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We deal with the initial-value problem for parabolic equations with discontinuous
nonlinearities and establish the existence of its weak solution. Next, we show that for
a suitable class of initial data, the weak solution is locally or globally unique in time.
Lastly, we prove that there exist at least two different weak solutions in general if
initial data do not belong to this class.

1. Introduction

In this paper we will study weak solutions of the initial-value problem

ut = uxx + f(u) − f(1)H(u − λ), 0 < t < T, x ∈ R,

u|t=0 = u0, x ∈ R,

}
(1.1)

where 0 < λ < 1 is a constant, H is the function on R given by

H(u) =

{
0 in (−∞, 0),
1 in (0,∞)

and 0 � H(0) � 1,

and f satisfies the following condition (see figures 1 and 2).

(A1) f is a Lipschitz continuous function on R and satisfies

f(0) = 0, f(u) < 0 on (0, λ] and f(u) − f(1) > 0 on [λ, 1).

A problem like (1.1) arises as the model of best response dynamics in game
theory [9]. A typical example of f in this model is f(u) = −u. Also, problem (1.1)
with f(u) = −u is a special case of the initial-value problem for the parabolic
system:

ut = uxx − u + H(u − a) + v,

vt = bu − cv,

}
(1.2)

with constants 0 < a < 1, b � 0 and c � 0. Parabolic system (1.2) is a simplification
by McKean [11] of the equations of FitzHugh [7] and Nagumo et al . [14],

ut = uxx + u(1 − u)(u − a) + v,

vt = bu − cv,

}
(1.3)
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Figure 1. Condition (A1).
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Figure 2. Graph of u �→ f(u) − f(1)H(u − λ).

which were introduced as a model for the conduction of electrical impulses in the
nerve axon.

As is well known, the method of upper and lower solutions combined with mono-
tone iteration offers constructive existence results for a variety of differential equa-
tions with continuous nonlinearities. This method was first developed by Sat-
tinger [15] for nonlinear parabolic boundary-value problems. Carl [2] showed that
this method is available even for the construction of weak solutions belonging to the
space L2((0, T ); W 1,2(Ω)) of parabolic boundary-value problems with discontinuous
nonlinearities, where Ω is a bounded domain of R

d. A constructive existence result
for parabolic boundary-value problems with more general forms was obtained by
Carl and Heikkilä [3] in a similar space. Szilagyi [16] proved a constructive exis-
tence result for boundary-value problems for parabolic systems with discontinuous
nonlinearities. For existence results for ordinary and elliptic equations with discon-
tinuous nonlinearities, see Heikkilä and Lakshmikantham [8]. In this paper we are
interested in bounded solutions taking values between 0 and 1 in (0, T ) × R, for
example, spatially constant solutions, from the viewpoint of best response dynam-
ics. If there exists a solution u ∈ CB([0, T )×R) of problem (1.1), then, by a similar
argument to the proof of lemma 2.5(a), the solution u satisfies the integral equation

u(t, x) =
∫

R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)(f(u(s, y)) − f(1)H(u(s, y) − λ)) dy ds (1.4)
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Figure 3. Graph of u0.
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Figure 4. Graph of u �→ −u + H(u − λ).

in (0, T )×R, where CB([0, T )×R) is the space of bounded continuous functions on
[0, T )×R, and K is the heat kernel. Hence, we find from this integral equation (1.4)
that u belongs to the space C0,1((0, T ) × R) of continuous functions on (0, T ) × R

that are continuously differentiable with respect to x ∈ R. Therefore, we will study
solutions of problem (1.1) in the space CB([0, T ) × R) ∩ C0,1((0, T ) × R) under the
following condition.

(B1) u0 belongs to CB(R) and satisfies the inequality 0 � u0(x) � 1 on R.

First, we will show that the monotone iterative method also is available for the
construction of weak solutions belonging to the space CB([0, T )×R)∩C0,1((0, T )×R)
of problem (1.1). Key points of the proof are to show that weak solutions of an
iteration scheme are expressed in explicit forms and, further, that an upper solution
and a lower solution respectively satisfy integral inequalities.

Owing to the discontinuous nonlinearities, we cannot expect the uniqueness of
weak solutions of problem (1.1) for general initial data. For example, for f(u) = −u,
both

u1(t) = (λ − 1)e−t + 1 and u2(t) = λe−t

are solutions if u0(x) = λ on R. This corresponds to the fact that, in the best
response dynamics, players have multiple locally best responses at the time t = 0 if
the initial state is equal to λ. Secondly, we will find certain classes of initial data for
which the weak solution of problem (1.1) is unique locally or globally in time. Several
results on uniqueness of weak solutions of parabolic equations with discontinuous
nonlinearities have been obtained for only one space-dimensional case. Feireisl and
Norbury [6] and Feireisl [5] dealt with parabolic boundary-value problems. Feireisl
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and Norbury [6] showed that a certain class of initial data guarantees a uniqueness
result for the nonlinearity f(u) + cH(u − 1), with a positive constant c and a
non-decreasing Lipschitz continuous function f . Feireisl [5] considered more-general
initial data and nonlinearities, but showed only a local uniqueness result. On the
other hand, Terman [17] dealt with the initial-value problem (1.1) with f(u) = −u
(see figure 4), and showed the uniqueness of solutions for a certain class of initial
data u0 ∈ CB(R) ∩ C1(R) such that u0(0) > λ, u0(x) = u0(−x) in R and u′

0(x) > 0
in (−∞, 0). The case u0(0) = λ (see figure 3), in which the uniqueness of solutions
was proved under the two conditions that lim infx↓0 2x−2[u0(0) − u0(x)] > 0 and

lim inf
x↓0

2x−2[u0(0) − u0(x)] + λ >
1√
π

max
p�0

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ,

(1.5)
was discussed by McKean and Moll [13]. McKean [12] showed the uniqueness of solu-
tions of the initial-value problem for parabolic system (1.2) for a class of increasing
initial data.

The main purpose of this paper is to study the non-uniqueness of weak solutions of
problem (1.1). Let us consider problem (1.1) with f(u) = −u (see figure 4) and ini-
tial data u0 like figure 3. Then it is easy to see that problem (1.1) has a weak solution
whose peak does not exceed λ. Furthermore, according to McKean and Moll [13],
stated above, the weak solution is unique if lim infx↓0 2x−2[u0(0) − u0(x)] > 0 and
if inequality (1.5) holds. However, McKean and Moll [13] did not discuss in detail
the case where inequality (1.5) does not hold, namely, the case that

lim inf
x↓0

2x−2[u0(0) − u0(x)] + λ <
1√
π

max
p�0

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ.

(1.6)
In this case we expect that there exists a weak solution whose peak exceeds λ.
The existence of such a weak solution establishes the non-uniqueness of weak solu-
tions, since problem (1.1) has a weak solution whose peak does not exceed λ, as
stated above. Thirdly, we will consider problem (1.1) with more general f and ini-
tial data u0, and will give a similar condition to (1.6) under which problem (1.1)
has at least two different weak solutions. The non-uniqueness of weak solutions of
parabolic boundary-value problems with discontinuous nonlinearities has been stud-
ied by Feireisl and Norbury [6] only for one space-dimensional case. They showed
that a certain class of initial data guarantees a non-uniqueness result for the non-
linearity f(u)+cH(u−1) with a positive constant c and a non-decreasing Lipschitz
continuous function f satisfying f(u) = 0 for u � 1.

It should be mentioned that the treatment of discontinuous problems in unbound-
ed domains is by no means a straightforward extension of corresponding problems
in bounded domains, and in this sense the subject of the paper is challenging and
worth pursuing.

The rest of this paper is organized as follows. In § 2, we first give the definition of
a weak solution of problem (1.1) and, by using the monotone iterative method, we
establish the existence of maximal and minimal weak solutions of problem (1.1) in
an order interval (theorem 2.3). In § 3, we study the uniqueness of weak solutions of
problem (1.1). In fact, we find a certain class of initial data so that the weak solution
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of problem (1.1) is unique locally in time (theorem 3.1). Furthermore, we prove two
results on global uniqueness (theorems 3.3 and 3.4). In § 4, we prove that there exist
at least two different weak solutions under some conditions (theorem 4.1). In § 5,
we prove a result on the relationship between weak solutions of problem (1.1) and
solutions of problem (1.1) formulated as a differential inclusion (proposition 5.4),
from which we see that results similar to theorems 3.1, 3.3, 3.4 and 4.1 hold for
solutions of problem (1.1) formulated as a differential inclusion (remark 5.6).

2. Existence theorem

Before we describe our results, let us first explain some notation and definitions that
we will use. Let CB(R) and CB([0, T )× R) denote the space of bounded continuous
functions on R and [0, T )×R, respectively. Let C0,1((0, T )×R) denote the space of
continuous functions on (0, T )×R that are continuously differentiable with respect
to x ∈ R. If u, v ∈ CB([0, T ) × R) ∩ C0,1((0, T ) × R) and u � v in [0, T ) × R, then
[u, v] denotes the order interval {w ∈ CB([0, T )×R)∩C0,1((0, T )×R) | u � w � v}.
Let K denote the heat kernel, namely,

K(t, x) =

⎧⎪⎨
⎪⎩

1
2
√

πt
exp

(
− x2

4t

)
, if t > 0 and x ∈ R,

0, if t � 0 and x ∈ R.

We now define a weak solution of problem (1.1) as follows.

Definition 2.1. A function u ∈ CB([0, T ) × R) ∩ C0,1((0, T ) × R) is said to be a
weak solution of problem (1.1) if the following two conditions are satisfied:

(i) ut = uxx + f(u) − f(1)H(u − λ) in D′((0, T ) × R), namely,∫ T

0

∫
R

(u∂tϕ − ∂xu∂xϕ + (f(u) − f(1)H(u − λ))ϕ) dxdt = 0,

for all ϕ ∈ D((0, T ) × R);

(ii) for all x0 ∈ R,
lim

t↓0,x→x0
u(t, x) = u0(x0).

Definition 2.2. A function u ∈ CB([0, T ) × R) ∩ C0,1((0, T ) × R) is called a weak
upper solution of problem (1.1) if the following two conditions are satisfied:

(i′) for all non-negative functions ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(u∂tϕ − ∂xu∂xϕ + (f(u) − f(1)H(u − λ))ϕ) dxdt � 0;

(ii′) for all x0 ∈ R,
lim

t↓0,x→x0
u(t, x) � u0(x0).

A weak lower solution of problem (1.1) is defined by reversing the inequalities in
the conditions (i′) and (ii′).

https://doi.org/10.1017/S0308210500004315 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004315


1144 H. Deguchi

Similar definitions to definitions 2.1 and 2.2 will be used for problem (1.1), with
nonlinearities depending on t and x as well as u.

To show the existence of a weak solution of problem (1.1), we will impose the
following condition on f .

(A2) Problem (1.1) has a weak upper solution ū and a weak lower solution u
¯

such
that u

¯
� ū in (0, T ) × R. Furthermore, there exist a non-positive function

w1 ∈ L∞((0, T ) × R) and a non-negative function w2 ∈ L∞((0, T ) × R) such
that, for all non-negative functions ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(ū∂tϕ − ∂xū∂xϕ + (f(ū) − f(1)H̃(ū − λ) − w1)ϕ) dxdt = 0,

∫ T

0

∫
R

(u
¯
∂tϕ − ∂xu

¯
∂xϕ + (f(u

¯
) − f(1)Ĥ(u

¯
− λ) − w2)ϕ) dxdt = 0,

where

H̃(u) =

{
1, if u � 0,

0, if u < 0,
and Ĥ(u) =

{
1, if u > 0,

0, if u � 0.

Theorem 2.3. Let λ ∈ (0, 1), and assume that conditions (A1), (A2) and (B1) are
satisfied. There then exist the global maximal and minimal weak solutions U and u
of problem (1.1) in the order interval [u

¯
, ū].

For the proof, we need the following three lemmas.

Lemma 2.4. Let u0 ∈ CB(R) and let g ∈ L∞((0, T ) × R). Then, for each T > 0,
the problem

ut = uxx + g(t, x), 0 < t < T, x ∈ R,

u|t=0 = u0, x ∈ R,

}
(2.1)

has a unique weak solution u ∈ CB([0, T )×R)∩C0,1((0, T )×R), which is expressed
in the form

u(t, x) =
∫

R

K(t, x − y)u0(y) dy +
∫ t

0

∫
R

K(t − s, x − y)g(s, y) dy ds

=: A(t, x) + B(t, x). (2.2)

Moreover, we find that, for 0 < t < T and x ∈ R,

|∂xA(t, x)| � 1√
πt

‖u0‖L∞(R), (2.3)

|∂tA(t, x)| � 1
t
‖u0‖L∞(R), (2.4)

|∂xB(t, x)| � 2

√
t

π
‖g‖L∞((0,T )×R), (2.5)

and that, for 0 < r < t < T and x ∈ R,

|B(t, x) − B(r, x)| � (2
√

(t − r)r + (t − r))‖g‖L∞((0,T )×R). (2.6)
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Proof. We see that the function u given by (2.2) is a weak solution of problem (2.1),
by using the fact that the heat kernel K satisfies the equation Kt(t, x) = Kxx(t, x)+
δ(t, x) in D′((−T, T )×R), where δ is the delta function. For the proof of uniqueness,
see [1, theorem 2]. Thus, it remains to prove the four inequalities (2.3)–(2.6). Since
the first three inequalities, (2.3)–(2.5), can be easily checked, the last one, (2.6),
will be proved.

We can easily see that, for 0 < r < t < T and x ∈ R,

|B(t, x) − B(r, x)| �
∫ r

0

∫
R

|K(t − s, x − y) − K(r − s, x − y)||g(s, y)| dy ds

+
∫ t

r

∫
R

K(t − s, x − y)|g(s, y)| dy ds

=: B1(t, r, x) + B2(t, r, x). (2.7)

(1) Estimate of B2(t, r, x): for 0 < r < t < T and x ∈ R,

B2(t, r, x) � (t − r)‖g‖L∞((0,T )×R). (2.8)

(2) Estimate of B1(t, r, x): we see that, for 0 < r < t < T and x ∈ R,∫ r

0

∫
R

|K(t − s, x − y) − K(r − s, x − y)| dy ds

=
∫ r

0

∫
R

∣∣∣∣
∫ t

r

Kτ (τ − s, x − y) dτ

∣∣∣∣ dy ds

�
∫ r

0

∫
R

∫ t

r

(
1

4π(τ − s)

)1/2 1
2(τ − s)

[
1 +

(x − y)2

2(τ − s)

]
e−(x−y)2/(4(τ−s)) dτ dy ds.

By the change of variable x − y = 2
√

τ − s ξ,
∫ r

0

∫
R

∫ t

r

(
1

4π(τ − s)

)1/2 1
2(τ − s)

[
1 +

(x − y)2

2(τ − s)

]
e−(x−y)2/(4(τ−s)) dτ dy ds

=
∫ r

0

∫ t

r

∫
R

1
2
√

π(τ − s)
(1 + 2ξ2)e−ξ2

dξ dτ ds

=
∫ r

0
log

t − s

r − s
ds.

Note that log x �
√

x − 1 if x � 1. Hence, we have∫ r

0
log

t − s

r − s
ds �

∫ r

0

√
t − r

r − s
ds = 2

√
(t − r)r.

Therefore,
B1(t, r, x) � 2

√
(t − r)r‖g‖L∞((0,T )×R). (2.9)

By combining inequalities (2.7)–(2.9) we get inequality (2.6).

Lemma 2.5. Let λ ∈ (0, 1), and assume that conditions (A1) and (B1) are satisfied.
Let L � 0 be any constant.
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(a) A function u ∈ CB([0, T ) × R) ∩ C0,1((0, T ) × R) is a weak solution of prob-
lem (1.1) if and only if, for all (t, x) ∈ (0, T ) × R, it satisfies the integral
equation

u(t, x) = e−Lt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)fL(u(s, y))e−L(t−s) dy ds, (2.10)

where fL(u) := f(u) − f(1)H(u − λ) + Lu.

(b) Let ū ∈ CB([0, T ) × R) ∩ C0,1((0, T ) × R) be a weak upper solution of prob-
lem (1.1). If there exists a non-positive function w1 ∈ L∞((0, T ) × R) such
that, for all non-negative functions ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(ū∂tϕ − ∂xū∂xϕ + (f(ū) − f(1)H̃(ū − λ) − w1)ϕ) dxdt = 0,

then, for all (t, x) ∈ (0, T ) × R, the function ū satisfies the integral inequality

ū(t, x) � e−Lt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̃L(ū(s, y))e−L(t−s) dy ds, (2.11)

where H̃ is as in condition (A2) and f̃L(u) := f(u) − f(1)H̃(u − λ) + Lu.

(c) Let u
¯

∈ CB([0, T ) × R) ∩ C0,1((0, T ) × R) be a weak lower solution of prob-
lem (1.1). If there exists a non-negative function w2 ∈ L∞((0, T ) × R) such
that, for all non-negative functions ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(u
¯

∂tϕ − ∂xu
¯

∂xϕ + (f(u
¯

) − f(1)Ĥ(u
¯

− λ) − w2)ϕ) dxdt = 0,

then, for all (t, x) ∈ (0, T ) × R, the function u
¯

satisfies the integral inequality

u
¯

(t, x) � e−Lt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̂L(u
¯

(s, y))e−L(t−s) dy ds,

where Ĥ is as in condition (A2) and f̂L(u) := f(u) − f(1)Ĥ(u − λ) + Lu.

Proof.

Step 1. First, we show that assertion (a) of the lemma holds. Assume that u ∈
CB([0, T )× R)∩C0,1((0, T )× R) is a weak solution of problem (1.1). Put v(t, x) :=
u(t, x)eLt. Then v is a weak solution of the problem

vt = vxx + fL(ve−Lt)eLt, 0 < t < T, x ∈ R,

v|t=0 = u0, x ∈ R.
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We now consider the problem

wt = wxx + fL(ve−Lt)eLt, 0 < t < T, x ∈ R,

w|t=0 = u0, x ∈ R.

}
(2.12)

By lemma 2.4, problem (2.12) has a unique weak solution, w ∈ CB([0, T ) × R) ∩
C0,1((0, T ) × R), which is expressed in the form

w(t, x) =
∫

R

K(t, x − y)u0(y) dy +
∫ t

0

∫
R

K(t − s, x − y)fL(v(s, y)e−Ls)eLs dy ds.

Hence, w must be equal to v in (0, T )×R. Since v(t, x) := u(t, x)eLt, the function u
satisfies the integral equation (2.10). The converse is obvious from lemma 2.4.

Step 2. Next, we show that assertion (b) holds. Put v̄(t, x) := ū(t, x)eLt. Then v̄
satisfies the conditions that, for all non-negative functions ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(v̄∂tϕ − ∂xv̄∂xϕ + (f̃L(v̄e−Lt) − w1)eLtϕ) dxdt = 0

and that, for all x0 ∈ R,

lim
t↓0,x→x0

v̄(t, x) = ū(0, x0).

Let us consider the problem in which, for all non-negative functions ϕ ∈ D((0, T )×
R), we have∫ T

0

∫
R

(w̄∂tϕ − ∂xw̄∂xϕ + (f̃L(v̄e−Lt) − w1)eLtϕ) dxdt = 0 (2.13)

and, for all x0 ∈ R,
lim

t↓0,x→x0
w̄(t, x) = ū(0, x0). (2.14)

We now prove that the function

w̄(t, x) =
∫

R

K(t, x − y)ū(0, y) dy

+
∫ t

0

∫
R

K(t − s, x − y)(f̃L(v̄(s, y)e−Ls) − w1(s, y))eLs dy ds (2.15)

is a unique solution of problem (2.13), (2.14) in CB([0, T ) × R) ∩ C0,1((0, T ) × R).
Note that (f̃L(v̄(t, x)e−Lt) − w1(t, x))eLt is bounded in (0, T )×R and that ū(0, x) is
bounded and continuous on R. Hence, by lemma 2.4, we see that w̄, given by (2.15),
is a solution of problem (2.13), (2.14) in CB([0, T )×R)∩C0,1((0, T )×R). To prove
the uniqueness, it suffices to show that the zero solution is the only solution in
CB([0, T ) × R) ∩ C0,1((0, T ) × R) of the problem in which, for all non-negative
functions ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(w∂tϕ − ∂xw∂xϕ) dxdt = 0 (2.16)
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and, for all x0 ∈ R,
lim

t↓0,x→x0
w(t, x) = 0. (2.17)

Assume that problem (2.16), (2.17) has a solution w that is different from the zero
solution. Fix δ ∈ (0, 1

2T ) arbitrarily and assume that ε ∈ (0, δ). Let ψ be a fixed
element of D(R2) such that ψ � 0, suppψ ⊂ (−1, 1)2 and∫∫

ψ(t, x) dxdt = 1.

Put

ψε(t, x) :=
1
ε2 ψ

(
t

ε
,
x

ε

)

and define a function wε := w ∗ ψε on [δ, T − δ] × R. Then, by equation (2.16), we
see that wε is a unique bounded classical solution of the problem

wε
t = wε

xx, δ < t < T − δ, x ∈ R,

wε|t=δ = wε(δ, x), x ∈ R.

}

Hence, wε is expressed in the form

wε(t, x) =
∫

R

K(t − δ, x − y)wε(δ, y) dy

in (δ, T − δ) × R. By the continuity of w, we see that wε converges uniformly to w
on any compact subset of (δ, T − δ) × R as ε ↓ 0. Furthermore,∫

R

K(t − δ, x − y)wε(δ, y) dy →
∫

R

K(t − δ, x − y)w(δ, y) dy as ε ↓ 0.

Hence, on taking the limit as δ ↓ 0, we find that w = 0 in (0, T )×R. This contradicts
the assumption that w is not the zero solution. Thus, w̄ given by (2.15) is a unique
solution of problem (2.13), (2.14) in CB([0, T ) × R) ∩ C0,1((0, T ) × R), such that
w̄ = v̄ in (0, T ) × R. Hence, by v̄(t, x) := ū(t, x)eLt and equation (2.15), we have

ū(t, x) = e−Lt

∫
R

K(t, x − y)ū(0, y) dy

+
∫ t

0

∫
R

K(t − s, x − y)(f̃L(ū(s, y)) − w1(s, y))e−L(t−s) dy ds.

Since ū(0, x) � u0(x) on R and w1(t, x) is non-positive in (0, T ) × R, the integral
inequality (2.11) is obtained.

Assertion (c) can be proved similarly.

The proof of lemma 2.6 is omitted, since it can be shown by a slight modification
of the proof of [2, lemma 3].

Lemma 2.6. Let λ ∈ (0, 1), and assume that conditions (A1) and (B1) are satis-
fied. Furthermore, let u be any weak solution of problem (1.1). Then the Lebesgue
measure of {(t, x) ∈ (0, T ) × R | u(t, x) = λ} is zero if f(λ) − f(1)H(0) 
= 0.
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Proof of theorem 2.3.

Step 1. First, we prove the existence of the maximal weak solution U in the order
interval [u

¯
, ū]. Let H̃ and Ĥ be as in condition (A2). By condition (A1), we can

choose a constant M � 0 such that u �→ f(u) + Mu is non-decreasing on R. Put

f̃M (u) := f(u) − f(1)H̃(u − λ) + Mu

and

f̂M (u) := f(u) − f(1)Ĥ(u − λ) + Mu.

Then, by condition (A2) and lemma 2.5(b), the weak upper solution ū satisfies the
integral inequality

ū(t, x) � e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̃M (ū(s, y))e−M(t−s) dy ds. (2.18)

Similarly, we obtain the integral inequality

u
¯
(t, x) � e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̂M (u
¯
(s, y))e−M(t−s) dy ds. (2.19)

We now fix T > 0 arbitrarily and consider the iteration scheme

Un+1
t − Un+1

xx + MUn+1 = f̃M (Un), 0 < t < T, x ∈ R,

Un+1|t=0 = u0, x ∈ R,

}
(2.20)

with the initial iteration U0 = ū. We can then show that problem (2.20) may be
uniquely solved for each n ∈ N0 and that the sequence (Un)n∈N0 converges to the
maximal weak solution U of problem (1.1) in the order interval [u

¯
, ū]. The proof is

divided into three steps.

Step 1.1. First, we prove the following claim.

Claim 1. Problem (2.20) has a unique weak solution Un+1, for each n ∈ N0, which
satisfies the following relationship:

u
¯

� Un+1 � Un � · · · � U1 � U0 = ū. (2.21)

Proof. Using lemma 2.4 and induction on n ∈ N0, we see that problem (2.20) is
uniquely solved and Un+1 can be expressed in the form

Un+1(t, x) = e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̃M (Un(s, y))e−M(t−s) dy ds. (2.22)
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By inequality (2.18) and equation (2.22) with n = 0, we obtain the relationship
U1 � U0 = ū. Note that, by condition (A1), both f̃M and f̂M are non-decreasing
on R and f̃M � f̂M on R. Furthermore, note that, by condition (A2), the relation-
ship u

¯
� ū holds. Hence, we get the relationship u

¯
� U1 from inequality (2.19) and

equation (2.22) with n = 0. A similar argument shows the relationship (2.21).

Step 1.2. Secondly, we prove the following claim.

Claim 2. The sequence (Un)n∈N0 obtained in claim 1 converges to a weak solu-
tion U of problem (1.1) in the order interval [u

¯
, ū].

Proof. Let A(t, x) and Bn(t, x) be the first and second terms of the right-hand side
of equation (2.22), respectively. Then, noting the monotonicity of f̃M and using
claim 1 and lemma 2.4, we have the following four estimates: for n ∈ N0, 0 < t < T
and x ∈ R,

|∂xA(t, x)| � e−Mt

√
πt

‖u0‖L∞(R),

|∂tA(t, x)| � Me−Mt‖u0‖L∞(R) +
e−Mt

t
‖u0‖L∞(R),

|∂xBn(t, x)| � 2e−Mt

√
t

π
κ,

and for n ∈ N0, 0 < r < t < T and x ∈ R,

|Bn(t, x) − Bn(r, x)| � e−Mt(2
√

(t − r)r + (t − r))κ + (e−Mr − e−Mt)tκ,

where κ = max{‖f̃M (u
¯
(t, x))eMt‖L∞((0,T )×R), ‖f̃M (ū(t, x))eMt‖L∞((0,T )×R)}. Thus,

Un is equicontinuous on every compact subset of (0, T ) × R. Hence, by the Arzelà–
Ascoli theorem and a diagonal method, we can pass to the limit as n ↑ ∞ along a
subsequence, and so obtain a function U∞ in CB((0, T ) × R). Furthermore, by the
monotonicity of (Un)n∈N0 , the sequence itself must converge to U∞ in the same
space. Since Un(0, x) = u0(x) on R for n ∈ N, it follows that the limit U of (Un)n∈N0

on [0, T ) × R is given by

U(t, x) =

{
U∞(t, x), if 0 < t < T and x ∈ R,

u0(x), if t = 0 and x ∈ R.

Thus, it remains to show that U is a weak solution of problem (1.1) in the order
interval [u

¯
, ū]. For this purpose, we consider the limit as n ↑ ∞ in equation (2.22). By

condition (A1) and the boundedness of (Un)n∈N0 , we find that (f̃M (Un(t, x)))n∈N0

is bounded in (0, T ) × R. Note that the right continuity of H̃ means the right
continuity of f̃M . Hence, by using the fact that (Un)n∈N0 is non-increasing and
converges to U in (0, T ) × R, we find that

f̃M (Un(t, x)) → f̃M (U(t, x))
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in (0, T ) × R as n ↑ ∞. Therefore, we can apply Lebesgue’s dominated convergence
theorem to get the integral equation

U(t, x) = e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̃M (U(s, y))e−M(t−s) dy ds (2.23)

in (0, T ) × R. It is obvious from equation (2.23) that limt↓0,x→x0 U(t, x) = u0(x0)
for all x0 ∈ R. Hence, U belongs to CB([0, T )×R) due to the definition of U . Again,
from equation (2.23), we see that U belongs to C0,1((0, T ) × R). Hence, by using
lemma 2.5(a), we find that U is a weak solution of the problem

Ut = Uxx + f(U) − f(1)H̃(U − λ), 0 < t < T, x ∈ R,

U |t=0 = u0, x ∈ R.

}

By condition (A1) and H̃(0) = 1, we see that f(λ) − f(1)H̃(0) 
= 0. Hence, accord-
ing to lemma 2.6, the Lebesgue measure of {(t, x) ∈ (0, T ) × R | U(t, x) = λ} is
zero. Therefore, U must be a weak solution of problem (1.1). Also, it is obvious
from claim 1 that U is contained in the order interval [u

¯
, ū].

Step 1.3. Finally, we prove the following claim.

Claim 3. The weak solution U obtained in claim 2 is a maximal solution in the
order interval [u

¯
, ū].

Proof. According to lemma 2.5(a), any weak solution v ∈ [u
¯
, ū] of problem (1.1)

satisfies the integral equation

v(t, x) = e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)fM (v(s, y))e−M(t−s) dy ds, (2.24)

where fM (u) := f(u)− f(1)H(u−λ)+Mu. Hence, by equations (2.22) and (2.24),
we get the relationship v � U1. We can similarly derive the relationship v � Un

for each n � 2. Therefore, the relationship v � U holds.

Step 2. Next, we prove the existence of the minimal weak solution u in the order
interval [u

¯
, ū]. In this case, it suffices to consider the iteration scheme

un+1
t − un+1

xx + Mun+1 = f̂M (un), 0 < t < T, x ∈ R,

un+1|t=0 = u0, x ∈ R,

}
(2.25)

with the initial iteration u0 = u
¯
. In fact, as in step 1, we can obtain the minimal

weak solution u of problem (1.1) in the order interval [u
¯
, ū] as the limit of a sequence

(un)n∈N of weak solutions of problem (2.25).

The proof of theorem 2.3 is now complete.
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Remark 2.7. There exist the maximal and minimal weak solutions U , u ∈ [0, 1],
of problem (1.1) if λ ∈ (0, 1) and if conditions (A1) and (B1) are satisfied, since
ū ≡ 1 and u

¯
≡ 0 are a weak upper solution and a weak lower solution, respectively,

of problem (1.1) as in condition (A2). Remark that [0, 1] is an order interval.

The following proposition shows that any weak solution v of problem (1.1) is
contained in the order interval [0, 1] under some conditions. Therefore, we see that
v satisfies the relationship u � v � U for the maximal and minimal weak solutions
U , u ∈ [0, 1] of problem (1.1).

Proposition 2.8. Let λ ∈ (0, 1), and assume that conditions (A1) and (B1) are
satisfied. Any weak solution of problem (1.1) is then contained in the order inter-
val [0, 1].

Proof. Fix T > 0 arbitrarily. By condition (A1), we can find a constant c > 0
so that |f(u) − f(1)H(u − λ)| � c(1 + |u|) on R. With this constant c > 0, we
define ū(t) := ect(1 + ct) and u

¯
(t) := −ect(1 + ct) on [0, T ). Then ū and u

¯
are a

weak upper solution and a weak lower solution, respectively, of problem (1.1) as in
condition (A2). Furthermore, we can see that any weak solution u of problem (1.1)
satisfies the inequality

u
¯
(t) � u(t, x) � ū(t) (2.26)

in (0, T ) × R. In fact, by lemma 2.5(a), the weak solution u satisfies the integral
equation

u(t, x) =
∫

R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)(f(u(s, y)) − f(1)H(u(s, y) − λ)) dy ds.

Hence, by the definition of c and condition (B1), we obtain, for 0 < t < T ,

‖u(t, ·)‖L∞(R) � 1 +
∫ t

0
c(1 + ‖u(s, ·)‖L∞(R)) ds.

On applying the Gronwall inequality, we obtain inequality (2.26). We now show
that the maximal and minimal weak solutions U1, u1 ∈ [u

¯
, ū] of problem (1.1) are

contained in the order interval [0, 1]. As may be seen from the proof of theorem 2.3,
the maximal weak solution U2 ∈ [u

¯
, ū] of problem (1.1) with initial datum 1 satisfies

U2 � U1 on (0, T ) × R. Furthermore, by condition (A1), we see that U2 = 1
on (0, T ) × R. Similarly, the minimal weak solution u2 ∈ [u

¯
, ū] of problem (1.1)

with initial datum 0 satisfies u2 � u1 on (0, T ) × R, and, furthermore, u2 = 0 on
(0, T ) × R. Hence, U1 and u1 are contained in the order interval [0, 1], such that u
is also contained in the order interval [0, 1].

The following proposition shows certain monotonicity properties of the maximal
and minimal weak solutions U and u of problem (1.1) in the order interval [u

¯
, ū].

Proposition 2.9. In addition to the assumptions in theorem 2.3, let u0 not be a
constant.
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(a) If U ∈ [u
¯

, ū] is the maximal weak solution of problem (1.1), then U(t, x) is
increasing in x in cases when both u0(x) and ū(t, x) are non-decreasing in x,
and U(t, x) is decreasing in x in cases when both u0(x) and ū(t, x) are non-
increasing in x.

(b) If u ∈ [u
¯

, ū] is the minimal weak solution of problem (1.1), then u(t, x) is
increasing in x in cases when both u0(x) and u

¯
(t, x) are non-decreasing in x,

and u(t, x) is decreasing in x in cases when both u0(x) and u
¯

(t, x) are non-
increasing in x.

Proof. We will prove only assertion (a) of the proposition in the case when both
u0(x) and ū(t, x) are non-decreasing in x. The other cases can be proved similarly.

As may be seen from the proof of theorem 2.3, the maximal weak solution
U ∈ [u

¯
, ū] is obtained as the limit of a sequence (Un)n∈N of weak solutions of

problem (2.20) with U0 = ū. Let us recall that Un+1 is expressed in the form (2.22):

Un+1(t, x) = e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̃M (Un(s, y))e−M(t−s) dy ds

in (0, T ) × R. Since u0 is non-decreasing and is not constant on R, the first term
on the right-hand side of equation (2.22) is increasing in x. Note that, by con-
dition (A1), the function f̃M is non-decreasing on R and that U0(t, x) is non-
decreasing in x. Hence, f̃M (U0(t, x)) is non-decreasing in x and so the second term
on the right-hand side of equation (2.22) with n = 0 is non-decreasing in x. There-
fore, by equation (2.22) with n = 0, we see that U1(t, x) is increasing in x. We
can repeat this process to derive the result that Un(t, x) is increasing in x for all
n � 2. Therefore, U(t, x) is non-decreasing in x. However, from equation (2.23), we
see that U(t, x) is increasing in x. In fact, the first term on the right-hand side of
equation (2.23) is increasing in x, since u0 is non-decreasing and is not constant
on R. Furthermore, the second term on the right-hand side of equation (2.23) is
non-decreasing in x, since f̃M (U(t, x)) is non-decreasing in x. Thus, we find that
U(t, x) is increasing in x.

3. Uniqueness theorem

In this section, we will investigate the uniqueness of weak solutions of problem (1.1).
We will first prove that there exists a certain class of initial data for which the weak
solution of problem (1.1) is locally unique in time. For this purpose, we impose the
following three conditions on u0.

(B2) u0 ∈ C1(R).

(B3) u0 and u′
0 are Lipschitz continuous on R, respectively.

(B4) There exist δ > 0 and η > 0 such that

|u′
0(x)| � δ > 0 whenever u0(x) ∈ [λ − η, λ + η],
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Figure 5. Condition (B4).

and the Lebesgue measure of {x ∈ R | u0(x) ∈ [λ − η, λ + η]} is finite (see
figure 5).

Theorem 3.1. Let λ ∈ (0, 1), and assume that conditions (A1), (B1), (B2), (B3)
and (B4) are satisfied. Then the weak solution of problem (1.1) is locally unique in
time.

For the proof, we need the following lemma.

Lemma 3.2. Let λ ∈ (0, 1), and assume that conditions (A1), (B1), (B2) and (B3)
are satisfied. Assume that u ∈ CB([0, T )×R)∩C0,1((0, T )×R) is any weak solution
of problem (1.1). Then u(t, x) and ux(t, x) converge uniformly to u0(x) and u′

0(x)
on R as t ↓ 0, respectively. More precisely, we have the two assertions:

‖u(t, ·) − u0(·)‖L∞(R) = O(
√

t), (3.1)

‖ux(t, ·) − u′
0(·)‖L∞(R) = O(

√
t). (3.2)

Proof. By condition (A1), we can choose a constant c > 0 such that

|f(u) − f(1)H(u − λ)| � c(1 + |u|) on R.

Hence, by lemma 2.5(a) and proposition 2.8, the difference u(t, x) − u0(x) satisfies
the inequality

|u(t, x) − u0(x)| �
∫

R

K(t, x − y)|u0(y) − u0(x)| dy + 2ct

in (0, T )×R. Since, by condition (B3), the function u0 is Lipschitz continuous on R,
there exists a constant Lu0 > 0 such that, for 0 < t < T and x ∈ R,

|u(t, x) − u0(x)| �
∫

R

K(t, x − y)Lu0 |y − x| dy + 2ct

=
2Lu0√

π

√
t + 2ct.

Therefore, we obtain assertion (3.1). In a similar way, we can derive the inequality

|ux(t, x) − u′
0(x)| � 2

√
t√

π
(Lu′

0
+ 2c)

with some constant Lu′
0

> 0 in (0, T ) × R. Hence, assertion (3.2) follows.
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Proof of theorem 3.1. We use an argument similar to that in the proof of [5, theo-
rem 1]. Assume that we have two weak solutions u and v of problem (1.1). Define
E(t) := ‖u − v‖L∞((0,t)×R) and Is,λ,t := {y ∈ R | |u(s, y) − λ| � E(t)}. Then, by
lemma 2.5(a), the difference u(t, x) − v(t, x) satisfies

u(t, x) − v(t, x)

=
∫ t

0

∫
R

K(t − s, x − y)(f(u(s, y)) − f(v(s, y))) dy ds

−
∫ t

0

∫
Is,λ,t

K(t − s, x − y)f(1)(H(u(s, y) − λ) − H(v(s, y) − λ)) dy ds

=: A(t, x) + B(t, x). (3.3)

(1) Estimate of A(t, x): since, by condition (A1), the function f is Lipschitz con-
tinuous on R, there exists a constant Lf > 0 such that, for 0 < t < T and x ∈ R,

|A(t, x)| �
∫ t

0

∫
R

K(t − s, x − y)Lf |u(s, y) − v(s, y)| dy ds

� Lf t‖u − v‖L∞((0,t)×R). (3.4)

(2) Estimate of B(t, x): by lemma 3.2 and the assumptions on u0, there exist T1 > 0
and ν > 0 such that |ux(t, x)| � ν > 0 on {(t, x) ∈ (0, T1)×R | |u(t, x)−λ| � E(T1)}
and

sup
0<t<T1

µ(It,λ,T1) = sup
0<t<T1

µ({x ∈ R | |u(t, x) − λ| � E(T1)}) < ∞. (3.5)

Furthermore, by estimate (3.5) and the fact that ux is bounded in (0, T1)×R, there
exists m ∈ N0 such that, for any 0 < t < T1, the set {x ∈ R | u(t, x) = λ} consists
of at most m different points. Hence, for any 0 < t < T1 and any 0 < s < t, we get
the inequality

µ(Is,λ,t) = µ({y ∈ R | |u(s, y) − λ| � E(t)}) � 2mE(t)
ν

. (3.6)

Therefore, by inequality (3.6), the absolute value of B(t, x) satisfies the inequality

|B(t, x)| � 2m|f(1)|E(t)
ν

∫ t

0

1√
π(t − s)

ds

=
4m|f(1)|

√
t√

πν
‖u − v‖L∞((0,t)×R) (3.7)

in (0, T1) × R.
By combining (3.3), (3.4) and (3.7), we obtain, for 0 < t < T1,

‖u − v‖L∞((0,t)×R) �
(

4m|f(1)|
√

t√
πν

+ Lf t

)
‖u − v‖L∞((0,t)×R).

Therefore, we find that u − v = 0 in (0, T0) × R by choosing 0 < T0 < T1 such that
4m|f(1)|

√
T0/(

√
πν) + LfT0 is less than 1.
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Figure 6. Condition (B5-1).

To state another uniqueness theorem, we impose the following condition on u0:

(B5) u0 satisfies either condition (B5-1) (see figure 6) or condition (B5-2):

(B5-1) u0 is increasing on R and satisfies u0(−∞) < λ < u0(∞);
(B5-2) u0 is decreasing on R and satisfies u0(−∞) > λ > u0(∞).

Theorem 3.3. Let λ ∈ (0, 1), and assume that conditions (A1), (B1), (B2) and
(B5) are satisfied. The weak solution of problem (1.1) is then globally unique in
time.

Proof. The proof will be given only for the case that u0 satisfies condition (B5-1).
The case that u0 satisfies condition (B5-2) can be proved similarly.

Fix T > 0 arbitrarily. From theorem 2.3, remark 2.7 and proposition 2.9, it follows
that there exists a weak solution u ∈ [0, 1] of problem (1.1) such that ux(t, x) > 0
in (0, T )×R. Assume that there exists a weak solution v different from u and define
T1 := sup{t ∈ [0, T ) | u(s, x) = v(s, x) on [0, t]×R}. Then u(T1, x) = v(T1, x) on R.
We will show that u(t, x) = v(t, x) in (T1, T2) × R for some T1 < T2 < T .

By lemma 2.5(a), the function u satisfies the integral equation

u(t, x) =
∫

R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)(f(u(s, y)) − f(1)H(u(s, y) − λ)) dy ds

=: A(t, x) + B(t, x). (3.8)

By condition (A1), we can find a constant c > 0 so that

|f(u(t, x)) − f(1)H(u(t, x) − λ)| � c(1 + |u(t, x)|) in (0, T ) × R.

Hence, using proposition 2.8 and inequalities (2.4) and (2.6) in lemma 2.4, we find
that, for 0 < t < T and x ∈ R,

|∂tA(t, x)| � 1
t
,

and that, for 0 < r < t < T and x ∈ R,

|B(t, x) − B(r, x)| � 2c(2
√

(t − r)r + (t − r)).
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Thus, the family (u(·, x))x∈R is equicontinuous on every compact subset of (0, T ).
Therefore, by the Arzelà–Ascoli theorem and a diagonal method, we can pass to the
limit as x ↑ ∞ along a subsequence and so obtain a function u(·,∞) in CB((0, T )).
Furthermore, by the monotonicity of u(t, x) in x, the family itself must converge to
u(·,∞) in the same space. We now consider the limit as x ↑ ∞ in equation (3.8). By
condition (A1) and the boundedness of u, we find that f(u(t, x))−f(1)H(u(t, x)−λ)
is bounded in (0, T ) × R. Furthermore, using the fact that u(t, x) is increasing in x
and converges to u(t, ∞) in (0, T ), we have

f(u(t, x)) − f(1)H(u(t, x) − λ) → f(u(t, ∞)) − f(1)Ĥ(u(t, ∞) − λ)

in (0, T ) as x ↑ ∞, where Ĥ is as in condition (A2). Therefore, we can apply
Lebesgue’s dominated convergence theorem to get the integral equation

u(t, ∞) = u0(∞) +
∫ t

0
(f(u(s,∞)) − f(1)Ĥ(u(s,∞) − λ)) ds (3.9)

in (0, T ). Hence, u(t, ∞) > λ on (0, T ), since u0(∞) > λ by condition (B5-1).
A similar argument shows that u(t, −∞) < λ on (0, T ). Therefore, u satisfies
|ux(t, x)| � ν > 0 on {(t, x) ∈ (T1, T3) × R | |u(t, x) − λ| � E(T3)} for some
ν > 0 and for some T1 < T3 < T , where E is as in the proof of theorem 3.1.
Furthermore, by the monotonicity of u(t, x) in x, for any t ∈ (T1, T3) the cardinal
number of {x ∈ R | u(t, x) = λ} is equal to 1. Hence, we can apply the same argu-
ment as in the proof of theorem 3.1 to get u(t, x) = v(t, x) in (T1, T2) × R for some
T1 < T2 < T3. This contradicts the definition of T1 and so the assertion follows.

We consider the following condition on u0.

(B6) u0 satisfies one of the following three conditions:

(B6-1) u0 is non-decreasing on R, and u0(−∞) < λ < u0(∞);

(B6-2) u0 is non-increasing on R, and u0(−∞) > λ > u0(∞);

(B6-3) u0 is a constant on R.

We then obtain the following uniqueness theorem by combining the arguments in
the proofs of theorems 3.1 and 3.3.

Theorem 3.4. Let λ ∈ (0, 1), and assume that conditions (A1), (B1), (B2), (B3),
(B4) and (B6) are satisfied. The weak solution of problem (1.1) is then globally
unique in time.

Proof. First, we discuss the case that condition (B6-1) is satisfied. Fix T > 0 arbi-
trarily. From theorem 2.3, remark 2.7 and proposition 2.9, it follows that there
exists a weak solution u1 ∈ [0, 1] of problem (1.1) such that (u1)x(t, x) > 0
in (0, T ) × R. Assume that there exists a weak solution v1 different from u1 and
define T1 := sup{t ∈ [0, T ) | u1(s, x) = v1(s, x) on [0, t]×R}. Since the assumptions
in theorem 3.4 are stronger than the ones in theorem 3.1, it follows that T1 > 0.
Obviously, u1(T1, x) = v1(T1, x) on R, and u1(T1, x) = v1(T1, x) satisfies condi-
tions (B1) and (B2). Furthermore, we can apply a similar argument to the proof

https://doi.org/10.1017/S0308210500004315 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004315


1158 H. Deguchi

 
0 xx0

λ

u0(x)

Figure 7. Graph of u0.

of theorem 3.3 to find that u1(T1, x) = v1(T1, x) satisfies condition (B5-1). It fol-
lows from theorem 3.3 that u1(t, x) = v1(t, x) in (T1, T ) × R. This contradicts the
definition of T1. The case that condition (B6-2) is satisfied can be argued similarly.

Next, we discuss the case that condition (B6-3) is satisfied. Fix T > 0 arbitrarily
and consider the integral equation

u2(t) = u0 +
∫ t

0
(f(u2(s)) − f(1)H(u2(s) − λ)) ds. (3.10)

Since, by condition (B4), the constant u0 is not equal to λ, equation (3.10) has
a unique classical solution u2 ∈ [0, 1] on [0, T ). Furthermore, by lemma 2.5(a)
it is easy to see that u2 is a weak solution of problem (1.1). Now, assume that
there exists a weak solution v2 different from u2 and define T2 := sup{t ∈ [0, T ) |
u2(s) = v2(s, x) on [0, t] × R}. We then see that u2(T2) = v2(T2, x) on R and
that u2(T2) = v2(T2, x) satisfies conditions (B1), (B2) and (B3). Since u2(t) does
not belong to [λ − η, λ + η] on [0, T ) for sufficiently small η > 0, we see that
u2(T2) = v2(T2, x) satisfies condition (B4). Hence, we can apply theorem 3.1 to
find that u2(t) = v2(t, x) in (T2, T3) × R for some T2 < T3 < T . This contradicts
the definition of T2. Thus, the assertion follows.

Remark 3.5. Results on global uniqueness for other classes of initial data are
obtained by Terman [17], McKean and Moll [13] and Deguchi [4].

4. Non-uniqueness theorem

In this section, we will study the non-uniqueness of weak solutions of problem (1.1)
with initial data like figure 7 and nonlinearities like figure 8. More precisely, we
impose the following conditions on u0 and f :

(B7) u0 satisfies the inequality v0(x) � u0(x) � λ on R, where v0 is a function
on R such that, for some x0 ∈ R (see figure 7),

v0 ∈ CB(R) ∩ C2(R), v′
0, v

′′
0 ∈ CB(R), v0(x + x0) is even on R,

v′
0(x) � 0 and 0 � v0(x) < λ in (−∞, x0), v0(x0) = λ.

(C1) For v0 and x0 given in condition (B7), there exists a constant p > 0 such that

−(p + 2)v′′
0 (x0) − inf0<u<λ f(u)

f(λ) − f(1) − inf0<u<λ f(u)
<

1√
π

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ.

https://doi.org/10.1017/S0308210500004315 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004315


Parabolic initial-value problems with discontinuous nonlinearities 1159

 

 

0  1 u

˚

˚λ

 f (   ) − f (1)

•
λ

Figure 8. Graph of u �→ f(u) − f(1)H(u − λ).

Theorem 4.1. Let λ ∈ (0, 1), and assume that conditions (A1), (B1), (B7) and
(C1) are satisfied. Then the maximal weak solution U ∈ [0, 1] of problem (1.1) is
different from the minimal weak solution u ∈ [0, 1], where [0, 1] is an order interval.

Remark 4.2. Let f(u) = −u. Assume that condition (B7) with u0 = v0 and x0 = 0
holds. Then condition (C1) for non-uniqueness becomes the condition that there
exists a constant p > 0 such that

−(p + 2)u′′
0(0) + λ <

1√
π

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ.

On the other hand, according to McKean and Moll [13], the weak solution of prob-
lem (1.1) is unique if u′′

0(0) < 0 and if

−u′′
0(0) + λ >

1√
π

max
p�0

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ.

Proof of theorem 4.1. In fact, we will show that the minimal weak solution u ∈ [0, 1]
of problem (1.1) satisfies

u(t, x) � λ (4.1)

for (t, x) ∈ (0, T )×R, and further that the maximal weak solution U ∈ [0, 1] satisfies

U(t, x) > λ (4.2)

for (t, x) ∈ (0, T0) × [−√
pt + x0,

√
pt + x0] with some T0 > 0.

Step 1. First, we show inequality (4.1). Let Ĥ be as in condition (A2). Then by
condition (A1) and Ĥ(0) = 0, we see that f(λ) − f(1)Ĥ(0) < 0. Put w(t, x) := λ
in (0, T ) × R. Then w satisfies the integral inequality

w(t, x) � e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̂M (w(s, y))e−M(t−s) dy ds, (4.3)

where M � 0 is a constant such that u �→ f(u) + Mu is non-decreasing on R, and
f̂M (u) := f(u) − f(1)Ĥ(u − λ) + Mu. Note that u(t, x) is obtained as the limit of
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the sequence (un)n∈N given by

un+1(t, x) = e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̂M (un(s, y))e−M(t−s) dy ds (4.4)

with u0 = 0. Since u0 � w in (0, T ) × R, it follows from inequality (4.3) and
equation (4.4) that u1 � w in (0, T ) × R. We can repeat this process to get un �
w = λ in (0, T ) × R for n � 2. Thus, we obtain inequality (4.1).

Step 2. Next, we show inequality (4.2). As seen from the proof of theorem 2.3,
the relationship U � v holds for any weak lower solution v � 1 of problem (1.1)
as in condition (A2). Hence, it suffices to construct a weak lower solution v � 1 of
problem (1.1) that satisfies condition (A2) and inequality (4.2).

By condition (A1), we have inf0<u<λ f(u) < 0. Furthermore, by conditions (A1)
and (C1), we can choose small δ1 > 0 so that infλ<u<λ+δ1 f(u) − f(1) > 0 and

−(p + 2)v′′
0 (x0) − inf0<u<λ f(u)

infλ<u<λ+δ1 f(u) − f(1) − inf0<u<λ f(u)

<
1√
π

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ. (4.5)

Put d1 := infλ<u<λ+δ1 f(u) − f(1) > 0 and d2 := − inf0<u<λ f(u) > 0. By using
the constants d1 and d2, we define

g(t, x) =

{
d1, if − √

pt + x0 � x � √
pt + x0,

−d2, otherwise,

in (0, T ) × R. We consider the problem

vt = vxx + g(t, x), 0 < t < T, x ∈ R,

v|t=0 = v0, x ∈ R,

}
(4.6)

with the function v0 given in condition (B7). According to lemma 2.4, problem (4.6)
has a unique weak solution v, which is expressed in the form

v(t, x) =
∫

R

K(t, x − y)v0(y) dy +
∫ t

0

∫
R

K(t − s, x − y)g(s, y) dy ds. (4.7)

The function v then satisfies the properties stated above. The proof is divided into
four steps.

Step 2.1. First, we prove the following claim.

Claim 1. v(t, x + x0) is even on R for each 0 < t < T .

Proof. By condition (B7), we see that v0(x+x0) is even on R. Furthermore, by the
definition of g, we see that g(t, x + x0) is even on R for each 0 < t < T , so that
v(t, x + x0) is also even on R for each 0 < t < T .

https://doi.org/10.1017/S0308210500004315 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004315


Parabolic initial-value problems with discontinuous nonlinearities 1161

Step 2.2. Second, we prove the following claim.

Claim 2. vx(t, x + x0) > 0 for 0 < t < T and x < 0.

Proof. Differentiating v(t, x + x0) in x, we have

vx(t, x + x0) =
∫

R

Kx(t, x + x0 − y)v0(y) dy

+
∫ t

0

∫
R

Kx(t − s, x + x0 − y)g(s, y) dy ds

=
∫

R

Kx(t, x − ξ)v0(ξ + x0) dξ

+
∫ t

0

∫ √
ps+x0

−√
ps+x0

Kx(t − s, x + x0 − y)(d1 + d2) dy ds

=
∫

R

K(t, x − ξ)v′
0(ξ + x0) dξ

+ (d1 + d2)
∫ t

0
(K(t − s, x +

√
ps) − K(t − s, x − √

ps)) ds

=: A(t, x) + B(t, x).

We can easily see that B(t, x) > 0 for 0 < t < T and x < 0. Furthermore, we have
A(t, x) � 0 for 0 < t < T and x < 0. Indeed, since v′

0(ξ + x0) is odd in ξ, the term
A(t, x) can be rewritten as

A(t, x) =
∫ ∞

0
(K(t, x − ξ) − K(t, x + ξ))v′

0(ξ + x0) dξ.

Note that v′
0(ξ+x0) � 0 for ξ � 0 by condition (B7) and that K(t, x−ξ)−K(t, x+

ξ) � 0 for 0 < t < T , x < 0 and ξ � 0. Hence, we have A(t, x) � 0 for 0 < t < T
and x < 0. Thus, claim 2 follows.

Step 2.3. Third, we prove the following claim.

Claim 3. v(t, x) > λ for (t, x) ∈ (0, T1)× [−√
pt+x0,

√
pt+x0] with some T1 > 0.

Proof. By claims 1 and 2, it suffices to show that v(t, −√
pt + x0) > λ in (0, T1) for

some T1 > 0.
By equation (4.7), we have

v(t, −
√

pt + x0) =
∫

R

K(t, −
√

pt + x0 − y)v0(y) dy

+
∫ t

0

∫
R

K(t − s,−
√

pt + x0 − y)g(s, y) dy ds

=: C(t) + D(t).

(1) Estimate of C(t): we rewrite C(t) as

C(t) =
1√
π

∫
R

e−ξ2
v0(−

√
pt + x0 − 2

√
tξ) dξ.
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Note that v0(x0) = λ and v′
0(x0) = 0 by condition (B7). Hence, by the mean value

theorem, we have

C(t) − λ =
1√
π

∫
R

e−ξ2
(v0(−

√
pt + x0 − 2

√
tξ) − v0(x0)) dξ

=
1√
π

∫
R

e−ξ2
(v′

0(x0 − (
√

pt + 2
√

tξ)κ1) − v′
0(x0))(−

√
pt − 2

√
tξ) dξ

=
1√
π

∫
R

e−ξ2
v′′
0 (x0 − (

√
pt + 2

√
tξ)κ1κ2)(

√
pt + 2

√
tξ)2κ1 dξ

� 1√
π

∫
R

e−ξ2
v′′
0 (x0 − (

√
pt + 2

√
tξ)κ1κ2)(

√
p + 2ξ)2t dξ

for some κ1, κ2 ∈ (0, 1) depending only on t and ξ. Therefore, we see that

lim inf
t↓0

C(t) − λ

t
� v′′

0 (x0)(p + 2). (4.8)

(2) Estimate of D(t):

D(t) =
∫ t

0

∫ √
ps+x0

−√
ps+x0

K(t − s,−
√

pt + x0 − y)(d1 + d2) dy ds − d2t

=
d1 + d2√

π

∫ t

0

∫ −√
p(

√
t−√

s)/(2
√

t−s)

−√
p(

√
t+

√
s)/(2

√
t−s)

e−ξ2
dξ ds − d2t

=
[
d1 + d2√

π

∫ 1

0

∫ −√
p(1−√

τ)/(2
√

1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ − d2

]
t. (4.9)

From inequalities (4.5) and (4.8) and equation (4.9), it follows that

lim inf
t↓0

C(t) − λ + D(t)
t

� d1 + d2√
π

∫ 1

0

∫ −√
p(1−

√
τ)/(2

√
1−τ)

−√
p(1+

√
τ)/(2

√
1−τ)

e−ξ2
dξ dτ − d2 + v′′

0 (x0)(p + 2) > 0.

This means that
C(t) − λ + D(t)

t
> 0

in (0, T1) with sufficiently small T1 > 0. Hence, we get

v(t, −
√

pt + x0) = C(t) + D(t) > λ

for 0 < t < T1.

Step 2.4. Finally, we prove the following claim.

Claim 4. v satisfies v � 1 in (0, T0) × R and is a weak lower solution of prob-
lem (1.1) in (0, T0) × R as in condition (A2) for some 0 < T0 < T1.

https://doi.org/10.1017/S0308210500004315 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004315


Parabolic initial-value problems with discontinuous nonlinearities 1163

Proof. By equation (4.7) and condition (B7), we obtain, for (t, x) ∈ (0, T ) × R,

−d2t < v(t, x) < λ + d1t.

Hence, v � 1 in (0, (1−λ)/d1)×R. Thus, it remains to prove that v is a weak lower
solution of problem (1.1) in (0, T0) × R as in condition (A2) for some 0 < T0 <
min{T1, (1 − λ)/d1}. This can be proved as follows. By claim 3 we have

f(v(t, x)) − f(1)Ĥ(v(t, x) − λ) − g(t, x) � inf
λ<u<λ+δ1

f(u) − f(1) − d1 = 0

for (t, x) ∈ (0, min{T1, (1−λ)/d1, δ1/d1})×[−√
pt+x0,

√
pt+x0]. By condition (A1),

there exists a constant δ2 > 0 such that

inf
−δ2<u<λ

f(u) = inf
0<u<λ

f(u).

Hence, we have

f(v(t, x)) − f(1)Ĥ(v(t, x) − λ) − g(t, x) � inf
0<u<λ

f(u) + d2 = 0

for (t, x) ∈ (0, min{T1, (1 − λ)/d1, δ1/d1, δ2/d2}) × (R \ [−√
pt + x0,

√
pt + x0]).

Furthermore, f(v(t, x)) − f(1)Ĥ(v(t, x) − λ) − g(t, x) is bounded in (0, T ) × R and,
by condition (B7), the inequality v0(x) � u0(x) holds on R. Hence, v is a weak lower
solution of problem (1.1) in (0, T0) × R as in condition (A2) for T0 := min{T1, (1 −
λ)/d1, δ1/d1, δ2/d2}.

The proof of theorem 4.1 is now complete.

Remark 4.3. In the case that the maximal and minimal weak solutions U , u ∈
[0, 1] of problem (1.1) are different, results on their asymptotic behaviour may be
obtained from [4]. On the other hand, results on asymptotic behaviour of unique
weak solutions of problem (1.1) with f(u) = −u have been obtained by Terman [17]
and McKean and Moll [13].

5. Concluding remarks

Hofbauer and Simon [10] dealt with problem (1.1) with a bounded and Borel mea-
surable function as the nonlinearity and a bounded, uniformly continuous function
as initial datum. They formulated the first equation in problem (1.1) as a dif-
ferential inclusion, and showed the existence of its solution. To distinguish weak
solutions of problem (1.1) from solutions of problem (1.1) formulated as a differ-
ential inclusion, we call the latter ‘HS-solutions’. In this section, we will study the
relationship between weak solutions and HS-solutions. For this purpose, in addition
to conditions (A1) and (B1), we will impose the following conditions on u0 and f .

(A3) f satisfies the condition

f(u) =

{
0 on (−∞, 0),
f(1) on (1,∞).

(B8) u0 is uniformly continuous on R.
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As stated in § 1, we are interested in solutions taking values between 0 and 1
from the viewpoint of best response dynamics. Hence, f(u)− f(1)H(u−λ) may be
regarded as zero outside the interval [0, 1], and so in this sense condition (A3) is
not strong. The definition of an HS-solution of problem (1.1) is given as follows.

Definition 5.1 (Hofbauer and Simon [10, definition 1]). A function

u ∈ C([0, T ) × R) ∩ C0,1((0, T ) × R)

is said to be an HS-solution of problem (1.1) if the following two conditions are
satisfied:

(i) there exists a bounded Borel measurable function k on (0, T ) × R such that,
for all ϕ ∈ D((0, T ) × R),∫ T

0

∫
R

(u∂tϕ − ∂xu∂xϕ + (f(u) + k(t, x))ϕ) dxdt = 0

and that

−f(1)Ĥ(u(t, x) − λ) � k(t, x) � −f(1)H̃(u(t, x) − λ) a.e. in (0, T ) × R,

where H̃ and Ĥ are as in condition (A2).

(ii) for all x0 ∈ R,
lim

t↓0,x→x0
u(t, x) = u0(x0).

The following theorem is a special case of [10, theorem 1].

Theorem 5.2. Let λ ∈ (0, 1), and assume that conditions (A1), (A3), (B1) and
(B8) are satisfied. Then there exists an HS-solution of problem (1.1).

We now briefly explain their proof of theorem 5.2. Let ψ be a fixed element of
D(R) such that ψ � 0, suppψ ⊂ (−1, 1) and

∫
ψ(u) du = 1. For each n ∈ N, put

ψn(u) := nψ(nu) and define two functions,

fn(u) :=
∫ ∞

−∞
f(v)ψn(u − v) dv,

Hn(u − λ) :=
∫ ∞

−∞
H(v − λ)ψn(u − v) dv,

on R. Since u �→ fn(u)−f(1)Hn(u−λ) is Lipschitz continuous on R for each n ∈ N,
there exists a unique bounded classical solution un of the problem

un
t = un

xx + fn(un) − f(1)Hn(un − λ), 0 < t < T, x ∈ R,

un|t=0 = u0, x ∈ R.

}
(5.1)

They proved that a subsequence of (un)n∈N converges to an HS-solution of prob-
lem (1.1). From this, we can obtain the following proposition.

Proposition 5.3. Let λ ∈ (0, 1), and assume that conditions (A1), (A3), (B1)
and (B8) are satisfied. Then the HS-solution u obtained by Hofbauer and Simon [10]
of problem (1.1) is contained in the order interval [0, 1].
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Proof. By condition (A3), it is easy to see that fn(1+1/n)−f(1)Hn(1+1/n−λ) = 0
and fn(−1/n) − f(1)Hn(−1/n − λ) = 0 for each n ∈ N. Hence, un

1 (t, x) := 1 + 1/n
and un

2 (t, x) := −1/n are classical solutions of problem (5.1) corresponding to
initial data 1+1/n and −1/n, respectively. Furthermore, for each n ∈ N, note that
−1/n < u0(x) < 1 + 1/n on R and that u �→ fn(u) − f(1)Hn(u − λ) is Lipschitz
continuous on R. Therefore, we can apply a comparison theorem to obtain the
relationship

un
2 (t, x) = − 1

n
� un(t, x) � un

1 (t, x) = 1 +
1
n

for each n ∈ N. Hence, on taking the limit as n ↑ ∞, we obtain the assertion.

It is easy to see that the maximal and minimal weak solutions U, u ∈ [0, 1]
obtained in theorem 2.3 of problem (1.1) are HS-solutions of problem (1.1). The
following proposition shows the relationship between them and other HS-solutions.

Proposition 5.4. Let λ ∈ (0, 1), and assume that conditions (A1), (A3), (B1)
and (B8) are satisfied. Then the maximal and minimal weak solutions U , u ∈ [0, 1]
obtained in theorem 2.3 of problem (1.1) are the maximal and minimal HS-solutions,
respectively, of problem (1.1) in the order interval [0, 1].

Proof. We will prove only that the maximal weak solution U ∈ [0, 1] of problem (1.1)
is the maximal HS-solution of problem (1.1) in the order interval [0, 1]. The assertion
for the minimal weak solution u ∈ [0, 1] can be proved similarly.

Let v ∈ [0, 1] be any HS-solution of problem (1.1). Then, by definition 5.1, there
exists a bounded Borel measurable function k on (0, T ) × R such that v is a weak
solution of the problem

vt = vxx + f(v) + k(t, x), 0 < t < T, x ∈ R,

v|t=0 = u0, x ∈ R.

}

Since, by condition (A1), the function f is Lipschitz continuous on R, there exists
a constant M � 0 such that u �→ f(u) + Mu is non-decreasing on R. With this
constant M � 0, we define w(t, x) := v(t, x)eMt. We then find that w is a weak
solution of the problem

wt = wxx + (f(we−Mt) + Mwe−Mt + k(t, x))eMt, 0 < t < T, x ∈ R,

w|t=0 = u0, x ∈ R.

}

We can apply a similar argument to the proof of lemma 2.5(a) in order to find that

w(t, x) =
∫

R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)(f(we−Ms) + Mwe−Ms + k(s, y))eMs dy ds.

Note that w(t, x) := v(t, x)eMt and that

k(t, x) � −f(1)H̃(v(t, x) − λ) a.e. in (0, T ) × R.

https://doi.org/10.1017/S0308210500004315 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004315


1166 H. Deguchi

Hence,

v(t, x) � e−Mt

∫
R

K(t, x − y)u0(y) dy

+
∫ t

0

∫
R

K(t − s, x − y)f̃M (v(s, y))e−M(t−s) dy ds,

where f̃M (v) := f(v) − f(1)H̃(v − λ) + Mv. Therefore, as in step 1.3 of the proof
of theorem 2.3, we can show that v � U in (0, T ) × R.

Remark 5.5. By propositions 5.3 and 5.4, the HS-solution v obtained by Hofbauer
and Simon [10] of problem (1.1) satisfies the relationship u � v � U for the maximal
and minimal weak solutions U , u ∈ [0, 1] obtained in theorem 2.3 of problem (1.1).

Remark 5.6. By proposition 5.4, theorems 3.1, 3.3 and 3.4, which are local or
global uniqueness theorems for weak solutions of problem (1.1), hold for HS-solu-
tions of problem (1.1) in the order interval [0, 1]. Furthermore, theorem 4.1, which
is a non-uniqueness theorem for weak solutions of problem (1.1), explains the non-
uniqueness of HS-solutions of problem (1.1) in the order interval [0, 1].
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