
Acta Numerica (2000), pp. 215–365 c© Cambridge University Press, 2000

Lie-group methods

Arieh Iserles
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, England

E-mail: a.iserles@damtp.cam.ac.uk

Hans Z. Munthe-Kaas
Department of Computer Science,

University of Bergen, Norway

E-mail: hans@ii.uib.no

Syvert P. Nørsett
Institute of Mathematics,

Norwegian University of Science and Technology,

Trondheim, Norway

E-mail: norsett@math.ntnu.no

Antonella Zanna
Department of Computer Science,

University of Bergen, Norway

E-mail: anto@ii.uib.no

Many differential equations of practical interest evolve on Lie groups or on
manifolds acted upon by Lie groups. The retention of Lie-group structure
under discretization is often vital in the recovery of qualitatively correct geo-
metry and dynamics and in the minimization of numerical error. Having
introduced requisite elements of differential geometry, this paper surveys the
novel theory of numerical integrators that respect Lie-group structure, high-
lighting theory, algorithmic issues and a number of applications.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

216 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

CONTENTS

1 Numerical analysts in Plato’s temple 216
2 Theory and background 223
3 Runge–Kutta on manifolds and RK-MK 252
4 Magnus and Fer expansions 256
5 Quadrature and graded algebras 270
6 Alternative coordinates 286
7 Adjoint methods 304
8 Computation of exponentials 312
9 Stability and backward error analysis 320
10 Implementation, error control and DiffMan 324
11 Applications 329
References 349
A List of methods 354
B Fast computation of 3D rotations 363

1. Numerical analysts in Plato’s temple

‘Ageometretos medeis eisito’: let nobody enter who does not understand
geometry. These were the words written at the entrance to Plato’s Temple
of the Muses. Are numerical analysts welcome in Plato’s temple?

Historically, the answer is negative. Computational mathematics is all
about rendering mathematical phenomena in an algorithmic form, amen-
able to sufficiently precise, affordable and robust number crunching. A
mathematical phenomenon can be approached in one of two ways: either
by exploring its qualitative features (which, to a large extent, are synonym-
ous with geometry or, at the very least, can be formulated in geometric
terminology) or by approximating its quantitative character. Although only
purists reside completely at either end of the spectrum, it is fair to point out
that numerical analysis, by its very ‘rules of engagement’, is what ‘quant-
itative mathematics’ is all about. Ask a numerical analyst ‘How good is
the solution?’ and the likely answer will address itself to a subtly different
question: ‘How small is the magnitude of the error?’

In principle, the emphasis on quantitative aspects in mathematical com-
puting has served it well. It is hard to imagine modern technological civiliz-
ation without the multitude of silent computer programs in the background,
flying the aeroplanes, predicting the weather, making sense of CAT scans,
controlling robots, identifying fingerprints, keeping reactions from running
away, and modelling the behaviour of stock markets. This is the success
story of numerical analysis, of this ‘quantitative number crunching’, and
nothing should be allowed to obscure it. So, perhaps if we are doing so well

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 217

everywhere else, we might cede Plato’s temple to our ‘purer’ brothers and
sisters: let them engage in sterile intellectual discourse while we change the
world!

The main contention of this review and of the emerging discipline of
geometric integration is that this approach, although tempting, is at best
incomplete, at worst badly misguided. The history is not just a heroic
tale of numerical algorithms fleshing out mathematical concepts as num-
bers and graphs. Progress has always occurred along parallel, intertwined
tracks: both better theoretical understanding of qualitative attributes of a
mathematical construct and its better computation. The aeroplane-flying,
weather-predicting and CAT-scanning programs can do their job only be-
cause they deliver an answer that explains in a satisfactory manner qualit-
ative features, as well as producing the ‘right’ numbers! Indeed, an artificial
dichotomy of quantitative and qualitative aspects of mathematical research
is in our opinion misleading and it ill serves mathematical and applied com-
munities alike.

On the one hand, computation tells pure mathematics what to prove. Phe-
nomena are often initially identified when observed under discretization and
subsequently subjected to the full rigour of mathematical analysis. A famil-
iar case in point is the discovery of solitons in the solution of the Korteweg–
de Vries equation by Zabusky and Kruskal (1965), an event which launched a
whole new mathematical discipline; other examples abound. Indeed, we are
so used to relying on the computer as a laboratory of pure mathematics that
it is difficult to imagine the heroic work of Gaston Julia (1918) on the geo-
metry of fractals while bearing in mind that he had no access to computers,
and was never able to calculate easily a sequence of rational iterations or to
see a fractal on a computer monitor!

On the other hand, qualitative analysis tells computation, quite literally,
what to compute. Every seasoned numerical analyst knows that the proced-
ure of ‘discretize everything in sight and throw it on a computer’ works only
with toy problems. The more we know about the qualitative behaviour of
the underlying mathematical construct, the more we can identify the right
computational approach, concentrate resources at the right place, focus on
features that influence more the quantitative behaviour and, by the conclu-
sion of the computation, have well-founded expectation that the graph on
the computer monitor corresponds to a genuine solution of the problem in
hand.

Moreover, consumers of numerical calculations are not interested just in
numbers, graphs and impressive visualization. Very often it is the qualit-
ative features, most conveniently phrased in the language of geometry, that
draw genuine interest in applications: periodicity, chaoticity, conservation
of energy or angular momentum, reduction to lower-dimensional manifolds,
symmetry, reversibility,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

218 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

The contention of this review is not just that the contribution of geometry
to computation in the special case of time-evolving systems of differential
equations is absolutely crucial, but that the terminology of differential geo-
metry, and in particular Lie groups, creates the right backdrop to this pro-
cess. The following example will help to elucidate this point, while serving
as a convenient introduction to the theme of this paper.

Let us denote by SN the set of all N × N real symmetric matrices and
consider the solution of the isospectral flow

Y ′ = B(Y)Y − Y B(Y), t ≥ 0, Y (0) = Y0 ∈ SN , (1.1)

where the (sufficiently smooth) function B maps SN to N × N real skew-
symmetric matrices. The solution itself remains in SN for all t ≥ 0. Such
flows occur in a variety of applications. Perhaps the earliest (and the best
known) is the Toda lattice of material points subjected to nearest-neighbour
interaction. It was demonstrated by Flaschka that, in the case of an ex-
ponential interaction potential, the underlying Hamiltonian system can be
rendered in the form (1.1), where Y is tridiagonal and B maps

α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0
. . .

. . .
. . . 0

...
. . . βN−2 αN−1 βN−1

0 · · · 0 βN−1 αN

 to

0 β1 0 · · · 0

−β1 0 β2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −βN−2 0 βN−1

0 · · · 0 −βN−1 0

(Toda 1981). Another important application of (1.1) is to Lax pairs in fluid
dynamics, whence SN needs to be replaced by a suitable function space, B
is a differential operator and the outcome is a partial differential equation
of a hyperbolic type (Toda 1981). Before we mention another application
of isospectral flows, we need to single out their most remarkable qualitative
feature which, coincidentally, explains their name: as the time evolves, the
eigenvalues of Y (t) stay put! Upon a moment’s reflection, this renders such
flows interesting in the context of numerical algebra. Indeed, the classical
QR algorithm is intimately related to sampling the solution of (1.1) at unit
intervals (Deift, Nanda and Tomei 1983). Many other iterative algorithms
can be phrased in this terminology and, perhaps more importantly, many
interesting algorithms rely on this construct in the first place. Pride of place
belongs here to methods for the inverse eigenvalue problem: seeking a matrix
of a given structure that possesses a specified set of eigenvalues (or singu-
lar values). Such problems are important in a wide range of applications,
ranging from the theory of vibrations to control theory, tomography, system
identification, geophysics, all the way to particle physics. Isospectral flows
are a common denominator to perhaps the most powerful approach toward

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 219

the design of practical algorithms for the inverse eigenvalue problem, which
has been pioneered in the main by Chu (1998). Suppose that we are seeking
a matrix in a class T ⊂ SN with the eigenvalues η ∈ R

N . Often it is possible
to design a matrix function B so that attractive fixed points of (1.1) lie in
T . In that case, letting Y (0) = diagη results in a flow that converges to the
solution of the inverse eigenvalue problem.

As an example of such a procedure we mention the inverse eigenvalue
problem for Toeplitz matrices. Thus, T consists of symmetricN×N Toeplitz
matrices:

X ∈ T ⇔ xk,l = t|k−l|, k, l = 1, 2, . . . , N,

where t0, t1, . . . , tN−1 are arbitrary real numbers. Such problems are im-
portant in the design of control systems but, remarkably, even the very
existence of a solution has until very recently been an open problem, which
has been answered by Landau (1994) in a beautiful, yet non-constructive,
existence proof. Following Chu (1993) and Trench (1997), we let

bk,l(Y) =

 yk,l−1 − yk+1,l, 1 ≤ k < l ≤ N,
0, 1 ≤ k = l ≤ N,
yk+1,l − yk,l−1, 1 ≤ l < k ≤ N

be a Toeplitz annihilator. Note that B is indeed skew symmetric and that
B(Y) = O for Y ∈ T : thus, a solution is a fixed point.

While remarking that many important questions with regard to the con-
vergence of the above algorithm are still wide open, we should draw the
reader’s attention to a crucial observation. For numerical purposes, sooner
or later we must replace (1.1) by a computational time-stepping scheme.
Will such a scheme respect the eigenstructure of Y ? This is not simply an
optional extra since the whole point of the exercise is to evaluate an answer
in T . Yet, as proved in Calvo, Iserles and Zanna (1997), the most popular
numerical methods, multistep and Runge–Kutta schemes, do not respect
isospectral structure and they fail to converge to the correct element of T :
the error on the eigenvalues, of the same order of magnitude as the error in
the numerical trajectory itself, is unacceptable.

An alternative, proposed by Calvo et al. (1997), is to observe that all the
elements of the isospectral manifold

I(η) = {X ∈ SN : σ(X) = η},
where σ(X) denotes the spectrum of X, can be written in the form X =
QY0Q

T, where Y0 = diagη is our initial condition and Q ∈ SO(N), the set
of all N×N real orthogonal matrices with unit determinant. The main idea
is to seek, in place of (1.1), a differential equation that is satisfied by Q(t)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

220 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

in the representation

Y (t) = Q(t)Y0Q(t)T, t ≥ 0. (1.2)

It is easy to ascertain that this equation has the form

Q′ = B(QY0Q
T)Q, t ≥ 0, Q(0) = I (1.3)

and that, provided we can solve it while retaining orthogonality, we can
easily recover the solution of the original isospectral flow.

0 50 100 150 200 250
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Toeplitz error (CFE)
Eigenvalue error (CFE)
Toepliz error (FE)
Eigenvalue error (FE)

Fig. 1.1. Toeplitz error and error on the eigenvalues versus number of iterations

for a 5× 5 symmetric inverse eigenvalue problem when solved with the Forward

Euler scheme (FE) and the Cayley-based Forward Euler (CFE). Although both

methods converge asymptotically to a Toeplitz matrix, the error on the

eigenvalues of CFE stays within machine accuracy while the error of FE is

completely determined by the choice of integration step-size

To illustrate our point, let us consider a simple numerical experiment. We
choose η = [1, 2, 3, 4, 5]T, and solve the symmetric inverse eigenvalue prob-
lem (1.1), where the matrix function B is the Toeplitz annihilator introduced
above. We consider first the standard Forward Euler (FE) scheme,

Yn+1 = Yn + h[B(Yn), Yn], n ∈ Z
+,

with initial condition Y0 = diag(η) and step-size h = 1
10 . The Toeplitz error,

‖B(Yn)‖2, is plotted in Figure 1.1 as a dotted line. Clearly, as n tends to
infinity, the Toeplitz error becomes progressively smaller and Yn tends to
a Toeplitz matrix, as the theory predicted. Do the eigenvalues stay put?

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 221

The answer is negative, since the FE scheme is not isospectral, as proven
in Calvo et al. (1997). Therefore the error on the eigenvalues after the first
step is of the same order of the error of FE and is carried along the whole
integration (dash-dotted line in Figure 1.1).

Consider next the iteration

Qn+1 =
(
I − 1

2hB(Yn)
)−1 (

I + 1
2hB(Yn)

)
,

Yn+1 = Qn+1YnQ
T
n+1,

n ∈ Z
+,

which is equivalent to solving (1.3) with a modified version of the Forward
Euler scheme based on the Cayley expansion (note that Qn+1 is ortho-
gonal) in tandem with a similarity transformation for the update Yn+1. This
scheme, to which we will refer as CFE (Cayley-type Forward Euler), is ex-
plicit, has the same order of accuracy and requires only slightly more com-
putations than the more classical FE. However, unlike FE, it is isospectral
by design and preserves the eigenvalues to machine accuracy. In conclusion,
FE tends to a Toeplitz matrix with the wrong eigenvalues, while CFE, a
simple modification of FE that instead preserves the qualitative features of
the flow, tends to a Toeplitz matrix with the right eigenvalues. The Toeplitz
and the eigenvalue error of CFE are displayed in Figure 1.1 and correspond
to the dashed and ‘plus’ lines respectively.

The set SO(N) in which the matrix Q of the above example evolves is
an instance of a Lie group, a concept that will be described and debated
in great detail in Section 2, while (1.2) and (1.3) are special instances of a
group action and a Lie-group equation.

Let us comment briefly on the contents of this review. In Section 2 we
have assembled the common mathematical denominator underlying this pa-
per: elements of differential geometry, Lie groups and algebras, homogeneous
spaces and differential equations evolving on such objects. Section 3 is de-
voted to Runge–Kutta–Munthe-Kaas schemes, the most natural approach
to Lie-group solvers in our setting. In Section 4 we describe expansions,
originally due to Magnus and to Fer, which can be converted into inter-
esting computational tools. Section 5 is concerned with a make-or-break
issue for many Lie-group methods, multivariate quadrature of multilinear
forms over polytopes. We demonstrate there that some very technical tools
from Lie-algebra theory can be used to a great effect in reducing the nu-
merical cost. Lie-group methods are typically based on local imposition of
a convenient coordinate system in the group. In Section 6 we debate less
conventional choices of the coordinate map, which are suitable for important
Lie groups and equations of practical interest. The theme of Section 7 is
time-symmetric methods that, by design, exhibit many favourable features,
while the concern of Section 8 is the practical approximation of a matrix
exponential from a Lie algebra, so that the result lies in the right Lie group.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

222 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Stability issues are addressed in Section 9, while Section 10 reviews practical
issues of implementation and error control and introduces the DiffMan pack-
age. A sample of the many applications of Lie-group methods is presented
in Section 11. Finally, in Appendix A we list practical Lie-group methods,
while Appendix B displays useful explicit formulae for integration in SO(3),
perhaps the single Lie group with greatest relevance to problems in science
and engineering.

The purpose of this survey is not to cover the entire corpus of Lie-group
methods but to present a unified introduction to a young discipline that
is likely to undergo many exciting further developments. We have omitted
many interesting methods and papers, with due apologies to their authors,
to keep our narrative more focused and clear. Only the future can tell which
methods and techniques will survive.

It is vital throughout the paper to distinguish what exactly is the type
of objects under consideration. We will often be mixing in our formulae
elements of Lie groups and Lie algebras, scalars, matrices and vectors. To
assist the reader, we have adhered to a consistent naming convention.

• Elements in a Lie algebra are denoted by the Roman letters a, b, . . . , h
and A,B, . . . ,H and by the Greek letters α, β, . . . , ξ and ∆,Θ,Ξ.

• Elements in a Lie group are denoted by the Roman letters p, q, . . . , z
and P,Q, . . . , Z and by the remaining Greek letters: π, ρ, . . . , ω and
Υ,Φ,Ψ,Ω.

• Elements in an abstract construct (e.g., an abstract Lie group) are
denoted mostly with lower-case letters. However, as soon as we are
concerned with specific representation, we reserve lower-case letters for
scalars, upper case for matrices and lower-case, boldfaced letters for
vectors.

• Special elements deserve special names. Thus, I is the identity in a Lie
group, while O is the zero of a Lie algebra. A generic Lie group will
be denoted by G and a generic Lie algebra by g. In general, we reserve
Gothic font for Lie algebras.

• As in all naming conventions, we make obvious compromises with
standard mathematical practice and common sense. Proper names
remain unchanged: thus, sin t is the familiar sine function, not an ele-
ment of a group, {Bk}k∈Z+ are Bernoulli numbers, Φ is the set of roots
of a Lie algebra, h is the step-size of a time-stepping algorithm and so
on. We also employ a plethora of integration variables, summation in-
dices, constants etc. Occasionally variables evolve in structures which
are neither Lie groups nor Lie algebras, e.g., the isospectral manifold
I(η). In all these cases, which should be obvious from the context, we
use ad hoc notation.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 223

2. Theory and background

Lie groups and Lie algebras are mathematical objects which originated in
the seminal work of Sophus Lie (1842–1899) on solving differential equa-
tions by quadrature, using symmetry methods. Originally these concepts
were quite concrete, related to flows of differential equations on R

N . Early
in the twentieth century an abstract view of Lie-group theory emerged, com-
mencing from the work of Elie Cartan on the classification of Lie algebras.
The advantage of abstract formulation is that it simplifies mathematical
analysis, and hence this presentation has become dominant throughout the
mathematical literature. However, the abstract theory concentrates on un-
derstanding mathematical structures rather than exposing applications in
solving differential equations. Hence it is not at all clear to most applied
mathematicians that Lie groups are useful objects in applied and compu-
tational mathematics, and it might be difficult to inspire the motivation to
learn an abstract theory.

We believe that the original idea of arriving at Lie algebras via continu-
ous actions on a domain should be an excellent starting point for compu-
tationally oriented mathematicians, and in fact for many applications it is
important to keep this view in focus. In this presentation we will commence
from this perspective and gradually move towards somewhat more abstract
formulations. Eventually, in Section 2.5 we will return to concrete matrix
formulation, concentrating on the numerical solution of matrix differential
equations of the form

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) = Y0,

where Y and A(t, Y) are N × N matrices. It turns out that all our solu-
tion techniques can be derived in this concrete matrix setting and without
major modifications they can be applied to more general situations. All the
algorithms of this paper will be derived within the matrix framework, and
hence the theory from this point and up to Section 2.5 might be read in a
relaxed manner, without the need to master all the details at first reading.

Numerical integration of ordinary differential equations (ODEs) is tradi-
tionally concerned with solving initial value problems evolving on R

N ,

y′ = f(t,y), t ≥ 0, y(0) = y0, y(t) ∈ R
N ,

where f is a vector field on R
+×R

N . Well-known numerical integrators, such
as Runge–Kutta and multistep methods, advance a time-stepping procedure
by adding vectors in R

N ,

yn+1 = yn + han,

where an = an(h,yn, . . .) is computed by the given numerical method and
h is the time-step. One might say that classical integrators are formulated

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

224 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

using a set of ‘basic motions’ given by translations on R
N to advance the

numerical solution.
A major motivation for Lie-group methods is the possibility of replacing

the domain R
N with more general configuration spaces and replacing trans-

lations on R
N by more general families of ‘basic motions’ on the domain.

For example, if y(t) is a vector known to evolve on a sphere, one might con-
sider rotations yn+1 = Qnyn, where Qn is an orthogonal matrix, as basic
motions. We have already encountered another example, isospectral flows
(1.1). In that case Y (t) evolves on the isospectral manifold I(σ(Y0)) and
this is the right configuration space. Moreover, the natural ‘basic motions’
are (1.2) and they rest upon the fact that any two elements in I(σ(Y0))
are similar via an orthogonal matrix. A generalization of the last example
no longer requires that Y0 be symmetric and that the matrix function B
be skew symmetric: any nonsingular initial value and sufficiently smooth
matrix function will do. The flow remains isospectral but the elements of
the configuration space are no longer orthogonally similar. The represent-
ation (1.2) is valid, however, if we allow Q(t) to range across all possible
nonsingular real matrices and replace QT with Q−1.

An important reason why a manifold, rather than the entire R
N , is a

suitable configuration space is that it often expresses crucial geometric at-
tributes of the underlying differential system, for instance conservation laws,
symmetries or symplectic structure. As will be seen later, an added bonus of
this approach is that it frequently leads to interesting numerical advantages,
in particular to slower error accumulation.

In seeking abstractions and generalizations of classical numerical methods
it is important to bear in mind abstractions in pure-mathematical treatment
of differential equations. However, the transition from pure to computational
mathematics is not straightforward. Whenever a pure mathematician says
‘There exists an animal such that . . . ,’ an applied mathematician must add
questions like ‘Can we compute this animal efficiently?’ and ‘How can we
represent it in software?’

2.1. Vector fields and flows on manifolds

A cornerstone of all abstract mathematical presentations of differential equa-
tions is the concept of differential manifolds as the definition of domains on
which differential equations evolve. A good general introduction to mani-
folds and to differential geometry are the books by Abraham and Marsden
(1978) and Guillemin and Pollack (1974).

Intuitively one should think of a d-dimensional manifold as being a smooth
domain which in a (small) neighbourhood of any point ‘looks like’ R

d, but
typically looks different globally. It is known that any d-dimensional mani-
fold can be represented as a d-dimensional surface embedded in R

N for some

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 225

N ≥ d. This is a conceptually very useful view of manifolds. It is, how-
ever, also important to know that all geometric properties of manifolds exist
independently of any particular representation.1

It is possible to discuss these properties in a coordinate-free language,
which is independent of any particular representation. Although this ab-
stract presentation is mathematically very elegant and it provides vital
clues toward writing good software in an object-oriented language (Engø,
Marthinsen and Munthe-Kaas 1999), it requires quite a bit of work to present
and comprehend. The advantage of the abstract language is that it focuses
on the essential structures. However, in most of the applications we will
deal with, the manifolds exist naturally as surfaces embedded in R

N , and
furthermore it is fully possible to understand and use the numerical tech-
niques we will discuss in this paper without knowing the abstract theory of
manifolds. We have therefore decided to base our discussion on the following
very concrete definition.

Definition 2.1. A d-dimensional manifold M is a d-dimensional smooth

surface M⊂ R
N for some N ≥ d.

It should be made crystal clear that all the numerical techniques we are
about to present rely solely on those properties of M that exist independ-
ently of any particular embedding in R

N . We believe that a reader with
knowledge of coordinate-free presentations will have no difficulty whatso-
ever in translating the algorithms and results to a more general setting.

Example 2.1. It is easy to construct examples of manifolds in a number

of ways. An example of an abstract definition is the specification of an atlas

of local coordinate charts. However, given our focus on ‘concrete’ manifolds,

we present examples already embedded in R
N .

• Any smooth surface will do and a few familiar examples are displayed

in Figure 2.1. Smoothness is important: the torus

{(cosψ + ρ cos θ, sinψ + ρ sin θ, ρ cos θ) : 0 ≤ ψ, θ ≤ 2π}
is a manifold for ρ ∈ (0, 1), but not when ρ = 1, because of a singularity

at the origin.

• An important representation of a manifold is as a smooth subset of

solutions of a smooth algebraic equation, g(x) = 0. Thus, for example,

g(x) = ‖x‖2
2 − 1 defines a unit sphere.

1 Existence independently of representations should in fact be taken as the very definition

of a geometric property.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

226 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Fig. 2.1. Examples of manifolds embedded in R
3: a sphere, a doubly twisted

Möbius-strip-like torus and a twisted ribbon

• The algebraic-equation representation is of direct relevance to geo-

metric integration, since conservation laws and integrals of differen-

tial systems are nothing else but algebraic equations constant along

the solution trajectory. Thus, for example, a Hamiltonian system

with Hamiltonian energy H(p, q) evolves on the manifold {H(p, q) =

H(p(0), q(0)) : p, q ∈ R
N}.

• The set O(N) of all N × N orthogonal matrices is a manifold, since

X ∈ O(N) is equivalent to g(X) = ‖XTX − I‖2
2 = 0. So is SL(N), the

set of all N×N matrices with unit determinant, since g(X) = detX−1

is a smooth function.

• A Stiefel manifold is the set of all real M × N matrices X such that

XTX = I. Typically M > N – such matrices are ‘long and skinny’ –

and XXT 6= I.

• A Grassmann manifold is a Stiefel manifold, equivalenced by O(M).

In other words, we identify X1, X2 satisfying XT
1 X1 = XT

2 X2 = I if

there exists an orthogonal M ×M matrix Q such that X1 = QX2. An

alternative interpretation of a Grassmann manifold is as the set of all

N -dimensional subspaces of R
M .

The single most important property of a manifold is the existence of tan-
gents to the manifold in any point p ∈M. If we think of the manifold as a
surface in R

N , then a tangent at p can be defined as a vector a such that
dist(p + εa,M) = O(ε2). This construction of a tangent is relying on the
embedding of M in R

N , on the linear-space structure of R
N and even on the

metric structure of R
N . An alternative way to define tangents is by differ-

entiating a curve. This approach has the advantage of making no use of the
embedding of M in R

N and hence also makes sense on general manifolds.

Definition 2.2. Let M be a d-dimensional manifold and suppose that

ρ(t) ∈ M is a smooth curve such that ρ(0) = p. A tangent vector at p is

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 227

defined as

a =
dρ(t)

dt

∣∣∣∣
t=0

.

The set of all tangents at p is called the tangent space at p and is denoted by

TM|p. It has the structure of a d-dimensional linear space: if a, b ∈ TM|p
then a + b ∈ TM|p and αa ∈ TM|p for any real α. The collection of all

tangent spaces at all points p ∈M is called the tangent bundle of M and is

denoted by TM =
⋃
p∈M TM|p.

Note that whereas it is fine to add tangents based at the same point ,
there is in general no rule for adding tangent vectors based at different
points. Thus, to specify a tangent completely, we need to provide both the
basepoint p and the tangent itself. Hence TM is a 2d-dimensional space,
with elements (p,a) consisting of every possible tangent a for any possible
basepoint p.

Definition 2.3. A (tangent) vector field on M is a smooth function F :

M → TM such that F (p) ∈ TM|p for all p ∈ M. The collection of all

vector fields on M is denoted by X(M).

Addition and scalar multiplication of vector fields are defined pointwise
in a natural way by (F + G)(p) = F (p) + G(p) and (αF)(p) = α(F (p)). If
F,G ∈ X(M), then F +G ∈ X(M) and αF ∈ X(M) for all real α.

Definition 2.4. Let F be a tangent vector field on M. By a differential

equation (evolving) on M we mean a differential equation of the form

y′ = F (y), t ≥ 0, y(0) ∈M, (2.1)

where F ∈ X(M). Whenever convenient, we allow F in (2.1) to be a function

of time, F = F (t,y). The flow of F is the solution operator Ψt,F : M→M
such that

y(t) = Ψt,F (y0)

solves (2.1).

Note that we can find the vector field F from Ψt,F by differentiation:

F (y) =
d

dt
Ψt,F (y)

∣∣∣∣
t=0

.

F is often called the infinitesimal generator of the flow Ψt,F .
By reparametrizing time (or scaling the vector field) we can see that the

flow operator satisfies the identity

Ψα,F = Ψ1,αF . (2.2)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

228 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

The task of computing the flow of a given vector field is often called the
exponentiation of the vector field . We will occasionally employ the notation

Ψ1,F ≡ exp(F) ⇔ Ψt,F ≡ exp(tF).

Computation of a flow is a particular example of an exponential map. We
will return to a more general definition of exponential maps later. The
notation Ψ will be used when we want to emphasize that we are discussing
flows of vector fields, and exp whenever the map can be conveniently given
the more general interpretation.

Recall our goal of integrating (2.1) numerically, using a chosen set of ‘basic
motions’ to advance the numerical solution. If the analytical solution evolves
on M it is natural to choose a set of basic motions that are everywhere
tangent to M, which will produce a numerical solution also evolving on M.
It is also useful to consider these basic motions as flows of a finite or infinite
collection of vector fields, B1, B2, If we want an efficient solver, we must
be able to compute the flow, that is, exponentiate these Bis, efficiently.

From the standpoint of geometry, numerical integration of ODEs is con-
cerned with the task of approximating the exponential of a general vector field
F by exponentials originating in a family of simpler vector fields B1, B2,

Example 2.2. Let M = R
N and let Ta stand for the constant vector field

Ta(y) = a for some vector a ∈ R
N . The flow of Ta is translation along a:

Ψt,Ta(y0) = y0 + ta.

The set of all translations can obviously be used to advance the numerical

solution in any desired direction on R
N . Note that translations commute:

Ψt1,Ta◦Ψt2,Tb
(y0) = y0 + t1a+ t2b = Ψt2,Tb

◦Ψt1,Ta(y0).

Generally flows do not commute. We will later see that a major difference
between traditional numerical integrators and Lie-group methods is that the
former are based on a set of commuting flows whereas the latter allow more
general flows as basic movements to advance the solution.

The degree to which the flows of two vector fields fail to commute is meas-
ured by the commutator of the two vector fields. Consider two general vector
fields F and G and their flows Ψs,F and Ψt,G. To investigate commutativity,
we form the following composition of the flows:

Φs,t = Ψs,F ◦Ψt,G◦Ψ−s,F ◦Ψ−t,G ≡ exp(sF)◦ exp(tG)◦ exp(−sF)◦ exp(−tG)

(2.3)

(see Figure 2.2). Obviously the flows commute if Φs,t(y) = y for all s, t ≥ 0
and all y ∈ R

N . However, this is a nonlinear condition that in many cases
may be difficult to compute or verify. One of the fundamental ideas due to
Sophus Lie was the observation that such nonlinear conditions can be turned

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 229

Φs,t(y0)

•
Ψs,F

22

y0

st[F,G](y0)+h.o.t.
ccHHHHHHHHH

•

Ψt,G

KK

%
#
!
�
�
�
�

Ψs,F
,, •

Ψt,G

BB

�
�

�
�

�
	

�

Fig. 2.2. A geometric interpretation of the commutator

into equivalent linear infinitesimal conditions. To accomplish this we want
to linearize Φs,t for small s and t. Since Φ0,t(y) = Φs,0(y) = y for all y, we
must have

Φs,t(y) = y + stH(y) +O(s2t) +O(st2) (2.4)

for some vector field H. This vector field H is called the commutator , or
the Jacobi bracket of F and G, and it is written as H = [F,G].

Lemma 2.1. Given two vector fields F,G on R
N , the commutator H =

[F,G] can be computed componentwise at a given point y ∈ R
N as

Hi(y) =
N∑
j=1

{
Gj(y)

∂Fi(y)

∂yj
− Fj(y)

∂Gi(y)

∂yj

}
. (2.5)

(Note that many authors define the commutator with an opposite sign. The

commutator as given here is often called the (-)Jacobi bracket .)

Proof. From (2.3) and (2.4) we get

H =
∂2

∂s∂t
exp(sF)◦ exp(tG)◦ exp(−sF)◦ exp(−tG)

∣∣∣∣
s=t=0

.

Since ∂
∂s exp(sF)◦ exp(tG)◦ exp(−sF)

∣∣
t=0

= 0, this simplifies to

H = [F,G] =
∂2

∂s∂t
exp(sF)◦ exp(tG)◦ exp(−sF)

∣∣∣∣
s=t=0

. (2.6)

Neglecting higher-order terms in s and t, Euler’s integration scheme yields

Ψs,F ◦Ψt,G◦Ψ−s,F (y) = y − sF (y) + tG(y1) + sF (y2) + h. o. t.,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

230 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

where

y1 = y − sF (y) , y2 = y − sF (y) + tG(y1).

Hence (2.6) implies that

Hi(y) =
∂

∂s
Gi(y1) +

∂

∂t
Fi(y2)

∣∣∣∣
s=t=0

=

N∑
j=1

{
−∂Gi(y)

∂yj
Fj(y) +

∂Fi(y)

∂yj
Gj(y)

}
.

2

We will now review the most salient properties of the commutator.

Lemma 2.2. If F,G ∈ X(M) then H = [F,G] ∈ X(M).

Proof. The function

ρ(t) = exp(
√
tF)◦ exp(

√
tG)◦ exp(−√tF)◦ exp(−√tG)(y0)

is a curve that evolves onM. The tangent defined by this curve is [F,G](y0).

2

Dividing the polygon of Figure 2.2 into infinitesimally small rectangles,
we can verify that

Lemma 2.3. Two flows Ψs,F and Ψt,G commute if and only if [F,G] = 0.

From (2.5) one may prove the following important features of the commut-
ator which should be familiar in the special case (which we will encounter
again soon) of a commutator of two matrices.

Lemma 2.4. The commutator of vector fields satisfies the identities

[F,G] = −[G,F] (skew symmetry), (2.7)

[αF,G] = α[F,G] for α ∈ R, (2.8)

[F +G,H] = [F,H] + [G,H] (bilinearity), (2.9)

0 = [F, [G,H]] + [G, [H,F]] (Jacobi’s identity). (2.10)

+ [H, [F,G]]

Example 2.3. Let LA denote the linear vector field on R
N , given by some

matrix A, that is LA(y) = Ay. The solution of the linear equation y′ = Ay

is given as

y(t) =

∞∑
j=0

(tA)j

j!
y0 = expm(tA)y0,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 231

where expm denotes the classical matrix exponential. Hence

Ψt,LA(y0) ≡ exp(tLA)(y0) = expm(tA)y0.

(This motivates the name ‘exponentiation’ for computing the flow.) Now

let us compute the commutator of two linear vector fields from (2.5),

[LA, LB]i(y) =
∑
j,k,l

(
Bj,kyk

∂Ai,lyl
∂yj

−Aj,kyk
∂Bi,lyl
∂yj

)
=
∑
j,k

(Ai,jBj,k −Bi,jAj,k) yk.

Thus

[LA, LB] = LC where C = AB −BA, (2.11)

the familiar definition of a commutator from linear algebra. Note that lin-

ear vector fields constitute a complete family of vector fields, closed under

commutators and linear combinations, LA + LB = LA+B and αLA = LαA.

In applications of Lie-group integrators to partial differential equations
(PDEs) it is often useful to consider a more general version of (2.5). Let y
be a point in a (finite- or infinite-dimensional) linear space M. By a vector
field F on M we mean some operator (linear or nonlinear) such that the
(ordinary or partial) differential equation

∂y

∂t
= F (y)

is well defined. An infinite-dimensional example is a parabolic PDE, where y
belongs to some function space on a domain and F is a spatial differentiation
operator, for instance F (y) = ∇2y. If F and G are two vector fields on M
then

[F,G](y) =
∂

∂s
[F (y + sG(y))−G(y + sF (y))]

∣∣∣∣
s=0

. (2.12)

The proof is very similar to that of Lemma 2.1 and it is straightforward to
verify that in the finite-dimensional case (2.12) reduces to (2.5). Note that
if F and G are linear operators then (2.12) immediately yields [F,G](y) =
F (G(y))−G(F (y)), as we saw in Example 2.3.

Example 2.4. Let y ∈ R
N and consider the set of all affine linear vector

fields

F(A,a)(y) = Ay + a,

where A is an N ×N matrix and a ∈ R
N . Let us compute the commutator

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

232 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

of two such vector fields F(A,a) and F(B,b). By inserting these vector fields

in (2.12) we obtain[
F(A,a), F(B,b)

]
(y)

=
∂

∂s
{A(y + s(By + b)) + a−B(y + s(Ay + a))− b}

∣∣∣∣
s=0

= ABy +Ab−BAy −Ba.

Thus[
F(A,a), F(B,b)

]
= F(C,c), where (C, c) = (AB −BA,Ab−Ba). (2.13)

We note that the set of all affine linear vector fields is yet another example

of a collection of vector fields closed under linear combination and commut-

ation.

2.2. Lie algebras, Lie groups and Lie-group actions

A problem, fundamental to the numerical analysis of differential equations
on manifolds, is to determine the set of all possible flows that can be obtained
by composing a given set of basic flows. If we restrict the discussion to
‘sufficiently small t’, important information is provided by the so-called BCH
formula.

Theorem 2.5. (Baker–Campbell–Hausdorff) For sufficiently small t ≥
0 we have

exp(tF)◦ exp(tG) = exp(tH),

where H = bch(F,G) can be constructed from iterated commutators of F

and G. The first few terms are

H = F +G+ 1
2 t[F,G] + 1

12 t
2 ([F, [F,G]] + [G, [G,F]]) +O(t3).

Higher-order terms can be obtained by recursion (Varadarajan 1984).

Definition 2.5. A Lie algebra of vector fields is a collection of vector fields

which is closed under linear combination and commutation. In other words,

letting g denote the Lie algebra,

B ∈ g ⇒ αB ∈ g for all α ∈ R,

B1, B2 ∈ g ⇒ B1 +B2, [B1, B2] ∈ g.

Given a collection of vector fieldsB = {B1, B2, . . . }, the smallest Lie algebra

of vector fields containing B is called the Lie algebra generated by B.

We arrive at the following conclusion. Let g be the Lie algebra generated
by the set B = {B1, B2, . . . } of vector fields. For small t, the combination

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 233

of flows of vector fields in B yields the flow of a vector field in g. Further-
more, the flow of any vector field in g can, provided t ≥ 0 is small enough,
be approximated arbitrarily well by composing flows of vector fields in B.
Thus the Lie algebra contains (for small t ≥ 0) all the information about
composition of flows.

Until now we have discussed vector fields and flows on a manifold . Yet,
whether we wish to engage in mathematical analysis or produce software
for solving ODEs, it is natural to ask, ‘Are there important properties of
vector fields and flows that can be specified (and possibly programmed)
independently of which manifold they are acting upon?’ This question will
lead us to the abstract definition of Lie algebras and Lie groups. The ‘glue’
that connects an abstract Lie algebra to concrete vector fields on a manifold
is called a Lie-algebra homomorphism, and abstract Lie groups are connected
to flows on a manifold via a Lie-group action. To elucidate this state of
affairs, let us commence with an important example.

Example 2.5. In Example 2.3 we have shown that there exists a natural

correspondence between N×N matrices and linear vector fields defined on

R
N . We can illustrate this as

A 7→ LA,

αA 7→ αLA,

A+B 7→ LA + LB,

AB −BA 7→ [LA, LB].

A linear subspace of matrices closed under matrix commutation, [A,B] ≡
AB − BA, is called a matrix Lie algebra. The arrow is an example of a

Lie-algebra homomorphism, a linear map between two Lie algebras which

preserves commutators.

Even the computation of flows of linear vector fields and compositions of

such flows can be transformed into linear algebra operations. To achieve

this, we must specify how a given N×N matrix P corresponds to a motion

on our domain R
N . The simplest possible choice is motions by matrix–vector

products. Define thus the map

Λ(P,y) = Py.

Identifying a matrix P with the motion Λ(P, ·) leads to the correspondence

P 7→ Λ(P, ·),
expm(sA) 7→ Λ(expm(sA), ·) = Ψs,LA ,

expm(sA) expm(tB) 7→ Λ(expm(sA) expm(tB), ·) = Ψs,LA◦Ψt,LB .

Note that the latter of these identifications relies on the associative property

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

234 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

of the map Λ, that is,

Λ(P,Λ(R,y)) = Λ(PR,y).

Motivated by this example, we now proceed to precise mathematical defin-
ition of the underlying concepts in a more abstract setting.

Definition 2.6. A Lie algebra is a linear space V equipped with a Lie

bracket , a bilinear, skew-symmetric mapping

[· , ·] : V ×V → V

that obeys identities (2.7)–(2.11) from Lemma 2.4.

Definition 2.7. A Lie-algebra homomorphism is a linear map between

two Lie algebras, ϕ : g → h, satisfying the identity

ϕ([v, w]g) = [ϕ(v), ϕ(w)]h, v, w ∈ g.

An invertible homomorphism is called an isomorphism.

Definition 2.8. A Lie group is a differential manifold G equipped with a

product · : G×G → G satisfying

p·(q ·r) = (p·q)·r ∀ p, q, r ∈ G (associativity),

∃I ∈ G such that I ·p = p·I = p ∀ p ∈ G (identity element),

∀p ∈ G ∃ p−1 ∈ G such that p−1 ·p = I (inverse),

the maps (p, r) 7→ p·r and p 7→ p−1 (smoothness).

are smooth functions

Definition 2.9. An action of a Lie group G on a manifold M is a smooth

map Λ : G×M→M satisfying

Λ(I, y) = y ∀y ∈M,

Λ(p,Λ(r, y)) = Λ(pr, y) ∀p, r ∈ G, y ∈M. (2.14)

If this relation does hold only in a local sense, for all elements p and r

sufficiently close to the identity I ∈ G, we say that Λ is local action.

2.3. From finite to infinitesimal and back

Given a set of flows on a domain we can find their vector fields by differ-
entiation. From the discussion above we know that if the flows are closed
under composition then the vector fields are closed under Jacobi brackets
and linear combinations, and hence form a Lie algebra. On the other hand,
provided we know the vector fields, we may recover the corresponding flows
by integrating differential equations. A similar correspondence between the

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 235

finite and the infinitesimal is fundamental in abstract Lie theory. We will
review here a number of basic results, interpreting them in the terminology
of group actions on a manifold. Let G be a Lie group, acting on a mani-
fold M through Λ : G×M → M and let ρ(t) ∈ G be a curve such that
ρ(0) = I, the identity of G. This curve produces a flow Λ(ρ(t), ·) on M and
by differentiation we find a vector field

F (y) =
d

dt
Λ(ρ(t), y)

∣∣∣∣
t=0

.

The collection of all such vector fields forms a Lie algebra. Note that in
order to produce F it is only necessary to know the tangent to ρ(t) at t = 0.
Thus the set of all tangents at identity can be endowed with a structure of
a Lie algebra.

Definition 2.10. The Lie algebra g of a Lie group G is defined as the

linear space of all tangents to G at the identity I. The Lie bracket in g is

defined as

[a, b] =
∂2

∂s∂t
ρ(s)σ(t)ρ(−s)

∣∣∣∣
s=t=0

(2.15)

where ρ(s) and σ(t) are two smooth curves on G such that ρ(0) = σ(0) = I,

ρ′(0) = a and σ′(0) = b.

Note that the bracket defined in (2.15) is essentially the same as (2.6).
From this it is straightforward to verify that the correspondence between
elements in g and vector fields on M is an algebra homomorphism.

Lemma 2.6. Let λ∗ : g → X(M) be defined as

λ∗(a)(y) =
d

ds
Λ(ρ(s), y)

∣∣∣∣
s=0

, (2.16)

where ρ(s) is a curve in G such that ρ(0) = I and ρ′(0) = a. Then λ∗ is a

linear map between Lie algebras such that

[a, b]g = [λ∗(a), λ∗(b)]X(M).

Thus we can go from the finite to the infinitesimal (from groups and
group actions to algebras and algebra homomorphisms) by differentiation.
To do the opposite and move from the infinitesimal to the finite, we must
somehow compute flows of vector fields. A discussion of this process leads
to the general definition of the exponential mapping.

Suppose G is a Lie group with Lie algebra g and let Λ : G×M → M
be a group action. A given fixed element a ∈ g corresponds to a vector
field λ∗(a) ∈ X(M). We want to compute the flow of this field. Let us first
assume for simplicity that G is a matrix group.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

236 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Lemma 2.7. For a fixed A ∈ g the flow of λ∗(A), that is, the solution of

y′(t) = λ∗(A)(y(t)) for y(0) = y0 ∈M,

can be expressed in the form

y(t) = Λ(S(t), y0)

where the curve S(t) ∈ G satisfies the matrix differential equation

S′(t) = AS, t ≥ 0, S(0) = I,

which has the explicit solution

S(t) = expm(tA), t ≥ 0.

Proof. We assume that y(t) = Λ(S(t), y0). Differentiation results in y′(t) =

∂1Λ(S′(t), y0), where ∂1 is the derivative with respect to the first argument.

On the other hand, to compute λ∗(A) we pick a curve R(s) ∈ G such that

R′(0) = A and R(0) = I. From (2.14) we get

y′(t) = λ∗(A)(y(t)) =
∂

∂s
Λ(R(s),Λ(S(t), y0))

∣∣∣∣
s=0

=
∂

∂s
Λ(R(s)S(t), y0)

∣∣∣∣
s=0

= ∂1Λ(R′(0)S(t), y0) = ∂1Λ(AS(t), y0).

Thus

S′(t) = AS(t).

Obviously S(0) = I. The explicit solution is easily verified. 2

Lemma 2.7 holds unaltered for a general group G if we define the product
of an element of an algebra a ∈ g with an element of a group σ ∈ G as

aσ ≡ d

ds
ρ(s)σ

∣∣∣∣
s=0

, (2.17)

where ρ(s) ∈ G is a smooth curve such that ρ′(0) = a and ρ(0) = I. We
also define the exponential mapping so that the flow of λ∗(a) is of the form
Λ(exp(ta), ·).
Definition 2.11. Let G be a Lie group and g its Lie algebra. The expo-

nential mapping exp : g → G is defined as exp(a) = σ(1) where σ(t) ∈ G
satisfies the differential equation

σ′(t) = aσ(t), σ(0) = I.

These definitions lead to the following general form of Lemma 2.7.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 237

Theorem 2.8. Let Λ : G×M→M be a group action and λ∗ : g → X(M)

the corresponding Lie-algebra homomorphism (2.16). For any a ∈ g the flow

of the vector field F = λ∗(a), that is, the solution of the equation

y′(t) = F (y(t)) = λ∗(a)(y(t)), t ≥ 0, y(0) = y0 ∈M,

is given as

y(t) = Λ(exp(ta), y0).

Let us at this point make a small detour to introduce the adjoint repres-
entation which is fundamental in many contexts. By splitting (2.15) into
two smaller steps, we obtain the following.

Definition 2.12. Let p ∈ G and let σ(t) be a smooth curve on G such that

σ(0) = I and σ′(0) = b ∈ g. The adjoint representation is defined as

Adp(b) =
d

dt
pσ(t)p−1

∣∣∣∣
t=0

. (2.18)

The derivative of Ad with respect to the first argument is denoted ad.
Let ρ(s) be a smooth curve on G such that ρ(0) = I and ρ′(0) = a. Defini-
tion 2.10 now yields

ada(b) ≡ d

ds
Adρ(s)(b)

∣∣∣∣
s=0

= [a, b]. (2.19)

The following formulae show that Ad is both a linear group action (of G
on g) and also that for a fixed argument p it is a Lie-algebra isomorphism
of g onto itself:

Adp(a) ∈ g, for all p ∈ G, a ∈ g, (2.20)

Adp◦Adq = Adpq, (2.21)

Adp(a+ b) = Adp(a) + Adp(b), (2.22)

Adp([a, b]) = [Adp(a),Adp(b)]. (2.23)

Note that, according to (2.22), both Adp and ada are linear in their second
argument, hence they may be regarded as matrices acting on the linear space
g. This gives meaning to the following important formula relating Ad, ad
and the exponential mapping:

Adexp(a) = expm(ada). (2.24)

2.4. Differential equations on manifolds

We wish to return to general differential equations on manifolds, as given
in (2.1). In order to construct and implement numerical solvers for this
equation, we require a concrete way of representing the vector field F (y).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

238 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Herewith we describe a very general approach presented in Munthe-Kaas
and Zanna (1997).

Assumption 2.1. Given a differential equation y′(t) = F (t, y) on a man-

ifold M, we assume the existence of a Lie algebra g, a Lie-algebra homo-

morphism λ∗ : g → X(M) and a function a : t×M → g such that the

equation can be written in the form

y′(t) = λ∗(a(t, y))(y). (2.25)

If λ∗ is known from the context and no confusion is likely, we will usually

write equation (2.25) in the shorthand form

y′(t) = a(t, y)y.

In many important examples the function a depends only on t and not on
y. These equations, y′(t) = a(t)y, are called equations of Lie type, or linear-
type Lie-group equations. Some of the algorithms to be presented later are
aimed at the general equation (2.25), while others are aimed at exploiting
the special structure of linear equations.

Given an equation to be solved, an important challenge is to find a ‘good’
homomorphism λ∗. It is not difficult to see that any differential equation
can be written in the form (2.25). We might for example let g = X(M) and
choose λ∗ as the identity map, which would trivially render any equation in
this form. However, in order to construct practical solution algorithms we
need to make some additional assumptions about g. We will usually assume
that either all the elements of g, or at least a particular basis of g can be
exponentiated efficiently. To achieve this, one might embed M in a linear
space R

N , and let g be the set of all translations on R
N , since translations

are trivial to exponentiate. This choice will, however, fail to capture much
of the structure of the equations to be solved. In fact we will see that for
this choice most of our numerical solution techniques will reduce to classical
Runge–Kutta methods. The task of finding a ‘good action’ is in many
respects similar to the task of finding a good preconditioner in the theory
of iterative methods for solving linear algebraic equations Ax = b. In both
cases we want to find some approximation to our original equation which is
both simple to solve and which captures some important structural feature
of the equation. The two extreme choices, on the one hand g = X(M)
and on the other hand g as a set of all translations on R

N , are similar to
preconditioning a linear system with the matrix A itself or on the other hand
choosing the identity matrix as preconditioner.

Let us now examine briefly a number of examples of equations presented
in the form of Assumption 2.1. A useful approach to finding a good action
is the following.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 239

(1) Given a differential equation written in a familiar form, look at the
terms and see if it is possible to find related equations that are simpler
to integrate.

(2) Check that the family of simpler equations forms a Lie algebra. Find
a suitable representation g for the algebra and the corresponding ho-
momorphism λ∗.

(3) Check that the original equation can be written in the form (2.25).
This is not possible only when there exist some points on M where
the vector fields in the Lie algebra do not generate the direction of the
original equation. In this case one must search for a larger Lie algebra.

Example 2.6. (Orthogonal matrix flows) Matrix differential equations

of the form

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) = Y0 ∈ O(N), (2.26)

where A : R
+×O(N) → so(N), are called orthogonal flows – we have already

encountered such a flow in (1.3). (See Section 2.5 for unfamiliar notation.)

It is well known that the exact solution Y (t) is an orthogonal matrix for all

t ≥ 0 (Dieci, Russell and van Vleck 1994). A simpler family of equations is

given by

Y ′ = CY, t ≥ 0, Y (0) = Y0 ∈ O(N), (2.27)

where C is any constant matrix in so(N). The solution of (2.27) is given as

Y (t) = expm(tC)Y0, t ≥ 0.

From (2.11) we find that if F (Y) = CY and G(Y) = DY then [F,G](Y) =

(CD − DC)Y . Thus, the family of simple vector fields is a Lie algebra

isomorphic to so(N). We have λ∗(C)(Y) = CY , and hence (2.26) is in

the form (2.25) if a(t, Y) = A(t, Y). Note also that the flow of (2.27) is

orthogonal, hence any numerical method based on the composition of such

flows will yield a solution that retains orthogonality.

Example 2.7. (Isospectral matrix flows) We have already encountered

such flows in Section 1, in (1.1). With slightly greater generality, we write

them in the form

Y ′ = B(t, Y)Y − Y B(t, Y), t ≥ 0, Y (0) = Y0 ∈ SN , (2.28)

where B : R
+ × SN → so(N). The analytical solution Y (t) is a family

of matrices with eigenvalues invariant under the flow. A simpler family of

equations is given by

Y ′(t) = CY − Y C, t ≥ 0, Y (0) = Y0 ∈ SN , (2.29)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

240 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

where again C ∈ so(N) is constant. The solution of this equation is given

explicitly in the form

Y (t) = expm(tC)Y0 expm(−tC), t ≥ 0. (2.30)

We may now proceed, exactly like in the previous example, to find the

brackets of such vector fields. An alternative route, already anticipated in

(1.2), is to note that the basic flows in (2.30) are given by the orthogonal

matrix group O(N) acting on Y ∈ SN . We have the action Λ : O(N)×SN →
SN given by

Λ(Q,X) = QXQT for any Q ∈ O(N).

By differentiation, as in Lemma 2.6, we obtain λ∗(C)(Y) = CY − Y C.

Hence (2.28) is in the form (2.25) if a(t, Y) = B(t, Y). The basic flow (2.30)

is isospectral since it is a similarity transformation, hence any numerical

method based on this flow is also automatically isospectral.

Note that, essentially, these two examples are identical, except for the
action involved. Hence in an algorithm we might re-use the implementation
of the Lie algebra and the Lie group, while simply changing the action: there
is no need to develop a separate computational approach to orthogonal and
isospectral flows! This illustrates the importance of working with abstractly
defined groups and algebras rather than tying these concepts to flows and
vector fields on particular manifolds.

Example 2.8. (ODEs on R
N) Consider an ordinary differential equa-

tion in the familiar form required by all classical numerical integrators,

y′(t) = g(t,y), t ≥ 0, y(0) = y0 ∈ R
N , (2.31)

where g : R× R
N → R

N . A simple family of basic flows is given by transla-

tions, for instance

z′ = a,

where a ∈ R
N is constant. The algebra of these flows can be identified with

R
N and, since translations commute, we obtain the trivial bracket [a, b] = 0

for all a, b ∈ R
N . The algebra homomorphism is given here simply as the

identity map; hence the equation is in the form (2.25) if a(t,y) = g(t,y).

This choice yields nothing new compared to classical integration schemes.

A more interesting choice is choosing linear vector fields as basic flows,

z′ = Az.

We already know from Example 2.3 that the Lie algebra of these is gl(N),

the set of all N×N matrices with the usual matrix bracket. However, these

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 241

flows cannot produce everywhere all possible tangent directions. Indeed, at

y = 0 these flows cannot produce any nonzero tangent. Therefore, using

this action, it is generally not possible to write (2.31) in the form (2.25).

We might finally consider a combination of translations and linear maps,

i.e., the set of all affine linear maps given by equations of the form

z′ = Az + b for A ∈ gl(N), b ∈ R
N .

The Lie algebra can be identified with all pairs (A, b) where A is a matrix

and b a vector and we have already seen in Example 2.4 that the bracket is

given as [(A, b), (C,d)] = (AC−CA,Ad−Cb). The algebra homomorphism

is

λ∗(A, b)(y) = Ay + b.

In this situation there are many possible choices of a function a(t,y) such

that (2.31) acquires the form (2.25). No matter what we pick as the matrix

part, it is always possible to adjust the vector so that

λ∗(a(t,y))(y) = g(t,y).

A natural choice is local linearization, namely, letting the matrix part be the

Jacobian of g at y,

Jg(t,y)i,j =
∂gi(t,y)

∂yj
.

The resulting a : R×M→ g is

a(t,y) = (Jg(t,y), g(t,y)− Jg(t,y)y) .

Possible advantages of using affine motions to advance the solution of stiff

ODEs are a subject of ongoing research.

Example 2.9. (ODEs on a sphere) Many mechanical problems involve

rotations in a 3-space. In Appendix B we list useful formulae for fast com-

putations in SO(3). As a simple example we will consider a motion on the

surface of a sphere,

y′(t) = a(y(t))× y(t), (2.32)

where a,y ∈ R
3, and × is the standard vector product in R

3. If ‖y(0)‖2 = 1

then y(t) evolves on the unit sphere S
2 ⊂ R

3. A simpler system that also

evolves on S
2 is given by

y′(t) = c× y(t), (2.33)

for any fixed vector c. To compute the commutator of two equations of the

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

242 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

form (2.33), we employ the hat map (B.1) taking a 3-vector c to a 3 × 3

matrix ĉ, such that c×y = ĉy. Using (B.2) we see that the commutator of

the vector fields c×y and d×y is given by (c×d)×y. Thus the Lie algebra

in this example may be identified with (R3,×), the real 3-space with the Lie

bracket

[c,d] = c×d
given by a vector product. The simplified equation (2.33) is a matrix equa-

tion y′ = ĉy with solution

y(t) = expm(tĉ)y0,

where expm(tĉ) can be computed rapidly using the Rodrigues formula (B.10).

Example 2.10. (Parabolic PDEs) The final example in this section is

chosen to illustrate the diversity of problems that may be tackled with the

machinery of Lie-group methods. This example involves infinite-dimensional

Lie algebras, a topic that is technically more demanding than the finite-

dimensional case. There are several ways to circumvent the mathematical

problems: we may either discuss the problem after it has been discretized

in space (and has become finite-dimensional), or we may plunge straight

ahead using the available techniques, disregarding possible mathematical

difficulties. We will henceforth follow the latter approach, being aware that

the resulting algorithms must be verified by other means.

Suppose that we wish to integrate a parabolic PDE with coefficients vary-

ing in space and time, for instance the heat equation

∂u(t,x)

∂t
= ∇ · (µ(x)∇u(t,x)) ,

where u is the temperature and µ the heat conductivity of the material.

With greater generality, consider equations of the form

∂u(t,x)

∂t
= L(u), (2.34)

where L is an elliptic operator. To simplify the discussion, we wish to trivial-

ize boundary conditions, so suppose that u is defined on the unit square with

periodic boundary conditions. Thus, u should be thought of as a ‘point’ on

the infinite-dimensional manifold M = C∞(T), the collection of all smooth

functions on a torus. It is well known that (classical) explicit integrators

for parabolic PDEs are typically stiff and stability analysis leads to severe

step-size restriction: ∆t < c(∆x)2 for explicit finite-difference methods. A

family of simpler equations, which can be solved exactly, explicitly and very

efficiently with the Fast Fourier Transform (FFT), is the set of all parabolic

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 243

equations with constant coefficients of the form

∂u(t,x)

∂t
= µ̄∇2u(t,x),

where µ̄ is constant. However, just as in Example 2.8, these equations cannot

move an arbitrary point u ∈ M in an arbitrary direction. (In other words,

they do not define a transitive action on M.) Hence, we enlarge the family

of simplified equations by adding an inhomogeneous term,

∂u(t,x)

∂t
= µ̄∇2u(t,x) + b(x), (2.35)

where b ∈ C∞(T). This equation is also easy to solve using FFTs. Letting

the flows of (2.35) define our group action on M, we see that the corres-

ponding Lie algebra g can be identified with pairs (µ̄, b). The Lie-algebra

action is given by

λ∗((µ̄, b))(u) = µ̄∇2u+ b.

Using this action we see that any equation of the form (2.34) can be cast

into the form (2.25) by choosing the function a : R×M→ g to be

a(u) = (µ̄,L(u)− µ̄∇2u) (2.36)

for some choice of µ̄. For example, if L(u) = ∇ · (µ(x)∇u(t,x)), we would

let µ̄ be some averaged value of µ(x).

In order to define the entire structure of g, we need to determine the Lie

bracket. Let F and G be two vector fields on M defined at a point u by

F (u) = µ̄∇2u+ f(x),

G(u) = ν̄∇2u+ g(x).

Using (2.12), we obtain

[F,G](u)

=
∂

∂s

[
µ̄∇2(u+ s(ν̄∇2u+ g)) + f − ν̄∇2(u+ s(µ̄∇2u+ f))− g

]∣∣∣∣
s=0

= 0 · ∇2u+ µ̄∇2g − ν̄∇2f.

Thus, the bracket on g = R×C∞(T) is

[(µ̄, f), (ν̄, g)] = (0, µ̄∇2g − ν̄∇2f).

It is interesting to note that the bracket can also be computed efficiently

using FFTs.

This type of equation is considered in greater detail and various numerical

examples are given in Munthe-Kaas and Lodden (2000). It turns out that,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

244 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

at least in some cases, it is possible to construct explicit integrators based

on this action that are not subject to any step-size restriction involving the

spatial discretization ∆x. Thus, the methods are stable regardless of how

spatial discretization is chosen. This is a topic of ongoing research, and

many aspects of these integrators are as yet incompletely understood.

We will return to more examples and to numerical experiments in Sec-
tion 11. Before discussing numerical algorithms, we need to study some
important properties of the exponential map.

2.5. Much Ado about something

In this section we have emphasized a general view of differential equations
on manifolds, based on Lie groups acting on manifolds. This outlook is
important not just for the sake of mathematical beauty or abstraction but,
as we hope to have persuaded the reader, also from the point of view of
applications and computation. However, in so far as clarity of exposition is
concerned, it is often better to restrict ourselves to the far simpler, familiar
and more intuitive matrix theory.

In fact, it turns out that for all the algorithms that we present in this paper
it is quite straightforward to translate results derived in matrix setting to
the more general setting of local Lie-group actions on some domain. The
following theorem of Ado underscores the importance of studying the matrix
case (Olver 1995, Varadarajan 1984).

Theorem 2.9. (Ado’s theorem) Every finite-dimensional Lie algebra is

isomorphic to a subalgebra of the matrix algebra gl(N) for some N ≥ 1.

Although a similar result does not hold for all finite-dimensional Lie
groups, it is true that, whenever we are given a finite-dimensional local
Lie-group action, we can always find an equivalent local action by a matrix
Lie group. More information on these topics can be found in Olver (1995)
and Varadarajan (1984).

Aware of the danger of rules of thumb being mathematically imprecise, it
is nonetheless worthwhile to summarize these results as follows.

For practically any concept in general Lie theory there exists a correspond-
ing concept within matrix Lie theory. Vice versa, practically any result that
holds in the matrix case remains valid within the general Lie theory.

The above remark is even more important in a numerical context, since
computation always takes place in a finite-dimensional setting. Even if the
original equation evolves on an infinite-dimensional manifold, its practical
computation must ultimately involve a discretization to a finite-dimensional
formulation.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 245

At this point it is time to wake the readers who have surfed through the
general theory in a relaxed manner. We will restate the main definitions
in the concrete form in which they appear within the matrix theory. It is
worthwhile to compare these definitions to the corresponding general defin-
itions above.

Definition 2.13. A real matrix Lie group is a smooth subset G ⊆ R
N×N ,

closed under matrix products and matrix inversion. We let I ∈ G denote

the identity matrix.

Definition 2.14. The Lie algebra g of a matrix Lie group G is the linear

subspace g ⊆ R
N×N consisting of all matrices of the form

g =

{
A ∈ R

N×N : A =
dρ(s)

ds

∣∣∣∣
s=0

}
,

where ρ(s) ∈ G is a smooth curve such that ρ(0) = I. The space g is closed

under matrix additions, scalar multiplication and the matrix commutator

[A,B] = AB −BA. (2.37)

Complex matrix Lie groups and algebras are defined similarly.
The time has come to introduce some of the main dramatis personae of

our survey: concrete examples of Lie groups and algebras. In each case it
is easy to verify that all the axioms of a group or an algebra, as the case
might be, are fulfilled, and we leave this as an exercise to the reader.

• The set of all real N ×N nonsingular matrices is a (multiplicative) Lie
group, the general linear group GL(N). The corresponding Lie algebra
is the set R

N×N of all N ×N real matrices which, in keeping with our
terminology, we denote by gl(N).

The general linear group and algebra can be defined over other fields
than R, in which case we communicate this in the second argument. For
example, GL(N ; C) consists of all nonsingular N×N complex matrices.

• All members of GL(N) with unit determinant form the special linear
group SL(N). Its Lie algebra, sl(N), consists of all matrices in gl(N)
with zero trace.

• N×N real orthogonal matrices form the orthogonal group O(N), whose
Lie algebra so(N) consists of N ×N skew-symmetric matrices.

The set SO(N) = SL(N) ∩O(N), consisting of N ×N real orthogonal
matrices with unit determinant, is the special orthogonal group. Its
Lie algebra is so(N), which we have just encountered. This is not
contradictory: we never claimed that two different Lie groups must
have different Lie algebras! As a matter of fact, more is true: if G is

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

246 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

a Lie group and GId is the connected component of G containing the
identity I – a Lie subgroup – then they produce the same Lie algebra.
(This is precisely the situation with O(N) and SO(N).)

• The set of all (2N) × (2N) real matrices X such that XJXT = J ,
where

J =

[
ON IN
−IN ON

]
,

is the symplectic group and denoted by Sp(N). (The Jacobian of the
flow of a Hamiltonian ODE system evolves in Sp(N).) The corres-
ponding Lie algebra, sp(N), consists of F ∈ gl(2N) such that FJ +
JFT = O.

• All the matrices X ∈ SL(4) such that XJXT = J , where

J =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

form the Lorenz group SO(3, 1). Its Lie algebra so(3, 1) is made out of
all F ∈ gl(4) such that FJ + JFT = O.

• As an example of complex Lie groups, we mention the unitary group
U(N ; C) of all N × N complex unitary matrices: X ∈ U(N ; C) if and
only if XXH = I. The Lie algebra corresponding to U(N ; C) is the set
u(N ; C) of all skew-Hermitian matrices in gl(N ; C).

The unitary group should not be confused with O(N ; C), the group of
all N ×N complex orthogonal matrices, whose Lie algebra is so(N ; C).

• As for O(N) and SO(N), we obtain the special unitary group inter-
secting U(N ; C) with SL(N ; C). Its Lie algebra, su(N ; C), consists of
N ×N complex skew-Hermitian matrices with zero trace.

Definition 2.15. A differential equation on a matrix Lie group is an equa-

tion of the form

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) ∈ G, (2.38)

where A : R×G → g and AY is the usual matrix product between A ∈ g

and Y ∈ G.

The reader may verify that this is the special case of the general form of a
differential equation on a manifold, given in Assumption 2.1, where M = G
is a matrix Lie group and the action Λ is taken to be the left (matrix)
multiplication in G,

Λ(R, Y) = RY.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 247

Table 2.1. Correspondence between the matrix

case and general Lie theory

Matrix case General case

AY , A ∈ g, Y ∈ G λ∗(a)(y), a ∈ g, y ∈M
Y ′ = A(Y, t)Y y′ = λ∗(a(y, t))(y)
RY , R, Y ∈ G Λ(r, y), r ∈ G, y ∈M
expm(A) =

∑∞
j=0A

j/j! Definition 2.11

[A,B] = AB −BA Definition 2.10

PAP−1, P ∈ G, A ∈ g Definition 2.12

Using (2.16) we find

λ∗(A)(Y) = AY.

Since g is defined as the collection of all tangent directions at I ∈ G and
matrix multiplication by Y is an invertible mapping, we see that any tangent
at Y can be written in the form AY and all differential equations on G can
be written in the form (2.38).

Definition 2.16. The exponential mapping expm : g → G is defined as

expm(A) =

∞∑
j=0

Aj

j!
. (2.39)

Note that expm(O) = I, and that for A sufficiently near O ∈ g the expo-

nential has a smooth inverse given by the matrix logarithm logm : G → g.

Definition 2.17. The adjoint representation, Ad, and its derivative, ad,

are given by the formulae

AdP (A) = PAP−1, (2.40)

adA(B) = AB −BA = [A,B]. (2.41)

It is easy to verify that (2.20)–(2.23) hold in the matrix case, while (2.24)
is far from being an obvious identity even in that case.

Table 2.1 summarizes the correspondence between the matrix case and
the general case.

2.6. The differential of the exponential map

We have introduced the exponential mapping exp : g → G as the funda-
mental solution of the equation y′ = ay, or more explicitly in the matrix

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

248 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

case as expA =
∑∞

j=0A
j/j!. For development of numerical algorithms it

is essential to discuss the derivative of the exponential map. This will first
be used to deduce an infinitesimal version of the BCH formula and in the
following chapters to derive a variety of different numerical algorithms for
differential equations on Lie groups.

To simplify the exposition we will restrict the proofs to matrix theory.
The results are, however, valid in an abstract setting. The reader is referred
to Varadarajan (1984) for proofs in a general context.

Given a scalar function a(t) ∈ R, the derivative of the exponential is given
by d exp(a(t))/dt = a′(t) exp(a(t)). One might have hoped for a similar
result when A(t) is a matrix. However, since in general [A,A′] 6= O, this is
not the case and we must correct this formula. Note that d exp(A(t))/dt
must be tangent to G in the point P (t) = exp(A(t)). We have seen in
Section 2.5 that any such tangent can be written as C(t)P (t), where C(t) ∈
g. Furthermore, general properties of d/dt imply that C(t) must depend
only on A(t) and A′(t), and that the dependence on A′ is linear. This
function is denoted by dexp.

Definition 2.18. The differential of the exponential mapping is defined as

the ‘right trivialized’ tangent of the exponential map, that is, as a function

dexp : g×g → g such that

d

dt
exp(A(t)) = dexpA(t)(A

′(t)) exp(A(t)). (2.42)

Just like the functions AdA and adA defined in (2.40) and (2.41) respect-
ively, dexpA is also linear in its second argument for a fixed A. Hence we
may regard all these as being matrices acting on g. In fact dexpA is an
analytic function of the matrix transformation adA:

dexpA =
expm(adA)− I

adA
. (2.43)

This formula should be read as a power series in the following manner.
Since

ex − 1

x
= 1 + 1

2!x+ 1
3!x

2 + 1
4!x

3 · · ·+ 1
(j+1)!x

j + · · · ,
we obtain

dexpA(C) = C + 1
2! [A,C] + 1

3! [A, [A,C]] + 1
4! [A, [A, [A,C]]] + · · ·

=

∞∑
j=0

1

(j + 1)!
adjAC.

(2.44)

The fact that dexpA is an analytic function in adA makes it easy to invert

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 249

the matrix dexpA simply by inverting the analytic function,

dexp−1
A =

adA
expm(adA)− I

. (2.45)

Recall that

x

ex − 1
= 1− 1

2x+ 1
12x

2 − 1
720x

4 + · · · =
∞∑
j=0

Bj

j!
xj ,

where Bj are Bernoulli numbers (Abramowitz and Stegun 1970). Thus,

dexp−1
A (C) = C − 1

2 [A,C] + 1
12 [A, [A,C]] + · · · =

∞∑
j=0

Bj

j!
adjA(C). (2.46)

Note that, except for B1, all odd-indexed Bernoulli numbers vanish. Hence
dexp−1

A + 1
2adA is an even function of adA. We have based the formulae here

on right trivializations, that is, tangents at a point P ∈ G being written as
CP , C ∈ g. It is equally possible to derive formulae based on left trivial-
izations, tangents written in the form PC̃. If PC̃ = CP , we observe that
C̃ = P−1CP = AdP−1(C). Using (2.24), we compute the left-trivialized
formulae as

Adexp(−A) dexpA = exp(ad−A)
exp(adA)− I

adA
=
I − exp(ad−A)

adA
= dexp−A.

Hence

d

dt
exp(A(t)) = dexpA(t)(A

′(t)) exp(A(t)) (2.47)

= exp(A(t)) dexp−A(t)(A
′(t)).

Thus we can arrive at the left versions by changing the sign of every com-
mutator. Note that dexp−1

A (C) and dexp−1
−A(C) differ only in the sign of

the term ±1
2 [A,C].

The definition of dexp in Definition 2.18 can be generalized to any smooth
function ψ : g → G:

Definition 2.19. Given a smooth function ψ : g → G, we define the right

trivialized tangent of ψ as the function dψ : g×g → g defined such that

d

dt
ψ(A(t)) = dψA(t)(A

′(t))ψ(A(t)). (2.48)

The function dψ is always linear in the second argument, A′.

Let us now apply dexp and dexp−1 to obtain a differential equation
for the BCH formula. Going back to Theorem 2.5, we define a function
bch : g×g → g such that

expm(bchAB) = expm(A) expm(B).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

250 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

We may compute C = bch(A,B) by integrating a differential equation. Let
C(t) = bch(tA,B). Clearly C(0) = B, and we seek C(1). Writing

expm(C(t)) = expm(tA) expm(B),

we find by differentiation that

dexpCt(C
′(t)) exp(C(t)) = dexptA(A) exp(tA) exp(B) = A exp(C(t)),

whence C ′(t) = dexp−1
C(t)(A).

We have proved the following result.

Lemma 2.10. The function C = bch(A,B) can be computed by integ-

rating the differential equation

C ′(t) = dexp−1
C(t)(A), 0 ≤ t ≤ 1, C(0) = B, (2.49)

from t = 0 to t = 1.

In this light the dexp−1 function may be regarded as a kind of ‘infinitesimal
BCH generator’. A more concise presentation of this idea is given in Engø
(2000). A symbolic algorithm to compute the BCH from this formula can
be found in Munthe-Kaas and Owren (1999).

2.7. Crouch–Grossman methods

The discipline of Lie-group methods owes a great deal to the pioneering
work of Peter Crouch and his co-workers, who were the first to introduce
in a systematic, mathematically sophisticated manner ODE methods that
evolve on manifolds. It is interesting to note that their work was primarily
motivated by problems in robotics and control theory.

The main algorithm originating in this circle of ideas is the method of
rigid frames of Crouch and Grossman (1993). It was originally stated in a
more general formalism of differential equations evolving on manifolds. To
fit the method into our narrative and to simplify its exposition we restrict
our discussion to Lie-group equations.

In essence, the Crouch–Grossman approach is an attempt to apply a
Runge–Kutta method to (2.1) (or, in a Lie-group context, to (2.38)) by
repeatedly freezing and thawing coefficients and keeping the flow in the cor-
rect configuration space. The solution of a ‘frozen’ Lie-group equation,

Y ′ = A(t̃, Ỹ)Y t ≥ t∗, Y (t∗) = Y∗,

is simply expm((t− t∗)A(t̃, Ỹ))Y∗. Freezing (2.38) at tn and letting Yn+1 =
dexp(hA(tn, Yn))Yn, where Ym ≈ Y (tm), tm = mh, results in a first-order
method of very little merit. This can be remedied in the following procedure.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 251

We choose constants ck, bl, ak,l, 1 ≤ l < k ≤ ν and let

Xk = ehak,k−1Fk−1ehak,k−2Fk−2 · · · ehak,1F1Yn,

Fk = A(tn + ckh,Xk),

 k = 1, 2, . . . , ν,

Yn+1 = ehbνFνehbν−1Fν−1 · · · ehb1F1Yn.

(2.50)

In other words, we model the solution as a product of ν ‘frozen’ steps. Note
that Xk ∈ G, Fk ∈ g; hence, as required, Yn+1 ∈ G.

To the initiated, method (2.50) might appear to be a ‘Lie-group version’
of a Runge–Kutta scheme, an analogy that we have deliberately reinforced
by employing notation that will be reserved later to RK schemes. Yet, order
conditions are considerably more challenging than in the classical RK case:
they are nonlinear in the weights b1, b2, . . . , bν and there are more of them!

Moderate headway can be made by elementary means and a great deal
of algebra. Thus, Crouch and Grossman (1993) have derived three-stage
methods of order three, for example

X1 = Yn, F1 = A(tn, X1),

X2 = e
3
4
hF1Yn, F2 = A(tn + 3

4h,X2),

X3 = e
17
108

hF2e
119
216

hF1Yn, F3 = A(tn + 17
24h,X3),

Yn+1 = e
13
51
hF3e−

2
3
hF2e

24
17
hF1Yn.

Inquiry into higher-order methods, though, requires more than algebra and
elbow grease. The situation is further complicated by the fact that (2.50) is
typically formulated in a considerably more abstract manner, in a manifold
setting: this does not make order analysis any simpler!

The order of classical RK methods is nowadays determined by a method
due to Butcher (1963), which identifies expansion terms of both the exact
and the approximate solution with rooted trees. Remarkably, a similar ap-
proach can be generalized to Crouch–Grossman methods and this has been
accomplished by Owren and Marthinsen (1999b). Details of their work are
outside the scope of this survey and we refer the readers to the primary
source. Let us just mention that, unlike the classical RK case, there are no
fourth-order methods of this kind with four stages and ν = 5 is required.
Moreover, Owren and Marthinsen (1999b) extended (2.50) to implicit meth-
ods, whereby ak,l is given for all k, l = 1, 2, . . . , ν and

Xk = ehak,νFνehak,ν−1Fν−1 · · · ehak,1F1Yn, k = 1, 2, . . . , ν.

This allows for better order/stages ratio but the downside is the need to
solve nonlinear equations in Lie groups. Classical methods, for instance
the Newton–Raphson technique, are of little use here since, unless iterated
to convergence, they are unlikely to deliver a solution that resides in the

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

252 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Lie group G. Recently, however, Owren and Welfert (1996) developed two
variants of Newton’s method that always evolve in G. This brings impli-
cit versions of (2.50) within the realm of computation, although they are
expensive.

The mainstream of research into Lie-group methods has moved in the last
few years away from the Crouch–Grossman approach. The main reason is
that the RK-MK methods, the theme of the next section, provide a consid-
erably more convenient, intuitive and easy-to-analyse means of translating
Runge–Kutta formalism to a Lie-group setting. Yet, it would be unfair to
pronounce Crouch–Grossman methods as inviable or of purely historical in-
terest. Firstly, in their more general setting, Crouch–Grossman methods
can be made (with some effort!) to evolve on arbitrary smooth manifolds,
while the scope of RK-MK is restricted to group actions. Secondly, at the
present stage in the lifetime of geometric integration theory, we are denied
the comfort of discarding lines of inquiry simply because of our current,
incomplete understanding.

3. Runge–Kutta on manifolds and RK-MK

In this section we describe a class of numerical integration schemes for com-
puting (2.38), or more generally (2.25). The methods have become known
under the name of RK-MK-type schemes. We will later see that they might
just as well be called integration schemes based on canonical coordinates of
the first kind. These methods were originally developed in a series of four pa-
pers, Munthe-Kaas (1995), Munthe-Kaas and Zanna (1997), Munthe-Kaas
(1998) and Munthe-Kaas (1999).

A major motivation behind the first of these papers was an attempt to un-
derstand and specify the basic operations underlying classical Runge–Kutta
methods for integration of differential equations. Abstract specifications of
mathematical structures are fundamental in theoretical computer science as
a tool for structuring software. An object-oriented program consists of a
collection of program modules which interact in a well-specified manner. A
module could, for instance, represent some mathematical structure, like a
linear space, a Lie algebra or a Lie group. The basic idea of object-oriented
programming is that particular representations of the mathematical struc-
ture to be modelled should be hidden within the program module, and that
interactions between different program modules should be independent of
particular representations. Although this approach to programming has
been very successful for discrete problems, considerably less has been done
within areas of continuous mathematics, such as integration of differential
equations. Much insight about the important underlying structures can be
gained by studying ‘pure’ mathematical definitions, since these focus more
on what the essential mathematical structures are, rather than on how they

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 253

can be represented. Thus it is natural, for example, to specify that do-
mains of differential equations should be differential manifolds and that the
right-hand side of the equation should be a vector field on the manifold.

Seen from this perspective, classical integration schemes such as Runge–
Kutta methods contain ‘type errors’ in their formulation. As an example,
consider the trapezoidal rule

yn+1 = yn +
h

2
[f(yn) + f(yn+1)].

All the operations are valid if y and f are vectors. However, if y is a point
on a manifold and f a vector field, then this expression involves addition of
tangent vectors at different base points, and also the addition of a point on
a manifold and a tangent to the manifold, both being invalid operations in
the context of general manifolds.

In Munthe-Kaas (1995) classical Runge–Kutta methods are reformulated
using coordinate-independent operations on a Lie group. It is shown there
that the Butcher theory for order conditions of Runge–Kutta methods (see
Butcher (1963), Hairer, Nørsett and Wanner (1993)) can be reformulated in
a geometrical language, replacing the ‘Butcher trees’ with commutators in
a Lie algebra. The outcome is a so-called Lie–Butcher theory. Although the
resulting algorithms respect Lie-group structure, they can, in the simplest
version, attain at most order two for a general non-commutative Lie group.
In the sequel, Munthe-Kaas (1998), the Lie–Butcher order theory is im-
proved, order conditions derived to arbitrary order in general Lie groups
and explicit methods of Runge–Kutta type presented up to order four. The
paper Munthe-Kaas and Zanna (1997) generalizes the theory from equa-
tions on Lie groups to equations evolving on more general manifolds acted
upon by a Lie group. In the last of these papers, Munthe-Kaas (1999), it is
shown that similar methods of arbitrarily high order can be constructed and
analysed in a relatively simple manner, without employing the Lie–Butcher
theory.

In this section our goal is to arrive at the main ideas of the algorithms while
employing a minimal amount of formal theory. We have therefore decided
not to discuss the general Lie–Butcher theory since this would require a
significant amount of Lie theory, beyond what we have already introduced
in Section 2. The interested reader is referred to Munthe-Kaas (1998) for
details on Lie–Butcher series. We will continue along the lines of Munthe-
Kaas (1999), but instead of proofs for the general equation (2.25) we restrict
the discussion mainly to the simple matrix case (2.38).

We have seen that classical Runge–Kutta methods are valid and ‘type-
correct’ only for differential equations evolving in a linear space V , since
then the configuration space and the space of vector fields coincide. If the
analytical solution of the differential equation evolves on some linear sub-
space W ⊂ V , then it is easy to show that a consistent numerical integrator

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

254 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

will also evolve on W (up to a departure due to round-off errors). On the
other hand, if the differential equation evolves on some nonlinear manifold
embedded in V , it is much more difficult to devise numerical algorithms
that stay on the right submanifold. It is well known that traditional ν-stage
Runge–Kutta methods preserve quadratic submanifolds if the coefficients
satisfy the condition

bkbl = bkak,l + blal,k, k, l = 1, 2, . . . , ν

(Cooper 1987), while Calvo et al. (1997) show that this condition is also ne-
cessary. In the same paper it is also shown that it is essentially impossible
to devise classical Runge–Kutta methods that preserve arbitrary cubic sub-
manifolds. Linear multistep methods or truncated Taylor expansions cannot
in general preserve even quadratic submanifolds (Iserles 1997).

In the case of equations on a Lie group G, recall that the local structure in
a neighbourhood of any point can be described by the Lie algebra g, which
is a linear space. Even better, if H is a Lie subgroup of G, then there exists
a (linear!) subalgebra h of g describing the local structure of H. Given
a differential equation evolving on H, it is in general impossible to devise
classical integration scheme that will evolve on H. On the other hand, if an
equation is evolving on h, so will almost any reasonable numerical integrator.
It thus seems a good idea to try to solve a differential equation in the Lie
algebra rather than in the Lie group!

Given the equation Y ′ = A(t, Y)Y , Y (0) = Y0, we call the map

g 3 A 7→ expm(A)Y0 ∈ G (3.1)

canonical coordinates of the first kind (Varadarajan 1984). This defines a
smooth invertible map between a neighbourhood of O ∈ g and a neighbour-
hood of Y0 ∈ G. We say that these coordinates are centred about Y0 ∈ G.
A crucial step is ‘pulling back’ the equation from G to g using this map.

Lemma 3.1. For small t ≥ 0 the solution of (2.38) is given by

Y (t) = expm(Θ(t))Y0,

where Θ ∈ g satisfies the differential equation

Θ′(t) = dexp−1
Θ(t)(A(t, Y)) Θ(0) = O (3.2)

and the dexp−1 operator has been defined in (2.46).

Proof. Differentiation of Y (t) = exp(Θ(t))Y0 yields

Y ′(t) = dexpΘ(t)(Θ
′(t)) exp(Θ(t))Y0 = dexpΘ(t)(Θ

′(t))Y (t).

The lemma follows from Y ′(t) = A(t, Y)Y (t). 2

Equation (3.2) is absolutely crucial to the entire business of Lie-group
methods. It was originally stated by Felix Hausdorff (1906), although some

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 255

attribute it to John Edward Campbell, who might have published it a few
years earlier. (The names of both, together with Henry Frederick Baker,
have been immortalized in the BCH formula; cf. Theorem 2.5.) The corres-
ponding result for the general case (2.25) is given in Munthe-Kaas (1999).

Note that the proof uses no other property of the exponential mapping
than the definition of dexp. Hence the argument can easily be general-
ized, replacing exp with a general coordinate map ψ and dexp with dψ as
discussed in Definition 2.19. This will be used in Section 6.

The simplest and most natural solution strategy is to apply a classically
formulated Runge–Kutta method to (3.2), rather than to the original equa-
tion (2.38). At each step we choose a coordinate system of the form (3.1),
centred at the last known point Yn. Let us consider briefly the details of
this algorithm. Recall that a ν-stage Runge–Kutta method is defined by
constants {ak,l}νk,l=1, {bl}νl=1, {ck}νk=1, usually written as a Butcher tableau:

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν
...

...
...

...
cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν

(Hairer et al. 1993). Applied to a standard vector equation y′ = f(t,y), a
single step of length h from yn to yn+1 is given by

θk = yn +

ν∑
l=1

ak,lf l,

fk = hf(tn + ckh,θk),

 k = 1, . . . , ν,

yn+1 = yn +

ν∑
l=1

blf l.

(3.3)

Applying this scheme to (3.2), we obtain the RK-MK algorithm. The
following equations describe a single RK-MK step from Yn ∈ G to Yn+1 ∈ G:

Θk =
ν∑
l=1

ak,lFl,

Ak = hA(tn + ckh, expm(Θk)Yn),

Fk = dexp−1
Θk

(Ak),

k = 1, . . . , ν,

Θ =

ν∑
l=1

blFl,

Yn+1 = expm(Θ)Yn.

(3.4)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

256 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

The same algorithm also integrates the general equation (2.28), provided we
replace expm(Θ)Yn with its general form Λ(exp(Θ), Yn).

In order to complete this algorithm, we need to provide practical means
for computing dexp−1

Θk
(Ak). In some cases there exists fast direct algorithms

for this: see Appendix B. Note that even if dexp−1 is approximated, the
resulting algorithm will evolve on the correct manifold. In general one may
use the expansion (2.46), truncated to the order of the underlying Runge–
Kutta scheme, and the resulting algorithm will obtain the same order as the
underlying Runge–Kutta scheme, while staying on the correct manifold. For
high-order methods, a significant number of commutators must be computed
if dexp−1 is computed using (2.46). In Section 5.3 the structure of so-called
free Lie algebras is used to dramatically reduce the number of commutators.

Examples of specific methods based on (3.4) feature in Appendix A, where,
in a more general setting, it is redesignated as (A.1). Here we just stress
again the main difference between (3.3) and (3.4): the latter acts in the Lie
algebra g, which is a linear space, thereby respecting Lie-group structure.

4. Magnus and Fer expansions

There are several possible points of departure for our description of Magnus
and Fer expansions. Perhaps the simplest and the most intuitive is the scalar
linear differential equation

y′ = a(t)y, t ≥ 0, y(0) = y0.

Its solution, y(t) = exp
(∫ t

0 a(ξ) dξ
)
y0, is familiar to all well-trained math-

ematics undergraduates. Bearing in mind that the definition of the exponen-
tial can easily be extended from scalars to matrices, one might have perhaps
hoped that its obvious generalization,

expm

(∫ t

0
A(ξ) dξ

)
Y0, (4.1)

is the solution of the matrix linear system

Y ′ = A(t)Y, t ≥ 0, Y (0) = Y0. (4.2)

Unless A(t1) and A(t2) commute with each other for all t1, t2 ≥ 0, this
is, unfortunately, misplaced hope. Before offering possible remedies to this
state of affairs, we mention that if Y0 ∈ G, a Lie group, and A lies in its
Lie algebra g (whence (4.2) is a Lie-group equation) then (4.1) evolves in G.
Bearing in mind the advisability of respecting Lie-group structure, we need
to ‘correct’ (4.1) without losing this feature.

Two possible remedies suggest themselves. Firstly, we may seek a correc-

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 257

tion ∆(t) evolving in the Lie algebra g so that

Y (t) = expm

(∫ t

0
A(ξ) dξ + ∆(t)

)
Y0.

Alternatively, we may correct with V (t) in the Lie group G,

Y (t) = expm

(∫ t

0
A(ξ) dξ

)
V (t).

This gives rise to Magnus and Fer expansions, respectively.
Both Magnus (1954) and Fer (1958) expansions originated within a non-

numerical context and they have found extensive use, for instance in math-
ematical physics, quantum chemistry, control theory and stochastic differ-
ential equations as a perturbative tool in the investigation of linear systems
(4.2). Fashioning them into a numerical weapon is nontrivial and will occupy
us in this and the following sections.

4.1. Magnus expansions and rooted trees

Our point of departure is the dexpinv equation (2.46) which we recall for
completeness of exposition: the solution of (4.2) can be written in the form
Y (t) = expm(Θ(t))Y0, t ≥ 0, where

Θ′ = dexp−1
Θ A =

∞∑
k=0

Bk

k!
adkΘA, t ≥ 0, Θ(0) = O, (4.3)

{Bk}k∈Z+ being Bernoulli numbers. As a first step, we attempt to solve (4.3)
by Picard iteration,

Θ[0](t) ≡ O,

Θ[m+1](t) =

∫ t

0
dexp−1

Θ[m](ξ)
A(ξ) dξ

=
∞∑
k=0

Bk

k!

∫ t

0
adk

Θ[m](ξ)
A(ξ) dξ, m = 0, 1,

Rearranging terms for simplicity, we obtain

Θ[1](t) =

∫ t

0
A(ξ1) dξ1,

Θ[2](t) =

∫ t

0
A(ξ1) dξ1 − 1

2

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]
dξ1

+ 1
12

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]]
dξ1 + · · · ,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

258 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Θ[3](t) =

∫ t

0
A(ξ1) dξ1 − 1

2

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]
dξ1

+ 1
12

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]]
dξ1

+ 1
4

∫ t

0

[∫ ξ1

0

[∫ ξ2

0
A(ξ3)ξ3, A(ξ2)

]
dξ2, A(ξ1)

]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3,

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]]
dξ2, A(ξ1)

]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]
dξ2,

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]
dξ2, A(ξ1)

]]
dξ1

+ · · ·
and so on. The Picard theorem implies that Θ(t) = limm→∞Θ[m](t) exists
in a suitably small neighbourhood of the origin and the above first few
iterations indicate that it can be expanded as a linear combination of terms
that are composed from integrals and commutators acting recursively on the
matrix A. This is the Magnus expansion

Θ(t) =
∞∑
k=0

Hk(t), (4.4)

where each Hk is a linear combination of terms that include exactly k + 1
integrals (or – and later we will see that it boils down to the same thing –
k commutators). Thus,

H0(t) =

∫ t

0
A(ξ1) dξ1,

H1(t) = −1
2

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]
dξ1,

H2(t) = 1
12

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]]
dξ1

+ 1
4

∫ t

0

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]
dξ2, A(ξ1)

]
dξ1,

H3(t) = − 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3,

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]]
dξ2, A(ξ1)

]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]
dξ2,

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]]
dξ1

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 259

− 1
24

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0

[∫ ξ2

0
A(ξ3) dξ3, A(ξ2)

]
dξ2, A(ξ1)

]]
dξ1

− 1
8

∫ t

0

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0
A(ξ2) dξ2,

[∫ ξ1

0
A(ξ2) dξ2, A(ξ1)

]]]
dξ1.

It is possible to derive the next few sets Hk with enough perseverance and
perhaps a little help from a computer algebra package. Yet, it is evident
that the terms are becoming increasingly complex. A considerably more
transparent form of the Magnus expansion, amenable for easy recursive de-
rivation and easier discussion of computational issues, can be obtained by
associating each term in the expansion with a rooted binary tree, an approach
that has been pioneered by Iserles and Nørsett (1999).

Let us briefly recall relevant terminology of graph theory (Harary 1969).

• Let V = {v1, v2, . . . , vr} be a finite set of distinct vertices and E ∈
V ×V a set of edges. (The edges (vi, vj) and (vj , vi) are identified with
each other.) We say that G = 〈V ,E 〉 is a graph.

• The ordered set {(vsl , vtl) : l = 1, 2, . . . , r} of edges is a path from
vi ∈ V to vj ∈ V , i 6= j, if s1 = i, tl = sl+1, l = 1, 2, . . . , r − 1 and
tr = j.

• The graph is said to be connected if there is a path between any two
distinct vertices. It is a tree if exactly one path links every two vertices.

• A rooted tree is the pair T = (G, w), where G is a tree and w ∈ V is
its root. There exists natural partial order on T : we say that vi ≺ vj if
vi precedes vj in the unique path extending from the root w to vj . In
that case vi is the ancestor of vj , while vj is the successor of vi. (Thus,
the root is the ancestor of all vertices in V \ {w}.)

• If vi ≺ vj and there is no vk ∈ V such that vi ≺ vk ≺ vj , we say
that vi is the parent of vj (most graph-theory texts adopt a more sexist
definition) and vj the child of vi. Childless vertices are called leaves.

• If each vertex in a rooted tree has at most two children, T is called a
binary tree. If each vertex has either exactly two children or is a leaf,
T is said to be a strictly binary tree.

It is always worthwhile to draw a pictorial representation of a graph, whereby
edges are merely undirected lines extending between vertices, which are
denoted by black discs. The graph-theoretical convention is that the root
is always placed at the bottom, although computer scientists occasionally
defy gravity by locating it at the top. We will follow the mathematical
convention.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

260 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

We commence our investigation of the Magnus expansion by rewriting
(4.4) in the form

Θ(t) =
∞∑
k=0

Hk(t) =

∞∑
k=0

∑
τ∈Tk

α(τ)

∫ t

0
Cτ (ξ) dξ, t ≥ 0, (4.5)

Thus, each Cτ for τ ∈ Tk is made out of exactly k integrals and k commut-
ators, while each α(τ) is a scalar constant. Recalling how the expansion has
been obtained from Picard’s iteration, we observe that the terms Cτ can be
obtained by just two composition rules.

(1) The index set T0 is a singleton, T0 = {τ◦}, say, and Cτ◦(t) = A(t).

(2) If τ1 ∈ Tm1 and τ2 ∈ Tm2 then there exists τ ∈ Tm1+m2+1 such that

Cτ (t) =

[∫ t

0
Cτ1(ξ) dξ, Cτ2(t)

]
. (4.6)

Although this observation makes the expansion somewhat more transparent,
much greater transparency is obtained by identifying the index sets Tk with
subsets of binary rooted trees, in a manner that makes the above composition
rules stand out pictorially. We express the relationship between the index τ
and the term Cτ (t) by the map τ ; Cτ (t).

(1) We let T0 consist of the single rooted tree with one vertex, r , and

r ; A(t).

(2) Suppose that Tm1 3 τ1 ; Cτ1(t) and Tm2 3 τ2 ; Cτ2(t). Then

Tm1+m2+1 3 r

r

@@�

τ1
τ2
;

[∫ t

0
Cτ1(ξ) dξ, Cτ2(t)

]
. (4.7)

Thus, (4.6) is ‘coded’ in graph terminology by denoting integration by adding
a root to a tree, while commutation is denoted by joining two trees with a
common root. It is possible to show that all the terms in the Magnus
expansion can be obtained in this manner (Iserles and Nørsett 1999).

To derive T1 we have just one option, m1 = m2 = 0, and the outcome is
a single tree,

τ1 = r, τ2 = r ⇒ τ = r@@��
r r

r

.

There are two possibilities in T2, namely m1 = 0, m2 = 1 and m1 = 1,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 261

m2 = 0. They yield

τ1 = r, τ2 = r@@��
r r

r

⇒ τ = r

r

r

@@
@@
��
��r

rr

r

,

τ1 = r@@��
r r

r

, τ2 = r ⇒ τ = r@@��
r r

r@@��
r r

r

.

Next, we construct T3:

τ1 = r, τ2 = r

r

r

@@
@@
��
��r

rr

r

⇒ τ = r

r

r

r

@@
@@
@@

��
��
��

r

r

r

r

r

r

,

τ1 = r, τ2 = r@@��
r r

r@@��
r r

r

⇒ τ = r@@��
r r

r

r@@��
r r

r@@��
r r

r

,

τ1 = r@@��
r r

r

, τ2 = r@@��
r r

r

⇒ τ = rQQ ��
r r@@��

r r

r

r@@��
r r

r

,

τ1 = r

r

r

@@
@@
��
��r

rr

r

, τ2 = r ⇒ τ = r@@��
r r

r

r

r

@@
@@
��
��r

rr

r

,

τ1 = r@@��
r r

r@@��
r r

r

, τ2 = r ⇒ τ = r@@��
r

r@@��
r r

r@@��
r r

r

r

.

The principle should be quite clear by now, as should the correspondence
between trees and expansion terms which, indeed, can be ‘read’ directly

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

262 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

from the graph. Thus, the last tree can be ‘recited’ as ‘the integral of A,
commuted with A, integrated, commuted with A, integrated and commuted
with A’.

We now have a recursive algorithm to derive the Cτ s but recall that,
to complete our description of (4.5), we also require the constants α(τ).
Fortunately, this too can be deduced from the tree formalism. We thus
commence by letting α(r) = 1 and continue by observing that each tree in
∪k∈NTk can be written in a unique form as

τ = r

r

r

r

@@
@@
@@

��
��
��

r

r

r

r@@��
r r

τ1
τ2
τ3

τs

..
.

(4.8)

for some s ≥ 1. We can assume by induction that α(τi) are already known
for i = 1, 2, . . . , s. In that case it has been proved in Iserles and Nørsett
(1999) that

α(τ) =
Bs

s!

s∏
i=1

α(τi). (4.9)

Note that B2m+1 = 0 for m ≥ 1. This implies that many (although, unfor-
tunately, not too many . . .) terms in (4.5) vanish.

We can now write the first terms of the Magnus expansion in a tree form-
alism, using the convention that linear combination of trees corresponds to
a linear combination of expansion terms,

Θ(t) = r

r

− 1
2 r

r@@��
r r

r

+ 1
12 r

r

r

r

@@
@@
��
��r

rr

r

+ 1
4 r

r@@��
r r

r@@��
r r

r

− 1
8 r

r@@��
r

r@@��
r r

r@@��
r r

r

r

− 1
24 r

r@@��
r r

r

r@@��
r r

r@@��
r r

r

− 1
24 r

rQQ ��
r r@@��

r r

r

r@@��
r r

r

− 1
24 r

r@@��
r r

r

r

r

@@
@@
��
��r

rr

r

+ · · · .

(4.10)

Note that the coefficient corresponding to the last tree in T3 vanishes, this
being a consequence of (4.9) and of B3 = 0.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 263

It is relatively easy to continue the expansion to higher-order terms.
Moreover, it is easy to prove that

τ ∈ Tk ⇒
∫ t

0
Cτ (ξ) dξ = O

(
tk+1

)
, k ∈ Z

+ (4.11)

for every sufficiently smooth matrix function A. On the face of it, this gives
a handy device to truncate the Magnus expansion to obtain an approximant
of given order – we will bother later about the calculation of multivariate
integrals. This, however, is grossly misleading, since the naive estimate
(4.11) can be improved a very great deal: far fewer terms are required!

4.2. Convergence of the Magnus expansion

Before we proceed to improve the estimate (4.11) and even consider the
question of designing a realistic numerical algorithms based on the Magnus
expansion, we need to examine the issue of convergence.

It has been proved in Iserles and Nørsett (1999) that convergence takes
place for sufficiently small t ≥ 0, but the result was unduly pessimistic.
A considerably better (and in a well-defined sense optimal) estimate has
been obtained by Blanes, Casas, Oteo and Ros (1998). Herewith we present
briefly a short and elegant proof due to Moan (1998).

Theorem 4.1. Suppose that the Lie algebra g is equipped with the norm

‖ · ‖. The Magnus expansion (4.4) absolutely converges in this norm for

every t ≥ 0 such that∫ t

0
‖A(ξ)‖dξ ≤

∫ 2π

0

dξ

4 + ξ[1− cot(ξ/2)]
≈ 1.086868702. (4.12)

Proof. Integrating (4.3) and taking norms, we have by the triangle inequal-

ity and the trivial bound ‖adkBA‖ ≤ (2‖B‖)k‖A‖ that

‖Θ(t)‖ =

∥∥∥∥∫ t

0
dexp−1

Θ(ξ)A(ξ) dξ

∥∥∥∥ ≤ ∫ t

0
‖ dexp−1

Θ(ξ)A(ξ)‖dξ

≤
∫ t

0

∞∑
k=0

|Bk|
k!

(2‖Θ(ξ)‖)k‖A(ξ)‖dξ =

∫ t

0
g(2‖Θ(ξ)‖)‖A(ξ)‖dξ,

where

g(x) = 2 +
x

2

(
1− cot

x

2

)
.

We now use a Bihari-type inequality from Moan (1998): suppose that

h, g, v ∈ C(0, t∗) are positive and that g is nondecreasing. Then

h(t) ≤
∫ t

0
g(h(ξ))v(ξ) dξ, t ∈ (0, t∗)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

264 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

implies that

h(t) ≤ g̃−1

(∫ t

0
v(ξ) dξ

)
, t ∈ (0, t∗∗), where g̃(x) =

∫ x

0

dξ

g(ξ)

and t∗∗ ∈ (0, t∗] is such that g̃
(∫ t

0 v(ξ) dξ
)

is bounded in (0, t∗∗). In our

case h(t) = 2‖Θ(t)‖, v(t) = ‖A(t)‖ and g(t) are all positive and the latter is

nondecreasing for t ∈ (0, 2π). Therefore,

‖Θ(t)‖ ≤ 1
2 g̃
−1

(∫ t

0
‖A(ξ)‖dξ

)
and ‖Θ(t)‖ is bounded, provided that g̃

(∫ t
0 ‖A(ξ)‖dξ

)
is bounded. The

latter holds as long as condition (4.12) is satisfied. 2

The condition of Theorem 4.1 has recently been improved for a more
relaxed convergence framework. Moan (2000) proved that the Magnus ex-
pansion converges in norm for all t ∈ (0, t∗) with regard to the Euclidean
norm,

lim
m→∞

∥∥∥∥∥Θ(t)−
m∑
k=0

Hm(t)

∥∥∥∥∥
2

= 0,

provided that ∫ t∗

0
‖A(ξ)‖2 dξ < π. (4.13)

Magnus expansions cannot be expected to converge always. In its numer-
ical implementation, this means that the expansion (like any other numerical
method for ODEs) needs to be advanced in a time-stepping fashion, rather
than being applied globally. Yet, the condition of Theorem 4.1 is not un-
duly restrictive and (4.13) is even less so. It might be problematic for stiff
systems, a subject that has not received much attention in the study of Lie-
group methods. An important exception is the use of Magnus expansions in
the calculation of Sturm–Liouville spectra, where an elegant device allows
us to integrate the equations way beyond the formal upper bound (4.12)
(cf. Section 11.2 and Moan (1998)).

4.3. Power of a tree and time symmetry

Following Iserles, Nørsett and Rasmussen (1998), we say that a tree τ ∈
∪k∈Z+Tk is of power m if m ≥ 0 is the smallest integer such that

Cτ (t) = O(tm)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 265

for all sufficiently smooth matrix functions A. Letting Fm be the set of all
trees of power m and truncating the Magnus expansion,

Θp(t) =

p−1∑
m=0

∑
τ∈Fm

α(τ)

∫ t

0
Cτ (ξ) dξ, (4.14)

it is trivial to verify that Θp(t) = Θ(t) + O(tp+1) and we have an order-p
approximant.

We already know from (4.11) that τ ∈ Tk implies τ ∈ Fm for some m ≥ k.
How large can m get, though? The main mechanism that increases order is
commutation. Thus, suppose that

Cτi(t) = Dit
mi + Eit

mi+1 + Fit
mi+2 + · · · , i = 1, 2.

Then[∫ t

0
Cτ1(ξ) dξ, Cτ2(t)

]
=

1

m1 + 1
[D1, D2]t

m1+m2+1

+

(
1

m1 + 1
[D1, E2] +

1

m1 + 2
[E1, D2]

)
tm1+m2+2

+

(
1

m1 + 1
[D1, F2] +

1

m1 + 2
[E1, E2] +

1

m1 + 3
[F1, D2]

)
tm1+m2+3

+ · · · .

In general, [D1, D2] 6= O, hence the new term resides in Fm1+m2+1. However,
cancellation takes place in the important special case τ1 = τ2, whence[∫ t

0
Cτ1(ξ) dξ, Cτ1(t)

]
=

1

(m1 + 1)(m1 + 2)
[D1, E1]t

2m1+2

+
2

(m1 + 1)(m1 + 3)
[D1, F1]t

2m1+3 + · · ·

and the new term is in F2m1+2, a gain of one unit.
While F0 = { r}, we observe that F1 = ∅ and

F2 =

{
r@@��

r r

r }
,

F3 =

r

r

r

@@
@@
��
��r

rr

r

, r@@��
r r

r@@��
r r

r
 ,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

266 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

F4 =

r

r

r

r

@@
@@
@@

��
��
��

r

r

r

r

r

r

, r@@��
r r

r

r@@��
r r

r@@��
r r

r

, r@@��
r r

r

r

r

@@
@@
��
��r

rr

r

, r@@��
r

r@@��
r r

r@@��
r r

r

r

.

In general, the number of terms counted according to power is significantly
smaller than similar enumeration by the number of commutators. It is
possible to prove that

lim sup
k→∞

(#Tk)
1/k = 4, lim sup

m→∞
(#Fm)1/m ≈ 3.11674 (4.15)

(Iserles and Nørsett 1999, Iserles et al. 1998). As an example of the reduction
in cardinality, compare #T6 = 132 with #F6 = 21.

Using the ‘truncation by power’ (4.14) is thus aptly justified. However,
before we rush to pronounce this as the ‘correct’ truncated Magnus expan-
sion, we need to pay attention to yet another device that reduces the number
of terms in the expansion.

Let Φt be the flow corresponding to the differential equation (4.2), Φt(Y0)
= Y (t). It is obvious that the flow is time-symmetric, Φ−t ◦ Φt = Id, since
integrating from 0 to t and back to 0 returns us to the original initial value.
What is far less obvious, yet has been proved in Iserles et al. (1998), is that
the truncation by power (4.14) respects time symmetry. In other words, let

Φ̃t(Y0) = eΘp(t)Y0, t ≥ 0.

Then Φ̃−t ◦ Φ̃t = Id. This is remarkable, since any analytic time-symmetric
map St can be represented in the form St = eFt where the map Ft is expand-
able in odd powers of t only (Hairer et al. 1993). This fits our framework
perfectly.

Theorem 4.2. The function Θp can be expanded in odd powers of t and

Θ2q−1(t) = Θ(t) +O(t2q+1
)
, q ∈ N.

Therefore, truncating by power with odd p leads to a gain of an extra unit
of order! This is a critical observation which leads to substantial savings in
high-order Magnus expansions.

It is important to realize that it is not true that individual elements in
H2q−1, q ≥ 2, are O(t2q+1): it is their linear combination that knocks out
the O(t2q) term!

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 267

We may now re-examine the expansion (4.10), truncating by power and
identifying the order. Reverting from trees to standard notation, we have

Θ(t) =

∫ t

0
A(ξ) dξ .order 2 (4.16)

− 1
2

∫ t

0

∫ ξ1

0
[A(ξ2), A(ξ1)] dξ . order 4 (4.17)

+ 1
12

∫ t

0

∫ ξ1

0

∫ ξ1

0
[A(ξ2), [A(ξ3), A(ξ1)]] dξ

+ 1
4

∫ t

0

∫ ξ1

0

∫ ξ2

0
[[A(ξ3), A(ξ2)], A(ξ1)] dξ

− 1
24

∫ t

0

∫ ξ1

0

∫ ξ1

0

∫ ξ3

0
[A(ξ2), [[A(ξ4), A(ξ3)], A(ξ1)]] dξ

− 1
24

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ2

0
[[A(ξ3), [A(ξ4), A(ξ2)]], A(ξ1)] dξ

− 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0
[[[A(ξ4), A(ξ3)], A(ξ2)], A(ξ1)] dξ order 6 (4.18)

+ · · · .
Very often entries of A and its commutators can be integrated explicitly,

for instance when they are polynomials or trigonometric functions. In that
case the truncated Magnus expansions (4.16)–(4.18), say, can be computed
explicitly. However, a more comprehensive numerical approach to Magnus
expansions requires the computation of multivariate integrals. Although at
first glance this may appear to be a very formidable task, it turns out that
the special structure of ‘Magnus integrals’ renders them amenable to very
effective and affordable numerical treatment. We defer the discussion of this
issue to Section 5.

4.4. Fer expansions

At the first instance, we wish to represent the solution of (4.2) in the form

Y (t) = e
∫ t
0 A(ξ) dξV (t), t ≥ 0. (4.19)

Direct differentiation yields

V ′ =

[
d

dt
e−

∫ t
0 A(ξ) dξ

]
Y + e−

∫ t
0 A(ξ) dξY ′

=

[
d

dt
e−

∫ t
0 A(ξ) dξ

]
e
∫ t
0 A(ξ) dξV + e−

∫ t
0 A(ξ) dξAe

∫ t
0 A(ξ) dξV

=
[
Ad expm(−

∫ t
0 A(ξ) dξ)A(t)− dexp expm(−

∫ t
0 A(ξ) dξ)A(t)

]
V.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

268 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Recalling from (2.24) and (2.43) that

Ad expm(E)D = eadED,

dexpED =
eadE − I

adE
D,

we deduce that the correction term V itself obeys a linear differential equa-
tion,

V ′ =
[
(I + adE) e−adE − I

adE
D

]
V, t ≥ 0, V (0) = Y0,

where

D = A(t), E =

∫ t

0
A(ξ) dξ.

This is indeed the main step in constructing the Fer expansion: the correc-
tion V in (4.19) satisfies the equation

V ′ =

[∞∑
k=1

(−1)k
k

(k + 1)!
adk∫ t

0 A(ξ) dξ
A(t)

]
V, t ≥ 0, V (0) = Y0. (4.20)

The idea is now to iterate (4.20). Thus, we let B0 = A and generate the
sequence {Bm}m∈Z+ recursively, where

Bm(t) =

∞∑
k=1

(−1)k
k

(k + 1)!
adk∫ t

0 Bm−1(ξ) dξ
Bm−1(t), t ≥ 0, m ∈ N.

(4.21)

The Fer expansion of the solution of (4.2) is

Y (t) = e
∫ t
0 B0(ξ) dξe

∫ t
0 B1(ξ) dξe

∫ t
0 B2(ξ) dξ · · ·Y0, t ≥ 0. (4.22)

This expansion was introduced by Fer (1958) who, remarkably, did not re-
cognize that it respects Lie-group structure. It was rediscovered by Iserles
(1984) in a numerical context but, again, Lie groups were not mentioned.
Finally, Zanna (1996) recognized (4.22) as a Lie-group solver. In Zanna and
Munthe-Kaas (1997) it is shown that this expansion can be understood as
a version of so-called Lie reduction. From this it follows that if g is solvable
(cf. Section 6.5) then the expansion in (4.2) is exact for a finite product of
exponentials.

The first step in a numerical implementation of the Fer expansion (4.22)
is truncation of the infinite product. To this end it is vital to recognize the
rate of decay of the matrices Bm. Assuming that Bm(t) = O(tpm), m ∈ Z

+,
it is easy to verify from (4.21) that pm = 2pm−1 + 2. This, in tandem with

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 269

p0 = 0, yields pm = 2m+1 − 2 and we deduce that

e
∫ t
0 B0(ξ) dξe

∫ t
0 B1(ξ) dξ · · · e

∫ t
0 Bs−1(ξ) dξY0 = Y (t) +O(t2s+1−1

)
. (4.23)

Thus, we obtain an approximant of order 2s+1 − 2: the order grows expo-
nentially with s (Iserles 1984)!

Of course, if we are interested in an order-p Fer approximant to the solu-
tion of (4.2), there is no need to carry out the summation in (4.21) ad in-
finitum. Systematic analysis of order conditions necessary for the formation
of Fer approximants of various orders has been carried out by Zanna (1998)
using the same binary rooted trees that we have already encountered in our
analysis of the Magnus expansion. Identifying A with the single-vertex tree,
we have the following explicit form of a Fer approximant of any given order.

Order 2: s = 1,

B0(t) : r.

Order 3: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@��

r r

r

.

Order 4: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@��

r r

r

+ 1
3 r

r

r

@@
@@
��
��r

rr

r

.

Order 5: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@��

r r

r

+ 1
3 r

r

r

@@
@@
��
��r

rr

r

+ 1
8 r

r

r

r

@@
@@
@@

��
��
��

r

r

r

r

r

r

.

Order 6: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@��

r r

r

+ 1
3 r

r

r

@@
@@
��
��r

rr

r

+ 1
8 r

r

r

r

@@
@@
@@

��
��
��

r

r

r

r

r

r

+ 1
30 r

r

r

r

r

@@
@@
@@
@@

��
��
��
��

r

r

r

r

r

r

r

r

.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

270 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Order 7: s = 3,

B0(t) : r,

B1(t) : 1
2 r@@��

r r

r

+ 1
3 r

r

r

@@
@@
��
��r

rr

r

+ 1
8 r

r

r

r

@@
@@
@@

��
��
��

r

r

r

r

r

r

+ 1
30 r

r

r

r

r

@@
@@
@@
@@

��
��
��
��

r

r

r

r

r

r

r

r

+ 1
144 r

r

r

r

r

r

@@
@@
@@
@@
@@

��
��
��
��
��

r

r

r

r

r

r

r

r

r

r

,

B2(t) : 1
8 rQQ ��

r r@@��
r r

r

r@@��
r r

r

,

and so on. Note that only a subset of ‘Magnus trees’ occurs in the expan-
sion. This representation of expansion terms as linear combination of trees
is central to the application of the multivariate quadrature algorithms of
the next section and derivation of practical numerical methods for the Fer
expansion.

5. Quadrature and graded algebras

5.1. Multivariate quadrature over polytopes

Casting our eyes again over the Magnus method (4.16)–(4.18) and consid-
ering its numerical implementation, let us discuss the computation of the
first four integrals, noting that each needs to be carried out over a different
polytope, as follows.

I1(t) =

∫ t

0
A(ξ) dξ over the line segment 0 t

I2(t) =

∫ t

0

∫ ξ1

0
[A(ξ2), A(ξ1)] dξ over the triangle @

@@

0 t
0

t

I3(t) =

∫ t

0

∫ ξ1

0

∫ ξ1

0
[A(ξ2), [A(ξ3), A(ξ1)]] dξ over the prism @

@@
��

��

@
@@

0 t
0

t
0

t

I4(t) =

∫ t

0

∫ ξ1

0

∫ ξ2

0
[[A(ξ3), A(ξ2)], A(ξ1)] dξ over the pyramid @

@@
��
HH

H

0 t
0

t

0

t

Unless we can replace all these integrals by affordable and accurate quad-
rature, the Magnus method (and by the same token the Fer method) of
non-trivial order is of little but theoretical value. Yet, multivariate quadrat-

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 271

ure is notoriously expensive in terms of function evaluations (Cools 1997).
Fortunately, the special nature of integrals occurring within the context of
Magnus and Fer expansions renders them particularly suitable for numerical
quadrature with a remarkably small number of function evaluations (Iserles
and Nørsett 1999).

We commence by observing that, time-stepping with step h > 0, each
Magnus or Fer expansion term is of the form

I(h) =

∫
S
L(A(ξ1), A(ξ2), . . . , A(ξs)) dξ, (5.1)

where L is a multilinear form, while S is a polytope of a special form,

S = {ξ ∈ R
s : ξ1 ∈ [0, h], ξl ∈ [0, ξml

], l = 2, 3, . . . , s},
where ml ∈ {1, 2, . . . , l − 1}, l = 2, 3, . . . , s. Thus, for example,∫ t

0

∫ ξ1

0

∫ ξ1

0
[A(ξ2), [A(ξ3), A(ξ1)]] dξ

and

∫ t

0

∫ ξ1

0

∫ ξ2

0
[[A(ξ3), A(ξ2)], A(ξ1)] dξ

yield s = 3 and

L(E1, E2, E3) = [E2, [E3, E1]], m2 = 1, m3 = 1

and

L(E1, E2, E3) = [[E3, E2], E1], m2 = 1, m3 = 2,

respectively.
Following Iserles and Nørsett (1999), we propose to discretize I(h) as

follows. Choose ν distinct quadrature points, c1, c2, . . . , cν ∈ [0, 1], evaluate
Ak = hA(ckh), k = 1, 2, . . . , ν and form the quadrature

K(h) =
∑

k∈Cν
s

bkL(Ak1 , Ak2 , . . . , Aks), (5.2)

where Cν
s is the set of all combinations of length s from the set {1, 2, . . . , ν}.

The weights are

bk =

∫
S̃

s∏
i=1

`ki(ξi) dξ, (5.3)

where

S̃ = {ξ ∈ R
s : ξ1 ∈ [0, 1], ξl ∈ [0, ξml

], l = 2, 3, . . . , s}

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

272 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

is the polytope S scaled to the unit cube and

`j(x) =
ν∏
i=1
i6=j

x− cj
ci − cj

, j = 1, 2, . . . , ν,

are the familiar cardinal polynomials of Lagrange’s interpolation. Note that
(5.3) are interpolatory weights: they follow naturally by substituting the
interpolation polynomial at the quadrature points,

Ã(t) = h−1
ν∑

k=1

`k

(
t

h

)
Ak (5.4)

in place of A(t) in (5.1) and carrying out the integration explicitly. Concep-
tually, (5.2) recycles ν function values at all possible combinations at the s
‘slots’ of the multilinear function L.

How well does the quadrature (5.2) approximate the integral (5.1)? The
answer is straightforward in the case s = 1, L(E) = E, since we recover
standard univariate interpolatory quadrature, which is of order ν+m, where
m ≥ 0 is the largest integer so that∫ 1

0
ξi−1c(ξ) dξ = 0, i = 1, 2, . . . ,m where c(t) =

ν∏
k=1

(t− ck) (5.5)

is the collocation polynomial.

Theorem 5.1. The orthogonality condition (5.5) implies that the quad-

rature rule (5.2) is of order ν + m for all polytopes S and all multilinear

forms L. In particular, if c1, c2, . . . , cν are the roots of the Legendre poly-

nomial Pν , shifted to the interval [0, 1] (Gauss–Legendre points), then the

quadrature is of order 2ν.

We do not propose to present the proof from Iserles and Nørsett (1999),
which is long, technical and not particularly illuminating. Later, in the con-
text of Magnus methods for nonlinear Lie-group equations, we describe a
much clearer argument due to Zanna (1999) that explains why a suitable
linear combination of quadratures (5.2) approximates the truncated Magnus
expansion to the order reported in Theorem 5.1. Instead, we present an ex-
ample, the quadrature of the four integrals that have opened this subsection
using (5.2) at three Gauss–Legendre points.

Letting ν = 3, hence order six, we have

c1 = 1
2 −

√
15

10 , c2 = 1
2 , c3 = 1

2 +
√

15
10 ,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 273

whence

`1(x) =
5 +

√
15

6
− 10 +

√
15

3
x+

10

3
x2,

`2(x) = −2

3
+

20

3
x− 20

3
x2,

`3(x) =
5−√15

6
− 10−√15

3
x+

10

3
x2.

In so far as the univariate integral I1 is concerned, we have the familiar
Gauss–Legendre quadrature,

I1(h) ≈ 1
18(5A1 + 8A2 + 5A3),

while, after taking into account skew symmetry of commutators, the quad-
rature of the planar integral is

I2(h) ≈
√

15
54 (2[A1, A2] + [A1, A3] + 2[A2, A3]].

For the two cubic integrals, we are interested (cf. (4.18)) in their linear
combination which, after a great deal of simplification, yields

1
12I3(h) + 1

4I4(h) ≈ 1
27216(94[A1, [A1, A2]] + 45[A1, [A1, A3]]

+ 194[A1, [A2, A3]]− 152[A2, [A1, A2]] + 152[A2, [A2, A3]] (5.6)

− 194[A3, [A1, A2]]− 45[A3, [A1, A3]]− 94[A3, [A2, A3]]).

Before any attempts are made either to anoint (5.2) as a new wonder-
quadrature or to expand efforts to optimize its calculation, we hasten to
say that it is suboptimal! Indeed, it is an immediate consequence of The-
orem 4.2 that 1

12I3(h)+
1
4I4(h) = O(h4), rather than O(h3). Moreover, some

commutators can be expressed in terms of other commutators. Although all
this can be done on an ad hoc basis, it is significantly better and more ef-
ficient to understand this phenomenon mathematically and apply the fruits
of our understanding not just to truncated Magnus method but also to other
Lie-group solvers.

Quadrature (5.2) scores exceedingly well in terms of function evaluations:
the number of function evaluations required to compute all the integrals in
a Magnus expansion to requisite order is the same as the cost of the cor-
responding univariate Gauss–Legendre quadrature! The trade-off, though, is
that this approach requires a very large volume of linear-algebra calculations,
since the number of all combinations is inordinately large. Fortunately, the
cost of linear algebra can be reduced a very great deal by exploiting the
theory of free Lie algebras. This salutary example of a mathematical theory
purer than a driven snow finding a very practical application in the design
of numerical algorithms is told in the remainder of this section.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

274 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

5.2. The self-adjoint basis

The first step in the effort to improve the multivariate quadrature formula
(5.2) is a change of basis. As suggested first by Munthe-Kaas and Owren
(1999), we choose c1 < c2 < · · · < cν symmetric with respect to 1

2 and replace
the function values A1, A2, . . . , Aν with the solution of the Vandermonde
system

ν∑
l=1

(ck − 1
2)l−1Bl = Ak, k = 1, 2, . . . , ν. (5.7)

We say that {B1, B2, . . . , Bν} is a self-adjoint basis and note for future
reference that Gauss–Legendre points in [0, 1], being symmetric with respect
to 1

2 , lead to such a basis.

Proposition 5.2. Given a sufficiently smooth matrix function A, it is true

that Bl = clh
lA(l−1)(1

2h) + O(hl+1), where cl 6= 0 is a scalar constant,

l = 1, 2, . . . , ν. Moreover, each h−lBl can be expanded in even powers of h.

It follows from the proposition that the interpolating polynomial can be
written in the form

Ã(t) = h−1
ν−1∑
l=0

Bl+1(
t
h − 1

2)l. (5.8)

Substituting this into (5.1) allows us to rephrase the quadrature formula
(5.2) in a considerably more convenient form,

K̄(h) =
∑
l∈Cν

s

b̄lL(Bl1 , Bl2 , . . . , Bls), (5.9)

where

b̄l =

∫
S̄

s∏
i=1

(ξi − 1
2)li−1 dξ. (5.10)

Proposition 5.3. (Munthe-Kaas and Owren 1999) Suppose that a

linear combination of integrals I(h) can be expanded in odd powers of h.

Then so can the linear combination of quadratures (5.9).

Recall from Section 4.3 that Magnus series, truncated by power, conform
with the assumptions of Proposition 5.3: at a stroke, roughly half the com-
mutators go away. Yet, this is but the first of three important savings that
are a consequence of the change of a basis.

An element F ∈ g constructed from the basis terms B1, B2, . . . , Bν by
the standard Lie-algebra operations of linear combination and commutation
is said to be of grade m if F = O(hm) for all sufficiently smooth matrix

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 275

functions A. This is denoted by ω(F) = m. We note from Proposition 5.2
that ω(Bl) = l, l = 1, 2, . . . , ν. Moreover, the grade is inherited under
commutation, for instance, ω([Bk, Bl]) = ω(Bk) + ω(Bl) and, with greater
generality,

ω(L(Bl1 , Bl2 , . . . , Bls)) = |l| =
ν∑
i=1

li.

By the definition of the grade, this is equivalent to

L(Bl1 , Bl2 , . . . , Bls) = O(h|l|).
Thus, as long as we are interested in an order-p quadrature, we can discard
higher-order terms in (5.10). The outcome is

K̂(h) =
∑

l∈Ĉν,p
s

b̄lL(Bl1 , Bl2 , . . . , Bls), (5.11)

where Ĉν,p
s ⊆ Cν

s such that

l ∈ Ĉν,p
s ⇔ |l| ≤ p.

Let us recall the four integrals from Section 5.1. We presently obtain us-
ing (5.11) the following order-6 quadrature formulae using Gauss–Legendre

points with ν = 3. In line with (5.7), we let B1 = A2, B2 =
√

15
3 (A3 − A1)

and B3 = 10
3 (A3 − 2A2 +A1):

I1(h) ≈ B1 + 1
12B3,

I2(h) ≈ 1
6 [B2, B1]− 1

120 [B3, B2],

I3(h) ≈ −1
8 [B1, [B2, B1]] + 1

80 [B2, [B2, B1]]− 1
120 [B1, [B3, B1]]

+ 1
480 [B1, [B3, B2]] + 1

240 [B2, [B3, B1]]− 7
480 [B3, [B2, B1]]

− 1
160 [B1, [B3, B1]],

I4(h) ≈ 1
24 [B1, [B2, B1]] + 1

80 [B2, [B2, B1]]− 1
120 [B1, [B3, B1]]

− 1
1440 [B1, [B3, B2]]− 1

720 [B2, [B3, B1]] + 7
1440 [B3, [B2, B1]]

+ 1
480 [B1, [B3, B1]].

Moreover, consistently with Proposition 5.3, we have

1
12I3(h) + 1

4I4(h) ≈ 1
240 [B2, [B2, B1]]− 1

360 [B1, [B3, B1]].

Just two terms survive!
Taken together, throwing away terms of high enough grade and the re-

moval of terms with even |l| after summation removes a high proportion
of commutators. Having said this, the most important feature of the self-
adjoint basis that allows us to reduce the computational cost has not been
mentioned yet!

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

276 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

We have already exploited skew symmetry of the commutator in the de-
rivation and ‘beautification’ of our integration formulae. This is a fairly
transparent procedure. However, let us recall that the commutator is also
subject to the Jacobi identity (2.11). This allows for a very powerful mech-
anism to express commutators as linear combinations of other commutators
and leads to results that are of importance not just to Magnus expansions,
but also to RK-MK methods and the evaluation of the BCH formula. This
is the theme of the next subsection.

5.3. Free Lie algebras

In the previous subsections we have seen how to construct an approximation
to the solution Y of the Lie-group differential equation Y ′ = A(t)Y by means
of linear combinations of matrices G1, G2, . . . , Gν ∈ g, whereby the Gi are
either ‘samples’ of the matrix function A(t), in which case Gi = hA(cih),
or terms of the self-adjoint basis, in which case the Gis coincide with the
matrices Bi of Section 5.2.

It is clear that, if we want to make the best out of the properties of the
commutator (skew symmetry and Jacobi identity) it is useful to depart from
specific representations (Ais and Bis) and treat the Gis as abstract objects
in an abstract algebra g that embodies the structure that is common to
all Lie algebras but nothing more. This is the main idea behind free Lie
algebras, a formalization of a Lie algebra whose terms can be generated by
means of brackets of pairwise elements and such that there are no redu-
cing mechanisms other than skew symmetry and the Jacobi identity of the
commutator.

More precisely, the following definition formalizes the concept of free Lie

algebras presented above (Munthe-Kaas and Owren 1999).

Definition 5.1. Let I be a set of indices, either finite or countable. A Lie

algebra g is free over the set I if:

(i) for every index i ∈ I there exists Gi ∈ g;

(ii) for any Lie algebra h and any function i ∈ I 7→ Hi ∈ h there exists a

unique Lie-algebra homomorphism π : g → h such that π(Gi) = Hi for

all i ∈ I.
Moreover, S = {Gi}i∈I is called the set of generators of the free Lie al-

gebra g.

In our exposition it is useful to think of a free Lie algebra (FLA) as a
linear space and to describe it in terms of a basis. One of the most popular
is a Hall basis H that contains the generators, S ⊆ H (Bourbaki 1975). All
elements of H are produced by recursive commutation of generators. We

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 277

can associate a length function to each element in the following fashion:
`(Gi) = 1 for Gi ∈ S and `(H) = `(H1) + `(H2) for all H ∈ H \ S, where
H = [H1, H2]. Intuitively, we may say that the length of H corresponds to
how many commutators of generators are needed to construct H. In other
words, the length function merely counts commutators.

The Hall basis H can be endowed with a total ordering defined recursively
on the length ` of its elements. In general, we say that G ≺ H if `(G) <
`(H). If `(G) = `(H) then G ≺ H if G precedes H in lexicographic order.
Moreover, to take into account skew symmetry and the Jacobi identity, we
require that

• elements of length two [Gi, Gj] are included in H if Gi ≺ Gj ;

• elements of length greater or equal to three are included inH if they are
of the form [Hi, [Hj , Hk]], with Hi, Hj , Hk, [Hj , Hk] ∈ H and moreover
Hj � Hi ≺ [Hj , Hk].

An example of the first terms of a Hall basis generated by three elements
G1, G2, G3 is given by

G1, G2, G3, [G1, G2], [G1, G3],
[G2, G3], [G1, [G1, G2]], [G1, [G1, G3]], [G2, [G1, G2]], [G2, [G1, G3]],
[G2, [G2, G3]], [G3, [G1, G2]], [G3, [G1, G3]], [G3, [G2, G3]],

We shall not go into details of algorithmic construction of the Hall basis,
which can be found in Bourbaki (1975), and Munthe-Kaas and Owren
(1999). It is interesting, however, to mention how fast the number of ele-
ments of the Hall basis grows: assuming that I is finite and consists of
ν indices (equivalently, S consists of ν generators), the linear subspace of
terms of length exactly equal to m has dimension

ρm =
1

m

∑
d|m

µ(d)νm/d,

the sum being carried over all integers d dividing m, a result known as Witt’s
formula. The function µ is the Möbius function, defined as follows: assume
that d can be factorized as d = dn1

1 dn2
2 · · · dnqq , with each di a prime number

and ni ≥ 1. Then

µ(d) =

 1, d = 1,
(−1)q, ni = 1 for all i = 1, 2, . . . , q,
0, otherwise.

The number ρm grows quite fast, as illustrated in Table 5.1 for ν = 3.
Why is all this relevant to our discussion? Let us represent G1 = A1, G2 =

A2, . . . , Gν = Aν , where Ai = hA(cih), for i = 1, . . . , ν. Since Ai = O(h), a
term containing exactly m commutators corresponds to a combination that

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

278 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Table 5.1. Dimension of linear spaces of words of length

equal to m in the Hall basis generated by G1, G2 and G3

m 1 2 3 4 5 6 7 8 9 10

ρm 3 3 8 18 48 116 312 810 2184 5580

is at least of order O(hm). Thus, in order to have a numerical approxim-
ation of order p, the number of linearly independent terms that we need
to take into account is bounded by

∑p
m=1 ρm or, because of Theorem 4.2,

by
∑p−1

m=1 ρm if the ci are symmetrically distributed with respect to 1
2 . For

instance, for a sixth-order Gauss–Legendre scheme (ν = 3), this leads to 80
linearly independent terms of the Hall basis, not counting the number of
commutators involved!

The growth of ρm can be reduced introducing a grading ω of the FLA g,
as suggested by Munthe-Kaas and Owren (1999). Assume that

ω(Gi) = ωi ∈ N, Gi ∈ S, i = 1, 2, . . . , ν.

The grading propagates in a natural manner in the Hall basis H: for all
H ∈ H of the form H = [H1, H2] we let

ω(H) = ω(H1) + ω(H2).

A consequence of the grading is that the Hall basis H splits into a disjoint
union of sets of grade m,

H =
∞⋃

m=1

Hm, Hm = {H ∈ H : ω(H) = m},

consequently g becomes a direct sum of subspaces,

g =
∞⊕

m=1

gm, gm = spanHm,

and we say that g is a graded FLA algebra.
The fundamental result on the dimension of gm is due to Munthe-Kaas

and Owren (1999).

Theorem 5.4. Let g be the graded FLA generated by S = {G1, . . . , Gν},
with grades ω1, . . . , ων respectively. Denote by λ1, . . . , λr the roots of the

rth degree polynomial

p(z) = 1−
ν∑
i=1

zωi , r = max
1≤i≤ν

ωi.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 279

Table 5.2. Dimension of linear spaces of terms of

weight exactly equal to m (top) and weight at most

m (bottom) in the Hall basis generated by G1, G2

and G3 with weights 1, 2 and 3, respectively

m 1 2 3 4 5 6 7 8 9 10

ρ̄m 1 1 2 2 4 5 10 15 26 42∑m
i=1 ρ̄i 1 2 4 6 10 15 25 40 66 108

Then

dim gm = ρ̄m =
1

m

∑
d|m

(
r∑

i=1

λ
m/d
i

)
µ(d). (5.12)

To illustrate the benefits of the grading, Table 5.2 displays dim gm, for
m = 1, 2, . . . , 10 for a graded algebra generated by G1, G2, G3 with weights
ω1 = 1, ω2 = 2, ω3 = 3. Comparison with Table 5.1 reveals a significant
reduction in the number of linearly independent terms. The results have
been obtained using the Matlab package DiffMan, which will be further
discussed in Section 10.2 (Engø et al. 1999).

Linking again with the theory of Sections 5.1–5.2, the case of a graded
algebra with generators G1, . . . , Gν and weights 1, 2, . . . , ν, corresponds to
the realization

Gi =
hi

(i− 1)!
A(i−1)(ξi), i = 1, 2, . . . , ν,

where A(i−1)(ξi) is the (i − 1)th derivative of the function A for some ξi ∈
(0, h). The weight ωi merely indicates that Gi is an O(hi) term. Moreover,

Ã(t) = h−1
ν∑
i=1

Gi(
t
h)i

is exactly the collocation polynomial (5.4), the information about the nodes
ci being hidden in the Gis. The equivalence is revealed by means of the
Vandermonde transformation

Ai =
ν∑

j=1

cj−1
j Gj , i = 1, . . . , ν.

This procedure applies to all kinds of collocation, whether with symmetric
nodes or otherwise. In particular we deduce from Table 5.2 that with three

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

280 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

collocation points it is possible to obtain order six with at most 15 terms!
A substantial saving, compared with 80 using an ungraded algebra

To reduce further the dimension of the graded FLA, we exploit the argu-
ment of Theorem 5.2, assuming that the collocation points are symmetric
in [0,1] with respect to 1

2 . We construct

Ã(t) = h−1
ν∑
i=1

Gi(
t
h − 1

2)i,

where Gi ≡ Bi are the self-adjoint bases introduced in Section 5.2. The-
orem 5.2 implies that only terms with odd grades need be considered ! As an
example, if S = {G1, G2, G3}, with weights 1, 2 and 3 respectively, then
the growth of the dimension of the graded FLA is given by Table 5.3.
Comparison with Table 5.2 is remarkable. In particular, we deduce that
for methods based on three symmetric collocation points (for instance a
sixth-order Gauss–Legendre), we need at most seven terms of the graded
Hall basis H. Letting Gi = Bi, the seven terms are

B1, B3, [B1, B2], [B2, B3], [B1, [B1, B3]], [B2, [B1, B2]], [B1, [B1, [B1, B2]]].

Bounds on the number of independent terms for different orders are given in
Table 5.4 for methods based on Gauss–Legendre quadrature. The sharpest
bound corresponds to the case of a graded FLA including only odd terms.
It is important to note that

p−1∑
i=1

ρ̄i odd

(
p∑
i=1

ρi respectively

)
in the case of the self-adjoint (non-self-adjoint respectively) basis is an upper
bound on the number of linearly independent commutators required for a
method of order p.

We have seen the advantage of changing the basis in the case of linear
equations Y ′ = A(t)Y . Similar savings can also be achieved in the case
of explicit RK-MK methods for the general equation Y ′ = A(t, Y)Y . By
combining the stage values Ai computed by the algorithm, we seek linear
combinations Bi of highest-possible grade. However, in order to obtain an
explicit method, we must require that Bi are related to Ai by a triangular

Table 5.3.

m 1 2 3 4 5 6 7 8 9 10∑m
i=1, i odd ρ̄i 1 1 3 3 7 7 11 11 37 37

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 281

matrix. Optimal combinations can be found using linear algebra and the
theory of B-series. The details can be found in Munthe-Kaas and Owren
(1999). It turns out that in this case it is in general not possible to change
basis in such a way that ω(Bi) = i: the weights grow more slowly. The
method (A.7) originates in the classical four-stage RK4 scheme. The result-
ing basis Bi has the grading 1, 2, 3, 3, and the scheme has just two commut-
ators. Similar savings have been realized for the seven-stage DOPRI5(4)
method in Munthe-Kaas and Owren (1999).

5.4. Reducing further the number of commutators

The theory of free Lie algebras allows us to derive an upper bound on the
number of linearly independent terms required to obtain numerical methods
of given order, taking into account skew symmetry and the Jacobi identity
of the commutator. It also provides algorithms to compute the requisite
pattern of dependency, for instance in terms of the Hall basis.

Although the theory of free Lie algebras estimates the numbers of com-
mutators for a method of order p, this by no means indicates the least
number of commutators required for a method of a given order.

For general N × N matrices, the computation of the commutator is an
O(N3) operation, a cost that quickly adds up when we consider methods of
order three and higher.

At present there is no theory that systematically reduces the number of
commutators to minimum. However, we shall present a technique, due to
Blanes, Casas and Ros (1999) that gives, true for today, the least number
of commutators for methods based on Gauss–Legendre and Newton–Cotes
quadratures up to order ten. Before proceeding further, it is important to
remark that the content of this section applies to linear Lie-group problems
Y ′ = A(t)Y solved with Magnus-type/RK-MK methods based on symmetric
nodes in [0, 1]. It is convenient to illustrate the procedure with an example.

Table 5.4.

ν (stages) 1 2 3 4 5

2ν (order of the method) 2 4 6 8 10

∑2ν−1
i=1 ρi 1 5 80 3304 > 10000∑2ν−1
i=1 ρ̄i 1 3 10 33 111∑2ν−1
i=1, i odd ρ̄i 1 2 7 22 73

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

282 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Let us thus construct a sixth-order Gauss–Legendre method based on the
collocation nodes

c1 = 1
2 −

√
15

10 , c2 = 1
2 , c3 = 1

2 +
√

15
10 .

Using the toolbox of graded algebras, we obtain

Θ = B1 + 1
12B3 − 1

12 [B1, B2] + 1
240 [B2, B3] + 1

360 [B1, [B1, B3]]

− 1
240 [B2, [B1, B2]] + 1

720 [B1, [B1, [B1, B2]]].

Since in the self-adjoint basis Bi = O(hi), note that Θ includes terms with
odd powers of h only and, in this form, can be evaluated by computing just
seven commutators.

Let us focus on the portion of Θ consisting of single commutators,

C2 = − 1
12 [B1, B2] + 1

240 [B2, B3].

The first fundamental observation is that terms of the form [Bi, Bj] can only
be obtained if one of the indices is even and the other is odd. Therefore, we
look for a linear combination

[b1B1 + b3B3, b2B2] (5.13)

for some real coefficients bi, that equals C2. This can be achieved by choosing
for instance b1 = − 1

12 , b3 = − 1
240 and b2 = 1. Note that computing (5.13) re-

quires one commutator only instead of two. In general, given B1, B2, . . . , Bν ,
terms of the form

ν−1∑
i=1

ν∑
j=i+1

ki,j [Bi, Bj]

may be replaced by a single commutator, ν/2∑
i=1

b2i−1B2i−1,

ν/2∑
j=1

b2jB2j

 ,
provided that the coefficients {bi}1≤i≤ν and {ki,j}1≤i<j≤ν are compatible up
to the order of the method.

Next, let us consider terms with double commutators. Let us focus on

− 1
240 [B2, [B1, B2]].

Since C2 = − 1
12 [B1, B2]+O(h5), evaluating the term − 1

20 [B2, C2] in place of

− 1
240 [B2, [B1, B2]] amounts to the calculation of just one commutator. Note

that − 1
20 [B2, C2] = − 1

240 [B2, [B1, B2]] + O(h7), hence the approximation
retains the odd power of h expansion and the error introduced is subsumed
in the local truncation error of the method.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 283

Finally, let us consider the combination

1
360 [B1, [B1, B3]] + 1

720 [B1, [B1, [B1, B2]]]. (5.14)

Clearly, [B1, B3] is not obtained from (5.13) using the linearity of the bracket,
and needs to be taken into account. However, [B1, B2] conforms with (5.13)
and we can replace it with C2, introducing only odd-powered error in h,
which is also subsumed in the local truncation error. In summary, (5.14)
can be replaced by the term

C3 = [B1, [B1,
1

360B3 − 1
60C2]],

which requires the computation of two commutators. Therefore, Θ can be
computed in the form

Θ = B1 + 1
12B3 + C2 + C3,

requiring four commutators only.
It is difficult to formalize the last two steps, involving two or more com-

mutators. The reduction in the number of commutators has, in the present
state of knowledge, to be done on a case-by-case analysis.

Some examples of methods for linear problems obtained by means of
graded algebras, made more economic with the technique of Blanes et al.
(1999), are described in Appendix A.2.

5.5. Nonlinear problems: collocation methods

Magnus and Fer expansions presented in Section 4 have been designed for
linear problems, when the matrix function A depends on time only. When
A = A(t, Y), though, multivariate integrals appearing in (5.1) depend on
Ak = hA(ckh, Y (ckh)), namely also on the value of the unknown variable Y
at quadrature points. Assume that the quadrature points c1, c2, . . . cν obey
the orthogonality conditions (5.5) for some m ≤ ν, hence the corresponding
univariate interpolatory quadrature has order p = ν+m. Since each Ak is a
multiple of h, it is clear that the values Ak can be replaced by hA(ckh,Xk),
where Xk is an approximation to Y (ckh) of order at least p − 1. Following
this point of view, it is possible to derive Xk ≈ Y (ckh) with a numerical
method of order p−1. For instance, using an RK-MK method of order p−1
and a Magnus (or Fer) expansion of order p is a Lie-group equivalent of a
predictor–corrector method in classical numerical ODE theory.

A more elegant approach, due to Zanna (1999), is to construct suitable
approximants to Xks using directly the underlying principle of collocation
methods. Proceeding as in Section 5.1, we replace the function A(t, Y) by
its Lagrangian interpolating polynomial

Ã(t, Y) = h−1
ν∑

k=1

`k

(
t

h

)
Ak

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

284 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

where Ak = hA(ckh,Xk), k = 1, 2, . . . , ν. The corresponding dexpinv equa-
tion is integrated by means of Picard iterations à la Section 4, obtaining the
usual order trees for the Magnus and the Fer expansion. The main differ-
ence with the linear case is that now the same order trees are also employed
to evaluate the integration coefficients for the internal stages Xk. At each
internal stage we need to calculate quadratures of the form (5.2),

Kl(h) =
∑
j∈Cν

s

al;jL(Aj1 , Aj2 , . . . , Ajs),

where Cν
s is the set of all combinations of length s from the set {1, 2, . . . , ν}.

The integration weights are different from those in (5.2) and are defined as

ak;j =

∫
S̃k

s∏
i=1

`ji(ξi) dξ,

where

S̃k = {ξ ∈ R
s : ξ1 ∈ [0, ck], ξl ∈ [0, ξml

], l = 2, 3, . . . , s}
is the polytope S̃ scaled to the [0, ck]-cube instead of the unit cube. The
weights bj are recovered by substituting ck = 1.

Theorem 5.5. Let c1, c2, . . . , cν be ν collocation nodes and let p = ν+m,

where m is the largest index such that (5.5) is satisfied. Assume that the

Magnus or Fer expansion is truncated to include all trees of power q ≤ p for

the evaluation of Yn+1, and of power q ≤ p− 1 for the intermediate stages.

Then the resulting scheme has order p.

We sketch the main idea and refer the reader to Zanna (1999) for details.
The starting point is the Alekseev–Gröbner lemma, a nonlinear version of
the variation of constants formula whose proof can be found in Nørsett and
Wanner (1981), stating that, if y is the solution of the differential equation
y′ = f(t,y) with initial condition y0, and if w(t) is a C1 approximation to
y such that w(t0) = y0, then

y(t)−w(t) =

∫ t

t0

Φ(t, ξ,w(ξ))[f(ξ,w(ξ))−w′(ξ)] dξ,

where Φ(t, ξ,w(ξ)) is the partial derivative of the solution passing through
(ξ,w(ξ)) with respect to the initial condition w(ξ). In the usual classical
collocation setting for RK methods, w corresponds to the case when the
function f is replaced by a collocation polynomial: at the nodes it is true
that f(tn + ckh,w(tn + ckh))−w′(tn + ckh)) = 0, hence the error reduces
solely to quadrature error.

In our Lie-group setting the main difference consists in the fact that
only the function A(t, Y) is collocated, and not the whole right-hand side

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 285

A(t, Y)Y . However, this can be viewed as a collocation method in the al-
gebra g, where classical analysis remains valid.

A typical example of such collocation methods is the fourth-order scheme

X1 = Yn,

A1 = hA(tn, X1),

X2 = expm{ 5
24A1 + 1

3A2 − 1
24A3 − 1

2(11
240 [A1, A2] + 5

576 [A1, A3]

+ 1
72 [A2, A3])}Yn,

A2 = hA(tn + 1
2h,X2),

X3 = expm{1
6A1 + 2

3A2 + 1
6A3 − 1

2(2
15 [A1, A2] + 1

30 [A1, A3]

+ 2
15 [A2, A3])}Yn,

A3 = hA(tn + h,X3),

Yn+1 = expm{1
6A1 + 2

3A2 + 1
6A3 − 1

2(2
15 [A1, A2] + 1

30 [A1, A3]

+ 2
15 [A2, A3])}Yn

for n ∈ Z
+, with the Gauss–Lobatto quadrature points c1 = 0, c2 = 1

2
and c3 = 1 (Zanna 1998). Note that the coefficients of the Ais are the
classical Runge–Kutta coefficients of Lobatto collocation scheme with the
same quadrature points (Hairer et al. 1993), while the coefficients of the
commutator terms [Ai, Aj] are evaluated by integrating

ak;i,j − ak;j,i =

∫ ck

0

∫ ξ1

0
`i(ξ1)`j(ξ2) dξ2 dξ1 −

∫ ck

0

∫ ξ1

0
`j(ξ1)`i(ξ2) dξ2 dξ1,

a term corresponding to the power-three tree in the Magnus expansion
(cf. Section 4).

A useful formula for evaluating the ak;i,js corresponding to the power-
three tree is given by

{ak;i,j}νi,j=1 = a(ck), k = 1, 2, . . . , ν, (5.15)

where a(θ) is the ν × ν matrix function of the scalar argument θ defined as

a(θ) = V −TT (θ)HJT (θ)V −1,

where J = diag(1, 1
2 ,

1
3 , . . .

1
ν), T (θ) = diag(θ, θ2, . . . , θν), V is the Vander-

monde matrix

V =

1 c1 · · · cν−1

1

1 c2 · · · cν−1
2

...
...

...
1 cν · · · cν−1

ν

 ,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

286 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

and finally H is the Hilbert matrix with entries Hi,j = 1
i+j , i, j = 1, 2, . . . , ν.

This formula is reminiscent of the matrix representation of the standard
Runge–Kutta matrix of a collocation method (Nørsett and Wanner 1981).
This is not a coincidence: the methods of Zanna (1998) generalize the
concept of collocation to the special multivariate integrals that occur in
Magnus or Fer expansions.

6. Alternative coordinates

All the methods so far, whether applied to Lie groups or in a homogeneous-
space setting, have been based on the exponential map. In other words, we
represented the solution as an exponential (RK-MK and Magnus methods)
or as a product of exponentials (Crouch–Grossman and Fer methods). It
is entirely legitimate to query to which extent this renders such methods
unduly expensive and non-competitive.

Sometimes the exact computation of the exponential is easy: a case in
point is the application of Magnus expansions to the computation of Sturm–
Liouville spectra in Section 11.2, since the exponential of an element in sl(2)
can be evaluated exactly with great ease. In other cases the exponential can
be replaced by a suitable approximation φ : g → G, φ(z) ≈ ez. This is the
case with quadratic Lie groups: a Lie group G is quadratic if

G = {X ∈ GL(N) : XPXT = P}, (6.1)

where P ∈ GL(N) is a given matrix. Many Lie groups that appear in applic-
ations are of this kind, for example O(N), Sp(N) and O(N,M). Moreover,
some complex groups can be brought into this framework by replacing the
transpose T by the Hermitian (i.e., conjugate) transpose H.

The Lie algebra of the quadratic Lie group (6.1) is

g = {B ∈ gl(N) : BP + PBT = O} (6.2)

and it is easy to prove that φ maps g into G whenever φ(z) = eγ(z) and γ is
an odd function that is analytic in a neighbourhood of the origin (Celledoni
and Iserles 1998). An important case occurs when γ(z) = log(q(z)/q(−z)),
where q is a polynomial, and it leads to rational functions φ(z) = q(z)/q(−z).
In particular, diagonal Padé approximants to the exponential are of this
form (Baker 1975) and they can be applied very effectively in place of the
exponential.

Yet, for some algebras there exists no analytic nonconstant function φ :
g → G except for the (scaled) exponential. This, in particular, is the case
with SL(N) (Kang and Zai-jiu 1995). In yet other cases, although we may
replace the exponential with, say, a Padé approximant with impunity, the
sheer size of the system renders this impractical when the number of vari-

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 287

ables is large. In that case there exist two possibilities. Firstly, we may
endeavour to approximate the exponential of a matrix by some nonstandard
means while keeping the outcome in a Lie group. This is the theme of Sec-
tion 8. In the present section we consider another approach, which disposes
of the dexpinv equation (2.46) altogether.

The research into ‘alternative coordinates’ is in a fairly preliminary stage
and just two surrogates to the dexpinv equation have been identified so far,
the Cayley transform and canonical coordinates of the second kind. We
consider them in detail in the remainder of this section.

6.1. The Cayley transform and RK–Cayley methods

Let G be a quadratic Lie group (Diele, Lopez and Peluso 1998). The main
idea is to replace the exponential with the Cayley transform. Thus, given
the Lie-group equation Y ′ = A(t, Y)Y , where A : R × G → g, we seek a
solution in the form

Y (t) = cay[∆(t)]Y0 = [I − 1
2∆(t)]−1[I + 1

2∆(t)]Y0, t ≥ 0, (6.3)

and at the first instance seek a differential equation for ∆. More generally, we
may solve the homogeneous-space equation (2.26) replacing the exponential
with the Cayley action but, for the sake of simplicity, the discussion is
restricted to the ‘straight’ Lie-group case.

It is important to realize that our approach has no connection whatsoever
with approximating the exponential. True, φ(z) = (1 + 1

2z)/(1 − 1
2z) is a

special case of a Padé approximant to the exponential, φ(z) = expm(z) +
O(z3), but this is entirely coincidental: as a matter of fact, we could have
replaced, at the cost of slightly more complicated coefficients, the number
1
2 with an arbitrary nonzero constant. So far, everything is exact and no
approximation has taken place.

It is an easy exercise, left to the reader, to ascertain that the function ∆
in (6.3) obeys the differential equation

∆′ = dcay−1
∆ A(cay(∆)Y0, t) (6.4)

= A− 1
2 [∆, A]− 1

4∆A∆, t ≥ 0, ∆(0) = O.

Note the presence of the term ∆A∆ in the above equation. In general, we
cannot expect such a term to reside in g, but quadratic Lie algebras (6.2) are
an exception. For future reference we note that the more general symmetric
triple product [[D,E, F]]3 = DEF + FED resides in g for all D,E, F ∈ g
and quadratic Lie groups g. (The reason for this notation will be clear in
Section 6.3.) Applying (6.2) thrice,

P (DEF)T = PFTETDT = −FPETDT = FEPDT = −FEDP.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

288 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Therefore

(DEF + FED)P + P (DEF + FED)T

= (DEF + FED)P − (FED +DEF)P = O,

and indeed [[D,E, F]]3 ∈ g. This confirms that no illicit terms have crept
into (6.4) and ∆′ evolves in g. (To be more precise, it evolves in Tg, except
that the latter can be identified with g.)

The simplest implementation of (6.3) to quadratic Lie-group solvers is by
employing Runge–Kutta methods in the Lie algebra, à la RK-MK, except
that expm and dexp−1 in (3.4) need to be replaced by cay and dcay−1

respectively. This has been accomplished systematically by Engø (2000).

6.2. Cayley expansions

Proceeding as in Section 4.1 and subjecting (6.4) to Picard iteration, we
observe that the solution ∆ can be expanded in a similar way to the Magnus
expansion of the dexpinv equation (4.3),

∆(t) =

∫ t

0
A(ξ) dξ

− 1
2

∫ t

0

∫ ξ1

0
[A(ξ2), A(ξ1)] dξ

+ 1
4

∫ t

0

∫ ξ1

0

∫ ξ2

0
[[A(ξ3), A(ξ2)], A(ξ1)] dξ3 dξ2 dξ1

− 1
4

∫ t

0

∫ ξ1

0

∫ ξ1

0
A(ξ2)A(ξ1)A(ξ3) dξ3 dξ2 dξ1 + · · · .

We seek to expand ∆, in greater generality, in a manner similar to (4.5),

∆(t) =
∞∑
k=0

∑
τ∈Sk

α(τ)Dτ (t), t ≥ 0, (6.5)

where each Dτ for τ ∈ Sk is made out of exactly k+1 integrals. (Note that,
unlike (4.5), the ‘exterior’ integral is already included in the expansion term

– intuitively speaking, Dτ (t) =
∫ t
0 Cτ (ξ) dξ. This makes the notation some-

what simpler and more transparent.) Following the construction of Iserles
(1999b), we identify three composition rules that are needed to assemble the
terms in (6.5).

(1) S0 = {τ◦}, and

Dτ◦(t) =

∫ t

0
A(ξ) dξ.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 289

(2) If τ1 ∈ Sk−1, k ≥ 1, then there exists τ ∈ Sk such that

Dτ (t) =

∫ t

0

[∫ t

0
Dτ1(ξ), A(ξ)

]
dξ. (6.6)

(3) If k ≥ 2 and τ1 ∈ Sk−j , τ2 ∈ Sj−1 for some 1 ≤ j ≤ k then there exists
τ ∈ Sk such that

Dτ (t) =

∫ t

0
Dτ1(ξ)A(ξ)Dτ2(ξ) dξ. (6.7)

Note that the outcome resides in the Lie algebra as long as α(τ̃) = α(τ)
where τ has been given in (6.7) and

Dτ̃ (t) =

∫ t

0
Dτ2(ξ)A(ξ)Dτ1(ξ) dξ

is the conjugate term of Dτ̃ (t). (The existence of such a term is assured by
the third composition rule.)

As for the association between rooted binary trees and terms in the Mag-
nus expansion, we wish to render the structure of the above composition
rules clearer by using graph theory. The presence of three, rather then
two, composition rules makes this goal different and ‘plain’ rooted binary
trees are no longer adequate for the task in hand. Instead, following Iserles
(1999b), we employ rooted bicolour binary trees: each vertex can be one of
two colours, black or white. The composition rules are interpreted in the
following manner, borrowing as much as possible from the construction in
Section 4.

(1) S0 = { r

r} and

r

r

;

∫ t

0
A(ξ) dξ.

(2) If Sk−1 3 τ1 ; Dτ1(t) then (6.6) corresponds to

Sk 3 r

r@��
rτ1

;

∫ t

0
[Dτ1(ξ), A(ξ)] dξ.

(3) Letting Sk−j 3 τ1 ; Dτ1(t) and Sj 3 τ1 ; Dτ2(t), (6.7) corresponds to

Sk 3 r

b@ �
τ1 τ2

; Dτ (t) =

∫ t

0
Dτ1(ξ)A(ξ)Dτ2(ξ) dξ.

Unlike the case of the Magnus expansion, the derivation of the coefficients
α(τ) is straightforward and does not require any recursion. Given τ ∈ ∪ Sk,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

290 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

we denote by γ(τ) the number of white nodes therein. It is possible to prove
that α(τ) = (−1)k+γ(τ)2−k and the outcome is the Cayley expansion

∆(t) =
∞∑
k=0

(−1)k

2k

∑
τ∈Sk

(−1)γ(τ)Dτ (t) (6.8)

= r

r

− 1
2 r

r@@��
r r

r

+ 1
4 r

r@@��
r r

r@@��
r r

r

− 1
4 r

b@@ ��
r r

r r

− 1
8 r

r@@��
r

r@@��
r r

r@@��
r r

r

r

+ 1
8 r

r@@��
r r

b@@ ��
r r

r r

+ 1
8 r

b@@ ��
r r

r@@��
r r

r

r

+ 1
8 r

b@@ ��
r r

r r@@��
r r

r

+ · · · .

Note that the last two trees above are conjugate and that they have the same
weights. This is true in general, since if τ and τ̃ are conjugate then they
have the same number of white vertices, γ(τ) = γ(τ̃). Therefore, conjugate
trees translate into (scaled) symmetric triple products and we stay safely
within the Lie algebra.

Absolute convergence of the Cayley expansion (6.8) was proved in Iserles

(1999b) for t ∈ (0, t∗), provided that
∫ t
0 ‖A(ξ)‖dξ < 2, a result that can

be somewhat improved for certain norms and Lie algebras. However, as far
as convergence in norm with respect to ‖ · ‖2 is concerned, the Magnus-
expansion condition (4.13) of Moan (2000) remains valid in the present set-
ting.

As in Magnus expansions, it makes sense to truncate the series (6.8) by
power,

∆(t) ≈
p−1∑
m=0

∑
τ∈Gm

(−1)β(τ)+γ(τ)

2β(τ)
Dτ (t), (6.9)

where β(τ) + 1 is the number of integrals in Dτ (in other words, τ ∈ Sβ(τ)),
while Gm stands for the set of trees of power m,

τ ∈ Gm ⇐⇒ Dτ (t) = O(tm+1
)

for all sufficiently smooth matrix functions A. The mechanism that allows

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 291

m to exceed β(τ) is subtly different from that of Magnus expansions (4.14)
since, except for the second tree in the expansion (6.9), we never encounter
an instance of Dτ (t) =

∫
[Dτ1 , D

′
τ1]. Instead, we say that a tree is basic if

it has no black nodes with two children (equivalently, if the corresponding
expansion term contains no commutators). The first few basic trees are

r

r

, r

b@@ ��
r r

r r

, r

b@@ ��
r r

r b@@ ��
r r

r r

, r

b@@ ��
r r

b@@ ��
r r

r r

r

,

Each basic tree has an even number of vertices and it is easy to verify that
if τ ∈ S2m and τ is basic then

A(t) = A0 +O(t) ⇒ Dτ (t) = cA2m+1
0 t2m+1 = O(t2m+2

)
where c 6= 0 is scalar. In other words, τ ∈ G2m and nothing is gained.
However, as soon as we form the tree

τ = r

r@@��
rτ1

,

where τ1 is basic, it is trivial to notice that τ ∈ G2m+2, a ‘gain’ of one unit
in power. Needless to say, this gain is inherited each time τ features as a
component of a larger tree.

Truncating by power economizes on the number of components: it has
been proved in Iserles (1999b) that

lim sup
k→∞

(#Sk)
1/k = 3 and lim sup

m→∞
(#Gm)1/m = 2.69805 . . .

(in either case there is substantial saving in comparison with the Magnus
expansion; cf. (4.15)). However, a very important feature of Magnus expan-
sions is unfortunately lost: The Cayley expansion (6.9), truncated by power,
is no longer time-symmetric! (We should perhaps emphasize that the rôle
of time symmetry survives when the exponential is replaced with the Cayley
transform: it still implies even order.) In other words, if we truncate the
Cayley expansion (with all the integrals evaluated exactly) so that p = 3,
say, in (6.9), the order will be just three.

As in (4.16)–(4.18), we conclude by presenting Cayley expansions in stand-
ard notation, as follows, rather than in a tree terminology.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

292 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

∆(t) =

∫ t

0
A(ξ) dξ . order 2

− 1
2

∫ t

0

∫ ξ1

0
[A(ξ2), A(ξ1)] dξ

+ 1
4

∫ t

0

∫ ξ1

0

∫ ξ2

0
[[A(ξ3), A(ξ2)], A(ξ1)] dξorder 3

− 1
4

∫ t

0

∫ ξ1

0

∫ ξ1

0
A(ξ2)A(ξ1)A(ξ3) dξ . order 4

− 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0
[[[A(ξ4), A(ξ3)], A(ξ2)], A(ξ1)] dξorder 5

+ 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ2

0
[A(ξ3)A(ξ2)A(ξ4), A(ξ1)] dξ

+ 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ1

0
[A(ξ3), A(ξ2)]A(ξ1)A(ξ4) dξ

+ 1
8

∫ t

0

∫ ξ1

0

∫ ξ1

0

∫ ξ3

0
A(ξ2)A(ξ1)[A(ξ4), A(ξ3)] dξ

+ 1
16

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0

∫ ξ4

0
[[[[A(ξ5), A(ξ4)], A(ξ3)], A(ξ2)], A(ξ1)] dξ

− 1
16

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0

∫ ξ1

0
[[A(ξ4), A(ξ3)], A(ξ2)]A(ξ1)A(ξ5) dξ

− 1
16

∫ t

0

∫ ξ1

0

∫ ξ1

0

∫ ξ3

0

∫ ξ4

0
A(ξ2)A(ξ1)[[A(ξ5), A(ξ4)], A(ξ3)] dξ order 6

+ · · · .
The above expansion underscores the importance of time symmetry in

reducing the number of terms: compare the order-6 truncation with (4.18).
We hasten to reassure the disappointed reader that not all is lost: time
symmetry and even order will be regained in the next subsection.

6.3. Quadrature of the Cayley expansion and hierarchical algebras

In principle, the terms in the Cayley expansion (6.9) can be approxim-
ated exactly like ‘Magnus integrals’, since they are all consistent with (5.1):
integrals of a multilinear form L over a polytope S. The theory of Sec-
tions 5.1–5.2 is robust enough to cater for symmetric triple products, not
just commutators.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 293

Thus, to obtain a third-order method we truncate by power,

∆(t) ≈ r

r

− 1
2 r

r@@��
r r

r

− 1
4 r

b@@ ��
r r

r r

, (6.10)

and replace integrals by quadrature using a self-adjoint basis. More specific-

ally, we evaluate hA at the Gauss–Legendre points (1
2 ±

√
3

6)h, denote these

function values by A1, A2 and let B1 = 1
2(A1 +A2), B2 =

√
3(A2−A1). The

relevant fourth-order quadratures are

r

r

: B1,

r

r@@��
r r

r

: −1
6 [B2, B1],

r

b@@ ��
r r

r r

: 1
3B

3
1 + 1

12B1B2B1 − 1
24B2B

2
1 − 1

24B
2
1B2,

but we can throw away the last three terms with complete impunity: after
all, we want a third-order method! The outcome is

B1 + 1
12 [B2, B1]− 1

12B
3
1 . (6.11)

Just to be on the safe side, we expand the solution, only to find that, lo
and behold, the order of (6.11) is four. Not the order of (6.10), we hasten
to say: the miracle has occurred just as the integrals have been replaced by
quadrature!

This is not a serendipitous coincidence. Quadrature recovers time sym-
metry, thereby boosting the order of an odd-order truncation (6.9) (Iserles
1999b). Thus, herewith for example a sixth-order method, where B0, B1, B2

have been obtained from order-six Gauss–Legendre quadrature:

B1 + 1
12B3 + 1

12 [B2, B1]− 1
12B

3
1 − 1

240 [B3, B2]− 1
240 [[B3, B1], B1]

− 1
240 [[B2, B1], B2]− 1

48B1B3B1 − 3
320 [B2, B

3
1] + 7

960B1[B2, B1]B1

+ 1
960 [[[B2, B1], B1], B1] + 1

120B
5
1 .

(6.12)

Having hopefully learnt something from our analysis of discretized Mag-
nus expansions in Section 5, our next question is whether all the terms in
(6.12) are necessary or can we perhaps replace some with linear combina-
tions of other terms. In other words, we wish to repeat here the discussion
from Section 5.3, except that in the present situation we should reckon with
two operations: commutation and the symmetric triple product, the latter
characteristic of quadratic Lie algebras. Wishing to derive the dimension of

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

294 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

linear spaces of graded free algebras, along the lines of Section 5.3, a natural
temptation is to express symmetric triple products in terms of commutators,
but this soon leads to mushrooming complexity. A more effective approach
is described in Iserles and Zanna (2000).

Let (g,+) be an Abelian group over a field of zero characteristic and
introduce a countable family of m-ary operations

[[· , . . . , ·]]m :

m times︷ ︸︸ ︷
g× g× · · · × g → g, m ∈ N,

which is subject to the following three axioms.

(1) Alternate symmetry: for all F1, F2, . . . , Fm ∈ g

[[F1, F2, . . . , Fm]]m + (−1)m[[Fm, Fm−1, . . . , F1]]m = O.

(2) Multilinearity: [[F1, F2, . . . , Fm]]m is linear in each of its m arguments.

(3) Hierarchy condition: for all F1, . . . , Fm, E1, . . . , Es ∈ g and 1 ≤ l ≤ m
it is true that

[[F1, . . . , Fl−1, [[E1, . . . , Es]]s, Fl+1, . . . , Fm]]m

= [[F1, . . . , Fl−1, E1, . . . , Es, Fl+1, . . . , Fm]]m+s−1

− (−1)s[[F1, . . . , Fl−1, Es, . . . , E1, Fl+1, . . . , Fm]]m+s−1.

The triple (g,+, {[[· · ·]]m}m∈N) has been called a hierarchical algebra by
Iserles and Zanna (2000). It is easy to see that each hierarchical algebra
is a Lie algebra (with the commutator defined as [· , ·] = [[· , ·]]2, while each
quadratic Lie algebra is hierarchical with

[[F1, . . . , Fm]]m = F1F2 · · ·Fm − (−1)mFmFm−1 · · ·F1, F1, . . . , Fm ∈ g.

We now proceed as in Section 5.3: choose a set G1, G2, . . . , Gν of generat-
ors and define a free hierarchical algebra (FHA) similarly to Definition 5.1.
We endow the generators with grading ω and extend the grading to FHA in
a natural manner, that is,

ω([[Hi1 , Hi2 , . . . , Hir]]r) =

r∑
k=1

ω(Hk).

One should not take the analogy with FLAs too far, since FHAs require a
subtly different approach. At the heart of the discussion of Section 5.3 is
the fact that, using for example the Hall basis, we can express every element
of an FLA as a linear combination of primitive terms of the form

[Gi1 , [Gi1 , [. . . , [Gir−1 , Gir] · · ·]]].
In the case of FHAs, Iserles and Zanna (2000) prove that the primitive
‘building blocks’ can be chosen to have the form

[[Gi1 , Gi2 , . . . , Gir]]r.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 295

The method of proof is constructive, repeatedly using the three axioms.
Anticipating future discussion, we exemplify it with one of the terms in the
sixth-order Cayley expansion (6.12), assuming that ν ≥ 2:

[[[[[[G2, G1]]2, G1]]2, G1]]2
Axiom 3

= [[[[G2, G1]]2, G1, G1]]3 − [[G1, [[G2, G1]]2, G1]]3
Axiom 3

= ([[G2, G1, G1, G1]]4 − [[G1, G2, G1, G1]]4)

− ([[G1, G2, G1, G1]]4 − [[G1, G1, G2, G1]]4)
Axiom 1

= [[G2, G1, G1, G1]]4 − 3[[G1, G2, G1, G1]]4.

Let gm be the set of all the grade-m elements in the FHA g. As for FLAs,
we can express g as a direct sum of gm for m ∈ N. The dimension of each
gm has been characterized in Iserles and Zanna (2000).

Theorem 6.1. Let g be the graded FHA generated by S = {G1, . . . , Gν},
with grades ω1, . . . , ων respectively. Denote by λ1, . . . , λr the roots of the

rth degree polynomial

p(z) = 1−
ν∑
i=1

zωi , r = max
1≤i≤ν

ωi,

and assume that they are all distinct. Then

σ̄2m = 1
2

r∑
l=1

λ−m−1
l

p′(λl)

{
2− λ−ml − 1

2 [p(λ
1/2
l) + p(−λ1/2

l)]
}
,

σ̄2m+1 = 1
2

r∑
l=1

λ
−m−3/2
l

p′(λl)

{
−λ−m−1/2

l + 1
2 [p(λ

1/2
l)− p(−λ1/2

l)]
}
,

(6.13)

where σ̄m = dim gm, m ∈ N.

The proof is long and technical. Its main step is in demonstrating that

∞∑
m=1

tm dim gm = 1
2

[
1

p(t)
+

p(t)

p(t2)

]
.

Comparing Table 6.1 with Tables 5.1–5.2 demonstrates that the dimension

Table 6.1. Dimensions (6.13) of a graded FHA for ν = 3 in two

cases: ωi ≡ 1 and ωi = i

m 1 2 3 4 5 6 7 8 9 10

ωi ≡ 1 σ̄m 3 3 18 36 135 351 1134 3240 9963 29403

ωi = i σ̄m 1 1 3 3 8 11 25 39 80 134

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

296 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

of graded subspaces of FHA grows larger than in the FLA case. This is
hardly a surprise. A Lie algebra is closed with respect to just one binary
operation, commutation, in addition to the usual linear-space operations. A
hierarchical algebra, however, is closed with respect to a countable number of
operations! On the face of it, there are infinitely more ways of forming terms
in FHA. Fortunately, the hierarchy conditions mean that the operations are
interconnected and the growth in dimension is not as bad as we might have
expected.

The ratio of the dimensions ρ̄m and σ̄m from (5.12) and (6.13), respect-
ively, can be determined asymptotically. The dominant zero of the polyno-
mial p, λ1, say, is in (1,∞) and simple. Iserles and Zanna (2000) proved
that

σ̄m
ρ̄m

= − λ1m

2p′(λ1)
[1 + o(1)], m� 1.

The method of proof of Theorem 6.1 is constructive and it naturally leads
to a basis and to algorithmic means of its construction. We refer the reader
to Iserles and Zanna (2000) for details, here just presenting the results for
ν = 2 and the grades ω(Gi) = i. The basis of gm is denoted by Bm.

B1 : {[[G1]]1},
B2 : {[[G2]]1},
B3 : {[[G3]]1, [[G1, G2]]2, [[G1, G1, G1]]3},
B4 : {[[G1, G3]]2, [[G1, G1, G2]]3, [[G1, G2, G1]]},
B5 : {[[G2, G3]]2, [[G1, G2, G2]]3, [[G1, G1, G3]]3, [[G2, G1, G2]]3,

[[G1, G3, G1]]3, [[G1, G1, G1, G2]]4, [[G1, G1, G2, G1]]4,

[[G1, G1, G1, G1, G1]]5}.

We conclude by going back to the sixth-order Cayley expansion (6.12)
and representing it in the FHA basis. As before, we let Gi = Bi and ωi = i.
The outcome, after long but straightforward algebra, is

[[B1]]1 .grade 1

+ 1
12 [[B3]]1 − 1

12 [[B1, B2]]2 − 1
24 [[B1, B1, B1]]3 . grade 3

+ 1
240 [[B2, B3]]2 + 1

240 [[B1, B2, B2]]3 − 1
240]]B1, B1, B3]]3 − 1

240 [[B2, B1, B2]]3

− 1
160 [[B1, B3, B1]]3 + 1

120 [[B1, B1, B1, B2]]4 − 1
240 [[B1, B1, B2, B1]]4

+ 1
240 [[B1, B1, B1, B1, B1]]5 .grade 5

Note that, thanks to time symmetry, only odd-grade elements enter the
expansion.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 297

6.4. Canonical coordinates of the second kind I: A naive approach

The main idea of the present section is to consider alternatives to the stand-
ard exponential map expm : g → G, which we can write in the form

g 3
d∑

k=1

θkCk ∼ (θ1, θ2, . . . , θd) → expm

(
d∑

k=1

θkCk

)
∈ G, (6.14)

where d = dim g and C = {C1, C2, . . . , Cd} is a basis of the Lie algebra. The
map (6.14) induces (at least locally, near the identity) a coordinate system
in the Lie group which has been termed by Varadarajan (1984) the canonical
coordinates of the first kind. An alternative to (6.14) (which, incidentally,
explains why we have insisted on writing it in such a strange form) are the
canonical coordinates of the second kind (CCSK):

g 3
d∑

k=1

θkCk ∼ (θ1, θ2, . . . , θd) → eθ1C1eθ2C2 · · · eθdCd ∈ G. (6.15)

Why should we consider (6.15)? On the face of it, we have replaced a single
exponential with d exponentials (and the whole exercise becomes really in-
teresting when d � 1!), hardly a sensible point of departure. However, as
long as C is appropriately chosen, the computation of each expm(θkCk) can
be exceedingly cheap and, moreover, the approach lends itself naturally to
the exploitation of sparsity: as long as we can expect that there should be
no component in the Ck direction, say (or that it is suitably small), we can
drop the relevant exponential from the product.2 A useful analogy is the dis-
tinction between Householder reflections and Givens rotations in numerical
algebra.

It is possible to approach the issue of CCSK within the context of this
survey from two distinctive points of view. Although ultimately they are
closely related, they follow different philosophies, the first ‘naive’ and the
other more mathematically sophisticated. This subsection is devoted to the
more ‘naive’ approach, which associates CCSK with splittings.

Splitting methods have a rich history throughout numerical analysis of
differential equations and they are exceedingly useful in geometric integra-
tion, for instance in the computation of Hamiltonian systems (Sanz Serna
and Calvo 1994, Yoshida 1990) and in the recovery of integrals and conser-
vation laws (McLachlan, Quispel and Robidoux 1998). Yet, the splitting of
a flow into components corresponding to elements of a basis allows a signi-
ficant enhancement of the technique. For simplicity, let us assume that we
are solving the linear Lie-group equation (4.2), namely Y ′ = A(t)Y , t ≥ 0.

2 We return to this point in far greater detail in Section 8.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

298 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

We express the solution in the form

Y (t) = eθ1(t)C1eθ2(t)C2 · · · eθd(t)CdY0, t ≥ 0, (6.16)

where θ1, θ2, . . . , θd are scalar functions. It has been proved by Wei and
Norman (1964) that such functions always exist locally (and, in the case
of solvable Lie algebras or for 2 × 2 real matrices, globally). The exact
derivation of θ1, θ2, . . . , θd is, needless to say, impossible in general, otherwise
we could have written down the solution of (4.2) explicitly! Instead, we
replace the θks with polynomials, which are chosen so as to match suitable
order conditions at t = 0.

Letting t = 0 in (6.16), we note that θk(0) = 0, k = 1, 2, . . . , d. To obtain
more useful order conditions we differentiate Y . Some brief algebra confirms
that

A(t) = Y ′(t)Y −1(t)

=

d∑
k=1

θ′k(t)e
θ1(t)C1 · · · eθk−1(t)Ck−1Cke

−θk−1(t)Ck−1 · · · e−θ1(t)C1

=
d∑

k=1

θ′k(t)Ad expm[θ1(t)C1] · · ·Ad expm[θk−1(t)Ck−1]Ck.

(6.17)

Letting t = 0 in (6.17) we obtain the first-order condition

A(0) =

d∑
k=1

θ′k(0)Ck.

Recalling that A(0) ∈ g, we can expand it in the elements of C and this
yields θ′k(0) explicitly.

Higher-order conditions can be obtained by differentiating (6.17) and mas-
saging the formulae with a great deal of (fairly unpleasant) algebra. Thus,
for example,

A′ =

d∑
k=1

θ′′kAdeθ1C1 · · ·Ad
eθk−1Ck−1Ck

+

d∑
k=1

k−1∑
l=1

θ′kθ
′
lAdeθ1C1 · · ·AdeθlCl [Cl,Ad

eθl+1Cl+1 · · ·Ad
eθk−1Ck−1Ck]

and, letting t = 0, we have

d∑
k=1

θ′′(0)Ck = A′(0)−
d∑

k=1

k−1∑
l=1

θ′k(0)θ′l(0)[Cl, Ck].

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 299

Recall that C is a basis of g, hence there exist scalars cjk,l such that

[Ck, Cl] =

d∑
j=1

cjk,lCj , k, l = 1, 2, . . . , d.

They are called the structure constants of g and play an important rôle in
the theory of Lie algebras (Olver 1995, Varadarajan 1984). Using structure
constants and observing that A′(0) ∈ g can be expanded in elements of C,
we obtain

d∑
k=1

θ′′k(0)Ck = A′(0) +
d∑

j=1

d∑
k=1

k−1∑
l=1

θ′k(0)cjk,lθ
′
l(0)Cj , (6.18)

hence second-order conditions.
Typically, the dimension d is quite large, for example dim so(N) = 1

2(N −
1)N and dim sl(N) = N2−1. Thus, in principle it might be costly to evaluate
θ′′k(0), k = 1, 2, . . . , d in (6.18). Higher-order conditions are substantially
costlier still. Yet, the cost can be reduced a very great deal by the right
choice of the basis C.

The most suitable basis C is provided by a root-space decomposition of the
(non-nilpotent) Lie algebra g. Deferring our discussion of this construct to
the next subsection, we describe in a more nontechnical setting the special
case of so(N). To this end we choose the basis

C = {Ck,l = eke
T
l − ele

T
k : 1 ≤ k < l ≤ N},

where ej ∈ R
N is the jth unit vector. Note that

B ∈ so(N) ⇒ B =
N−1∑
k=1

N∑
l=k+1

bk,lCk,l

and that U = expm(tCk,l) is a rigid rotation in the (k, l) plane: it coincides
with the identity matrix, except for[

uk,k uk,l
ul,k ul,l

]
=

[
cos t sin t

− sin t cos t

]
.

Therefore, multiplying a matrix with expm(tCk,l) is cheap. Moreover, it is
easy to verify that

[Cr,s, Ck,l] =

Ck,s, r = l, s 6= k,
Cl,r, r 6= l, s = k,
Cr,k, r 6= k, s = l,
Cs,l, r = k, s 6= l,
O, otherwise,

r < s, k < l,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

300 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

where we identify Ci,j with −Cj,i for i > j. The condition (6.18) simplifies to

θ′′k,l(0) = a′k,l(0)−
N∑
i=1

ak,i(0)ai,l(0), 1 ≤ k < l ≤ N,

where A(t) =
∑N−1

k=1

∑N
l=k+1 ak,l(t)Ck,l. This requires O(N3) flops alto-

gether, in comparison with O(N6) if sparsity of structure constants is dis-
regarded. Similar constructions can be applied in other Lie algebras.

In principle, we can go on to derive θ
(i)
k (0) for i = 0, 1, . . . , p, but this pro-

cedure, even while utilizing root-space decomposition, becomes progressively
more expensive for larger orders p. Herewith we present a device which, to
our knowledge, is new and which allows one to obtain order p while com-
puting one less derivative. Observing that (6.16) is sensitive to the ordering
of the basis, the main idea is to alternate the order of elements of C while
time-stepping the numerical method. Thus, suppose that tm = mh and

Y2n+1 = eθ2n,1(t2n+1)C1eθ2n,2(t2n+1)C2 · · · eθ2n,d(t2n+1)CdY2n,

Y2n+2 = eθ2n+1,d(t2n+2)Cdeθ2n+1,d−1(t2n+2)Cd−1 · · · eθ2n+1,1(t2n+2)C1Y2n+1,

where θm,k are p-degree polynomials. Without loss of generality, we assume
that θm,k are consistent with order p for m = 0, 1, . . . , 2n. Let

X(t) = eθ2n+1,d(t)Cdeθ2n+1,d−1(t)Cd−1 · · · eθ2n+1,1(t)C1Y2n+1;

hence Y2n+1 = X(t2n+1) and Y2n+2 = X(t2n+2). Repeatedly multiplying by
inverted exponentials, we obtain

Y2n+1 = e−θ2n+1,1(t)C1e−θ2n+1,2(t)C2 · · · e−θ2n+1,d(t)CdX(t).

Assuming that the θ2n+1,k are chosen consistently with order p and letting
t = t2n we deduce that

Y2n+1 = e−θ2n+1,1(t2n)C1e−θ2n+1,2(t2n)C1 · · · e−θ2n+1,d(t2n)CdY2n +O(hp+1
)
.

In other words, we may take θ2n+1,k(t2n) = −θ2n,k(t2n+1), k = 1, 2, . . . , d.

This, together with the values of θ
(i)
2n+1,k(t2n+1), i = 0, 1, . . . , p − 1, is just

right to determine the θ2n+1,ks consistently with order p.

6.5. Canonical coordinates of the second kind II: Admissible bases

The technique of canonical coordinates of the second kind can be enhanced
a great deal at the cost of increased mathematical sophistication. The point
of departure for our discussion, presently based on the important paper of
Owren and Marthinsen (1999a), is the equation (6.17). We rewrite it in the

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 301

form
d∑

k=1

θ′kAd expm(θ1C1)Ad expm(θ2C2) · · ·Ad expm(θk−1Ck−1)Ck = A(t). (6.19)

Here θ1, θ2, . . . , θd are known and we seek the scalars θ′1, θ′2, . . . , θ′d.
Suppose that we have the means to solve (6.19) for arbitrary inputs

θ1, θ2, . . . , θd (in (6.17) we needed just θ = 0). This yields a differential
equation

θ′ = g(θ, A(t)), t ≥ 0, θ(0) = 0. (6.20)

Once the solution of (6.20) is known (or adequately approximated), we can
use it to advance the solution of the Lie-group equation (4.2) through the
CCSK representation (6.16). Moreover, the argument extends at once to
nonlinear Lie-group equations Y ′ = A(t, Y)Y , where A : G × R

+ → g.
Again, we represent the solution in the CCSK form (6.16), except that now

g = dccsk−1
θ A = g(θ, A(t, eθ1C1eθ2C2 · · ·eθdCdY0))

in the dccskinv equation (6.20).
Applying a Runge–Kutta method, say, to (6.20) results in a time-stepping

scheme that is guaranteed to respect Lie-group structure. In effect, the only
difference between the RK-MK methods of Section 3 and these methods
is that, in place of canonical coordinates of the first kind and the dexpinv
equation, they utilize canonical coordinates of the second kind and the dcc-
skinv equation. All this motivates a thorough discussion of the problem of
how to invert an equation of the form (6.19).

Letting Fk = Ad expm(θkCk), vk = θ′k, k = 1, 2, . . . , d, we commence by
writing (6.20) as

d∑
k=1

vkF1F2 · · ·Fk−1Ck = A.

Let Pl be a projection on the trailing d− l coordinates,

Pl
d∑

k=1

ckCk =

d∑
k=l+1

ckCk,

and set F̂l = I − Pl + PlA, l = 1, 2, . . . , d. We can easily verify that

F̂lCk =

{
FlCk, l < k,
Ck, l ≥ k.

Owren and Marthinsen (1999a) say that C is an admissible ordered basis
(AOB) if for every θ1, θ2, . . . , θd it is true that

F1F2 · · ·FkPk = F̂1F̂2 · · · F̂kPk, k = 1, 2, . . . , d− 1. (6.21)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

302 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Provided that C is an AOB, it is simple to prove that our equation can be
rewritten in the form

d∑
k=1

vkF̂1F̂2 · · · F̂d−1Ck = F̂1F̂2 · · · F̂d−1F = A, (6.22)

where F =
∑d

k=1 vkCk. Later we will see that, in a number of important

cases, AOB implies that each F̂k can be inverted very cheaply.
At first glance, the AOB condition (6.21) is exceedingly demanding. Sur-

prisingly, it is often achievable but we need to introduce a little bit more
Lie-algebra theory before being in a position to describe exactly how. The
following brief extract should ideally be supplemented by perusing a Lie-
algebra monograph: the book by Varadarajan (1984) is a good place to
start.

• A subalgebra h of a Lie algebra g is an ideal if [h, g] ⊆ h.

• The Lie algebra g is solvable if there exists m ∈ Z
+ such that g(m) =

{0}, where g(0) = g and g(i+1) = [g(i), g(i)] ⊆ g(i).

• The radical of g, denoted by Rad g, is the maximal solvable ideal in g.
We say that the Lie algebra is semisimple if Rad g = {0}.
If definitions have become hazy by now, let us just point out that all
specific Lie algebras in this survey (and in known applications within
its framework) are semisimple, inclusive of sl(N), so(N) and sp(N).
(All these three Lie algebras are, as a matter of fact, simple: their only
ideals are {0} and the algebra itself.)

• An element in g is semisimple if all the roots of its minimal polynomial
are distinct: in a matrix representation it means that the element can
be diagonalized.

• A subalgebra is toral if all its elements are semisimple. It is easy to see
that every toral algebra must be abelian: in a matrix representation
we can restate this by saying that the elements of the subalgebra share
all eigenvectors, hence they commute.

• Unless g is nilpotent, it possesses a nonzero maximal toral subalgebra.
Such subalgebra, which we denote by h, is unique up to an isomorphism.
If g is a simple algebra, h is also known (subject to an equivalent
definition) as a Cartan subalgebra.

• Suppose that g is a linear space over C. We denote by h∗ the dual
space of a maximal toral subalgebra. It consists of all linear functionals
h → C. The nonzero functional α ∈ h∗ is a root if there exists f ∈ g\{0}
such that

[h, f] = α(h)f, h ∈ h.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 303

In a matrix representation, α(H) is an eigenvalue of the commutator
operator generated by H ∈ h, while F can be ‘translated’ into its
eigenvector.

• Denote the set of all roots of g by Φ. It is possible to prove that g can
be subjected to the root-space decomposition

g = h⊕
⊕
α∈Φ

gα, (6.23)

where gα = {f ∈ g : [h, f] = α(h)f, h ∈ h} 6= {0}.
• The decomposition (6.23) motivates the choice of a Chevalley basis of

the Lie algebra g: we choose one basis vector for each one-dimensional
subspace gα, α ∈ Φ, and combine it with an arbitrary basis of h.

• There exists an integer k∗ ≥ 1 such that adk
∗+1
h = 0 for every h ∈ gα,

α ∈ Φ.

Many of the above concepts can be illustrated briefly with an example,
and we choose sl(N,C). It is semisimple (as a matter of fact, we have already
mentioned that it is a simple Lie algebra). Using the standard representation
of sl(N,C) as matrices of zero trace, we can easily identify a maximal toral
subalgebra h with diagonal zero-trace matrices. Setting Ek,l = eke

T
l , k, l =

1, 2, . . . , N , we may choose the basis {Ek,k−Ek+1,k+1 : k = 1, 2, . . . , N−1}
for h. Moreover, given

h 3 H =

N∑
k=1

hkEk,k,

N∑
k=1

hk = 0,

and letting h0 = 0, we verify easily that

[H,Er,s] = (hr − hr−1 − hs + hs−1)Er,s, r, s = 1, 2, . . . , N, r 6= s.

Hence we identify the root α(H) = hr − hr−1− hs + hs−1 and construct our
basis by placing there Er,s for every r 6= s and appending to this the above
basis of h. Note that this results in N2 − 1 terms, matching exactly the
dimension of sl(N,C).

To determine k∗ we compute

ad2
Er,sEk,l =

{
Er,s, k = s, l = r,
O, otherwise,

r 6= s, k 6= l ⇒ ad3
Er,sEk,l = O

and ad2
Er,s(Ek,k − Ek+1,k+1) = O. Therefore ad3

Er,s = O, r 6= s, and we

deduce that k∗ = 2.3

3 There are easier ways to determine k∗ but they require more Lie-algebra theory.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

304 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Theorem 6.2. Let {ρ1, ρ2, . . . , ρd∗}, where d∗ = d − dim h, be the set

of roots Φ of a semisimple non-nilpotent Lie algebra g. Suppose that the

Chevalley basis C is ordered so that the basis of h comes last. Then this

basis is AOB if

kρi + ρj = ρm, m < i < j ≤ d∗, 1 ≤ k ≤ k∗ ⇒ ρm + ρn 6∈ Φ ∪ {0}
(6.24)

for all n = m+ 1,m+ 2, . . . , i− 1. Moreover, in that case

F̂−1
k = I +

k∗∑
l=1

(−1)l
θlk
l!

adlCkPk, k = 1, 2, . . . , d− 1. (6.25)

Returning to so(N,C), it has been proved in Owren and Marthinsen
(1999a) that conditions of Theorem 6.2 are satisfied as long as super-diagonal
elements are ordered lexicographically by rows in front of the elements un-
derneath the diagonal, which are ordered lexicographically by columns: thus,
the ordered basis is

{Ek,l : 1 ≤ k < l ≤ N} ∪ {Ek,l : 1 ≤ l < k ≤ N}
∪ {Ek,k − Ek+1,k+1 : 1 ≤ k ≤ N − 1}.

We omit the largely technical proof. Likewise, it is possible, using The-
orem 6.2, to identify AOB of sp(N,C) and so(N,C). This, however, is prob-
ably of less importance than in the case of so(N,C), since the increase in di-
mension due to the replacement of R with C leads to a significant increase in
the volume of computations. In the present stage of the development of Lie-
group methods it is fair to say, we believe, that the Cayley-transform-based
techniques from Sections 6.1–6.2 are the method of choice for quadratic Lie
groups, while CCSK should be used with the special linear group.

7. Adjoint methods

In the previous sections we have encountered a number of numerical in-
tegrators for Lie groups. Although such methods produce solutions that
stay on a given Lie group G by design, it is of interest to study how well
such schemes respect other qualitative features of the underlying equations:
the retention of a symplectic form, Lie–Poisson structure, conservation of
energy, time symmetry, time reversibility, et cetera. Given the novelty
of the proposed schemes, many of the above features and their implica-
tions on the ‘quality’ of the solution are still under investigation (Engø and
Faltinsen 1999, Faltinsen 2000). For this reason, we shall focus here just
on time symmetry for Lie-group methods, which is at present one of the
few features that are better understood, deriving adjoint and self-adjoint
Lie-group methods.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 305

Before proceeding further, let us recall that the flow Φ of the differential
equation in R

N

y′ = f(t,y), t ≥ t0, y(t0) = y0,

defined as

Φ(t, t0,y0) = y(t),

obeys the following conditions:

(i) Φ(t0, t0,y0) = y0,
(ii) Φ(t+ τ, t0,y0) = Φ(τ, t,Φ(t, t0,y0)),

provided that the above function f is Lipschitz with respect to y (Hairer et
al. 1993). In particular, the second condition implies that

Φ(−τ, t+ τ,Φ(τ, t,y(t))) = y(t),

a condition that in literature is mostly known as time symmetry or self-
adjointness of the exact flow Φ.

7.1. Adjoint methods in the classical setting

Numerical methods usually approximate the flow Φ by a discrete flow, say
Ψ, so that

yn+1 = Ψ(tn + h, tn,yn), n ∈ Z
+,

approximates the exact solution y(tn + h) to given order p. Although nu-
merical integrators for ODEs always obey the condition Ψ(tn, tn,yn) = yn,
they usually fail to satisfy condition (ii). However, its weaker variant, time
symmetry, is easier to impose and numerical methods such that

Ψ(−h, tn + h,Ψ(h, tn,yn)) = yn, n ∈ Z
+,

are usually called self-adjoint or time-symmetric methods. If a method is
not self-adjoint, its adjoint Ψ∗ is defined as the map

Ψ∗(−h, tn + h,Ψ(h, tn,yn)) = yn.

In shorthand notation, we write Ψh for Ψ(h, tn, ·), so that Ψ∗
h denotes the

adjoint method of Ψh and moreover Ψ∗
h ◦ Ψh = Id, the identity map, or

equivalently Ψ−h = Ψ−1
h , if and only if the method is self-adjoint.

The theory of adjoint and self-adjoint numerical methods for ODEs in R
N

is well established and we refer the reader to Hairer et al. (1993) for further
reading.

One might question why self-adjointness of a numerical integration scheme
is desirable. It turns out that for numerical integration schemes that are
self-adjoint it is possible to develop a theory analogous to the KAM theory

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

306 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

for Hamiltonian and time-reversible problems (Moser 1973), which usually
implies better approximation of the solution and slower accumulation of
error over long integration intervals (Estep and Stuart 1995, Reich 1996).

With regard to Lie-group methods and time symmetry, we have already
shown in Section 4 that the Magnus expansion truncated by power is time-
symmetric when applied to linear Lie-group differential equations Y ′ =
A(t)Y , provided that the underlying quadrature is based on quadrature
nodes in [0, 1] which are symmetric with respect to 1

2 . A similar result
applies also to the RK-MK methods, provided that the underlying Runge–
Kutta scheme is self-adjoint.

However, it can be easily verified by means of numerical experiments that
the above-mentioned Lie-group methods are not self-adjoint for nonlinear
problems. Hence, using self-adjoint methods to solve a Lie-algebra differen-
tial equation is not sufficient to derive self-adjoint Lie-group methods!

In this section we shall be discussing a more general procedure, derived
by Zanna, Engø and Munthe-Kaas (1999), that allows us to construct self-
adjoint Lie-group methods for linear and nonlinear problems alike and for
all types of coordinate maps φ : g → G that we may use to represent
the solution. In lifting the Lie-group equation from G to g, we make an
implicit choice of a coordinate map, which has to be taken into account in
the construction of self-adjoint methods.

7.2. Coordinate maps centred at arbitrary points

Schematically, the first step in the development of Lie-group schemes intro-
duced in Sections 3–6 is the choice of a smooth map, say φ : g → G, such
that φ(O) = I, the identity of the Lie group G, and φ′(O) = I (more pre-
cisely Tφ(O, B) = B, where B ∈ g). In other words, φ is a diffeomorphism
mapping a neighbourhood of O ∈ g into a neighbourhood of I in G. Thus,

φ(B) = expm(B), B ∈ g,

is an example of such a map, which in (6.14) we have termed canonical co-
ordinates of the first kind. Similarly, we might consider canonical coordinates
of the second kind (6.15), namely

φ(B) = ccsk(B) = expm(β1B1) expm(β2B2) · · · expm(βdBd), B ∈ g,

where B =
∑d

i=1 αiBi, αis being real coefficients, the Bis are basis elements
of the algebra g, and the βis real functions of α1, α2, . . . , αd. Yet another
example of this kind of map is the Cayley transform (6.3), which in the
current formalism reads

φ(B) = (I − 1
2B)−1(I + 1

2B), B ∈ g,

that maps g into G whenever G is a quadratic group and g is its corresponding
quadratic algebra.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 307

Secondly, the Lie-group differential equation

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) = Y0 ∈ G, (7.1)

is lifted by means of the inverse of the map dφ to an ordinary differential
equation in g. Thus, for coordinates of the first kind, one has dφ−1 =
dexp−1, the dexpinv equation (3.2) that we have already encountered time
and again in the course of the present article. Similarly, we have derived the
expressions dcay−1 and dccsk−1 in Section 6.

Finally, the dφ−1 equation is solved in g with either a Runge–Kutta
method or with a Magnus or a Cayley-type expansion. Assuming that an
approximation Yn ∈ G has already been derived, we typically solve

Θ′ = dφ−1
Θ (A(t, φ(Θ)Yn)), Θ(tn) = O, t ∈ [tn, tn+1],

where tn+1 = tn + h. The choice of the initial condition Θ(tn) = O is
equivalent to ‘centring’ the coordinate map φ at Yn. Instead, coordinates
centred at any point X ∈ G can be obtained inverting the map B ∈ g 7→
φ(B)X ∈ G. In the general case we write

X = φ(C)−1Yn,

for some C ∈ g to be specified later. Note that φ(C)−1 is the inverse (in
G) of the group element φ(C). Before proceeding further, we observe that
both canonical coordinates of the first kind and the Cayley transform obey
the relation

φ(B)−1 = φ(−B),

for all B ∈ g. For canonical coordinates of the second kind one has instead

ccsk(B)−1 = expm(−βdBd) expm(−βd−1Bd−1) · · · expm(−β1B1).

We seek a solution of (7.1) of the form

Y (t) = φ(Θ(t))φ(C)−1Yn (7.2)

for t ∈ [tn, tn+1]. Differentiating in the usual fashion we obtain a differential
equation for Θ(t)

Θ′ = dφ−1
Θ (A(t, Y)), t ∈ [tn, tn+1], (7.3)

where Y is as in (7.2), in tandem with the initial condition

Θ(tn) = C. (7.4)

Thus, changing the centre of coordinate map does not affect the differential
equation obeyed by Θ, just its initial condition.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

308 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

7.3. The adjoint of Lie-group methods

Assume that the Lie-algebra differential equation (7.3), with the initial con-
dition (7.4), is computed with a numerical method Ψh, and denote by Ψ∗

h
its adjoint in the classical sense of Section 7.1, namely

(Ψ∗
−h ◦Ψh)B = B

for all B ∈ g. The corresponding Lie-group method is such that

Yn+1 = Ψ̃hYn = φ(Θh,n+1)φ(Ch,n)
−1Yn,

Θh,n+1 = Ψ(h, tn, Ch,n),

where Ch,n is the initial condition of Θ in the interval [tn, tn+1], and we allow
it to depend on the interval of integration and on the step-size h. In order
to obtain the adjoint of the Lie-group method Ψ̃h, we need not just use Ψ∗

h
in g, but also make sure that the coordinate map employed while stepping
forward with the method Ψ̃h is the same as when stepping backward with
the adjoint method Ψ̃∗

h. Define a pair of methods Ψ̃ and Ψ̃∗ on G as

Ψ̃(tn + h, tn, Yn) = φ(Θh,n+1)φ(Ch,n)
−1Yn,

Ψ̃∗(tn + h, tn, Yn) = φ(Θ∗
h,n+1)φ(C∗h,n)

−1Yn,

C∗−h,n+1 = Θh,n+1, (7.5)

where Θh,n+1 = Ψ(h, tn, Ch,n) and Θ∗
h,n+1 = Ψ∗(h, tn, C∗h,n).

Theorem 7.1. (Zanna et al. 1999) The method Ψ̃∗ is the Lie-group

adjoint of Ψ̃. Moreover, (Ψ̃∗)∗ = Ψ̃.

Proof. With the same notation as above, we have

(Ψ̃∗
−h ◦ Ψ̃h)Yn = φ(Θ∗

−h,n+2)φ(C∗−h,n+1)
−1φ(Θh,n+1)φ(Ch,n)

−1Yn.

Because of (7.5), one has φ(Ch,n)
−1Yn = φ(C∗−h,n+1)Yn+1, from which we

deduce that

φ(C∗−h,n+1)
−1φ(Θh,n+1) = I.

Furthermore Θh,n+1 and Θ∗
−h,n+2 are solutions of the same differential equa-

tion (7.3) whereby the initial condition of Θ∗ is the endpoint of Θ and Θ∗

is obtained by means of Ψ∗
−h, where Ψ∗

h is the adjoint of Ψh in the classical

sense. Thus (Ψ̃∗
−h ◦ Ψ̃h)Yn = Yn and the assertion follows. 2

We have not yet specified what Ch,n is. In general we let it be a function
of the step-size of integration h and of the current stage values Fi of a
Runge–Kutta method Ψ,

Ch,n = ϑ(F1, F2, . . . , Fν),

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 309

ν being the number of the stages of the scheme (see Appendix A for nota-
tion). Thus,

C∗−h,n+1 = ϑ∗(F ∗1 , F
∗
2 , . . . , F

∗
ν),

therefore the functions ϑ and ϑ∗ obey the fundamental adjointness condition

ϑ∗(F ∗1 , F
∗
2 , . . . , F

∗
ν) = ϑ(F1, F2, . . . , Fν) +

ν∑
i=1

biFi,

for the centre of the coordinate map.
The following result, which can be found in Zanna et al. (1999), charac-

terizes self-adjoint Lie-group methods.

Theorem 7.2. Assume that Ψ is self-adjoint on g. Then Ψ̃ is self-adjoint

on G provided that

ϑ(Fν , Fν−1, . . . , F1) = ϑ(F1, F2, . . . , Fν) +
ν∑
i=1

biFi. (7.6)

7.4. Geodesic- and flow-symmetric coordinate maps

Basically, there are two distinct ways to generate coordinate maps such that
(7.6) is obeyed. One way to achieve this goal is to choose ϑ so that the value
Yn+1/2 = φ(Ch,n)

−1Yn is a ‘midpoint in space’ between Yn and Yn+1, which
will generate what we call the geodesic midpoint method. An alternative is
to choose ϑ so that Yn+1/2 = φ(Ch,n)

−1Yn is instead a ‘midpoint in time’,
thus generating a flow midpoint. The situation is schematically represented
in Figure 7.1.

tYn

t Yn+1

t Yn+1/2 geodesic midpoint
tYn+1/2flow midpoint

�
�
�
�
�
�
��

Fig. 7.1. Representation of the geodesic- and flow-symmetric midpoint

In the first instance we say that the coordinate map is geodesic-symmetric,
while in the second case we say that the coordinate map is flow-symmetric.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

310 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Geodesic-symmetric coordinate maps are always defined and correspond
to the choice

Ch,n = ϑ(F1, F2, . . . , Fν) = −1
2

ν∑
i=1

biFi.

Flow-symmetric coordinates are instead more naturally defined for methods
based on collocation. If `i(x), i = 1, . . . ν, denote the familiar cardinal
polynomials of Lagrangian interpolation, already introduced in Section 5.1;
we set

wi =

∫ 1
2

0
`i(τ) dτ, i = 1, 2, . . . , ν, (7.7)

and the choice

Ch,n = ϑ(F1, F2, . . . , Fν) = −
ν∑
i=1

wiFi

corresponds to the flow midpoint.
There are other choices of functions ϑ that obey (7.6) and it is possible

to show that the set of such functions is convex. See Zanna et al. (1999) for
further examples of coordinate maps that yield self-adjoint schemes.

To conclude this section, we illustrate with a numerical experiment the
benefits of using the geodesic- and flow-symmetric coordinates instead of
classical coordinates centred at Yn. We consider the Euler equations for a
rigid body, that is,

y′ = y ×My, t ≥ 0, y(0) = y0, (7.8)

where y ∈ R
3 (we assume that ‖y0‖2 = 1), the symbol ‘×’ denotes the

classical vector product on R
3 and M = diag (m1,m2,m3) is a diagonal

matrix. This system has the Hamiltonian function H(y) = 1
2(m1y

2
1 +m2y

2
2 +

m3y
2
3) and obeys ‖y‖2 = 1. It can be represented by means of Lie-group

action of SO(3) on R
3 by representing the solution y(t) as Q(t)yn, n =

0, 1, 2, . . . , with Q ∈ SO(3), t ∈ [tn, tn+1]. Hence, in each interval [tn, tn+1]
we solve the differential equation

Q′(t) = A(y(t))Q(t), t ≥ tn, Q(tn) = I, (7.9)

where

A(y(t)) = −
 0 −m3y3 m2y2

m3y3 0 −m1y1

−m2y2 m1y1 0

 .
In this numerical experiment, m1 = 1,m2 = 1

3 and m3 = 1
5 and h = tn+1 −

tn = 1
10 , while the initial condition is a random 3-vector with unit norm.

We remark that such action automatically obeys the homogeneous-space
condition ‖y‖2 = 1 whenever a Lie-group method is applied to (7.9).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 311

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
x 10

-10

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4
x 10

-10

Geosym coords
Flowsym coords

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2
x 10

-14

Time

Coords at y
n

Fig. 7.2. Error in the Hamiltonian versus time for an order-four RK-MK method

based on Gaussian nodes. The top plot corresponds to coordinates centred at yn
while the second plot corresponds to geodesic- and flow-symmetric coordinates.

Although generally the two latter choices would correspond to different error,

in this case the errors are very similar. The bottom plot corresponds to the

difference between the errors in geodesic- and flow-symmetric coordinates

We compare an RK-MK method of order four based on Gauss–Legendre
quadrature, using coordinates centred at yn with geodesic- and flow-sym-
metric coordinates. The error in the Hamiltonian function, evaluated as

errH = H(yn)−H(y0),

is displayed in Figure 7.2. A similar comparison is displayed in Figure 7.3 for
a method based on Magnus expansion of order four. The outcome reveals
that methods employing geodesic- and flow-symmetric coordinates display
better error propagation.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

312 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-9

Coords at y
n

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-9

Geosym coords
Flowsym coords

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1
x 10

-9

Time

Fig. 7.3. Error in the Hamiltonian versus time for an order-four Magnus method

based on Gaussian nodes. The top plot corresponds to coordinates centred at yn
while the second plot corresponds to geodesic- and flow-symmetric coordinates.

The bottom plot corresponds to the difference between the errors in

geodesic- and flow-symmetric coordinates

Precise details of numerical schemes used in the above example can be
found in Appendix A.

8. Computation of exponentials

8.1. Six dubious ways to compute the exponential of a matrix in a Lie

algebra

Most (but by no means all) Lie-group methods require repeated calculation
of exponentials or, in a more realistic setting, an approximation of expo-
nentials. In principle, this is a well-tried and familiar task in numerical
analysis and can be accomplished in one of several ways: rational approx-

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 313

imants (Baker 1975, Iserles and Nørsett 1991), Krylov-subspace methods
(Hochbruck and Lubich 1997), Schur decomposition (Golub and Van Loan
1996) and so on. Although such methods have occasionally attracted healthy
scepticism (Moler and Van Loan 1978), it is fair to say that they have a dis-
tinguished track record across numerical analysis. However, as we have
already commented in Section 6, our present task is subject to a crucial re-
striction: Our approximant must map the Lie algebra g to the Lie group G!

Low-dimensional algebras are easy and often we can evaluate the expo-
nential explicitly. In particular, the following two cases are of practical
importance.

• Firstly, given A =

[
a b
c −a

]
∈ sl(2), we can easily establish that

eA = coshω I +
sinhω

ω
A, where ω =

√
a2 + bc. (8.1)

This will be of use in Section 11, in our discussion of the application of
Magnus expansions to the calculation of Sturm–Liouville spectra.

• Secondly, the exponential of

A =

 0 a b
−a 0 c
−b −c 0

 ∈ so(3)

is

I +
sinσ

σ
A+

1− cosσ

σ2
A2,

where σ =
√
a2 + b2 + c2. Given the number of spatial dimensions in

our universe, it will come as little surprise that many useful equations,
for instance (7.8), can be formulated in so(3). We will return to the
above expression, known as the Rodrigues formula, in Appendix B.

These, however, are the exceptions.
An exact formula being unavailable, an appealing alternative is to com-

pute the exponential to machine accuracy. This, however, is neither afford-
able nor always reliable. The Matlab function expm computes the expo-
nential by scaling and squaring a diagonal Padé approximant: the procedure
is very expensive for large dimensions and the outcome often falls short of
machine accuracy and is subject to fast error accumulation.

When neither an explicit formula nor computation to machine accuracy
are feasible, we must resort to approximation. Any such procedure must
conform with two conditions. The outcome lies in the correct Lie group G
and it departs from the exact exponential only to an extent consistent with
the order of the Lie-algebra method. A standard means of approximation is
to replace ez with a function r(z), analytic in a neighbourhood of the origin.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

314 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

The action of such a function can be extended from C to gl(N), hence to
any matrix Lie algebra, by elementary means. Our two desiderata can now
be reformulated by requiring that r(z) = ez + O(zp+1), where p ≥ 1 is the
order of the Lie-algebra time-stepping procedure, and r(g) ⊆ G.

As we have already mentioned in Section 6, the above conditions might be
much too restrictive. As has been proved by Kang and Zai-jiu (1995), the
only analytic function that maps sl(N) to SL(N) for every N ∈ N and takes
zero to identity is r(z) = eαz for α ∈ R. Requiring consistency means that
we must choose the exact exponential! On the other hand, in a quadratic Lie
algebra we are faced with an abundance of riches: given an arbitrary odd
function f , analytic about the origin, it is true that ef(g) ⊆ G (Celledoni
and Iserles 1998). In particular, this is the case with all diagonal Padé
approximants,

r(z) =
pm(z)

pm(−z) , where pm(z) =

m∑
k=0

(
m
k

)
(2m− k)!

(2m)!
zk, m ∈ N.

Yet, all this is of lesser utility since, arguably, the method of choice for
quadratic Lie algebras rests upon the use of the Cayley transform (i.e., the
diagonal Padé approximant with m = 1) as an alternative action, thereby
avoiding altogether the need to approximate the exponential function!

Yet another option is to evaluate the exponential with a Krylov-subspace
method. Assuming for simplicity that we wish to approximate eAv, where
A ∈ gl(N) and v ∈ R

N , such techniques choose the approximant from
the space KN,M = span {v, Av, . . . AM−1v}. Surprisingly small values of
M produce remarkably good and affordable approximants (Hochbruck and
Lubich 1997). Yet there is absolutely nothing in this approach to guarantee
that the outcome resides in the correct Lie group.

The last (and perhaps the most obvious) candidate for our list of altern-
atives to the matrix exponential is projection. For example, to travel from
sl(N) to SL(n), we may employ a diagonal Padé approximant. The out-
come, V = r(A), say, cannot be expected to reside in the special linear
group. However, replacing V with V/(detV)1/N produces an element in
SL(n). Unfortunately, experience tells us that this procedure is prone to
instability (cf. Section 11.4).

8.2. Splitting methods

Let A ∈ g. In the spirit of Celledoni and Iserles (1998), we wish to approx-
imate

etA ≈ R(tA) = etB1etB2 · · · etBs , (8.2)

where the matrices B = {B1, B2 . . . , Bs} are subject to the following re-
quirements.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 315

(1) Each Bl resides in g.

(2) It is cheap to evaluate expm(tBl) ∈ G exactly for each l.

(3) It is cheap to multiply exponentials in (8.2).

(4) The error is suitably small, R(tA) = etA +O(tp+1
)
.

We choose the splitting B so that it consists of low-rank matrices.
Let K and L be two N × r matrices, where r ≥ 1 is small, and assume

that C = Bl = KLT. Then

etC = I + tKD−1(etD − I)LT,

where D = LTK (Celledoni and Iserles 1998). Note that D is just r× r and
the cost of evaluating etC exactly is modest for small values of r.

As an example, let us consider g = so(N). We let r = 2, s = N − 1, set

B[0] = A = [b
[0]
1 , b

[0]
2 , . . . , b

[0]
N], and choose B1 = b

[0]
1 e

T
1 − e1b

[0]
1

T ∈ so(N),

where ek ∈ R
N is the kth unit vector. Letting B[1] = B[0] −B1, we observe

that its first row and column vanish. We continue in a manner similar to
LU factorization, letting B[i] = B[i−1] −Bi and

Bi = b
[i−1]
i eT

i − eib
[i−1]
i

T ∈ so(N), i = 1, 2, . . . , N − 1.

We refer to Celledoni and Iserles (1998) for precise estimation of cost, imple-
mentation details and a similar example for sl(N), as well as for an example
of a splitting, again with r = 2, that eliminates two rows and columns of
B ∈ so(N) at a time. Although the number of exponentials in (8.2) is gener-
ally quite large for low-rank splittings, the underlying linear algebra carries
a reasonable price tag.

The main disadvantage of low-rank splitting methods is the quality of
approximation: in general, we can expect order p = 1. The second-order
condition is

s−1∑
k=1

s∑
l=k+1

[Bk, Bl] = O

and it is easy to verify that it is satisfied when (8.2) is the Strang splitting :
s = 2s̃ + 1 and Bs̃+i = Bs̃−i, i = 1, 2, . . . , s̃. In principle, it is easy to
convert any low-rank matrix so that it becomes a Strang splitting by first
approximating 1

2A with a first-order splitting (8.2), next approximating the
same matrix with the same splitting but with the matrices Bl arranged in
reverse order, and finally ‘aggregating’ the middle two terms. The outcome,

S(tA) = etB1/2etB2/2 · · · etBs−1/2etBsetBs−1/2 · · · etB2/2etB1/2, (8.3)

costs twice as much as (8.2) but it has a crucial advantage: it is not just
second-order but also time-symmetric. This renders (8.3) amenable to the
application of the Yoshida device (Sanz Serna and Calvo 1994, Yoshida

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

316 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

1990). Thus, the function

S(αtA)S((1− 2α)tA)S(αtA), where α =
2

3
+

3
√

2

3
+

3
√

4

6
,

approximates etA to order four. A similar procedure can be used to increase
the order further in increments of two.

A most welcome feature of low-rank splittings is that they can be imple-
mented to take advantage of sparsity. Provided that A is banded, say, all the
computations can be confined to the relevant band and sparsity is inherited
as we are ‘mopping up’ rows and columns as in the so(N) algorithm above.

8.3. Canonical coordinates of the second kind

Our point of departure is similar to the reasoning behind the CCSK repres-
entation (6.16). Again, C = {C1, C2, . . . , Cd} is a basis of the Lie algebra g
and we seek polynomials θ1, θ2, . . . , θd so that

eθ1(t)C1eθ2(t)C2 · · · eθd(t)Cd = etA +O(tp+1
)
. (8.4)

C being a basis, there exist scalars a1, a2, . . . , ad so that A =
∑d

k=1 akCk.
Letting θk(t) = akt, k = 1, 2, . . . , d, gives us a first-order splitting (8.2).
With greater generality, we set θk(0) = 0, θ′k(0) = ak, k = 1, 2, . . . , d, to
guarantee p ≥ 1.

To obtain higher-order conditions in (8.4) we proceed as in Section 6.4.
Differentiation and further algebra produce, analogously to (6.17), the equa-
tion

A =
d∑

k=1

akCk =
d∑

k=1

θ′k(t)Ad expm[θ1(t)C1] · · ·Ad expm[θ1(t)C1]Ck +O(tp) .

(8.5)

We go on differentiating (8.5) and setting t = 0. This yields order conditions,
which need to be unscrambled by further algebra, exploiting the structure
constants (cf. Section 6.4 for the definition) of C. The outcome is

p ≥ 2 : θ′′k(0) =

d∑
l=1

l−1∑
j=1

alc
k
l,jaj , k = 1, 2, . . . , d,

p ≥ 3 : θ′′′k (0) = 2
d∑
l=1

l−1∑
j=1

ckl,j [θ
′′
l (0)aj + alθ

′′
j (0)]

+ 2

d∑
l=1

l−1∑
j=1

j−1∑
i=1

d∑
m=1

cml,jc
k
i,malajai

+
d∑
l=1

d∑
j=1

l−1∑
i=1

cjl,ic
k
i,jβlβ

2
i , k = 1, 2, . . . , d

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 317

(Celledoni and Iserles 1999).
The cost of this procedure is, at first glance, prohibitive. We might just

about get away with computing order-two conditions at the cost of O(d3)
operations, but a price tag ofO(d5) operations for order three, to say nothing
of higher orders, is out of the question. This naive impression is misleading,
since we are absolutely free to exploit, along the lines of Sections 6.4–6.5,
sparsity in structure constants in a serendipitously chosen basis C.4 Again,
Chevalley bases present the best choice, as well as leading to very easy
computation of exponentials in (8.4). For example, choosing the basis {Ek,l−
El,k : 1 ≤ k < l ≤ N} of so(N), an order-two approximation is attained by
letting

θk,l(t) = ak,lt+ 1
2

N∑
i=1

ak,iai,lt
2, 1 ≤ k < l ≤ N,

anO(N3) = O(d3/2) procedure. In the case of sl(N) the approach advocated
in Celledoni and Iserles (1999) is to choose the ordered basis C = C1 ∪C2,
where

C1 = {Ek,l : k 6= l}, C2 = {Ek,k − Ek+1,k+1 : k = 1, 2, . . . , N − 1},
where each set is ordered lexicographically. Let

A =
N∑

k,l=1
k 6=l

ak,lEk,l +

N−1∑
k=1

bk(Ek,k − Ek+1,k+1)

and denote the coefficients corresponding to terms in C1 and C2 by θk,l and
ηk respectively. The second-order conditions are

θk,l(t) = ak,lt+ 1
2

[
k−1∑
i=1

ak,iai,l + ak,l(bk−1 − bk + bl − bl−1)

−
N∑

i=k+1

ak,iai,l

]
t2, k 6= l,

ηk(t) = bkt− 1
2

k∑
i=1

N∑
j=k+1

ai,jaj,it
2, k = 1, 2, . . . , N − 1,

again just O(N3) = O(d3/2) operations.
An intriguing aspect of approximants based on CCSK is that they might

well be ideally suitable to handling sparsity in the matrix A. Although this

4 Sparsity in structure constants has no connection whatsoever with sparsity (or other-

wise) of the matrix A.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

318 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

issue is by no means fully understood, there are enough encouraging pointers
to justify a brief discussion. One mechanism that exploits sparsity is that
the latter can be taken into account in the evaluation of the θks because of
the association between terms in a Chevalley basis and the entries of A. For
example, the second-order conditions for a tridiagonal matrix A ∈ sl(N)
reduce to

θk,l(t) =

1
2ak,k−1ak−1,k−2t

2, l = k − 2,

ak,k−1t− 1
2ak,k−1(bk − 2bk−1 + bk−2)t

2, l = k − 1,

ak,k+1t+ 1
2ak,k+1(bk+1 − 2bk + bk−1)t

2, l = k + 1,

−1
2ak,k+1ak+1,k+2t

2, l = k + 2,

0, |k − l| 6= 1,

ηk(t) = bkt− 1
2ak,k+1ak+1,kt

2.

This entails justO(N) operations and, equally importantly, justO(N) terms
survive in the product (8.4). The cost scales with the number of nonzero
elements in the matrix, rather than with dimension, a hallmark of a good
method for sparse matrices.

Another mechanism is of more tentative value, yet we believe that it de-
serves mentioning. Even if the matrix A is sparse, its exponential is dense.
However, it is possible to prove, at least in the case of banded matrices,
that most of the entries are exceedingly small and that the loci of large
elements are predictable (Iserles 1999a). As an example, we have averaged
1000 exponentials of 100× 100 matrices with the cruciform sparsity pattern
displayed in Figure 8.1(a) and with random elements uniformly distributed
in (−1, 1) and normalized so that maxk,l |ak,l| = 1. Let W be the average
of all the exponentials. The matrix is dense, yet most of the elements of W
are tiny! Thus, Figure 8.1(b) displays the sparsity pattern of W without all
its entries that are smaller than 10−6 in magnitude. Although the cruciform
shape ‘swells’, most of the matrix consists of zero entries. This observation
is affirmed in Figure 8.1(c), where we have plotted the matrix log10 |W |.
The vertical axis tells the magnitude of the entries in terms of significant
(decimal) digits. The decay outside the original cruciform shape is evident.
Using upper bounds from Iserles (1999a), it is possible to say how rapidly
entries decay for banded A but computer experiments (and, indeed, Fig-
ure 8.1) indicate that similar behaviour takes place for more exotic sparsity
patterns.

Choosing a Chevalley basis, members of C mostly correspond to elements
of A. Given a tolerance ε > 0 and knowing which elements of eA are bound
to be smaller than ε in magnitude, we are free to remove them altogether
from the product (8.4). The outcome departs entry by entry from the exact
exponential by at most ε and, by design, it resides in the Lie group G.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 319

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0
20

40
60

80
100

0

20

40

60

80

100
−100

−80

−60

−40

−20

0

20

Fig. 8.1. How large is the exponential of a sparse matrix?

(a) The sparsity pattern in

the matrix A

(b) Average sparsity pattern in

the matrix |(eA)k,l| > 10−6

(c) The ‘shape’ of the matrix log10 |(eA)k,l|

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

320 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

The sparsity pattern of a matrix exponential of a sparse matrix after the
excision of small entries is at present unknown. (Banded matrices are an
exception.) Moreover, full implications of this phenomenon to the subject
matter of this section are far from clear. Having said this, our analysis
emphasizes a very important and welcome feature of methods based upon
canonical coordinates of the second kind, applied in conjunction with Che-
valley bases: the connection between basis elements and entries of the matrix
is a powerful tool, which we can bring to bear with pointwise precision upon
the exploitation of sparsity.

9. Stability and backward error analysis

How stable are Lie-group methods? The combined wisdom of half a century
of computational analysis of ODEs is that numerical algorithms for initial-
value problems are to all intents and purposes useless unless they exhibit
favourable stability properties. Indeed, much of the narrative of modern
numerical analysis of ODEs is the tale of stability, linear and nonlinear alike,
culminating in a profound understanding of the subject. We refer the reader
to the monograph of Stuart and Humphries (1996) for a comprehensive
review of this important subject area.

The word ‘stability’ has so far been conspicuously absent from our ex-
position. A partial reason is ignorance: much remains to be done in the
realm of stability investigations in a Lie-group setting. Interesting results
abound which cannot yet be fitted into a general theory. Thus, we can learn
from computation that merely projecting a solution into the right manifold
often leads to instabilities, while intrinsic Lie-group methods exhibit much
more favourable behaviour. Much of the advance in stability theory for clas-
sical numerical ODEs was concerned with identifying appropriate stability
models: broad enough to provide insight about many differential systems
of interest, yet sufficiently focused and narrowly defined to be amenable to
rigorous analysis. Such are the linear model, the monotone model and the
many more advanced models from Stuart and Humphries (1996), originating
in the theory of nonlinear dynamical systems. This chapter in the narrative
of Lie-group methods cannot yet be written, except for the observation that
some Lie-group solvers, for instance RK-MK, Magnus and Fer expansions
with exactly calculated exponentials compute the solution of linear equa-
tions with constant coefficients exactly: in that case there is no need for
stability analysis!

The last few years have seen the emergence of an alternative stability
theory, mainly within the context of symplectic integration of Hamiltonian
ODEs and discretization of dynamical systems. In addition to asking ‘How
near is the numerical solution to the exact one and how influenced is it
by small perturbations?’, the new breed of stability researchers also poses

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 321

a different query: ‘What is it that our numerical method solves exactly?
And how far apart is it from the equation that we wish to solve?’ This is
precisely the question of backward error analysis that J. H. Wilkinson made
into the centrepiece of modern numerical linear algebra. Arguably, it is just
as relevant in the ODE setting and it has already led to impressive new
insights (Benettin and Giorgilli 1994, Hairer 1994, Hairer and Lubich 1997,
Neishtadt 1984, Reich 1996).

In this section we report briefly on recent work of Faltinsen (1998), who
has generalized backward error analysis to a Lie-group setting.

Discussion of stability is meaningless without the concept of distance.
Thus, given a Lie group G, we seek d : G×G → R

+, which is consistent with
the standard axioms of a metric in an Euclidean space and, in addition,
compatible with the topology of G. A good way to ensure compatibility is
to require that d is left invariant, i.e., that

d(ZX,ZY) = d(X,Y) X,Y, Z ∈ G. (9.1)

Ideally, we would have liked d to be bi-invariant : satisfying both (9.1) and
the condition d(XZ, Y Z) = d(X,Y) for all X,Y, Z ∈ G. This, however, is
not always possible. On the other hand, according to the Birkhoff–Kakutani
theorem (Birkhoff 1936), every Lie group G admits a left-invariant, al-
most right-invariant metric which, in addition to (9.1), obeys d(XZ, Y Z) ≤
ρ(Z) d(X,Y), where the function ρ is finite. Note that existence and unique-
ness of a bi-invariant Riemannian metric is assured when the Lie group is
compact and connected (Boothby 1975, p. 244).

Assumption 9.1. The metric d is left-invariant and almost right-invariant.

An example is the geodesic metric in O(N) (which, as a matter of fact, is
bi-invariant): d(X,Y) = ‖η‖2, where eiη1 , eiη2 , . . . , eiηN are the eigenvalues
of XTY . (Note that the spectrum of elements in O(N) lives on the complex
unit circle, hence the ηks are real.) Other examples are more complicated
to derive explicitly, but this is of little consequence since we do not require
d in a closed form.

We are concerned with the solution of the Lie-group equation

Y ′ = A(t, Y)Y, t ≥ t0, Y (t0) = Y0 ∈ G, (9.2)

where A : [t0,∞)× G → g, by a Lie-group method. The flow corresponding
to (9.2) is denoted by Φt,t0,A, therefore Y (t) = Φt,t0,A(Y0).

Assumption 9.2. The matrix function A is real analytic and there exist

constants α, β, t∗ > 0 such that

‖A(t, Ŷ)Ŷ ‖F ≤ α, t ∈ [0, t∗], Ŷ ∈ Bβ(Y0),

where ‖ · ‖F is the Frobenius norm and Bβ(Y0) = {Ŷ ∈ G : d(Y0, Ŷ) ≤ β}.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

322 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

We are interested in Lie-group solvers that lift the solution to the corres-
ponding Lie algebra g, whether once or repeatedly in the course of every
time-step. All the methods that we have described in this survey: Crouch–
Grossman and Runge–Kutta–Munthe-Kaas schemes, Magnus, Fer and Cay-
ley expansions and methods based on canonical coordinates of the second
kind fit this framework. An example of a method that is outside the scope of
the theory of this section is projection. For example, in the case G = O(N)
we might time-step from Yn to Yn+1, say with an arbitrary ODE method
which produces a new value Ȳn+1. We subject Ȳn+1 to a polar decomposi-
tion and retain the orthogonal part as our new Yn+1 (Higham 1997). We
hasten to acknowledge that this is a perfectly valid procedure, except that
it is outside the scope of our present discussion.

The map induced by the numerical method will be denoted by Ψh,tn,A,
hence Yn+1 = Ψh,tn,A(Yn), n ∈ Z

+.

Assumption 9.3. The Lie-group method is accurate to order p ≥ 1, i.e.,

d(Φh,t0,A(Y0),Ψh,t0,A(Y0)) = O(hp+1
)
.

What is it that Ψh,tn,A solves exactly? In linear algebra this is precisely
the question of backward error analysis. In so far as ODEs are concerned,
however, the situation is slightly more complicated.

Theorem 9.1. (Faltinsen 1998) Subject to Assumptions 9.1–9.3, there

exists a matrix function Ah : [t0,∞)× G → g such that

‖Ah(t,X)−A(t,X)‖F = O(hp) (9.3)

and

d(Φh,t0,Ah(Y0),Ψh,t0,A(Y0)) = O(e−γ/h), (9.4)

where γ > 0 is a constant.

Note that Φh,t0,Ah evolves on the very same Lie group G and, because
of (9.3), the modified equation Y ′h = Ah(t, Yh)Yh ‘approximates’ the ODE
(9.2). The above theorem argues that a single step of the numerical method
departs to an exponentially small extent from the exact solution of a nearby
equation! It is reminiscent of similar results in symplectic integration and its
method of proof generalizes the work of Reich (1996) to a Lie-group setting.

A good approximation across a single step does not tell us much. Ideally,
we wish to extend the scope of Theorem 9.1 to [t0,∞) or, at the very least,
to a large number of steps. This, however, requires further conditions. As
in backward error analysis for symplectic integration, the verification of
such conditions in a nonlinear case might be difficult and require bespoke
analysis for different methods. Matters simplify a great deal, though, for
linear equations Y ′ = A(t)Y . Suppose that the exact solution is Y (t) =

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 323

expm[Θ(t)]Y0, t ≥ t0. Let µ ∈ R be the least real number such that

‖Ad expmΘB‖F ≤ c eµ(t−t0)‖B‖F, t ≥ t0

for some c > 0 which may depend on Θ. Then (9.4) can be extended to a
longer interval. Specifically, it is true that

d(Φmh,t0,Ah(Y0),Ψmh,t0,A(Y0)) = O(e−γ∗/h),
where γ∗ > 0 and m ≤M(h), where

M(h) =

 O(1) , µ > 0,
O(h−p) , µ = 0,
∞, µ < 0.

It is possible to prove that g = so(N) implies that the operator Ad expmΘ

is itself skew symmetric and µ = 0. This implies that the scope of backward
error analysis is quite significant at least in this case.

Another interesting phenomenon originally identified in the analysis of
Hamiltonian problems is linear error growth (Estep and Stuart 1995). Pro-
vided that the exact solution of a Hamiltonian differential system is periodic
with period T > 0 and a pth-order numerical method satisfies convenient
requirements (e.g., reversibility or conservation of Hamiltonian energy), it
is possible to prove that

‖ynT/h − y(nT)‖ ≤ cnhp, (9.5)

where c > 0 (for simplicity we assume that T/h is integer). This is a very
important feature of successful long-term integration, since lesser methods
typically produce quadratic error growth and the solution is unlikely to
remain periodic for long.

Does (9.5) remain valid in a Lie-group setting? Unfortunately, not always.
In a recent paper, though, Engø and Faltinsen (1999) proved that solving
a Lie–Poisson system with a method that is both a Lie-group action and
conserves Hamiltonian energy results in linear error growth. As an example,
let us recall the Euler equations for a rigid body (7.8). This is a Lie–Poisson
system which conserves the Hamiltonian energy H(y) = 1

2(m1y
2
1 +m2y

2
2 +

m3y
2
3), as well as evolving on the unit sphere in R

3. Therefore y(t) lives on
a ‘circle’ (an intersection of a sphere and an ellipsoid), a feature shared by
energy-conserving methods based on group actions, and is periodic there.
We have already seen in Figures 7.2 and 7.3 that self-adjoint methods do
well in recovering a periodic solution.

In Figure 9.1 we have integrated the rigid body equations (7.8) with three
RK-MK methods: Forward Euler, Runge–Kutta–Heun and the trapezoidal
rule, all applied in the Lie algebra. Only the latter method conserves energy
(Engø and Faltinsen 1999). The results have been displayed as point-plots
of yn in three dimensions. First note that all the solution trajectories evolve

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

324 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

(a) Forward Euler (b) Runge–Kutta–Heun (c) Trapezoidal rule

Fig. 9.1. Rigid body equations (7.8), as solved by three different Lie-group

methods with h = 1
10 , integrating for 100000 steps

on the unit sphere: unsurprising, since we are using Lie-group methods, yet
beyond the reach of most classical algorithms. Secondly, forward Euler is no
respecter of periodicity and its trajectory spirals to a fixed point. Runge–
Kutta–Heun is much better, yet more careful examination demonstrates how
the error accumulates and periodicity is lost. The solution is qualitatively
correct for a while, but long integration leads to false dynamics in this case
also. The energy-conserving trapezoidal rule, though, produces a trajectory
which to all intents and purposes is periodic.

10. Implementation, error control and DiffMan

10.1. Implementation and error control of Lie-group solvers

Practical implementation of Lie-group solvers requires much more than
merely programming a numerical method. We must address ourselves to
issues like error control and variable-step implementation. As is perhaps
natural in a new subject, implementation details have so far received less
attention than theoretical issues, a situation that is likely to be remedied in
the next few years.

In this section we survey the little that is presently known about imple-
mentational issues, commencing with the welcome observation that variable-
step procedures do not interfere with the retention of Lie-group structure.
This is important, since it is known that another important geometric-
integration technique, symplectic solution of Hamiltonian systems, loses
many of its most favourable features unless implemented with (essentially)
constant step-size (Sanz Serna and Calvo 1994).

There are two levels of discretization in Lie-group solvers and each should
be monitored in a variable-step implementation and contribute to the es-
timate of local error:

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 325

(1) the error committed in the evaluation of the coordinate map; and

(2) the error incurred in the solution of the Lie-algebraic equation.

In so far as the coordinate map is concerned, the situation is simple. The
Cayley map (6.3) requires an inversion of a matrix. Unless its size is large,
this can be accomplished by direct methods, otherwise it requires iteration.
In the first case the only source of error is round-off and this issue is well
understood by classical numerical algebra. In the second case the error is
determined by the termination criteria and the issue is, again, transparent.
The use of techniques based on coordinates of the second kind (6.15) gener-
ates round-off error only, since each individual exponential can be evaluated
easily in exact arithmetic. Unfortunately, the situation is different with the
most important coordinate map, expm. To date, there are no efficient means
to monitor the error of methods from Section 8. The last statement refers
not just to approximation methods but also to ‘exact’ calculation of the ex-
ponential: it will be seen in Section 11.5 that the Matlab function expm is
a stumbling block to high-precision long-term integration of some systems.5

It is entirely conceivable that good techniques to monitor the error in expm
should depend on the Lie group in question: intuitively, a compact object
like O(N) is easier to handle than SL(N), say.

Estimation of the error in Lie algebra presents a different challenge, more
akin to classical error-control theory for numerical ODEs.

A fair share of quality software for ‘classical’ ODEs is based on multistep
methods. There exist multistep Lie-group solvers (Faltinsen, Marthinsen
and Munthe-Kaas 1999), but their implementation requires travelling for-
wards and backwards between the group and the algebra in a manner which
is, arguably, too cumbersome for the use of the ‘automatic differentiation’
techniques of Gear (1971), the cornerstone of most multistep ODE software.

In principle, error control of explicit RK-MK can be accomplished in a
straightforward manner, using embedded Runge–Kutta schemes (Hairer et
al. 1993). The sole difference to the classical framework is that, instead
of estimating the error in the original configuration space, we do so in the
algebra. An embedded RK scheme has the Butcher tableau

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν
...

...
...

...
cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν
b̄1 b̄2 · · · b̄ν

5 In fairness to Matlab, in our experience expm performed better than alternatives.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

326 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

and the approximants

yn+1 = yn + h
ν∑
l=1

blf l

ȳn+1 = yn + h
ν∑
l=1

b̄lf l

(compare with (3.3)!) are of order p and p̄ ≥ p+1 respectively. The higher-
order approximant is used for error control, yn+1 − y(tn+1) ≈ yn+1 − ȳn+1.
Applying a similar trick in the Lie algebra readily yields an estimate of the
local error at relatively little extra cost for low-order methods. If the order
is high, typically the embedded RK scheme requires an increasingly large
number of additional stages to evaluate ȳn+1 and the cost mounts. This is
a problem common to high-order RK methods in the classical setting also.

We have neglected in our discussion of RK-MK one important source
of error: in practical applications the dexp−1 operator (2.46) is truncated
consistently with the order of the method, typically replaced with

dexp−1
A (C, p) =

p−1∑
j=0

Bj

j!
adjAC.

This carries an error which we are forbidden to neglect, but can estimate
easily from the leading term of dexp−1

A C − dexp−1
A (C, p),

|Bq|
q!
‖adqAC‖, where q =

{
1, p = 1,
2b(p+ 1)/2c, p ≥ 2.

Much more challenging is the error control of Magnus expansions, the
subject of Iserles, Marthinsen and Nørsett (1999). Again, there are two dis-
cretization steps: truncation by power (4.14) of the Magnus expansion and
the replacement of integrals by quadrature. Later we restrict the discussion
to the linear case Y ′ = A(t)Y .

To estimate the error in the leading truncation term, we commence by
assuming that the leading terms in the expansion of the matrix A are known,

A(t) = C0 + C1t+ C2t
2 + · · · .

The error term in
∫ t
0 Cτ (ξ) dξ (cf. (4.5) for the definition of Cτ) can be evalu-

ated from the tree τ in the following manner. We label each leaf of the tree
by a few leading terms of the expansion and prune the tree according to the
original composition rules from Section 4.1.

(1) If two leaves share a parent, they are excised and the parent is labelled
by the commutator of their labels.

(2) If a leaf is the only child of a parent then it is eliminated and its parent
is labelled with the integral of its label.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 327

By the end of this procedure we throw away all the terms except for the
leading one. An example will clarify this procedure:

r

rQQ ��
r rQQ ��

r

rQQ ��
r

C0

C0+C1t

C0+C1t

C0

⇒ r

rQQ ��
rQQ ��

r

rb
b
"
"

C0t

C0t+
1
2
C1t2 C0+C1t

C0

⇒ r

rQQ ��
rQQ ��

r

C0t

1
2
[C0,C1]t2

C0

⇒ r

rQQ ��
rQQ ��C0t

1
6
[C0,C1]t3 C0

⇒ r

rHH
H

��
�

C0t −1
6 [C0,[C0,C1]]t3

⇒ r

−1
6 [C0,[C0,[C0,C1]]]t4

⇒ − 1
30 [C0,[C0,[C0,C1]]]t5.

This procedure has been automated in Iserles et al. (1999), using a Maple

program.

Often it is easy to find derivatives of A explicitly but in general-purpose
software one needs to approximate them by finite differences. The scaled
function values A1, A2, . . . , Aν are a perfectly good starting point for this
elementary calculation. Note that very few derivatives are required, for
instance just C0 and C1 for the power-5 tree in the above example, and the
approximants need not be very precise. If we are using the adjoint basis,
we might just as well use (appropriately scaled) h−lBl in place of Cl−1: the
difference between expansions at 0 and 1

2h is subsumed into higher-order
terms.

The computation of quadrature error is more challenging and the results
of Iserles et al. (1999) are of a more tentative nature. This is hardly sur-
prising, since even the estimation of the error of univariate Gauss–Legendre
quadrature is difficult (Davis and Rabinowitz 1984). Indeed, perhaps para-
doxically, the univariate quadrature is the most problematic in our setting
also. Of course, we may evaluate each integral by two quadratures, for in-
stance Gauss–Legendre and Gauss–Lobatto, or perhaps consecutive Gauss–
Legendre rules, but this doubles the cost. The remedy, proposed in Iserles et
al. (1999), is again to use the derivatives of A: recall that in many instances
they are easy to evaluate explicitly.

Straightforward, yet messy, calculation, expanding everything in sight into
Taylor series in h, demonstrates that the leading error terms in the first four

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

328 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

integrals in (4.10), using two-point Gauss–Legendre quadrature, are

E1 = − 1
180C4h

5,

E2 = −(1
240 [C0, C3] + 1

1080 [C1, C2])h
5,

E3 = 1
1080([C0, [C0, C2]] + [C1, [C0, C1]])h

5,

E4 = −(1
270 [C0, [C0, C2]] + 1

720 [C1, [C0, C1]])h
5,

respectively. Note that only E1 depends on the fourth derivative.
A Matlab program incorporating variable time-stepping strategy with

the above error estimators for the fourth-order Magnus method has been
applied in Iserles et al. (1999) to a large number of test problems, in each
case behaving predictably and producing error consistent with the specified
tolerance. Yet much work remains to be done in this subject area, not just
to estimate quadrature error without the need for higher derivatives, but
also to develop the right strategies to the methods of Blanes et al. (1999)
from Section 5.4.

10.2. The DiffMan package

DiffMan (Engø et al. 1999) is an object-oriented Matlab toolbox for solving
differential equations on manifolds. The package embodies most of the al-
gorithms discussed in this survey. This software is in the public domain and
can be obtained from the DiffMan home page at www.ii.uib.no/diffman.
Some of the numerical examples of Section 11 are distributed with DiffMan.
Since the package is still undergoing intensive development, we do not wish
to elaborate excessively upon the details of DiffMan and of its usage. In-
stead, we refer the reader to the latest version of the DiffMan user manual,
which can be found at the above-mentioned home page.

The basic philosophy behind DiffMan is the idea of coordinate-free nu-
merics (Munthe-Kaas and Haveraaen 1996), a research programme devoted
to the study of the rôle of abstract formulations, independent of particu-
lar representations, in computational and applied mathematics. We have
touched briefly upon this topic in Section 3, emphasizing the importance of
using abstractions as a tool for organizing object-oriented software.

The DiffMan package is built upon classes modelling continuous math-
ematical structures. There are currently three main classes: domains, fields
and flows. Domains consist of Lie algebras, Lie groups and homogeneous
manifolds. Fields are structures built over manifolds. Currently the only
fields are vector fields, but more general tensor fields (and possibly the even
more general fibre bundles) are likely to be included in future. Numerical
algorithms are incorporated in the class of flows on manifolds.

The DiffMan package displays the importance of integrating symbolic and
numerical techniques in the same software. For example, a particular Lie

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 329

algebra implemented is the free Lie algebra class. It is capable of symbolic
computations which remain valid in any particular finite-dimensional Lie
algebra. Hence, numerical algorithms may be developed using this package,
and the resulting expressions may be evaluated later, substituting data from
a concrete Lie algebra. Abstract concepts play a central rôle, characteristic
not just of pure mathematics but also of modern non-numerical software.

Another important insight that has emerged from this research is the
observation that some numerical algorithms require detailed knowledge of
representations of objects, while others can be completely formulated us-
ing general, coordinate-independent operations. This distinction is most
easily seen in the area of solving linear algebraic equations. For example,
Gaussian elimination requires detailed knowledge of matrices in terms of
components (there is a major difference between sparse and dense Gaussian
elimination!), while other algorithms such as conjugate gradients just require
matrix-vector products. Algorithms that can be formulated in terms of gen-
eral, coordinate-independent operations are much more flexible in their use
than algorithms tied to particular representations. The fact that Runge–
Kutta methods can indeed be phrased as coordinate-free algorithms has
many implications that we are only now beginning to understand.

11. Applications

11.1. The Lagrange top

Many systems evolving in physical space can be modelled by motions con-
sisting of rotations, like the rigid body that we have already encountered in
(7.8), or translations, or combinations thereof, in which case we say that the
motion is described by the special Euclidean group SE(3).

The Lagrange top is an important instance in which we make use of SE(3)
action. It differs from the rigid body equations (7.8) because of the presence
of gravity.

The equations of motion can be described in either space or body coordin-
ates. In this section we briefly discuss both, considering space coordinates
first. We denote by Πs the angular momentum of the Lagrange top, by
Ωs its angular velocity, by Is its inertia tensor, and by λs the unit vector
pointing towards the centre of mass of the Lagrange top. The equations of
motion are

Π′
s = Mglk × λs,

I ′s = [Is, Ω̂s],

λ′s = Ωs × λs,

where M is the mass of the top, g is the gravitational constant, l is the
distance from the origin of the space-coordinate system to the centre of

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

330 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

Fig. 11.1. Precession and nutations for t ∈ [0, 10] of the axis of a Lagrange top

mass of the Lagrange top and k is the unit vector along the z-axis. The
angular velocity Ωs is related to the angular momentum Πs by the identity

Ωs = I−1
s Πs.

We refer the reader to Arnold (1989) and Goldstein (1980) for background,
theory and notation.

It is well known that the axis of the top displays a very special motion
composed of a precession about the vertical axis z and nutations, nodding up
and down between two bounding angles θ1 and θ2 as displayed in Figure 11.1
for a top with initial angular velocity Ωb = [0, 0, 100]T about its figure axis,
l =

√
3/2, and mass M = 20/(gl). The inertia tensor in body coordinates is

Ib = diag(1, 1, 1/5) and the initial position of the axis of the top is rotated
at an angle θ = −π/10 with respect to the z-axis.

The same motions can be described in body coordinates, in terms of two
vectors Πb and Γb in R

3, the angular momentum and the gravity vector
in body coordinates respectively (Marsden and Ratiu 1994). The equations
simplify to

Π′
b = Πb ×Ωb +MglΓb × χ,

Γ′b = Γb ×Ωb,
(11.1)

where χ is the unit vector on the figure axis of the top. Note that in body
coordinates the inertia tensor is constant. Also, in this case, Ωb = I−1

b Πb.
Although the vector Γb is parallel to the z-axis of the space-coordinate
system, its motion does not correspond to the motion of the figure axis λs

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 331

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4

x

y

Fig. 11.2. Numerical precession and nutations projected on the

(x, y)-plane for t ∈ [0, 100] of the axis of a Lagrange top. The equations

are solved in body coordinates with the Matlab routine ode45

of the Lagrange top. To reconstruct the motion of the axis we integrate the
configuration matrix R ∈ SO(3), so that

Ωs = RΩb,

and, in general, the same type of transformation of body coordinates to
space coordinates holds for all relevant vectors. The configuration matrix R
obeys the differential equation

R′ = −RΩ̂b. (11.2)

Once the configuration matrix R is known, the position of the axis of the
top can be recovered by means of the transformation

λs = R

 0
0
1

 .
In our first experiment, the equations (11.1)–(11.2) were solved with the

Matlab routine ode45 with variable step-size and error control. Since
in body coordinates the gravity vector Γb rotates very fast, the Matlab
routine employs a very small step-size in the integration interval [0, 10],
ranging from hmin ≈ 0.5 × 10−6 to hmax ≈ 0.00214. The average value is
hmean = 0.0018 and the standard deviation σ = 1.972×10−4. The motion of
the axis is quite similar to the one observed in Figure 11.1. However, when
the integration is performed over longer time, the numerical approximation
of λs is no longer on the unit sphere and the amplitude of precessions shrinks
(see Figure 11.2).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

332 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

time

de
pa

rt
ur

e
fr

om
 th

e
un

it
sp

he
re

Fig. 11.3. Departure from unity for ‘unit vector’ along the axis

of the top for t ∈ [0, 100]. The equations are solved in body

coordinates with the Matlab routine ode45

Routine ode45 does not preserve much of the geometry of the underlying
problem, and many of the conserved quantities of the problem (Casimirs
and first integrals – see Marsden and Ratiu (1994)) are not conserved (see
Figure 11.3).

To illustrate the advantages of the methods discussed in this article, we
solve numerically the equations of the Lagrange top (11.1)–(11.2) using the
coadjoint action of SE(3) on the dual of the algebra se(3)∗ (Marsden and
Ratiu 1994),

Λ
(
(R,Ωb), (Πb,Γb)

)
= (RΠb + Ωb ×RΓb, RΓb).

Using numerically the coadjoint action implies that all the Casimirs, in this
case the projection of the angular momentum on the gravity axis, Πb·Γb, and
the norm of the gravity vector ‖Γb‖, are automatically preserved to machine
accuracy (Engø and Faltinsen 1999, Zanna et al. 1999). In Figure 11.4 we
plot the precessions and nutations in [0, 100] of the above Lagrange top,
numerically solved with the explicit fourth-order RK-MK method based on
the Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(cf. Appendix A), with step-size h = 1
100 . We refer to this numerical scheme

as RKMK4.
Comparing Figure 11.4 with Figure 11.2, we observe that the tip of the

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 333

Fig. 11.4. Numerical precessions and nutations projected on

the (x, y)-plane for t ∈ [0, 100] of the axis of a Lagrange top.

The equations are solved in body coordinates (employing the

coadjoint action) with the Lie-group scheme RKMK4

axis remains on the unit sphere (with five times as large step-size as the
average one used by ode45), as we expected from theory. There is only a
very slight variation in the angles θ1 and θ2, bounding the nutations. This
comes as no surprise: Lie group-type methods perform very well for systems
with oscillatory behaviour, as will be further discussed in Section 11.5. Note
that this scheme is neither time-reversible nor energy preserving. Using self-
adjoint schemes, such as those discussed in Section 7, or energy-preserving
schemes, such as those of Engø and Faltinsen (1999), it is possible to further
improve other geometrical features of the numerical solution.

We remark that, for this type of action, solved by Lie-group schemes based
on canonical coordinates of the first kind, the integrator requires numerous
evaluations of exponentials and dexp−1 of 3 × 3 skew-symmetric matrices,
which can be computed exactly and very rapidly using the formulae de-
scribed in Appendix B.

11.2. Sturm–Liouville problems

Numerous problems in applied mathematics require the solution of Sturm–
Liouville problems: finding λ and y so that

Ly = −y′′ + q(t)y = λy, t ∈ (0, α), (11.3)

with the sufficiently smooth potential q ∈ Cm(0, α) and the boundary con-
ditions

y(0)b0 + y(α)bα = 0, (11.4)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

334 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

where rank [b0, bα] = 2. Examples range from fluid flow to Schrödinger
spectra to geophysics to NMR imaging and beyond.

It is well known from classical functional analysis that the spectrum σ(L),
that is, the set of all λ that solve (11.3), is real, countable and accumulates at
+∞. Its computation has attracted significant effort since the very dawn of
numerical analysis and led to an impressive array of methods and software.
We refer the reader to Pryce (1993) and to references therein.

The problem (11.3) can always be formulated in SL(2),

y′ =
[

0 1
q(t)− λ 0

]
y, t ∈ (0, α), where y =

[
y
y′

]
, (11.5)

and this makes it a ‘natural’ for Lie-group methods. The main idea is
to approximate the fundamental solution of (11.5) by a product of expo-
nentials and impose the boundary conditions (11.4). This technique has
been introduced and thoroughly analysed by Moan (1998) and it consti-
tutes a far-fetched generalization of Preuss–Fulton methods (Preuss 1973).
The outcome is a scalar nonlinear equation for the spectral parameter λ.
For example, suppose that (11.4) simplifies to y(0) = y(α) = 0 and our
approximation to the fundamental solution of (11.5) is

Y (t) = expm

[
a b
c −a

]
.

It follows from (8.1) that

Y (t) =

[
coshω + a sinhω

ω b sinhω
ω

c sinhω
ω coshω − a sinhω

ω

]
, where ω =

√
a2 + bc.

Note that a, b, c, ω are functions of both t and λ. We impose the boundary
conditions and the outcome is the equation

b(α, λ)
sinhω(α, λ)

ω(α, λ)
= 0. (11.6)

Suppose for example (and a very trivial example it is!) that Y is the
second-order truncation of the Magnus expansion,

Y (t) = expm

[
0 t∫ t

0 q(ξ) dξ 0

]
.

Therefore (11.6) becomes

α
sin
√
α2λ− α

∫ α
0 q(ξ) dξ√

α2λ− α
∫ α
0 q(ξ) dξ

= 0

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 335

and the approximate eigenvalues are

λm ≈ m2π2 + α
∫ α
0 q(ξ) dξ

α2
, m ∈ N.

Adding the next term to the Magnus expansion somehow yields a better
approximation,

λm ≈ m2π2 + α
∫ α
0 q(ξ) dξ − 1

4

[∫ α
0 (2ξ − α)q(ξ) dξ

]2
α2

, m ∈ N.

We can continue in this vein, possibly replacing integrals by quadrature,
except that the outcome of this naive approach is very poor. Magnus ex-
pansions are an excellent means to approximate the fundamental solution
locally and we can hardly expect a single exponential to approximate the
solution well in the entire interval (0, α). The situation is further exacer-
bated when α is large or when (as is the case in many instances of practical
interest) we desire to approximate a large number of eigenvalues. It is pos-
sible to show that ω is a polynomial in λ, of a degree that grows with the
order of the Magnus expansion. Bearing in mind Theorem 4.1, we can thus
hardly expect convergence for large λ. A superior alternative is to partition
the interval into small subintervals, where convergence and adequate pre-
cision can be assured. The details of this procedure are reported in Moan
(1998).

Let us restrict the discussion for the sake of simplicity to a fourth-order
method. Letting

qn,1 = q((n+ 1
2 −

√
3

6)h), qn,2 = q((n+ 1
2 +

√
3

6)h),

where h = α/n∗, we set

Θn(λ) =

[
−
√

3
12 h

2(qn,1 − qn,2) h
1
2h(qn,1 + qn,2)− hλ

√
3

12 h
2(qn,1 − qn,2)

]
, n = 0, 1, . . . , n∗ − 1.

The fourth-order approximant to the solution of (11.5) at α is Y λy(0), where

Y λ = eΘn∗−1(λ) · · · eΘ1(λ)eΘ0(λ).

To force the boundary conditions y(0) = y(α) = 0, say, we seek λ so that
Y λ

1,2 = 0. This nonlinear equation can be solved by Newton–Raphson itera-
tion which, eigenvalues being simple, converges quadratically near the solu-
tion. Moan (1998) recommends a procedure based on the Newton–Raphson
method being applied to an augmented equation, thereby simplifying the
computation of the derivative.

The outcome is a very efficient method for the computation of Sturm–
Liouville problems and it can easily be generalized to more elaborate ei-
genvalue problems and boundary conditions. However, if the interval in

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

336 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

question is long or a large number of eigenvalues is desired, efficiency suf-
fers. This is in particular the case if high-order Magnus methods are used,
since the degree of elements of Θn as polynomials in λ grows. As a matter of
fact, the error in a pth-order method grows as O(hp+1λp/2−1). To overcome
this phenomenon, which occurs also in other methods for the computation
of Sturm–Liouville problems, Moan (1998) introduced an interesting device
which might be relevant to other applications of Lie-group methods. We ob-
serve first that, given matrix values in a self-adjoint basis B0, B1, . . . , Bν−1

(cf. Section 5), it follows at once from (5.7) that only B0 depends upon λ.
Rather than presenting the construction from Moan (1998), we introduce

a conceptually similar idea of Iserles (2000). Our point of departure is a
decomposition of the Magnus expansion (4.5) into streamers: partial sums
of the form

Hτ [0](t) =

∞∑
k=0

α(τ [k])

∫ t

0
Cτ [k](ξ) dξ,

where

τ [k+1] = r@@��
r

r

τ [k]

, k ∈ Z
+. (11.7)

Let τ = τ [0] be in the form (4.8). It is possible to show that

α(τ [k]) =
Bs+k

(s+ k)!
α̂(τ), where α̂(τ) =

s∏
i=1

α(τi)

(cf. (4.9)). Therefore we can write the streamer as

Hτ [0](t) = α̂(τ [0])

∫ t

0

∞∑
k=0

Bs+k

(s+ k)!
adk∫ ξ

0 A(η) dη
Cτ [0](ξ) dξ. (11.8)

We say that a tree is primitive if it cannot be written in the form (11.7). The
set of primitive trees in Fm is denoted by F

p
m, whereby we might replace the

truncated Magnus expansion (4.14) with the Magnus streamer expansion

Ξp(t) =

p−1∑
m=0

∑
τ∈Fp

Hτ (t). (11.9)

Like (4.14), this is a pth-order approximant, except that each tree therein
is accompanied by an infinitely long streamer and there is one less level of
truncation in the Magnus expansion (4.5).

Using (11.9) makes sense only if there exists a good method to evaluate
the streamer (11.8) without truncating the expansion. This is the case if
the Lie algebra is of sufficiently small dimension.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 337

Let dim g = d and let C = {C1, C2, . . . , Cd} be a basis of the algebra.
Then there exists a natural map π : g → R

d defined by

π(B) = θ where B =
d∑

k=1

θkCk.

The action of the ad operator is a linear transformation; thus π(adDB) =
CDπ(B), where CD ∈ gl(d) is a commutator matrix.6 It follows from (11.8)
and the definition of Bernoulli numbers that

π(Hτ (t)) = α̂(τ)

∫ t

0

∞∑
k=s

Bk

k!
C
k−s
D(ξ)π(Cτ (ξ)) dξ

= α̂(τ)

∫ t

0
C
−s
D(ξ)

{
CD(ξ)

eCD(ξ) − I
−

s−1∑
k=0

Bk

k!
C
k
D(ξ)

}
π(Cτ (ξ)) dξ.

where D(t) =
∫ t
0 A(η) dη. Provided that d is small, typically we can obtain

the commutator matrix and its exponential explicitly. This, together with
quadrature, leads to an explicit formula for the calculation of the streamer
that does not require any truncation of the series.

A similar idea, reported in Moan (1998), ameliorates the deterioration in
accuracy for large λ. For example, the error of sixth-order Magnus streamer
is O(h7λ), hence it behaves like a fourth-order method when h2λ ≈ 1, when
the standard sixth-order Magnus, which carries an error of O(h7λ2), reduces
to an order-two method.

11.3. Charged particles in a magnetic field

The motion of charged particles moving in a magnetic field was first studied
numerically by Carl Størmer (1907) as a part of his work on explaining the
origin of northern lights (aurora borealis).

A particle (of unit mass and unit charge) is moving in a magnetic field b
according to the equations

y′(t) = v,

v′(t) = b(t,y)× v,

where v is the velocity, y is the position and b is the magnetic field. We
attempt to obtain a simpler system by assuming that b = const, neglecting
the dependence of b on space and time. Written in a matrix form, this yields[

y
v

]′
=

[
0 I

0 b̂

] [
y
v

]
, (11.10)

6 Note that the usual definition of a commutator matrix is as an object in gl(N2) for

g ⊆ gl(N).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

338 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

where b̂ is a 3 × 3 skew-symmetric matrix given by the hat map (B.1) in
Appendix B. We compute the bracket of the vector fields in (11.10). Since
they are linear, we find that[[

0 I

0 b̂

]
,

[
0 I

0 d̂

]]
=

[
0 d̂− b̂

0 b̂×d

]
.

Hence, the vector fields do not form a Lie algebra. The remedy is to enlarge
the family of ‘simple’ equations into[

y
v

]′
=

[
0 B

0 b̂

] [
y
v

]
=

[
Bv
b×v

]
, (11.11)

where B is a general 3× 3 matrix. This results in the commutator[[
0 B

0 b̂

]
,

[
0 C
0 ĉ

]]
=

[
0 Bĉ− Cb̂

0 b̂×c

]
.

It is worth remarking on the similarity between this bracket and the brackets
in Example 2.8, Example 2.10 and in Section 11.1. These are all special
instances of so-called semidirect product brackets. Semidirect products are
one of the most fundamental ways of constructing Lie algebras and Lie
groups from simpler algebras and groups.

The solution of the simplified equation (11.11) is given in terms of initial
conditions y0 and v0 as[

y(t)
v(t)

]
= expm

[
0 tB

0 tb̂

] [
y0

v0

]
.

Repeated matrix multiplications yield

expm

[
0 B

0 b̂

]
=

[
I Bb̂

−1
(expm(b̂)− I)

0 expm(b̂)

]
,

a formula that can be computed exactly and efficiently using (B.6) and (B.10).
In a numerical experiment we have taken b(t,y) = b(y) as the magnetic

dipole field

b(y) =
3eT

ymey −m

‖y‖3
,

where m = [0, 0, 1]T is the magnetic dipole vector. Figure 11.5 displays
the orbit of a single particle with initial conditions y0 = [0,−5

2 , 0]T, v0 =

12 · 10−3[0, 0, 1]T. The time interval is [0, 10000]. The particle is moving
back and forth in the van Allen belt around the Earth. This system is
Hamiltonian, the Hamiltonian energy being H = ‖v‖2. The preservation of
H also follows trivially from the observation that the acceleration is always
orthogonal to v.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 339

Fig. 11.5. Motion of a charged particle in the Earth’s magnetic field

We wish to compare step-sizes in classical integrators and RK-MK-type
methods for this problem. The classical integrator used in the study is the
ode45 code of Matlab, based on DOPRI5(4), an embedded (4,5) pair of
Runge–Kutta methods due to Dormand and Prince. The code uses vari-
able step-size control. The RK-MK method we use is also based on the
DOPRI5(4) method and we have employed the step-size controller of Diff-
Man. The interval of integration ranged from 0 to 500, corresponding to a
motion of the particle from the equator up towards the North Pole, boun-
cing back once towards the equator. We varied the tolerance of the step-size
controllers and measured the relative error of the answer at the endpoint.
For each simulation we have counted the number of steps taken. Table 11.1
summarizes the results. We see that the Lie-group method is much more
accurate than the classical integrator for the same step-size. Figure 11.6
displays the time-step selection as a function of time for the two methods
for the simulations given in the first line of Table 11.1. The dip in the middle
corresponds to the part of the trajectory where the particle is bouncing back.
Both methods must reduce the step-size in this region, but the classical one
does so relatively more than the Lie-group method. Note that, whereas the
Lie-group integrator preserves ‖v‖ exactly, the ode45 integrator does so only
up to the order of the method.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

340 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

time

st
ep

si
ze

Fig. 11.6. Time-step selection for RK-MK (upper) and classical RK (lower)

We conclude that, for this problem, where both commutators and expo-
nentials can be computed quickly, the total cost of a Lie-group integrator
is significantly less than that of a classical integrator. The time interval of
integration is relatively small in this example: the importance of preserving
geometric properties becomes increasingly more crucial for very long integ-
ration intervals.

11.4. Toda-lattice equations

Imagine a regular lattice of N particles, all of unit mass, and assume that
each particle interacts with just its nearest neighbours, subject to an expo-
nential interaction potential. The outcome is the Toda lattice, governed by

Table 11.1. Global error and the number of steps for

classical RK and a Lie-group integrator

Classical RK RK-MK

Error Number of steps Error Number of steps

7 · 10−3 836 5 · 10−3 104

2 · 10−4 2132 4 · 10−4 142

2 · 10−6 5356 1 · 10−6 353

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 341

the Hamiltonian equations of motion

dqk
dt

= pk,

dpk
dt

= eqk−1−qk − eqk−qk+1 ,

 k = 1, 2, . . . , N, (11.12)

where qk and pk are the generalized coordinates and momenta, respectively
(Toda 1981), where we have let q0 = −∞, qN+1 = ∞ in open configuration
and qN+k = qk when the particles are arranged in a ring (cf. Figure 11.7).
Equation (11.12) corresponds to the Hamiltonian potential

H(p, q) = 1
2

N∑
k=1

p2
k +

N∑
k=1

(eqk−qk+1 − 1).

It is a special case of a Fermi–Pasta–Ulam (FPU) flow.

s s s s s

(a) Open configuration

s

s s

s

s

�
�
QQ��

L
L

(b) Ring configuration

Fig. 11.7. Different Toda-lattice configurations with N = 5

Letting αk = 1
2e(qk−qk+1)/2, βk = 1

2pk, Flaschka (1974) showed that (11.12)
can be recast in the Lax form

Y ′ = [B(Y), Y], t ≥ 0, Y (0) = Y0, (11.13)

where

Y =

β1 α1 0 · · · αN

α1 β2 α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . . βN−1 αN−1

αN · · · 0 αN−1 βN

 ,

with αN = 0 for open lattice configuration, and B(Y) = Y− − Y+ ∈ so(N),
where M+ and M− denote the upper-triangular and the lower-triangular
portions of the matrix M , respectively. We immediately identify (11.13)
with the isospectral flow (1.1).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

342 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
p y

Fig. 11.8. Three-particle lattice solved by the Runge–Kutta method (11.15),

applied (a) directly to the isospectral flow (11.13) (on the left);

and (b) to the orthogonal flow (11.16) (on the right)

A special case of (11.12) that has elicited much interest is three particles
in a ring. In that case, the linear transformation

p̃ = Tp, q̃ = Tq, where T =

√

6
6 −

√
6

3

√
6

6√
2

2 0 −
√

2
2√

3
3

√
3

3

√
3

3

 ,
in tandem with rescaling and elimination of one of the variables by employing
the linear conservation law p1 + p2 + p3 ≡ const, results in a simplified two-
dimensional Hamiltonian function

H̄(p̄, q̄) = 1
2(p̄2

1 + p̄2
2) + 1

24(e2q̄2+2
√

3q̄1 + e2q̄2−2
√

3q̄1 + e−4q̄2)− 1
8 (11.14)

in the new variables p̄, q̄ ∈ R
2 (Zanna 1998).7 The solution now evolves on

a compact submanifold of R
4, more specifically on a 2-torus. Therefore, a

Poincaré section consists of two closed curves and a good numerical scheme
should retain this important property.

The following calculation has been performed in Zanna (1998) for a variety
of methods which follow a set pattern. First we transform the three-particle
lattice with the initial conditions p = [1, 1, 0]T, q = 0, to the Lax form
(11.13). We then solve the isospectral form with the constant step-size h =
1
10 for 104 steps, transform the variables to (p̄, q̄) and sketch the Poincaré
section. The following methods have been used.

7 One reason why this case is interesting is that truncation of H̄ to cubic terms results

in the famous Hénon–Heiles Hamiltonian, which is known to be nonintegrable (Berry

1987, Toda 1981).

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 343

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
p y

Fig. 11.9. Three-particle lattice solved by the Runge–Kutta method (11.15),

applied to the orthogonal flow (11.16) and with polar decomposition. In the plot

on the left only the final result is projected, while on the right both the final

result and intermediate stages are subjected to this procedure

(1) The three-stage, third-order explicit Runge–Kutta method with the
Butcher tableau

0
1
2

1
2

1 −1 2

1
6

2
3

1
6

(11.15)

applied directly to (11.13). Note that this method is not isospectral.
The Poincaré section is displayed in Figure 11.8(a) and we note at once
that, instead of periodic trajectories, the motion collapses rapidly to a
spurious fixed point.

(2) The Runge–Kutta method (11.15) applied to the orthogonal flow

Q′ = B(QYnQ
T)Q, t ≥ nh, Q(nh) = I, (11.16)

translating back to (11.13) with Yn+1 = Qn+1YnQ
T
n+1. Note that

the numerical approximation Qn+1 ≈ Q((n + 1)h), produced by the
method (11.15), does not evolve on SO(3). Figure 11.8(b) demon-
strates that the solution again spirals to a fixed point, although less
rapidly than in the former case.

(3) The former method can be ‘orthogonalized’ by projection, subjecting
Qn+1 to polar decomposition and discarding the nonorthogonal part.
This can be further enhanced by subjecting the intermediate stages to
polar decompositions. Figure 11.9 displays relevant Poincaré sections.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

344 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
p y

Fig. 11.10. Three-particle lattice solved by Lie-group

methods: (a) the RK-MK method with the tableau (11.15);

and (b) fourth-order Magnus collocation from Section A.3

Evidently, the behaviour improves, yet the solution goes on spiralling
to a spurious fixed point.

(4) We solve (11.16) with the RK-MK method, using the Runge–Kutta
scheme (11.15). The Poincaré section for this computation, the first
with a ‘proper’ Lie-group method, is displayed in Figure 11.10(a). We
have not managed to get rid of the unwelcome spurious convergence to
a fixed point, yet the trajectory spirals significantly more slowly.

(5) Finally, (11.16) is solved by the fourth-order collocated Magnus method
from Section A.3, applied to the orthogonal flow. The outcome is dis-
played in Figure 11.10(b): the Poincaré section consists of the qualit-
atively correct two closed curves, a section across a 2-torus!

Figures 11.8–11.10 display consistent gradual improvement. This is not
evident at all from the retention of the Lie group per se, since the qualitative
feature under examination, invariant tori, is of a different flavour. Yet, it
is clear that conservation of Lie-group structure is advantageous and that
purpose-designed Lie-group solvers hold the edge over projection methods.

Note that invariant tori would have been retained by a symplectic method,
applied directly to the Hamiltonian equations induced by the potential
(11.14). This is hardly a surprise: we have, after all, subjected methods
applied in a Lie-group formalism to a ‘Hamiltonian test’. It is possible to
devise a test according to ‘isospectral’ ground rules, for instance by monitor-
ing global error in Lax-equation coordinates. This has been done in Calvo,
Iserles and Zanna (1999), demonstrating a marked advantage of isospectral
methods (originating in Lie-group solvers) over symplectic algorithms.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 345

11.5. Highly oscillatory equations

Highly oscillatory systems of ODEs feature in many applications and their
computation currently absorbs much of the overall effort devoted to numer-
ical analysis of ODEs. It is well known that classical solvers perform poorly,
and this has motivated many novel and ingenious techniques Petzold, Jay
and Yen (1997).

Past experience indicates that Lie-group methods might be a suitable
means to solve highly oscillatory systems (Iserles and Nørsett 1999, Iserles
et al. 1999). We commence from an example that has already featured in
Iserles and Nørsett (1999), the solution of the Airy equation

y′′ + ty = 0, t ≥ 0, y(0) = 1, y′(0) = 1. (11.17)

The exact solution of (11.17) can be represented as a linear combination of
Airy functions

y(t) = 1
2Γ(2

3)[32/3Ai(−t) + 31/6Bi(−t)], t ≥ 0.

It is easy to prove that the trajectory is a bounded function that oscillates
like sin t3/2: the frequency increases with time (cf. Figure 11.11) (Abram-
owitz and Stegun 1970, p. 448). This indicates that long-time integration is
difficult and this can be confirmed by endeavouring to solve (11.17) with any
popular, general-purpose solver. We have solved the Airy equation with two
Matlab routines, ode113 and ode15s, the first for nonstiff and the latter
for stiff problems. Both routines employ variable-order methods in tandem
with sophisticated error control. Yet, although we have attempted a wide
range of possible error tolerances, including the least that the software would
accept (a relative tolerance of 2.2 × 10−14), the pointwise error at t = 100

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Fig. 11.11. The Airy equation (11.17)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

346 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

1 2 3 4

x 10
6

10
−12

10
−10

10
−8

10
−6

10
−4

Magnus 2
Magnus 4
Magnus 6
ode113
ode15s

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

Fig. 11.12. The solution y(t) of the Airy equation (11.17) at t = 100

consistently exceeded 9.42 × 10−6 and 5.43 × 10−4 respectively: very poor
performance, in particular in the case of the stiff solver ode15s.8

We have solved the Airy equation (11.17) with Magnus methods of or-
ders 2, 4 and 6 respectively, taken from (A.9), with the constant step-size
sequence h = 1

10 ,
1
20 ,

1
40 ,

1
80 . No attempt has been made to monitor the error

or to optimize the solution. In particular, no advantage has been taken of
the fact that (11.17) has been rendered as an SL(2) equation and, rather
than using (8.1), we have computed the exponential with the Matlab func-
tion expm. Figure 11.12 displays the outcome of our calculations. The plot
on the left compares the absolute error at t = 100 for different values of h
on a doubly logarithmic scale. For comparison purposes we have included
the optimal results for ode113 and ode15s, assigning to them h equal to
the average step-size. The plot on the right compares the logarithm of the
absolute error with the number of flops expanded on the solution: a very
imprecise measure, yet a fair reflection of the computational effort.

The main observation is that, unlike the Matlab routines, Magnus meth-
ods perform very well indeed. The deterioration in the accuracy of the sixth-

8 Highly oscillating ODEs should never be confused with stiff ODEs. Our calculation

merely confirms this.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 347

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−10

10
−5

Magnus 2
Magnus 4
Magnus 6
ode113

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

Fig. 11.13. The solution of the Bessel-like equation (11.18)

order method for small step-size can be explained by the accumulation of
small errors in the evaluation of the expm function. In principle, we could
have replaced it by the exact formula (8.1), except that, while nominally
reducing the number of flops, this does not enhance the solution because
of inexact computation of hyperbolic functions. In all likelihood, the be-
haviour in Figure 11.12 is as good as one can expect with IEEE computer
arithmetic.

Another example of a highly oscillatory ODE is

t2y′′ − ty′ + (1 + t2)y = 0, t ≥ 1, (11.18)

y(1) = J0(1), y′(1) = J0(1)− J1(1),

whose solution is y(t) = tJ0(t). Here Jν is a Bessel function of the first
kind, whose oscillatory behaviour is well known. Note that we commence
integration at t = 1, to avoid a regular singularity at the origin. The top
plot of Figure 11.13 depicts the exact solution of (11.18). The oscillatory
behaviour is evident: as a matter of fact, it is elementary to prove that

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

348 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

the solution behaves like
√

2t/π sin t for t � 1. The bottom plot displays
in a logarithmic scale the maximal error in the interval [0, 250] in second-
order, fourth-order and sixth-order Magnus methods for a range of different
step-sizes. For comparison purposes, we have also included the same data
for the Matlab routine ode113 for different tolerances, down to the least
permitted by the software. As in the case of Figure 11.12, we have assigned
to each such computation an average step-size. Note that the step-sizes are
significantly larger for Matlab routines, but so is the error! Even though it
uses error control, ode113 appears incapable of driving pointwise accuracy
below quite a large threshold. We note in passing that the constant-step-
size Magnus methods were (for the largest step-size, h = 1

10) 244%, 317%
and 476% more expensive than ode113, but no attempt has been made to
optimize the calculations. As in the case of the Airy equation (11.17), the
sixth-order method ‘hits the buffers’ for small step-sizes and it appears that
there exists a limit on attainable accuracy, probably caused by accumulation
of round-off error. Yet, this limit is twice the number of significant digits
attainable by the general-purpose ode113.

The above comparison might appear as unfair to ode113 which, after
all, has not been constructed with highly oscillatory equations in mind.
Such criticism misses the point altogether. The whole purpose of geometric
integration is to take advantage of structure, rather than employ general-
purpose methods! Moreover, our Magnus expansions have been implemented
with constant step sizes. There is little doubt (and much evidence in Iserles
et al. (1999)) that variable-step implementation of Magnus methods, for
instance with the technique from Section 10.1, would have improved the
odds drastically in their favour. Of course, there are other bespoke methods
for highly oscillatory systems (Petzold et al. 1997). It is not our claim
that Lie-group methods are superior, since this has never been investigated
comprehensively. Our aim is more modest, namely to argue that such an
investigation might be very interesting.

What is the explanation for the remarkable performance of Magnus meth-
ods (and other Lie-group methods that we have not implemented in this
section) for a highly oscillatory problem? Although this issue constitutes
an interesting open research problem, our suspicion is that the conservation
of SL(2) structure has absolutely nothing to do with it. Classical numer-
ical methods invariably employ the ansatz that locally the solution of an
ODE behaves like a polynomial in t. Unfortunately, polynomials are a very
poor means to approximate rapidly varying and highly oscillating functions.
We either require minute step-size or a very high degree of a polynomial –
and the latter might lead to ill conditioning. All the Lie-group methods of
this paper, however, are based on an entirely different representation of the
solution, as an exponential of a matrix with polynomial entries. Unlike poly-
nomials, exponentials of matrices with polynomial entries can easily model

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 349

exponential change, high oscillation and changes in amplitude and frequency.
This might well be the mechanism explaining the superior performance of
Lie-group methods.

Acknowledgements

The authors wish to thank many of their colleagues and fellow dexperts who
have read portions of this survey as it was taking shape, in particular Krister
Åhlander, Sergio Blanes, Elena Celledoni, Kenth Engø, Stig Faltinsen, Arne
Marthinsen, Per Christian Moan, Ranjiva Munasinghe, Brynjulf Owren and
Reinout Quispel. Their comments and perceptive remarks have diminished
the number of mistakes, typos and infelicities and improved the cohesion
and presentation of this paper.

HMK, SPN and AZ wish to acknowledge the support of the Norwegian
Research Council through the SYNODE II project (127582/410), while AI
gratefully acknowledges the support of the Lars Onsager Fund.

REFERENCES

R. Abraham and J. E. Marsden (1978), Foundations of Mechanics, 2nd edn,
Addison-Wesley.

M. Abramowitz and I. A. Stegun, eds (1970), Handbook of Mathematical Functions,
Dover, New York.

V. I. Arnold (1989), Mathematical Methods of Classical Mechanics, Vol. 60 of GTM,
2nd edn, Springer.

G. A. Baker (1975), Essentials of Padé Approximants, Academic Press, New York.
G. Benettin and A. Giorgilli (1994), ‘On the Hamiltonian interpolation of near-to-

the-identity symplectic mappings with application to symplectic integration
algorithm’, J. Statist. Phys. 74, 1117–1143.

M. V. Berry (1987), Regular and irregular motion, in Hamiltonian Dynamical Sys-
tems (R. MacKay and J. Meiss, eds), Adam Hilger, Bristol, pp. 27–53.

G. Birkhoff (1936), ‘A note on topological groups’, Compositio Math. 3, 427–430.
S. Blanes, F. Casas and J. Ros (1999), Improved high order integrators based

on Magnus expansion, Technical Report NA1999/08, DAMTP, University of
Cambridge.

S. Blanes, F. Casas, J. A. Oteo and J. Ros (1998), ‘Magnus and Fer expansions
for matrix differential equations: The convergence problem’, J. Phys. A 31,
259–268.

W. M. Boothby (1975), An Introduction to Differentiable Manifolds and Riemann-
ian Geometry, Academic Press.

N. Bourbaki (1975), Lie Groups and Lie Algebras, Addison-Wesley, Reading, MA.
J. C. Butcher (1963), ‘Coefficients for the study of Runge–Kutta integration pro-

cesses’, J. Austral. Math. Soc. 3, 185–201.
M. P. Calvo, A. Iserles and A. Zanna (1997), ‘Numerical solution of isospectral

flows’, Math. Comput. 66, 1461–1486.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

350 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

M. P. Calvo, A. Iserles and A. Zanna (1999), ‘Conservative methods for the Toda
lattice equations’, IMA J. Numer. Anal. 19, 509–523.

E. Celledoni and A. Iserles (1998), Approximating the exponential from a Lie al-
gebra to a Lie group, Technical Report 1998/NA3, DAMTP, University of
Cambridge. To appear in Math. Comput.

E. Celledoni and A. Iserles (1999), Methods for the approximation of the matrix
exponential in a Lie-algebraic setting, Technical Report 1999/NA3, DAMTP,
University of Cambridge. To appear in IMA J. Numer. Anal.

M. T. Chu (1993), On a differential equation dx
dt = [X, k(X)] where k is a Toeplitz

annihilator, Technical report, North Carolina State University.
M. T. Chu (1998), ‘Inverse eigenvalue problems’, SIAM Rev. 40, 1–39.
R. Cools (1997), Constructing cubature formulas: the science behind the art, in

Acta Numerica, Vol. 6, Cambridge University Press, pp. 1–54.
G. Cooper (1987), ‘Stability of Runge–Kutta methods for trajectory problems’,

IMA J. Numer. Anal. 7, 1–13.
P. E. Crouch and R. Grossman (1993), ‘Numerical integration of ordinary differen-

tial equations on manifolds’, J. Nonlinear Sci. 3, 1–33.
P. J. Davis and P. Rabinowitz (1984), Methods of Numerical Integration, 2nd edn,

Academic Press, Orlando, FL.
P. Deift, T. Nanda and C. Tomei (1983), ‘Ordinary differential equations and the

symmetric eigenvalue problem’, SIAM J. Numer. Anal. 20, 1–22.
L. Dieci, R. D. Russell and E. S. van Vleck (1994), ‘Unitary integrators and applic-

ations to continuous orthonormalization techniques’, SIAM J. Numer. Anal.
31, 261–281.

F. Diele, L. Lopez and R. Peluso (1998), ‘The Cayley transform in the numerical
solution of unitary differential systems’, Adv. Comput. Math. 8, 317–334.

K. Engø (2000), ‘On the construction of geometric integrators in the RKMK class’,
BIT 40, 41–61.

K. Engø and S. Faltinsen (1999), Numerical integration of Lie–Poisson systems
while preserving coadjoint orbits and energy, Technical Report No. 179, Dept
Comp. Sc., University of Bergen.

K. Engø, A. Marthinsen and H. Z. Munthe-Kaas (1999), DiffMan: an object ori-
ented MATLAB toolbox for solving differential equations on manifolds, Tech-
nical Report No. 164, Dept Comp. Sc., University of Bergen.

D. J. Estep and A. M. Stuart (1995), ‘The rate of error growth in Hamiltonian-
conserving integrators’, Z. Angew. Math. Phys. 46, 407–418.

S. Faltinsen (1998), Backward error analysis for Lie-group methods, Technical Re-
port 1998/NA12, DAMTP, University of Cambridge. To appear in BIT.

S. Faltinsen (2000), ‘Can Lie-group methods be symplectic?’ To appear.
S. Faltinsen, A. Marthinsen and H. Z. Munthe-Kaas (1999), Multistep methods in-

tegrating ordinary differential equations on manifolds, Technical Report Nu-
merics No. 3/1999, The Norwegian University of Science and Technology,
Trondheim.

F. Fer (1958), ‘Résolution de l’équation matricielle U̇ = pU par produit infini
d’exponentielles matricielles’, Bull. Classe des Sci. Acad. Royal Belg. 44, 818–
829.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 351

H. Flaschka (1974), ‘The Toda lattice I’, Phys. Rev. B 9, 1924–1925.
C. W. Gear (1971), Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-Hall, Englewood Cliffs, NJ.
H. Goldstein (1980), Classical Mechanics, Addison-Wesley, Reading, MA.
G. H. Golub and C. F. Van Loan (1996), Matrix Computations, 3rd edn, Johns

Hopkins University Press, Baltimore.
V. Guillemin and A. Pollack (1974), Differential Topology, Prentice-Hall, Engle-

wood Cliffs, NJ.
E. Hairer (1994), Backward analysis of numerical integrators and symplectic

methods, in Scientific Computation and Differential Equations (K. Burrage,
C. Baker, P. van der Houwen, Z. Jackiewicz and P. Sharp, eds), Vol. 1 of An-
nals of Numer. Math., J. C. Baltzer, Amsterdam, pp. 107–132. Proceedings
of the SCADE’93 conference, Auckland, New Zealand, January 1993.

E. Hairer and C. Lubich (1997), ‘The life-span of backward error analysis for nu-
merical integrator’, Numer. Math. 76, 441–462.

E. Hairer, S. P. Nørsett and G. Wanner (1993), Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, 2nd revised edn, Springer, Berlin.

F. Harary (1969), Graph Theory, Addison-Wesley, Reading MA.
F. Hausdorff (1906), ‘Die symbolische Exponentialformel in der Gruppentheorie’,

Berichte der Sächsischen Akademie der Wissenschaften (Math. Phys. Klasse)
58, 19–48.

D. J. Higham (1997), ‘Time-stepping and preserving orthonormality’, BIT 37, 24–
36.

M. Hochbruck and C. Lubich (1997), ‘On Krylov subspace approximations to the
matrix exponential operator’, SIAM J. Numer. Anal. 34, 1911–1925.

A. Iserles (1984), ‘Solving linear ordinary differential equations by exponentials of
iterated commutators’, Numer. Math. 45, 183–199.

A. Iserles (1997), Multistep methods on manifolds, Technical Report 1997/NA13,
DAMTP, University of Cambridge.

A. Iserles (1999a), How large is the exponential of a bounded matrix?, Technical
Report 1999/NA1, DAMTP, University of Cambridge.

A. Iserles (1999b), On Cayley-transform methods for the discretization of Lie-group
equations, Technical Report 1999/NA4, DAMTP, University of Cambridge.

A. Iserles (2000), ‘Fast computation of Magnus series’. To appear.
A. Iserles and S. P. Nørsett (1991), Order Stars, Chapman and Hall, London.
A. Iserles and S. P. Nørsett (1999), ‘On the solution of linear differential equations

in Lie groups’, Phil. Trans Royal Society A 357, 983–1020.
A. Iserles and A. Zanna (2000), ‘On the dimension of certain graded Lie algebras

arising in geometric integration of differential equations’, LMS J. Comput. &
Math. 3, 44–75.

A. Iserles, A. Marthinsen and S. P. Nørsett (1999), ‘On the implementation of the
method of Magnus series for linear differential equations’, BIT 39, 281–304.

A. Iserles, S. P. Nørsett and A. F. Rasmussen (1998), Time-symmetry and high-
order Magnus methods, Technical Report 1998/NA06, DAMTP, University of
Cambridge.

G. Julia (1918), ‘Mémoire sur l’itération des fonctions rationnelles’, J. Math. 8,
47–245.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

352 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

F. Kang and S. Zai-jiu (1995), ‘Volume-preserving algorithmms for source-free dy-
namical systems’, Numer. Math. 71, 451–463.

H. J. Landau (1994), ‘The inverse eigenvalue problem for real symmetric Toeplitz
matrices’, J. Amer. Math. Soc. 7, 749–767.

Y. Liu (1998), Projected Runge–Kutta methods for differential equations on matrix
Lie groups, Technical Report 1998/NA1, DAMTP, University of Cambridge.

W. Magnus (1954), ‘On the exponential solution of differential equations for a linear
operator’, Comm. Pure Appl. Math VII, 649–673.

J. E. Marsden and T. S. Ratiu (1994), Introduction to Mechanics and Symmetry,
Springer, New York.

R. I. McLachlan, G. R. W. Quispel and N. Robidoux (1998), ‘A unified approach
to Hamiltonian systems, Poisson systems, gradient systems, and systems with
Lyapunov functions and/or first integrals’, Phys. Rev. Lett. 81, 2399–2403.

P. C. Moan (1998), Efficient approximation of Sturm–Liouville problems using Lie-
group methods, Technical Report 1998/NA11, DAMTP, University of Cam-
bridge.

P. C. Moan (2000), ‘On the convergence of Magnus and Cayley expansions’. To
appear.

C. Moler and C. F. Van Loan (1978), ‘Nineteen dubious ways to compute the
exponential of a matrix’, SIAM Rev. 20, 801–836.

J. Moser (1973), Stable and Random Motion in Dynamical Systems, Princeton
University Press.

H. Munthe-Kaas (1995), ‘Lie–Butcher theory for Runge–Kutta methods’, BIT
35, 572–587.

H. Munthe-Kaas (1998), ‘Runge–Kutta methods on Lie groups’, BIT 38, 92–111.
H. Munthe-Kaas (1999), ‘High order Runge–Kutta methods on manifolds’, Appl.

Numer. Math. 29, 115–127.
H. Munthe-Kaas and M. Haveraaen (1996), Coordinate free numerics: Closing the

gap between ‘pure’ and ‘applied’ mathematics?, in Proceedings of ICIAM–95,
Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM).

H. Munthe-Kaas and E. Lodden (2000), ‘Lie group integrators for parabolic PDEs’.
To appear.

H. Munthe-Kaas and B. Owren (1999), ‘Computations in a free Lie algebra’, Phil.
Trans Royal Society A 357, 957–982.

H. Munthe-Kaas and A. Zanna (1997), Numerical integration of differential equa-
tions on homogeneous manifolds, in Foundations of Computational Mathem-
atics (F. Cucker and M. Shub, eds), Springer, pp. 305–315.

A. I. Neishtadt (1984), ‘The separation of motions in systems with rapidly rotating
phase’, J. Appl. Math. Mech. 48, 133–139.

S. P. Nørsett and G. Wanner (1981), ‘Perturbed collocation and Runge–Kutta
methods’, Numer. Math. 38, 193–208.

P. J. Olver (1995), Equivalence, Invariants, and Symmetry, Cambridge University
Press.

B. Owren and A. Marthinsen (1999a), Integration methods based on canonical
coordinates of the second kind, Technical Report Numerics No. 5/1999, Nor-
wegian University of Science and Technology, Trondheim.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 353

B. Owren and A. Marthinsen (1999b), ‘Runge–Kutta methods adapted to manifolds
and based on rigid frames’, BIT 39, 116–142.

B. Owren and B. Welfert (1996), The Newton iteration on Lie groups, Technical Re-
port Numerics No. 3/1996, Norwegian University of Science and Technology,
Trondheim.

L. R. Petzold, L. O. Jay and J. Yen (1997), Numerical solution of highly oscil-
latory ordinary differential equations, in Acta Numerica, Vol. 6, Cambridge
University Press, pp. 437–483.

S. Preuss (1973), ‘Solving linear boundary value problems by approximating the
coefficients’, Math. Comput. 27, 551–561.

J. D. Pryce (1993), Numerical Solution of Sturm–Liouville Problems, Oxford Uni-
versity Press, New York.

S. Reich (1996), Backward error analysis for numerical integrators, Technical Re-
port SC 96-21, Konrad-Zuse Zentrum für Informationstechnik, Berlin.

J. M. Sanz Serna and M. P. Calvo (1994), Numerical Hamiltonian Problems, Chap-
man & Hall.

C. Størmer (1907), ‘Sur les trajectoires des corpuscules électrisés’, Arch. Sci. Phys.
Nat., Genève 24, 5–18, 113–158, 221–247.

A. M. Stuart and A. R. Humphries (1996), Dynamical Systems and Numerical Ana-
lysis, Cambridge Monographs on Applied and Computational Mathematics,
Cambridge University Press, Cambridge.

M. Toda (1981), Theory of Nonlinear Lattices, Springer, Berlin.
W. F. Trench (1997), ‘Numerical solution of the inverse eigenvalue problem for real

symmetric Toepliz matrices’, SIAM J. Sci. Comput. 18, 1722–1736.
V. S. Varadarajan (1984), Lie Groups, Lie Algebras, and Their Representations,

GTM 102, Springer.
J. Wei and E. Norman (1964), ‘On global representations of the solutions of linear

differential equations as a product of exponentials’, Proc. Amer. Math. Soc.
15, 327–334.

H. Yoshida (1990), ‘Construction of higher order symplectic integrators’, Phys.
Lett. A 150, 262–268.

N. J. Zabusky and M. D. Kruskal (1965), ‘Interaction of solitons in a collisionless
plasma and the recurrences of initial states’, Phys. Rev. Lett. 15, 240–243.

A. Zanna (1996), The method of iterated commutators for ordinary differential
equations on Lie groups, Technical Report 1996/NA12, DAMTP, University
of Cambridge.

A. Zanna (1998), On the Numerical Solution of Isospectral Flows, PhD thesis,
University of Cambridge, England.

A. Zanna (1999), ‘Collocation and relaxed collocation for the Fer and the Magnus
expansions’, SIAM J. Numer. Anal. 36, 1145–1182.

A. Zanna and H. Munthe-Kaas (1997), Iterated commutators, Lie’s reduction
method and ordinary differential equations on matrix Lie groups, in Founda-
tion of Computational Mathematics (F. Cucker and M. Shub, eds), Springer,
pp. 434–441.

A. Zanna, K. Engø and H. Z. Munthe-Kaas (1999), Adjoint and selfadjoint Lie-
group methods, Technical Report NA1999/02, DAMTP, University of Cam-
bridge.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

354 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

A. List of methods

In this appendix we list a few of the methods that have been described in
the survey. No attempt has been expanded to explain the methods, beyond
references to the relevant earlier material.

A.1. RK-MK methods

All classical RK methods can be translated into Lie-group methods. Assume
that the Butcher tableau

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν
...

...
...

...
cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν

defines a Runge–Kutta method of order p in the classical sense (Hairer et
al. 1993) and that φ is a map from g to G, for instance φ = expm, the
exponential mapping, or φ = cay, the Cayley mapping for quadratic Lie
groups. Then the corresponding order-p RK-MK algorithm for the Lie-
group equation Y ′ = A(t, Y)Y is obtained as

Θk =
ν∑
l=1

ak,lFl,

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Θk)Yn),

k = 1, . . . , ν,

Θ =
ν∑
l=1

blFl,

Yn+1 = φ(Θ)Yn,

(A.1)

for n ∈ N, and it is explicit provided that the underlying RK scheme is
explicit. The function dφ−1(B,C, p) is a truncation of dφ−1

B (C) to order
p−1, which is usually sufficient for a method of order p, given that the error
is subsumed in the O(hp+1) term. In some instances, for example when
g = so(3), the function dφ−1

B (C) can be evaluated exactly (see Appendix B).
Some popular schemes of the type (A.1) are Lie-group versions of

• forward Euler,

Yn+1 = φ
(
hA(tn, Yn)

)
Yn;

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 355

• the implicit midpoint rule,

F1 = hA(tn + 1
2h, φ(1

2F1)Yn),

Θ = F1,

Yn+1 = φ(Θ)Yn;

• the trapezoidal rule,

F1 = hA
(
tn, Yn

)
,

F2 = hA
(
tn + h, φ(1

2(F1 + F2))Yn
)
,

Θ = 1
2(F1 + F2),

Yn+1 = φ(Θ)Yn;

• Heun’s method,

F1 = hA
(
tn, Yn

)
,

F2 = hA
(
tn + 1

2h, φ(1
2F1)Yn

)
,

Θ = F2,

Yn+1 = φ(Θ)Yn.

The scheme (A.1) employs coordinates centred at Yn. Schemes with co-
ordinates centred at an arbitrary point can be obtained in a similar manner,

Θk = Ch,n +

ν∑
l=1

ak,lFl,

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Θk)φ(Ch,n)
−1Yn),

k = 1, . . . , ν,

Ch,n = ϑ(F1, . . . , Fν),

Θ = Ch,n +

ν∑
l=1

blFl,

Yn+1 = φ(Θ)φ(Ch,n)
−1Yn,

for n = 0, 1, 2, . . . and ϑ. In particular, for geodesic-symmetric coordinates

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

356 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

we have

Θk =

ν∑
l=1

(
ak,l − 1

2bl
)
Fl,

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Θk)φ(Ch,n)
−1Yn),

k = 1, . . . , ν,

Ch,n = −1
2

ν∑
l=1

blFl,

Θ = 1
2

ν∑
l=1

blFl (= −Ch,n),

Yn+1 = φ(Θ)φ(Ch,n)
−1Yn,

(A.2)

while flow-symmetric coordinates yield

Θk =
ν∑
l=1

(ak,l − wl)Fl,

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Θk)φ(Ch,n)
−1Yn),

k = 1, 2, . . . , ν,

Ch,n = −
ν∑
l=1

wlFl,

Θ =
ν∑
l=1

(bl − wl)Fl,

Yn+1 = φ(Θ)φ(Ch,n)
−1Yn,

(A.3)

where the weights w1, . . . , wν are obtained by integrating the Lagrangian
cardinal polynomials, as in (7.7).

Herewith a number of important examples, originating in familiar classical
RK methods.

• Order-four Gauss–Legendre scheme:

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

bT 1
2

1
2

wT 1
4 +

√
3

8
1
4 −

√
3

8

. (A.4)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 357

• Order-six Gauss–Legendre scheme:

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

bT 5
18

4
9

5
18

wT 5
36 +

√
15

24
2
9 − 1

24

. (A.5)

• Order-four Gauss–Lobatto scheme:

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

bT 1
6

2
3

1
6

wT 5
24

1
3 − 1

24

. (A.6)

Note that, both in the case of the Gauss–Legendre of order six and Gauss–
Lobatto of order four, it is true that Ch,n = −F2, hence Ch,n need not be
explicitly evaluated in (A.3).

Algorithms (A.1)–(A.3) are practical for methods of order p ≤ 4, since for
higher-order methods the computation of dφ−1(A,B, p) requires the eval-
uation of a large number of commutators. For higher-order schemes it is
recommended instead to use schemes based on graded Lie algebras, along
the lines of Section 5.3.

Graded Lie algebras can also be effectively used to optimize existing RK-
MK methods. The scheme

A1 = hA(tn, Yn),

B1 = A1,

A2 = hA
(
tn + c2h, expm(1

2B1)Yn
)
,

B2 = A2 −A1,

A3 = hA
(
tn + c3h, expm(1

2B1 + 1
2B2 − 1

8 [B1, B2])Yn
)
,

B3 = A3 −A2,

A4 = hA
(
tn + c4h, expm(B1 +B2 +B3)Yn

)
,

B4 = A4 − 2A2 +A1,

Θ = B1 +B2 + 1
3B3 + 1

6B4 − 1
6 [B1, B2]− 1

12 [B1, B4],

Yn+1 = expm(Θ)Yn,

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

358 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

based on the Runge–Kutta tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(A.7)

requires only two commutators instead of six if implemented using (A.1).

A.2. Higher-order methods for linear equations using graded Lie algebras

In this subsection we present methods for linear equations Y ′ = A(t)Y ,
whereby the number of commutators is reduced using graded algebras and
a further technique due to Blanes et al. (1999) and described briefly in Sec-
tion 5.4. We do not distinguish between RK-MK and Magnus-type methods
because, subject to these reductions, the two methods produce very similar
results.

We consider collocation-type schemes. Denote by

VDM(d) = (d j−1
i)νi,j=1

the Vandermonde matrix generated by the vector d. In particular,

• set V = VDM(c), cT = (c1, c2, . . . , cν) for non-symmetric collocation
schemes;

• for symmetric collocation schemes, we take full advantage of symmetry,
setting V = VDM(c− 1

2).

Then,

Ak = hA(tn + ckh),

Bk =
ν∑
l=1

(V −1)k,lAl,

 k = 1, 2, . . . , ν,

Θ = dϕ−1(B1, B2, . . . , Bν),

Yn+1 = φ(Θ)Yn,

(A.8)

where dϕ−1 is an order-p truncation to the dφ−1-equation in the graded
basis B1, . . . , Bν . For symmetric collocation schemes, the function dϕ−1 in
(A.8) depends on terms of odd grade only. Specifically, for φ = expm, we
obtain the following.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 359

• For the order-six Gauss–Legendre scheme

dϕ−1(B1, B2, B3) = B1 + 1
12B3 − 1

12 [B1, B2] + 1
240 [B2, B3]

+ 1
360 [B1, [B1, B3]]− 1

240 [B2, [B1, B2]] (A.9)

+ 1
720 [B1, [B1, [B1, B2]]]

(for order two and order four it suffices to consider the first term and the
first and third term, respectively, and the nodes of the corresponding
quadrature), which can be evaluated with just four commutators using
the technique of Blanes et al. (1999),

dϕ−1(B1, B2, B3) ≈ C1 + C2 + C3,

C1 = B1 + 1
12B3

C2 = − 1
12 [B1 + 1

20B3, B2],

C3 = [B1, [B1,
1

360B3 − 1
60C2]]− 1

20 [B2, C2],

producing an order-six time-symmetric truncation of dϕ−1(B1, B2, B3).

• For the order-four Gauss–Lobatto scheme (Ehle IIIA),

dϕ−1(B1, B2, B3) = B1 + 1
12B3 − 1

12 [B1, B2].

• For the order-six Gauss–Lobatto scheme, with nodes c1 = 0, c2 =
1
2 −

√
5

10 , c3 = 1
2 +

√
5

10 and c4 = 1,

dϕ−1(B1, B2, B3, B4) = B1 + 1
12B3 − 1

12 [B1, B2]− 1
8 [B1, B4]

+ 1
240 [B2, B3] + 1

360 [B1, [B1, B3]]

− 1
240 [B2, [B1, B2]] + 1

720 [B1, [B1, [B1, B2]]],

which can be evaluated to correct order as

dϕ−1(B1, B2, B3, B4) ≈ C1 + C2 + C3,

C1 = B1 + 1
12B3

C2 = − 1
12 [B1 + 1

20B3, B2 + 3
2B4],

C3 = [B1, [B1,
1

360B3 − 1
60C2]]− 1

20 [B2, C2],

with just four commutators.

It may strike the reader that, after the transformation into the self-adjoint
basis {Bi}, the expression of Θ always has the same type of expansion,
regardless of the choice of collocation nodes. This is no surprise, the in-
formation about the nodes being hidden in the basis elements Bi. Changing
into the self-adjoint basis implies that we integrate a Taylor-type expansion,
in combination with a truncation of dexp−1, which is independent of the
nodes, depending only on the order of the method.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

360 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

A.3. Methods using the Magnus expansion

Magnus-type methods are well suited to collocation-type techniques. This
results in implicit schemes for nonlinear Lie-group equations.

• Order-four Gauss–Legendre:

F1 = 1
4A1 + (1

4 −
√

3
6)A2 + (5

144 −
√

3
48)[A1, A2],

A1 = hA
(
tn + c1h, expm(F1)Yn

)
,

F2 = (1
4 +

√
3

6)A1 + 1
4A2 − (5

144 +
√

3
48)[A1, A2],

A2 = hA
(
tn + c2h, expm(F2)Yn

)
,

Θ = 1
2(A1 +A2)−

√
3

12 [A1, A2],

Yn+1 = expm(Θ)Yn,

where ci = 1
2 ±

√
3

6 , i = 1, 2.

• Order-four Gauss–Lobatto:

F1 = O,

A1 = hA(tn, Yn),

F2 = 5
24A1 + 1

3A2 − 1
24A3

− (11
480 [A1, A2] + 5

1152 [A1, A3] + 1
144 [A2, A3]),

A2 = hA
(
tn + 1

2h, expm(F2)Yn
)
,

F3 = 1
6A1 + 2

3A2 + 1
6A3 − (1

15 [A1, A2] + 1
60 [A1, A3] + 1

15 [A2, A3]),

A3 = hA
(
tn + h, expm(F3)Yn

)
,

Θ = 1
6A1 + 2

3A2 + 1
6A3 − (1

15 [A1, A2] + 1
60 [A1, A3] + 1

15 [A2, A3]),

Yn+1 = expm(Θ)Yn.

Relaxing the collocation conditions, it is possible to obtain explicit methods.

• An explicit order-three scheme:

A1 = hA(tn, Yn),

A2 = hA
(
tn + 1

2h, expm(A1)Yn
)
,

A3 = hA
(
tn + h, expm(−A1 + 2A2)Yn

)
,

Θ = 1
6A1 + 2

3A2 + 1
6A3 − [A1 −A3,

1
15A2 + 1

60A3],

Yn+1 = expm(Θ)Yn.

A.4. Magnus-type methods with geodesic/flow coordinates

Magnus-type methods introduced in Appendix A.3 employ coordinates at
Yn, hence they cease to be self-adjoint for nonlinear problems. Below we
describe their self-adjoint modification.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 361

• Order-four Gauss–Legendre method based on geodesic coordinates:

F1 = 1
4A1 +

(
1
4 −

√
3

6

)
A2 +

(
5

144 −
√

3
24

)
[A1, A2],

A1 = hA
(
tn + c1h, expm(F1 − Ch,n) expm(Ch,n)Yn

)
,

F2 =
(

1
4 +

√
3

6

)
A1 + 1

4A2 −
(

5
144 +

√
3

24

)
[A1, A2],

A2 = hA
(
tn + c2h, expm(F2 − Ch,n) expm(Ch,n)Yn

)
,

Ch,n = 1
4(A1 +A2)−

√
3

24 [A1, A2],

Θ = 2Ch,n,

Yn+1 = expm(Θ)Yn.

• Order-four Gauss–Legendre methods with flow coordinates:

F1 = 1
4A1 +

(
1
4 −

√
3

6

)
A2 +

(
1

288 −
√

3
96

)
[A1, A2],

A1 = hA
(
tn + c1h, expm(F1 − Ch,n) expm(Ch,n)Yn

)
,

F2 =
(

1
4 +

√
3

6

)
A1 + 1

4A2 −
(

1
288 +

√
3

96

)
[A1, A2],

A2 = hA
(
tn + c2h, expm(F2 − Ch,n) expm(Ch,n)Yn

)
,

Ch,n =
(

1
4 +

√
3

8

)
A1 +

(
1
4 −

√
3

8

)
A2 −

√
3

96 [A1, A2],

Θ = 1
2(A1 +A2)−

√
3

48 [A1, A2],

Yn+1 = expm(Θ− Ch,n) expm(Ch,n)Yn.

Although Magnus-type methods with geodesic/flow coordinates exist for
every order p, devising such schemes for nonlinear problems and order
greater than four is hard. For this reason we shall restrict our attention
to order-four methods. We let c1, c2, . . . , cν be the collocation nodes.

• Collocation order-four Magnus method with geodesic coordinates:

Fk =
ν∑
l=1

ak,lAl +
1
2

ν∑
l,j=1

(ak;l,j + 1
2blak,l)[Al, Aj],

Ak = hA(tn + ckh, expm(Fk − Ch,n) expm(Ch,n)Yn),

 k = 1, . . . , ν,

Ch,n = 1
2

ν∑
l=1

blAl +
1
4

ν∑
l,j=1

bl,j [Al, Aj],

Θ = 2Ch,n,

Yn+1 = expm(Θ)Yn.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

362 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

• Collocation order-four Magnus method with flow coordinates:

Fk =
ν∑
l=1

ak,lAl +
1
2

ν∑
l,j=1

(ak;l,j + wlak,l)[Al, Aj],

Ak = hA(tn + ckh, expm(Fk − Ch,n) expm(Ch,n)Yn),

 k = 1, . . . , ν,

Ch,n =

ν∑
l=1

wlAl +
1
2

ν∑
l,j=1

wl,j [Al, Aj],

Θ =

ν∑
l=1

blAl +
1
2

ν∑
l,j=1

(bl,j + wlbj)[Al, Aj],

Yn+1 = expm(Θ− Ch,n) expm(Ch,n)Yn.

In both cases the ak;l,js are evaluated according to (5.15) and the bl,js
and wl,js are evaluated from (5.15) for θ = 1 and θ = 1

2 respectively.
The weights wl are given by (7.7).

To conclude, it should be noted that all Lie-group methods for nonlinear
problems require a number of exponential evaluations in the internal stages.
This is a consequence of the fact that the function A(t, Z) may fail to be
an element of g for arguments Z 6∈ G. If A(t, Z) ∈ g for all matrices Z then
exponentiations (or, with greater generality, evaluations of the map φ) in the
internal stages may be disregarded, at the cost of a minor increase of local
truncation error. If A(t, Z) ∈ g only when Z ∈ G, however, disregarding
the evaluation of the map φ in the internal stages would compromise the
assurance that the numerical approximation Yn+1 resides in G. However,
as observed by Liu (1998), in some cases it is possible to devise simplified
versions of the methods, whereby A(t, Z) is projected on g according to
need. Specifically, setting A = A(t, Z), we note that

P (A) = 1
2(A−AT)

is a projector onto so(N), the algebra of skew-symmetric matrices,

P (A) = A− δI, δ = 1
N trA,

is a projector onto sl(N), the algebra of matrices with zero trace, and

P (A) = 1
2(A+ JATJ), J =

[
O I
−I O

]
,

is a projector onto sp(N), the algebra of symplectic matrices. Using these
projectors in the internal stages of Lie-group methods may significantly re-
duce the number of evaluations of the map φ.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 363

B. Fast computation of 3D rotations

Rotations in three dimensions are ubiquitous in computational mechanics,
hence it is important to have fast algorithms for their computation. The Lie
algebra so(3) can be realized either as the set of all skew-symmetric 3×3
matrices with the matrix commutator as the bracket, or as the Euclidean
space R

3 with the vector product as the bracket. As we will see, some formu-
lae are most easily expressed by representing so(3) as 3-vectors, while other
formulae appear more naturally in terms of skew-symmetric 3×3 matrices. It
is convenient to switch back and forth between these forms. The Lie-algebra
isomorphism between these two representations is given by the hat map,

x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (B.1)

mapping x ∈ R
3 into a 3×3 skew-symmetric matrix x̂ such that x̂y = x×y.

(Note that, for clarity’s sake, we have abandoned our convention of denoting
matrices with upper-case letters.) In particular, the identities

[x̂, ŷ] = x̂ŷ − ŷx̂ = x̂×y, (B.2)

x̂ŷx̂ = −(xTy)x̂, (B.3)

x̂2ŷ + ŷx̂2 = −(xTx)ŷ − (xTy)x̂, (B.4)

x̂2ŷ2 − ŷ2x̂2 = −(xTy)x̂×y (B.5)

are obeyed. For future convenience, we let

ϕ = ‖x‖ = (xTx)1/2.

Note that, since x̂3 = −ϕ2x̂, we deduce that for any real analytic function
f(z) we can easily obtain real functions c0(z), c1(z) and c2(z) such that

f(x̂) = c0(ϕ)I + c1(ϕ)x̂+ c2(ϕ)x̂2.

Interesting examples include

expm(x̂) = I +
sinϕ

ϕ
x̂+

1

2

sin2(ϕ/2)

(ϕ/2)2
x̂2, (B.6)

(I − x̂)−1 = I +
1

1 + ϕ2
(x̂+ x̂2), (B.7)

cay(x̂) =
(
I + 1

2 x̂
) (
I − 1

2 x̂
)−1

(B.8)

= I + cx̂+
c

2
x̂2,

where

c ≡ c(ϕ) =
4

4 + ϕ2
. (B.9)

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

364 A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett & A. Zanna

The first of these, (B.6), is well known in literature as the Rodrigues formula
for the exponential mapping (Marsden and Ratiu 1994).

In many instances we need to compute repeatedly expressions in the gen-
eral form f(adx)(y) for some function f(x). These expressions in so(3) can
be computed rapidly in a very similar manner. Since adx(y) = x̂y, it is
true that

f(adx)(y) = f(x̂)y,

and we may use the same technique as above to simplify f(x̂):

dexpx =
exp x̂− I

x̂
= I +

sin2(ϕ/2)

ϕ2/2
x̂+

ϕ− sinϕ

ϕ3
x̂2, (B.10)

dexp−1
x =

x̂

exp x̂− I
= I − 1

2
x̂− ϕ cot(ϕ/2)− 2

2ϕ2
x̂2, (B.11)

dcayx = c
(
I + 1

2 x̂
)
, (B.12)

dcay−1
x = I − 1

2 x̂+ 1
4xx

T, (B.13)

with c as in (B.9). These formulae are based on the representation of so(3)
as 3-vectors, so (B.12), for instance, should read dcayx(y) = c(y+ 1

2 x̂y) =

c(y + 1
2x×y).

If U = expm(x̂) is an orthogonal matrix, the matrix x̂ can be obtained
by means of the matrix logarithm as

x̂ = logm(U) =
sin−1 ‖y‖
‖y‖ ŷ, ŷ = 1

2(U − UT). (B.14)

Similarly, we may invert the Cayley map as

x̂ = cay−1(U) = 2

(
1−√1− ‖y‖2

‖y‖2

)
ŷ, ŷ = 1

2(U − UT). (B.15)

Also, canonical coordinates of the second kind (6.15) can be evaluated
explicitly. Letting

C1 =

 0 1 0
−1 0 0

0 0 0

 , C2 =

 0 0 1
0 0 0

−1 0 0

 , C3 =

 0 0 0
0 0 1
0 −1 0

be a Chevalley basis, we have

expm(x̂) = expm(α1C1) expm(α2C2) expm(α3C3),

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

Lie-group methods 365

where

α1 = − tan−1 x3ϕ
−1 sinϕ+ x1x2ϕ

−2(1− cosϕ)

cosϕ+ x2
1ϕ
−2(1− cosϕ)

,

α2 = − sin−1[x2ϕ
−1 sinϕ+ x1x3ϕ

−2(1− cosϕ)],

α3 = − tan−1 x1ϕ
−1 sinϕ+ x2x3ϕ

−2(1− cosϕ)

cosϕ+ x2
3ϕ
−2(1− cosϕ)

.

(B.16)

Different ordering of C1, C2, C3 leads to similar formulae. Note that, to avoid
loss of significant digits for small ϕ, it is convenient to implement 1− cosϕ,
a recurring factor in (B.16), using an angle-doubling formula. The outcome,

1− cosϕ = 2 sin2 ϕ/2,

is more stable when numerical methods are implemented with small step-
size.

https://doi.org/10.1017/S0962492900002154 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492900002154

