6/2. Similarly, there exists a
subspace Z of Y which is isomorphic to (3} ,)., such that ||Q|7|| < /2. Now, for z € Z,
observe that

(T + Q)@ < IT@I + Q@) < bllz]l-
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This is a contradiction. Therefore, T + Q is a (3] €;),-strictly singular operator on
(2 €4)c,- It is easy to see that aT is a (3] €)c,-strictly singular operator on (3} £,), for
all scalars @ and the ideal property of the set of all (3] £,)c,-strictly singular operators
is also trivial.

Next we prove that the set of all (3 £;)c,-strictly singular operators on (3} £,), is
maximal. Let 7 be an operator in .L((}. £;)c,) Which is not (3] £,),-strictly singular.
Then, there exists a subspace X of (3 £,),, which is isomorphic to (3 £,), such that
T|x is an isomorphism. Hence by Theorem 1.1, the subspace TX contains a subspace Z
which is isomorphic to (3 ,), and complemented in () £,).,. Let Q1 : Z — (X £y)c,
be an onto isomorphism and let P : (3, {;)., — Z be a continuous projection onto Z.
Since Z is isomorphic to (3} £;)c,, W =X N T7'(Z) is isomorphic to (Zly)e,- Let Qs :
(Zly)e, = W be defined by O, = (Tlw)™" o Q;'. Then Q; is an onto isomorphism. By
the definition of 0, the identity map on (3] £,), is equal to (Q; o P) o T o Q. Since
0 and Q; o P are in L((}] £;).,), the identity map belongs to in any ideal containing 7.
Hence, any ideal containing 7 must coincide with £((Z{;).,). Therefore, the set of all
(2 £4)co-strictly singular operators on (2, £,)c, is the unique maximal ideal. O
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