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Abstract

Objectives: The role of neurological proteins in the development of bipolar disorder (BD) and
schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential
genetic correlations of plasma neurological proteins with BD and SCZ. Methods: By using
the latest genome-wide association study (GWAS) summary data of BD and SCZ (including
41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric
GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins
(including 750 individuals), we performed a linkage disequilibrium score regression (LDSC)
analysis to detect the potential genetic correlations between the two common psychiatric
disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation
(MR) analysis was then applied to assess the bidirectional causal relationship between the
neurological proteins identified by LDSC, BD and SCZ. Results: LDSC analysis identified
one neurological protein, NEP, which shows suggestive genetic correlation signals for both
BD (coefficient=−0.165, p value= 0.035) and SCZ (coefficient=−0.235, p value= 0.020).
However, those association did not remain significant after strict Bonferroni correction.
Two sampleMR analysis found that there was an association between genetically predicted level
of NEP protein, BD (odd ratio [OR]= 0.87, p value= 1.61 × 10−6) and SCZ (OR= 0.90,
p value= 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted
association between BD, SCZ, and NEP protein level. Conclusion: This study provided novel
clues for understanding the genetic effects of neurological proteins on BD and SCZ.

Significant outcomes

• Previous genetic studies of bipolar disorder (BD) and schizophrenia (SCZ) have identified
multiple shared susceptibility genes, neurometabolites, proteins, and brain morphology
changes.

• Linkage disequilibrium score regression identified one neurological protein, NEP, which
shows suggestive genetic correlation for both BD and SCZ. Two-sample bidirectional
Mendelian randomisation analysis suggested an association between genetically predicted
levels of NEP protein (exposure), BD (outcome) and SCZ (outcome).

• The findingsmay provide new ideas for future research on the pathogenesis of BD and SCZ
and understanding the genetic effects of neurological proteins on BD and SCZ.

Limitations

• Firstly, we observed suggestive genetic correlation between NEP, BD and SCZ. In addition,
the instrumental variable used for MR analysis is a trans single nucleotide polymorphisms
(SNP) of NEP protein, which may have weaker effect size and less direct effect. Further
functional experiment is warranted to confirm our findings and clarify the underlying
biological effects of neurological proteins on BD and SCZ.

• Secondly, the GWAS summary statistics all derived from European populations; thus, the
results should be applied to other ethnic groups with caution.
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Introduction

Bipolar disorder (BD) and Schizophrenia (SCZ) are two common
psychiatry disorders shared certain symptoms, such as hallucina-
tions, delusions, andmood symptoms (Yuji et al., 2020). According
to the report of The Global Burden of Diseases (GBD), Injuries,
and Risk Factors Study 2017, the estimated prevalence around
the globe is about 45 million for BD and 19 million for SCZ
(James et al., 2018). Both disorders may cause damage to the lives
of patients, such as marital instability, low level of education, high
social costs, as well as occupational status. With the increasing
burden of both disorders (James et al., 2018), its prevention and
treatment have become an urgent public health issue.

It has been demonstrated that the combination of both
environmental and genetic factors all exert their effect on the devel-
opment of common psychiatry disorders (Arango et al., 2018).
Multiple epidemiological (Lichtenstein et al., 2009) and molecular
biological (Ripke et al., 2013) studies have observed shared risk
components among BD and SCZ. Recently, the underlying effects
of genetic factors in the progression of common psychiatric disor-
ders have been documented in detail. For example, multiple studies
focus on the genetic mechanisms of the BD and SCZ have
identified multiple shared susceptibility genes, neurometabolites,
proteins, and brain morphology changes (Gratacòs et al., 2009).
However, the aetiology of the two disorders is still elusive now.

Neurological proteins are a mixture of proteins which involves
in the neurobiological processes (such as synaptic function and
axon guidance) and neurological-related diseases, as well as poten-
tial proteins which play roles in cellular immunology, regulation,
and development (Hillary et al., 2019). Previous studies have
discovered the relationships between neurological proteins and
common psychiatric disorders. For instance, autism spectrum
disorders are characterized by defects in axon guidance proteins
which will induce a reduction in axonal connections between
specific brain regions and an increase in connectivity within
specific brain regions (Van Battum et al., 2015). However, there
are no systematic studies focus on the role of neurological proteins
in common psychiatric disorders.

Linkage disequilibrium score regression (LDSC) has been
widely used to evaluate the genetic correlations between different
complex traits (Bulik-Sullivan et al., 2015). Mendelian randomisa-
tion (MR) analyses enable an assessment of potential causal
association between complex traits by using genetic variants as
instrumental variables (Smith & Ebrahim, 2005). These two
methods are often combined together to explore the association
between two traits and the direction of their association. For
instance, Kappelmann et al. recently applied a combination of
the twomethods to evaluate the association between inflammation
(as indicated by C-reactive protein (CRP) level and IL-6 signalling
or activity), BMI (as an index of metabolic dysregulation), and nine
specific depressive symptoms (Kappelmann et al., 2021). They
reported coheritability between CRP levels and individual depres-
sive symptoms and found that IL-6 signalling is associated with
suicidality (Kappelmann et al., 2021).

In this study, we first conducted a LDSC analysis to systemati-
cally evaluate the genetic correlations between two common
psychiatric disorders and plasma neurological proteins by utilising
the latest genome-wide association study (GWAS) summary
statistics of neurological proteins and two psychiatric disorders.
Two-sample MR analysis was then applied to assess the bidirec-
tional causal relationship between the neurological proteins iden-
tified by LDSC and BD, and SCZ.

Materials and methods

GWAS datasets of BD and SCZ

The latest GWAS summary statistics of BD (41,917 cases
and 371,549 controls) and SCZ (11,260 cases and 24,542 controls)
were derived from the Psychiatric GWAS Consortium (PGC)
website (https://www.med.unc.edu/pgc/download-results/) (Mullins
et al., 2021, Pardiñas et al., 2018). In short, all study individuals
are European populations and diagnosed using research standard
diagnoses and expert clinical consensus diagnosis. The genotyping
was conducted by multiple platforms, such as Affymetrix SNP 6.0,
UK Biobank Axiom Array, Illumina PsychChip, and Illumina
610K chips. Imputation was performed using IMPUTE2 against
public reference panels, including the 1000 Genomes Project
Phase 2 and Phase 3. Logistic regression model was applied for
association analysis. The detail of the experimental design, sample
composition, and statistical analysis can be found in the previous
studies and supplementary tables 1 and 2 (Mullins et al., 2021,
Pardiñas et al., 2018).

GWAS dataset of plasma neurological proteins

The GWAS summary statistics of plasma neurological proteins
were downloaded from a recent study (Hillary et al., 2019).
Briefly, by using a 92-plex proximity extension assay, Hillary
et al. carried out a GWAS of the plasma levels of 92 neurological
proteins in 750 relatively healthy older adults from the Lothian
Birth Cohort 1936 study (Hillary et al., 2019). The proteins assayed
constitute the Olink® neurology biomarker panel, including
proteins with established evidence in neuropathology and poten-
tial proteins which underlie in processing cellular immunology and
communication (Hillary et al., 2019). Briefly, the genotyping was
conducted by using the Illumina 610-Quadv1 array. The imputa-
tion was conducted against the 1000G (phase 1, version 3) refer-
ence panel. Linear regression model was applied to evaluate the
effect of each genetic variant on the protein residuals using
mach2qtl (Hillary et al., 2019). Detailed description of sample
composition, quality control, and study design can be found in
the previous study (Hillary et al., 2019).

Genetic correlation scanning

Following the standard recommendation from the developers and
previous study (Bulik-Sullivan et al., 2015), LDSC software was
used for scanning the genetic correlations between BD, SCZ,
and each of the 92 neurological proteins. The fundamental of
LDSC method is to use the observed χ2 test statistic to estimate
the deviation from the expected value of the SNP directly from
the GWAS summary data under the null hypothesis of no corre-
lation (Shi et al., 2016). For a SNP marking more it’s neighbours
having a higher LD Score, it will be more possible to mark one or
more causal loci affecting the trait (Shi et al., 2016). If the detected
genetic correlation is statistically significant, then we can be sure
that observed correlations cannot be entirely attributable to envi-
ronmental confounding factors (Lee & Chow, 2017). In addition,
Bulik-Sullivan et al. have suggested that LDSC can identify genuine
pleiotropy from the bias caused by relatedness and population
stratification. The LD scores of Europeans were precalculated from
the 1000G and used in the current study (Bulik-Sullivan et al.,
2015). In this study, we compared the relationships between BD,
SCZ, and each of the 92 neurological proteins. The significant asso-
ciation thresholds should be P< 2.72 × 10−4 (0.05/184) after strict
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Bonferroni correction. p-Values between 2.72 × 10−4 and 0.05 were
considered to be suggestive of significance.

Assessing bidirectional causal relationships between
neurological proteins, BD and SCZ

Two-sample MR analysis was then conducted to assess the
bidirectional causal relationship between the significant neuro-
logical proteins identified by LDSC, BD and SCZ. We first assessed
the causal relationship between NEP protein (exposure),
BD (Stahl et al., 2019) (id: ieu-b-41) (outcome) and SCZ
(Consortium, 2014) (id: ieu-b-42) (outcome) by utilising the
two-sample MR analysis implemented in “TwoSampleMR”
R package. Briefly, a total of 374 SNPs with p-value < 5 × 10−8

of NEP GWAS summary statistics were selected for MR analysis
and 1 SNP was remained after filtering out SNPs whose distance
within 10,000 KB and r2> 0.001. The ratio of coefficients method,
or the Wald method, is the simplest way of estimating the causal
effect of the exposure on the outcome by using a single instrument
variable (Burgess et al., 2015). Wald ratio method with SNP
rs35004449 as the genetic instrument was used in the subsequent
MR analysis.

Then the opposite causal effects of BD (exposure)
and SCZ (exposure) on NEP (outcome) protein were estimated
by using the same method. Briefly, a total of 16 SNPs
for BD and 81 for SCZ with p-value< 5 × 10−8 were selected for
MR analysis, and 9 SNPs for BD and 61 for SCZ were remained,
respectively, after filtering out SNPs whose distance within
10,000 KB and r2> 0.001. We employed the inverse-variance-
weighted (IVW) method as primary MR analysis approach in
the subsequentMR analysis which estimates causal effects of genet-
ically predicted exposure on outcome through weighted regression
of SNP-specific Wald ratios (Burgess et al., 2013).

The causal effect size was reported in beta when the outcome
was continuous (i.e. levels of NEP protein) and converted to odds
ratio (ORs) when the outcome was binary (i.e. BD and SCZ status).
An F statistic was estimated to evaluate the strength of these
selected instrumental variables for NEP protein, BD, and SCZ
(Pierce et al., 2011). Generally, an F statistic > 10 was considered
as a typical threshold for the selection of strong instrumental vari-
ables (Brion et al., 2013).

Results

Genetic correlation between neurological proteins,
BD and SCZ

Among the 92 analyzed neurological proteins, we identified
NEP, which shows suggestive genetic correlation signals for
both BD (coefficient =−0.165, p value = 0.035) and SCZ
(coefficient=−0.235, p value= 0.020) (Table 1). The overall
results of LDSC analysis were summarised in supplementary
tables 3 and 4.

Bidirectional causal relationships between neurological
proteins, BD and SCZ

All instrumental variables for NEP protein, BD, and SCZ were
sufficiently informative (F statistic > 10) for MR analyses. For
the causal effects of NEP protein on BD and SCZ, due to only
one instrument variable remains after filtering, we only conducted
the two-sample MR analysis by using the Wald ratio method.
Based on the Wald ratio method of MR analysis, we found an
association between genetically predicted levels of NEP protein
(exposure), BD (outcome) (OR= 0.87, 95% confidence interval
(CI)= 0.82, 0.92, p value = 1.61 × 10−6) and SCZ (outcome)
(OR= 0.90, 95% CI = 0.86, 0.94, p value = 4.04 × 10−6) (Table 2).
However, we did not observe associations between genetically
predicted levels of BD, SCZ (exposure), and NEP protein
(outcome) (Table 2). The overall results of the two-sample bidirec-
tional MR analysis were summarised in Table 2.

Discussion

We conducted a systematic genetic correlation scan between BD,
SCZ, and each of the 92 plasma neurological proteins. We identi-
fied one plasma neurological protein, NEP, showing suggestive
genetic correlation evidence with BD and SCZ after strict
Bonferroni correction. The two-sample MR analysis also found
that NEP protein had a causal relationship with BD and SCZ.
Those findings may provide novel insights into the pathogenesis
and biomarkers studies of BD and SCZ.

It is interesting that NEP was identified as a candidate neuro-
logical protein for both BD and SCZ by LDSC analysis. Hillary et al.
identified a sole independent trans pQTL (rs4687657) for NEP
annotated to the ITIH4 gene, as well as two trans genome-wide
significant CpG sites (cg11645453 and cg18404041 annotated to
ITIH4 and ITIH1, respectively) (Hillary et al., 2019). It has been
reported by a previous study that the SNP rs4687657 has been
involving with lower methylation levels of cg18404041 (ITIH4)
and higher DNA methylation levels of cg11645453 (ITIH1)
(Gaunt et al., 2016). Previous studies have suggested that epige-
netic mechanisms such as gene-specific DNA methylation and
posttranslational histone modifications may play an important
role in the emergence of major psychosis, such as BD and SCZ,
and identified some common epigenetic modification patterns
among the two diseases (Gürel et al., 2020). For example,
Nohesara et al. have summarised a great number of DNAmethyla-
tion alterations in SZ and BD which involved in the regulation
of brain functions such as neurogenesis, synaptic plasticity,
and neurotransmitter delivery (Nohesara et al., 2011, Pai et al.,
2019). Those evidence indicated that the expression of NEP,
ITIH1, and ITIH4 may be co-regulated, involving the inverse
effects between NEP and ITIH1 with ITIH4 (Sun et al., 2018).
A combined GWAS analysis of SCZ and BD have yielded strong
evidence for SNPs in the region of NEK4-ITIH1-ITIH3-ITIH4
associated with the two diseases (Sklar et al., 2011, Witt et al.,
2014). Finseth et al. observed a new association between

Table 1. Genetic correlations analysis results between the two common psychiatric disorders and plasma neurological protein (p value< 0.05)

Neurological protein Psychiatric disorders Coefficients 95% confidence intervals P value Heritability estimate

NEP BD − 0.165 − 0.319 to− 0.011 0.035 0.072

SCZ − 0.235 − 0.433 to− 0.037 0.020 0.242

BD, bipolar disorder; SCZ, schizophrenia.
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ITIH3/4 region and suicide attempt in a group of patients
combined with SCZ and BD (Finseth et al., 2014). By using a trans-
mission disequilibrium test in 65 Han Chinese families, the
researchers have confirmed a SCZ susceptibility locus on 3p21.1
which encompass the multigenetic region NEK4-ITIH1-ITIH3-
ITIH4 (Li et al., 2020). Given that variants in NEP are related to
DNAmethylation of the susceptibility gene in BD and SCZ, further
functional studies are needed to explore its role in the pathogenesis
of BD and SCZ.

Two-sample bidirectional MR analysis was conducted to
evaluate the genetic correlation direction between NEP protein,
BD and SCZ identified by LDSC. It is worth noting that the instru-
mental variable (rs35004449) selected for estimating causal effects
of NEP protein on BD and SCZ is a ‘trans’ SNP for NEP. Although
it is GWAS significant for NEP protein and independent of other
SNPs, it is not located in the known coding region for NEP, but in
the ITIH4 coding region, whereas NEP is coded by theMME gene.
According to the previous study, MR results from analysis of trans
SNPS are at particular risk of pleiotropy (e.g. genetic confounding)
and typically have weaker effect size and less direct effect, hence are
more prone to violate MR assumptions (Porcu et al., 2019). Our
results might indicate that perhaps it is not genetically predicted
NEP itself that influence the risk of BD and SCZ, rather something
else related to ITIH4 that also influences NEP. Thus, the findings
of this study should be applied with much greater caution. It has
been reported that some regulatory SNPs, such as transcription
factor binding regions and chromatin interactive regions of
ITIH4, were involving the genetic mechanism of BD (Qi et al.,
2020). Combining with the results of LDSC, NEP may be targeted
for early diagnosis and treatment of BD and SCZ. However, due to
other significant cis-SNPs located within the MME gene is not
available, further researches are needed to verify this direct or indi-
rect causal association.

NEP, also known as MME, is a neutral endopeptidase that
cleaves peptides at the amino side of hydrophobic residues and
inactivates several peptide hormones including enkephalins,
glucagon, neurotensin, bradykinin, and oxytocin. We observed
suggestive genetic correlation and causal relationship between
NEP protein with both BD and SCZ, which is consistent with

previous studies that BD and SCZ shared common genetic mecha-
nism (Ripke et al., 2013, Lichtenstein et al., 2009). Neurotensin is a
neuropeptide that has been implicated in the biology of SCZ by
modulating dopaminergic and other neurotransmitter systems
(Perreault et al., 2010, Wolf et al., 1995). It has been reported that
neurotensin receptor agonists have the capacity to be used as novel
therapeutic strategy for the treatment of SCZ (Boules et al., 2007).

The advantages of current study are that because of using
GWAS summary statistics, the findings should not be easily
affected by environmental confounding factors. In addition, some
limitations of our study should be noted. First, the main objective
of current study is to detect the genetic correlations between
plasma neurological proteins, BD and SCZ, and to discover novel
candidate neurological proteins related to BD and SCZ. Further
functional experimental researchers are warranted to validate
the results and clarify the potential genetic mechanisms of NEP
protein in the development of BD and SCZ. Secondly, the
GWAS summary statistics used in the current study are all from
European populations; thus, the study results should be applied
to other ethnic groups with caution. In addition, the sample size
for the GWAS used for neurological proteins is extremely small
and so highly likely to be underpowered to detect all but the genetic
variants with the strongest signals, it may at present preclude an
informative LDSC and MR study examining genetic similarity
between neurological proteins and mental disorders. Thirdly, after
strict multiple testing correction, the significant threshold should
be P< 2.72 × 10−4 (0.05/184). Unfortunately, according to our
results, the NEP protein identified in this study shows suggestive
association with the BD and SCZ. So, our results should be inter-
preted carefully.

In summary, by applying the widely used genetic approach, we
conducted a combination of LDSC and two-sample bidirectional
MR analysis to explore the genetic correlations and causal associ-
ations between neurological proteins, BD and SCZ. Our study
identified one candidate neurological proteins showing suggestive
association signal and potential causal relationship with both BD
and SCZ. The findings may provide new ideas for future research
on the pathogenesis of BD and SCZ and understanding the genetic
effects of neurological proteins on BD and SCZ.

Table 2. The two-sample bidirectional MR analysis results for the association between BD, SCZ, and NEP protein

Exposure Outcome Number of SNPs Method OR or beta (95% CI) p-Value

NEP BD 1 Wald ratio 0.871 (0.823, 0.921) 1.61 × 10−6

SCZ 1 Wald ratio 0.899 (0.859, 0.940) 4.04 × 10−6

BD NEP 6 MR Egger 1.631 (−5.961, 9.224) 0.6953

Weighted median −0.457 (−1.156, 0.241) 0.1994

IVW-MRE −0.645 (−1.637, 0.347) 0.2026

Simple mode −0.495 (−1.351, 0.361) 0.3084

Weighted mode −0.466 (−1.256, 0.325) 0.3006

SCZ NEP 54 MR Egger 0.408 (−0.734, 1.55) 0.4873

Weighted median 0.212 (−0.089, 0.513) 0.1679

IVW −0.011 (−0.233, 0.210) 0.9190

Simple mode 0.466 (−0.161, 1.092) 0.1514

Weighted mode 0.453 (−0.123, 1.030) 0.1291

MR, Mendelian randomization; BD, bipolar disorder; SCZ, schizophrenia; OR, odd ratio; CI, confidence interval; IVW, Inverse variance weighted; MRE, multiplicative random effects.
The heterogeneity test for BD suggested that p Cochran’s Q of MR Egger and IVW< 0.05. Therefore, we used IVW method in a MRE model to evaluate the causal effect of BD on NEP protein.
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